National Library of Energy BETA

Sample records for appalachian basin wind

  1. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland 19.73 19.64 -0.4%...

  2. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  3. Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers homogenization temperatures indicate thatburial ofLower andUpperPennsylvanian strata of theAppalachianPlateau in

  4. Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids

    E-Print Network [OSTI]

    Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids Kimberly Lau resulted in a better understanding of the paleoecology and paleobiogeography of a poorly studied group

  5. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  6. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  7. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Michigan 13.74 16.13 17.4% 99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W 40.18 W 94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W...

  8. Microsoft Word - NETL-TRS-8-2015 Appalachian Basin Isotopes_7...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large extent of the Appalachian Basin, is subject to hydraulic fracturing (fracking) hydrocarbon extraction techniques, which involves the fracturing of rock by a...

  9. Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1

    E-Print Network [OSTI]

    Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

  10. CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION

    E-Print Network [OSTI]

    including those areas where CBM production has previously been developed. The enhanced coalbed methane (ECBM0625 CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin

  11. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    July 2010 SPE 139101 Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky O. Grujic, S.D. Mohaghegh, G. Bromhal The research Huron Shale · Data Preparation · Conventional Reservoir Simulation vs. Top Down Reservoir Modeling · Top

  12. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  13. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  14. Overcoming Barriers to Wind Development in Appalachian Coal Country

    SciTech Connect (OSTI)

    Brent Bailey; Evan Hansen

    2012-10-09

    This research project synthesizes existing data and communication from experts to assess barriers to wind development in Pennsylvania, Maryland, West Virginia, Virginia, and Kentucky, and makes recommendations where feasible to reduce or eliminate those barriers.

  15. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

  16. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  17. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin sections, leading to an interpretation of the sequence of diagenetic events and development of porosity in the reservoir. Nearly 1000 stable isotope geochemistry samples have been collected from cores in four of the five states in the study area. More than 400 of these samples will be analyzed for fluid inclusion and/or strontium isotope analyses, as well. Gas samples have been collected from 21 wells in four states and analyzed for chemical content and isotope analyses of carbon and hydrogen. Because natural gases vary in chemical and isotope composition as a function of their formation and migration history, crossplots of these values can be very revealing. Gas from the Homer field in Kentucky indicates compartmentalization and at least two different sources. Gas from the York field in Ohio also came from at least two discrete compartments. Gas from the Cottontree field in West Virginia is very dry, probably generated from post-mature source rocks. Isotope reversals may be indicative of cracking of residual oil. Gas from Glodes Corners Road field in New York also is post-mature, dry gas, and again isotope reversals may indicate cracking of residual oil in the reservoir. Noble gases are predominantly of crustal origin, but a minor helium component was derived from the mantle. The project web server continues to evolve as the project progresses. The user/password authenticated website has 18 industry partner users and 20 research team users. Software has been installed to track website use. Two meetings of the research team were held to review the status of the project and prepare reports to be given to the full consortium. A meeting of the full consortium--industry partners and researchers--was very successful. However, the ultimate product of the research could be improved if industry members were more forthcoming with proprietary data.

  18. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  19. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

  20. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  1. The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin 

    E-Print Network [OSTI]

    Lancaster, David Earl

    1988-01-01

    gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

  2. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2003-05-31

    This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

  3. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  4. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  5. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0192 0.0202 W 0.0188 W W W W 0.0246 3.1 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  6. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0174 0.0186 W 0.0182 W W W W 0.0269 5.6 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  7. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs

    E-Print Network [OSTI]

    Haak, Hein

    Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs R. C levels and waves are generated by low atmospheric pressure and severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind

  8. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  9. Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report

    SciTech Connect (OSTI)

    Hanley, D

    2011-10-22

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

  10. Appalachian State | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNewAppalachian

  11. Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    resuspension by wind waves and is applied to the Venice lagoon, Italy. Model results show that the equilibrium becomes emergent, the inundation period decreases, so that less sediment deposits leading to a reduction

  12. The Appalachian Laboratory Graduate Student Handbook

    E-Print Network [OSTI]

    Boynton, Walter R.

    ................................................................ 10 Environmental Chemistry .............................................. 11 Environmental Molecular. UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE APPALACHIAN LABORATORY #12;2 Table of Contents for Environmental Science .........................................6 Highlights of some of the University

  13. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  14. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASION

    SciTech Connect (OSTI)

    Rober Jacobi

    2006-05-31

    During this reporting period, Fortuna retrieved the first oriented horizontal core from the Trenton/Black River in the northern Appalachian Basin. The core came from central New York State, the ''hottest'' play in the Appalachian Basin. A complete well log suite was also collected in the horizontal hole, including an FMI log. After reassembling the core sections, and orienting the core, we analyzed the whole core before it was cut for full-diameter core analyses (e.g., permeability) and before the core was split, in order that we did not miss any features that may be lost during cutting. We recognized and mapped along the core 43 stylolites, 99 veins and several large partially filled vugs. Kinematic indicators suggest multiple phases of strike-slip motion. Master-abutting relationships at intersections (primarily determined from which feature ''cuts'' which other feature) show three stages of stylolite growth: sub horizontal, nearly vertical, and steeply dipping. These development stages reflect vertical loading, tectonic horizontal loading, and finally oblique loading. Hydrothermal dolomite veins cut and are cut by all three stages of the stylolites. A set of horizontal veins indicates vertical unloading. Analyses of the core will continue, as well as the well logs.

  15. Appalachian Advanced Energy Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperion Energy SystemsApopka,Appalachian

  16. Appalachian Advanced Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNewAppalachian Advanced Energy Jump

  17. Appalachian Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNewAppalachian Advanced Energy

  18. Appalachian Power Co (Virginia) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNewAppalachian Advanced

  19. AEP Appalachian Power- Non-Residential Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Appalachian Power C&I Prescriptive program offers prescriptive incentives for some of the more common energy efficiency measures. Program incentives are available under the C&I Prescr...

  20. CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS 

    E-Print Network [OSTI]

    Baker, Ralph C.

    2011-01-11

    This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

  1. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  2. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0 1.0Delaware W

  3. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear JanFeet)0.9 0.9 1.0 1.0Delaware

  4. AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS A Thesis by GINGER MARIE of the requirements for the degree of MASTER OF ARTS May 2011 Department of Geography and Planning #12;AEROSOL-PRECIPITATION and Graduate Studies #12;Copyright by Ginger Marie Kelly 2011 All Rights Reserved #12;iv ABSTRACT AEROSOL-PRECIPITATION

  5. All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and

    E-Print Network [OSTI]

    Fernandez, Eduardo

    All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

  6. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  7. Water chemistry-based classification of streams and implications for restoring mined Appalachian watersheds

    SciTech Connect (OSTI)

    Merovich, G.T.; Stiles, J.M.; Petty, J.T.; Ziemkiewicz, P.F.; Fulton, J.B. [West Virginia University, Morgantown, WV (United States)

    2007-07-15

    We analyzed seasonal water samples from the Cheat and Tygart Valley river basins, West Virginia, USA, in an attempt to classify streams based on water chemistry in this coal-mining region. We also examined temporal variability among water samples. Principal component analysis identified two important dimensions of variation in water chemistry. This variation was determined largely by mining-related factors (elevated metals, sulfates, and conductivity) and an alkalinity-hardness gradient. Cluster analysis grouped water samples into six types that we described as reference, soft, hard, transitional, moderate acid mine drainage, and severe acid mine drainage. These types were statistically distinguishable in multidimensional space. Classification tree analysis confirmed that chemical constituents related to acid mine drainage and acid rain distinguished these six groups. Hard, soft, and severe acid mine drainage type streams were temporally constant compared to streams identified as reference, transitional, and moderate acid mine drainage type, which had a greater tendency to shift to a different water type between seasons. Our research is the first to establish a statistically supported stream classification system in mined watersheds. The results suggest that human-related stressors superimposed on geology are responsible for producing distinct water quality types in this region as opposed to more continuous variation in chemistry that would be expected in an unimpacted setting. These findings provide a basis for simplifying stream monitoring efforts, developing generalized remediation strategies, and identifying specific remediation priorities in mined Appalachian watersheds.

  8. APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

    E-Print Network [OSTI]

    Boynton, Walter R.

    APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION. of Budget and Management Please fax this form to: 410-333-7122 UMCES Agency #12;APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

  9. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  10. Appalachian Power Co (West Virginia) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| Open EnergyNewAppalachian AdvancedWest

  11. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  12. Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics 

    E-Print Network [OSTI]

    Flatley, William 1977-

    2012-08-31

    Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro...

  13. Microsoft PowerPoint - APPALACHIAN_STATE_Presentation 4 27 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Built Environment APPALACHIAN STATE UNIVERSITY 19 April 2015 2 The App State Team Jake Smith Chris Schoonover A.J. Smith Josh Brooks Chase Ambler Brad Painting Harrison Sytz...

  14. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2004-07-08

    The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. Secondary goals in Phase I were also completed for the last reporting period. Thus, no new data were collected for this reporting period, and only soil gas surveys were reanalyzed and re-displayed in the region of the Trenton/Black River wells. The soil gas profiles in the region of the Trenton/Black River wells show that individual large-magnitude soil gas anomalies (spikes) are rarely wider than 50 m. Even clusters of soil gas spikes are only on the order of 200-250 m wide. Thus, widely-spaced sampling will not necessarily represent the actual number and location of soil gas seeps. The narrowness of the anomalies suggests that the seeps result from single fractures or narrow fracture intensification domains (FIDs). Many of the lineaments from EarthSat (1997) and straight stream segments coincide (or are very close to) soil gas spikes, but we collected many more soil gas spikes than lineaments. Among some of the soil gas box surveys, a possible ENE-trend of spikes can be discerned. This ENE-striking trend is, however, about 10{sup o} away from a nearby Earthsat (1997) trend. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  15. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-06-30

    In the structure task, the authors completed reducing the data they had collected from a N-S transect on the east side of Seneca Lake. They have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement. These basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitely identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definite correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display an interpreted seismic line that crosses the Glodes Corners and Muck Farms fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  16. INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-06-30

    In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  17. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-01-30

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  18. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-02-28

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  19. Creating a Geologic Play Book for Trenton-Black River Appalachian Basin

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractorEnergy, science,6.466440Exploration (Technical

  20. A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries arePlasma PhysicsA

  1. Wind-wave modelling aspects within complicate topography S. Christopoulos

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind-wave modelling aspects within complicate topography S. Christopoulos Division of Hydraulics. Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea) to reproduce wind patterns over special basins, as well as three wave models incorporating different physics

  2. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  3. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  4. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  5. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  6. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  7. Spatio-temporal availability of soft mast in clearcuts in the Southern Appalachians

    E-Print Network [OSTI]

    Mitchell, Mike

    Spatio-temporal availability of soft mast in clearcuts in the Southern Appalachians Melissa J availability of soft mast though time is not fully understood. We tested a theoretical model of temporal availability of soft mast in clearcuts using empirical data on percent cover and berry production

  8. A COMPARISON OF RADIATION USE EFFICIENCY BETWEEN TWO SOUTHERN APPALACHIAN FORESTS

    E-Print Network [OSTI]

    Teskey, Robert O.

    ), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency ( =PP/IPAR) betweenA COMPARISON OF RADIATION USE EFFICIENCY BETWEEN TWO SOUTHERN APPALACHIAN FORESTS by LUKE A. PANGLE influence the photosynthetic radiation use efficiency (PhRUE) of forest canopies. The mixed deciduous forest

  9. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  10. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  11. Post-fire recovery and successional dynamics of an old growth red spruce forest in the southern Appalachian Mountains 

    E-Print Network [OSTI]

    Krustchinsky, Adam R.

    2009-05-15

    of fire in a mesic ecosystem, specifically a high-elevation red spruce (Picea rubens Sarg.) forest on Whitetop Mountain in the southern Appalachian Mountains. Six plots were established in a high elevation red spruce stand to characterize the stand...

  12. Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects 

    E-Print Network [OSTI]

    Phillips, Stephen Edward

    2001-01-01

    This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual...

  13. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  14. The Influence of Fire and Other Disturbance on Ericaceous Shrubs in Xeric Pine-Oak Forests of the Appalachian Mountains 

    E-Print Network [OSTI]

    Pipkin, Ashley

    2012-07-16

    OF FIRE AND OTHER DISTURBANCE ON ERICACEOUS SHRUBS IN XERIC PINE-OAK FORESTS OF THE APPALACHIAN MOUNTAINS A Thesis by ASHLEY R. PIPKIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2011 Major Subject: Geography The Influence of Fire and Other Disturbance on Ericaceous Shrubs in Xeric Pine-Oak Forests of the Appalachian Mountains...

  15. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  16. Dynamics of Wind Setdown at Suez and the Eastern Nile Carl Drews1,2

    E-Print Network [OSTI]

    Han, Weiqing

    /s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud be significantly curtailed by wind setdown when strong winds blow offshore. Citation: Drews C, Han W (2010-07-1-0413. Weiqing Han is also supported by NASA Ocean Vector Wind Science Team 1283568 and NSF CAREER OCE 0847605

  17. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  18. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  19. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Huron Shale - Gas production from Devonian Shale in Eastern Kentucky goes all the way back to 1892, when of the reservoir, efficient gas production was established. The most prolific horizon of Devonian Shale in Eastern Kentucky is the Lower Huron Shale, which is Ohio Shale member. Over 80% of Devonian gas production comes

  20. Microsoft Word - NETL-TRS-8-2015 Appalachian Basin Isotopes_7.28.15 FINAL.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates on Gas Bubbles during a Subsea H,

  1. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  2. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  3. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  4. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect (OSTI)

    Steltenpohl, M.G. (Auburn Univ., AL (United States)); Goldberg, S.A. (Univ. of North Carolina, Chapel Hill (United States)); Hanley, T.B. (Columbus College, GA (United States)); Kunk, M.J. (Geological Survey, Reston, VA (United States))

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  5. 62 Journal of Student Research in Environmental Science at Appalachian Site Suitability Analysis for a Solar Farm

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    , significantly adding to the cost. 1.2 Concentrated Solar Power Concentrated solar power systems, also known solar power sys- tems; however they remain more costly and less #12;Volume 4, 1st Edition · Spring 2014 for a Solar Farm in Watauga County, NC Marcus McKinney Environmental Science Program, Appalachian State

  6. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  7. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  8. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  9. Fragmentation of habitats used by neotropical migratory birds in Southern Appalachians and the neotropics

    SciTech Connect (OSTI)

    Pearson, S.M.; Dale, V.H.; Offerman, H.L. |

    1993-12-31

    Recent declines in North American breeding populations have sparked great concern over the effects of habitat fragmentation. Neotropical migrant birds use and are influenced by two biomes during a single life span. Yet assessment of the relative importance of changes in tropical wintering areas versus temperate breeding areas is complicated by regional variation in rates and extent of habitat change. Landscape-level measurements of forest fragmentation derived from remotely-sensed data provide a means to compare the patterns of habitat modification on the wintering and breeding grounds of migrant birds. This study quantifies patterns of forest fragmentation in the Southern Appalachian Mountains and tropical Amazon and relates these patterns to the resource needs of neotropical migrant birds. Study sites were selected from remotely-sensed images to represent a range of forest fragmentation (highly fragmented landscape to continuous forest).

  10. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  11. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  12. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  13. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  14. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  15. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  16. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  17. Gulf Coast-East Coast magnetic anomaly I: Root of the main crustal decollement for the Appalachian-Ouachita orogen

    SciTech Connect (OSTI)

    Hall, D.J. (Total Minatome Corporation, Houston, TX (USA))

    1990-09-01

    The Gulf Coast-East Coast magnetic anomaly extends for at least 4000 km from south-central Texas to offshore Newfoundland as one of the longest continuous tectonic features in North America and a major crustal element of the entire North Atlantic-Gulf Coast region. Analysis of 28 profiles spaced at 100km intervals and four computed models demonstrate that the anomaly may be explained by a thick zone of mafic and ultramafic rocks averaging 13-15 km in depth. The trend of the anomaly closely follows the trend of main Appalachian features: in the Gulf Coast of Louisiana, the anomaly is as far south of the Ouachita front as it is east of the western limit of deformation through the central Appalachians. Because the anomaly continues across well-known continental crust in northern Florida and onshore Texas, it cannot plausibly be ascribed to an edge effect at the boundary of oceanic with continental crustal compositions. The northwest-verging, deep-crustal events discovered in COCORP data from the Ouachitas and Appalachians suggest an analogy with the main suture of the Himalayan orogen in the Tibetan Plateau. In this paper the anomaly is identified with the late Paleozoic Alleghenian megasuture, in which the northwest-verging crustal-detachment surfaces ultimately root.

  18. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  19. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  20. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  1. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  2. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  3. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  4. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  5. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  6. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  7. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  8. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  9. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  16. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticJanuary 31, 2011. American Wind Energy Association (AWEA).D.C. : American Wind Energy Association. American Wind

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

  20. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign » DesignMay »helpWind

  2. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  3. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  4. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  5. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  6. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  7. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  8. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  9. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  10. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  11. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine July 1, 2014 - 8:44am Addthis For Cape Wind, Summer Breeze...

  12. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3://www.atm.ncu.edu.tw/93/wind/ MM5 simulation (1996~2000 database) Wind speed (m/s) at 50mWind power (100W/m2) at 50m http://wind.itri.org.tw/wind

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    of Energy’s (DOE) Wind & Water Power Program. For reviewingwere funded by the Wind & Water Power Program, Office ofWind Technologies Market Report Wind Energy Web Sites U.S. Department of Energy Wind and Water Power

  14. ARM - Field Campaign - Columbia Basin Wind Energy Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical

  15. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  16. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  17. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  18. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    that remains to be covered before wave energy science and technology reach the maturity level of its windData bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy

  19. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  20. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean: the wind itself is free, wind power is clean, and it is inexhaustible. In recent years, research on wind · Wind farm aerodynamics Rotor Design · Aerodynamics · Structure and design · Composite design, material

  1. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean, wind power is clean, and it is inexhaustible. In recent years, research on wind energy has accelerated that are offered are: Wind Physics · Atmospheric aerodynamics and turbulence · Wind farm aerodynamics Rotor Design

  2. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  3. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  8. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  10. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  11. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  13. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    11 “advanced-stage” offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    for deepwater offshore wind and tidal energy demonstrationand Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still faces

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    of Energy?s (DOE) Wind & Water Power Program. For reviewingfor offshore wind power development in federal waters fromof Water and Power (LADWP). 2011. Completion of Wind Power

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  2. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  3. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    be provided by wind power generators to provide frequencyof wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofLADWP). 2011. Completion of Wind Power Project Brings More

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    and K. Porter. 2011. Wind Power and Electricity Markets.The Effects of Integrating Wind Power on Transmission System41 6. Wind Power Price

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    exists in developing offshore wind energy in several partsexclusively on offshore wind energy will be published laterexclusively on offshore wind energy will be published later

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    assistance with the offshore wind energy discussion; Donnaactivity in the offshore wind energy sector. Data fromexpanded discussion of offshore wind energy development, and

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    exists in developing offshore wind energy in several partsstrides relating to offshore wind energy have been madeactivity in the offshore wind energy sector. Data from

  10. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  15. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  16. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  17. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  18. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  19. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  20. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am...

  1. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  2. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  3. 18 August 2009 www.fwbog.com Range Resources'(RRC) fourth

    E-Print Network [OSTI]

    Engelder, Terry

    Survey (USGS) and the Energy Information Administration (EIA) gave no indica- tion of the potential for gas production from the Marcellus. Thirty-year-old U.S. Department of Energy estimates for technically.Y. The press got wind of this news and set off a land rush in theAppalachian Basin. More than a year later

  4. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  5. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  6. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  7. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  8. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  9. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  10. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required...

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008to be relatively small, whereas the impacts of wind on load-

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,levels. Small Wind Turbines Small wind turbines can providebelow summarizes sales of small wind turbines, 100 kW and

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    wind project costs, wind turbine transaction prices, projectincreases in the cost of wind turbines over the last severalO&M costs given the dramatic changes in wind turbine

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbines100 wind turbine installed at the National Renewable Energy

  15. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Sites U.S. Department of Energy Wind Program wind.energy.govA. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA). 2012b. 2011 U.S. Small Wind Turbine Market Report.a brief discussion on Small Wind This 100 kW thresholdAnnual Capacity (GW) Small Wind Turbines Small wind turbines

  17. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    a brief discussion on Small Wind Turbines is provided onO&M costs. 2012 Wind Technologies Market Report Small WindTurbines Small wind turbines can provide power directly to

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided onat 2008 and 2009 levels. Small Wind Turbines Small wind

  19. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  20. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    or gravitational energy to some extent. Moreover, wave energy provides “15-20 times more available energy per square meter than either wind or solar” [1]. Of these the most commercially viable resources studied so far are ocean currents and waves. Some... limited commercial development and is therefore of more interest. Ocean waves arise from the transfer of energy from the sun to wind then water. Solar energy creates wind, which then blows over the ocean, converting wind energy to wave energy. Once...

  1. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  2. Rates of low-pH biological Fe(II) oxidation in the Appalachian Bituminous Coal Basin and the Iberian Pyrite Belt

    E-Print Network [OSTI]

    Burgos, William

    with metal mining, such as the Berkley Pit in Montana(Gammons et al., 2010; Pellicori et al., 2005), Iron(II) oxidation can be exploited for the treatment of acid mine drainage (AMD). However, nat- ural or engineered terraced iron formations (TIFs) are underutilized for AMD treatment because of uncer- tainties with respect

  3. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  4. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    by Canada (76%) and Mexico (17%). Wind turbine component30%), Mexico (21%), and China (21%)). Total wind turbine

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  8. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Public Opinion About Large Offshore Wind Power: UnderlyingA. (2007) Delaware Opinion on Offshore Wind Power - Interim

  9. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Renewable Energy (Wind and Water Technologies Program) ofWind Farms in North America 1 Ben Hoen Environmental Energy Technologies

  10. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  11. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    None

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  12. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  13. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  14. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  15. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  16. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  17. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  18. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  19. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  20. Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 310 Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at two levels. It is not really a wind at all, just a measure of the shear of the geostrophic wind. But there are good reasons for considering the geostrophic wind; mainly, it provides a convenient way of connecting

  1. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  2. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  3. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  4. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    movements on an array of strike-slip and normal fault systems have resulted in the uplift and preservation of older basins in modern ranges. One of the best exposed of these is...

  5. Free energy basin-hopping

    E-Print Network [OSTI]

    Sutherland-Cash, K.H.; Wales, D.J.; Chakrabarti, D.

    2015-02-17

    A global optimisation scheme is presented using basin-hopping with the acceptance criterion based on approximate free energy for the corresponding local minima of the potential energy. The method is illustrated for atomic and colloidal clusters...

  6. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  7. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins 

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25

    in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America...

  8. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  9. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    , central generation concentrates emissions in a small area, whereas DG spreads emissions throughout an urban air basin. In contrast, conventional, centralized power plants tend to be located in remote areas by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

  10. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  11. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  12. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  13. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 NTU Athens Specialisation Provider: Wind Energy #12;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading

  14. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Lennard, William N.

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  15. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  16. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  17. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  18. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  19. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  20. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  1. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Environmental Management (EM)

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis...

  2. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Community Wind HandbookUnderstand Your Wind Resource and Conduct a Preliminary Estimate < Community...

  3. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  4. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  5. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the...

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:examined land-based and offshore wind energy in the Easternassistance with the offshore wind energy discussion; Donna

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    with the section on offshore wind; Donna Heimiller and Billythe end of 2011, global offshore wind power capacity stoodEnergy's investments in offshore wind R&D. Interest exists

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:assistance with the offshore wind energy discussion; DonnaTechnologies Market Report Offshore Wind Power Project and

  9. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    from Canada and Mexico; unlike for wind-powered generatingHonduras (16%), Mexico (8%), and Canada (8%). Wind turbineWind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico,

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    balancing areas, the use of wind forecasts, and intra-hourchallenges and costs. Wind forecasts are most accurate andare the cost of day-ahead wind forecast error; the remaining

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    of wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.wind power forecasts by system operators can significantly reduce integration challenges and costs. Intra-hour transmission scheduling and generator

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  16. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided on2010a) sometimes also includes small wind turbines. Other

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  20. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign ToolsWind

  1. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind Farm Jump

  2. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research programWebmaster PleaseWind

  3. Wind Program Accomplishments

    SciTech Connect (OSTI)

    Wind Program

    2012-05-24

    This fact sheet describes some of the accomplishments of DOE's Wind Program through its investments in technology development and market barrier reduction, and how those accomplishments are supporting the advancement of renewable energy generated using the United States' abundant wind resources.

  4. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  5. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  6. Improved Basin Analog System to Characterize Unconventional Gas Resource 

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02

    potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly...

  7. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  8. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  9. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    wind power curtailment and the evolution in turbine design,power and wind resource quality confirms this offsetting effect and shows that turbine design

  10. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Policy Landscape Is Now More Favorable to Wind Energy thanPolicy Landscape Is Now More Favorable to Wind Energy than

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    electricity demand growth; existing state policies that are insufficient to support future wind power capacity additions at the levels 2011 Wind Technologies Market

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Lab staff. Wind Project Operations and Maintenance CostsWind project operations and maintenance costs come primarilyEnergy Laboratory operations and maintenance publicly owned

  15. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  16. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

  17. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish...

  18. Water War in the Klamath Basin

    E-Print Network [OSTI]

    Carchidi, Victoria

    2011-01-01

    Review: Water War in the Klamath Basin: Macho Law, CombatHolly and A. Dan Tarlock. Water War in the Klamath Basin:has rights to the limited water. Birds and ecosystems; fish

  19. Rainfall Generator for the Rhine Basin

    E-Print Network [OSTI]

    Brandsma, Theo

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables by nearest +31.320.249218 #12;2 Rainfall Generator for the Rhine Basin #12;Multi-site generation of weather

  20. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  1. Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes

    E-Print Network [OSTI]

    Weijer, Wilbert

    Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes et Approches Numériques, Paris, France SARAH T. GILLE Scripps Institution of Oceanography, La Jolla In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected

  2. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    As a result wind turbines can produce energy in winds as lowelectric energy to generate wind, a wind turbine utilizesWind Turbine Projects to Encourage Utilization of Wind Energy

  3. Observing System Simulation Experiments (OSSEs) for the Mid-Columbia Basin

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Waight, K; Manobianco, J; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate the Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.

  4. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  5. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  6. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  7. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  8. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  9. Small Wind Electric Systems Small Wind Electric Systems

    E-Print Network [OSTI]

    Branoff, Theodore J.

    An Illinois Consumer's Guide Small Wind Electric Systems #12;Small Wind Electric Systems Cover photo: Small wind turbines, like this grid-connected 10-kilowatt Bergey, can provide supplemental power -- Warren Gretz, NREL/PIX09630 #12;Small Wind Electric Systems Contents Introduction

  10. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  11. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  12. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL'sWind Wind Wind The United States

  13. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  14. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. ” Wind

  15. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Looking forward, offshore wind costs are generally expectedachieving the U.S. 20% wind cost and performance trajectoryDissecting Wind Turbine Costs. ” WindStats Newsletter (21:

  16. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,and Financial Support for Offshore Wind. The UK DepartmentCost Reduction Prospects for Offshore Wind Farms. ” Wind

  17. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy...

  18. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Opportunities in Wind Energy Technology. ” 50th AIAA/ASME/in its European Wind Energy Technology Platform (TP Wind) tothe Chapter on Wind Power in Energy Technology Perspectives

  19. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  20. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  1. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats and offshore wind energy will contribute sig- nificantly to achieving this target. The Kentish Flats alone plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30

  2. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  3. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  4. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sřrensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  5. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    wind energy generation within the Electric Reliabilitywind energy generation within the Electric Reliability

  7. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    wind manufacturers to produce offshore wind turbines withturbines, including those suitable for offshore wind farms.

  8. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

  9. GSA Wind Supply Opportunity

    Energy Savers [EERE]

    values at the source and sink are added (or subtracted) to the base price. Walnut Ridge Wind Farm Production PJM Grid Energy PJM RECs Transaction Manager National RECs To GSA...

  10. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  11. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  12. County Wind Ordinance Standards

    Broader source: Energy.gov [DOE]

    Assembly Bill 45 of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's...

  13. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  14. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  15. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  16. FTL Small Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

  17. Basin and Petroleum System Dynamics

    E-Print Network [OSTI]

    Pfander, Götz

    and development costs of new reserves and existing fields is immense: drilling wells, for example, may consume up to 85% of the total exploratory funds. Thus, the decision to drill should be taken in a sensible way of sedimentary basins and their hydrocarbon fluids. Executive Master Programme Participants will be able

  18. 52 Journal of Student Research in Environmental Science at Appalachian F A C U L T Y C O N T R I B U T I O N

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    52 Journal of Student Research in Environmental Science at Appalachian F A C U L T Y C O N T R I B U T I O N Call for Papers­ongoing The Journal of Student Research in Environmental Science. This journal will annually publish a collection of non-peer reviewed student and faculty articles based

  19. NREL: Wind Research - Wind Career Map Shows Wind Industry Career

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities, Paths Wind Career

  20. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  1. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  2. Small Wind Site Assessment Guidelines

    SciTech Connect (OSTI)

    Olsen, Tim; Preus, Robert

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  3. The State of the Columbia River Basin

    E-Print Network [OSTI]

    for Heating, Cooling appliances 14 Natural Gas Price Forecast Revision 15 Wind Integration Forum 15 Assessment

  4. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  5. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  6. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  7. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  8. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

  9. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  10. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  11. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  12. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  14. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  15. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  16. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Environmental Management (EM)

    consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

  17. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  19. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,the interesting areas for offshore wind farm construction

  20. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  1. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

  2. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  3. 2012 Wind Technologies Market Report Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIND AND WATER POWER PROGRAM 1 2012 Wind Technologies Market Report Ryan Wiser and Mark Bolinger Lawrence Berkeley National Laboratory Report Summary July 2013 WIND AND WATER POWER...

  4. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  5. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  6. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  7. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign Tools

  8. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNewSite Wind Resource

  9. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNewSite Wind

  10. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities, Paths Wind

  11. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment'sPrestonPreviousMembers | HomeWind

  12. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess RetailResolution ImagingWinds

  13. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump8)Wind

  14. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power > Generation Hydro

  15. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  16. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  17. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  18. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    a period of volatility in natural gas fuel prices launched the modern era of U.S. wind power. Electric system operators and utilities now routinely consider wind power as part...

  19. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Us Offices May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu,...

  20. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis

    2013-06-29

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  1. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  2. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  3. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  4. Sandia Energy - Wind Vision 2015: A New Era for Wind Power in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision 2015: A New Era for Wind Power in the United States Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Wind Vision 2015: A New Era for Wind...

  5. Midsize Wind Turbines for the U.S. Community Wind Market | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Midsize Wind Turbines for the U.S. Community Wind Market Midsize Wind Turbines for the U.S. Community Wind Market A presentation on the midsize wind markets, including town-owned,...

  6. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    Regulatory Process for Offshore Wind Energy Development, 31Offshore and Larger Wind Farm Developments, BRrrIS WIND ENERGYfor Offshore Wind in Europe, TilE EUROPIEAN WIND ENERGY

  7. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  8. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  9. Wind Program News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how saving energy could betoldwind/wind-program-news en Wind

  10. WINDExchange: Wind Energy Ordinances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 -UsingHeatInformationDevelopment Resources andWindWind

  11. Wind Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind Program R&DResearch and6 Wind

  12. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    increase the total power production using the same grid and foundation. Copyright © 2012 John Wiley & SonsWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library Mieras2 1 Faculty of Aerospace Engineering, Department of Aerodynamics and Wind Energy, Delft University

  13. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  14. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  15. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    prototype floating offshore wind turbine was deployed. AlsoWind Technologies Market Report No Commercial Offshore Turbineswind turbine nacelle assembly capacity; Charlie Bloch, Terese Decker, and Bruce Hamilton (Navigant Consulting) for assistance with the section on offshore

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

  17. AWEA Wind Project Siting Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Monthly. Bloomberg New Energy Finance. 2010a. Q1 Wind MarketOutlook. February 2010. Bloomberg New Energy Finance.Bloomberg New Energy Finance. 2010b. Q2 Wind Market Outlook.

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Inc. 2009 Wind Technologies Market Report Mexico (7%). It isMexico Cowlitz Public Utility District WPPI Energy Alliant Energy Puget Sound Energy Northwestern Energy * Based on a projection of wind

  20. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    and Transmission Study. NREL/SR-550-47078. Golden, Colorado:Wind Integration Study. NREL/ SR-550-47519. Golden,Wind and Solar Integration Study. NREL/SR-550-47434. Golden,

  2. 20% Wind Energy by 2030

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  3. San Diego County- Wind Regulations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  4. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  5. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    water as well as on land based wind farms. The specific offshore wind energy case under consideration, most of the offshore wind farms are in Europe, which started being developed in the early 1990's Cost of Offshore Wind Energy

  6. Wind Power Overview Windpoweristhefastestgrowingformofrenewableenergy,withpoten-

    E-Print Network [OSTI]

    Wind Power Overview · Windpoweristhefastestgrowingformofrenewableenergy Offshore Wind Power for Florida? · AveragehouseholdelectricitycostsforFloridaare expectedtoincreaseby4Pensacola. · SiemensWindPowerNorthAmerica isbasedinOrlando. · Sugarland Wind is planning onshorewindfarmadjacentto

  7. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  8. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risř National Laboratory Wind Energy Department Constructing a Numerical Wind Atlas 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The existing procedure at Risř . . . . . . . . . . . . . . . . . . . 13 3 Representing a Wind

  9. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  10. DWEA SMART Wind Composites Subgroup

    Broader source: Energy.gov [DOE]

    Monday, February 16, 6:00 PMOpen to all SMART Wind participants: “Dutch Treat” group dinner, RSVP required | Location: TBD

  11. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2013-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  12. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2012-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    wind Source: EIA, Ventyx, AWEA, IREC, Berkeley Lab Figure 2.Renewable Energy Council (IREC) and Berkeley Lab. Data on

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind energy generation within the Electric ReliabilityEnergy Regulatory Commission General Electric Corporation gigawatt generation and

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    and Germany’s 25,813 MW. Several countries are beginning to achieve relatively high levels of wind energy

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    When the wind generators are producing power, the powerWhen the wind generators are not producing power, the power

  17. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  18. Wind Tunnel Building - 4 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    of the Sargassum loop system sheds light on the seasonal migration patterns of the macro-algae. Through use of NASA’s Landsat satellite imagery the presence and abundance of Sargassum has been analyzed. Based on several factors, such as ocean currents, wind...

  19. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  20. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    on the discount offered to small wind farms, but it might even be as high as 15-20%. These figures may also reflect risk surrounding ROC prices, which although apparently stable, are subject to political and credibility risk. EPRG No 1120 14 ahead of time...

  1. SPRING 2014 wind energy's impact

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    , operators of offshore wind farms will have an increasing interest in technology that can reduce incidents Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing species, and about 150 other birds on two wind farms in Wyoming. This was the first enforcement of federal

  2. WIND ENERGY AND NEGATIVE PRICING

    E-Print Network [OSTI]

    McCalley, James D.

    at negative prices #12;Wind power and negative prices · Wind power production is related to electricity power integration · Negative prices are "market distortions" that need to be addressed · "PTC aggravatesWIND ENERGY AND NEGATIVE PRICING Is Production Tax Credit to Blame? Yu Wang Iowa State University

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    of Energy (DOE) Wind & Water Power Program team, and inwere funded by the Wind & Water Power Program, Office ofWater and Power’s proposed Barren Ridge Renewable Transmission Project is expected to provide 1,100 MW of transmission capacity to transport wind and

  4. Model Predictive Control Wind Turbines

    E-Print Network [OSTI]

    Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

  5. Wind Energy Information Guide 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

  6. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  7. Spectral Modeling Hot Star Winds

    E-Print Network [OSTI]

    Cohen, David

    Spectral Modeling of X-Rays from Hot Star Winds Emma Wollman Advisor: David Cohen #12;Hot Stars ·· Short-livedShort-lived (~ 1-10 million yrs)(~ 1-10 million yrs) #12;Stellar Winds · Net momentum · More luminosity !"stronger wind · Mass-loss rate determines the fate of the star #12;X-ray Production

  8. 2012 Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2012 Wind Technologies Market Report is a comprehensive analyses of the U.S. distributed wind energy market ever published, this report provides a detailed overview of developments and trends in the U.S. wind power market, focusing on 2012.

  9. Bird orientation: compensation for wind

    E-Print Network [OSTI]

    Thorup, Kasper

    Bird orientation: compensation for wind drift in migrating raptors is age dependent Kasper Thorup1 14.04.03 Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio

  10. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  11. Version:April 2014 Wind Energy EFA

    E-Print Network [OSTI]

    Kusiak, Andrew

    Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

  12. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  13. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  14. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  15. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

  16. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  17. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea 

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  18. Mass balance for lead in the California South Coast Air Basin: An update

    SciTech Connect (OSTI)

    Lankey, R.L.; Davidson, C.I.; McMichael, F.C. [Carnegie Mellon Univ., Pittsburgh, PA (United States)] [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1998-08-01

    A mass balance for lead for the year 1989 in the South Coast Air Basin has inputs to the atmosphere of 600 {+-} 190 kg/day and outputs of 580 {+-} 160 kg/day, showing rough agreement. Stationary sources are responsible for only about 5% of the total lead emissions. The bulk of the lead is emitted from vehicles using leaded gasoline (37%) and unleaded gasoline (15%), as well as from resuspension of previously deposited lead on roads (43%). Over half of the total emitted lead deposits on roads and nearby soil, while about one-third is carried out of the basin by wind. A small amount, less than 10%, is deposited on surfaces throughout the basin. These percentages are approximately the same as those in a mass balance for the same region calculated for 1972, when lead emissions from leaded gasoline were about a factor of 70 greater than leaded gas emissions in 1989. When the lead emissions re used as inputs o a simple continuously stirred flow reactor model for the basin, reasonable, agreement is obtained between calculated and measured concentrations.

  19. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  20. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  1. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  2. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon:WattQuizWaunitaWauseon,Basin

  3. Data Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JVDaofu CoBasin Jump to:

  4. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  5. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  6. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration...

  7. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  8. EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project...

    Energy Savers [EERE]

    EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County, Washington EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County,...

  9. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  10. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  11. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  12. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  13. PENNSYLVANIA APPALACHIAN LABORATORY

    E-Print Network [OSTI]

    Boynton, Walter R.

    , coordinates, and catalyzes environmental research and graduate education within the University System. UMCES), in which UMCES has a leading role. UMCES also delivers its services through environmental science education LABORATORY INSTITUTE OF MARINE AND ENVIRONMENTAL TECHNOLOGY MARYLAND SEA GRANT ANNAPOLIS CHESAPEAKE

  14. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  15. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  16. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  17. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  18. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  19. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  20. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin OilVENTURA

  1. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  2. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    2009). 134. See advantages of wind energy discussion supraarguably weaken the advantage of wind energy pro- duction.since the remarkable advantages of wind energy are widely

  3. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    and Aerodynamic Analysis. ” Wind Energy (10:5); pp. 395–413.2009). Technology Roadmap – Wind Energy. Paris, France:in Spain. Spanish Wind Energy Association (AEE) contribution

  4. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    in wind energy. 2 ' Wind power technology, increasinglyother energy production technologies: 43 the price for windsailing technologies carries on. 18 Wind energy was first

  5. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

  6. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Speed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” EnergyThe Economics of Wind Energy. ” Renewable and Sustainable

  7. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    b. Small Wind Projects- The Growing Influence of the Shadowarea of development lies in the small wind industry.Small wind typically refers to an individual windmill, which

  8. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  9. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  10. Maine coast winds

    SciTech Connect (OSTI)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  15. Beatty Wind Monitoring Project

    SciTech Connect (OSTI)

    Hurt, Rick

    2009-06-01

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  16. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind Program R&D

  17. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  18. Numerical wind tunnels

    E-Print Network [OSTI]

    Souza, Paulo Victor Santos

    2015-01-01

    Flow of viscous fluids are not usually discussed in detail in general and basic courses of physics. This is due in part to the fact that the Navier-Stokes equation has analytical solution only for a few restricted cases, while more sophisticated problems can only be solved by numerical methods. In this text, we present a computer simulation of wind tunnel, i.e., we present a set of programs to solve the Navier-Stokes equation for an arbitrary object inserted in a wind tunnel. The tunnel enables us to visualize the formation of vortices behind object, the so-called von K\\'arm\\'an vortices, and calculate the drag force on the object. We believe that this numerical wind tunnel can support the teacher and allow a more elaborate discussion of viscous flow. The potential of the tunnel is exemplified by the study of the drag on a simplified model of wing whose angle of attack can be controlled. A link to download the programs that make up the tunnel appears at the end.

  19. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  20. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  1. An Exploration of Wind Energy & Wind Turbines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind...

  2. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    N.Mex. (USA) Country of Publication: United States Language: English Subject: 17 WIND ENERGY; DARRIEUS ROTORS; PERFORMANCE TESTING; AIR; CONFIGURATION; DESIGN; FLOW RATE;...

  3. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  4. An exploration of wind energy and wind turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that effect wind turbine design. Explain the goals of the following lab experiments. Review what practices make for good experimental design and the need to control...

  5. The divergent wind component in data sparse tropical wind fields 

    E-Print Network [OSTI]

    Snyder, Bruce Alan

    1985-01-01

    THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1985 Major Subject: Meteorology THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Approved as to style and content by: James P. McGuirk (Co-Chairman) Aylmer IL Thompson (Co-Chairman) W. Homer...

  6. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    M; Holtinnen, H.; Sder, L.; Clark, C.; Pineda, I. "Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration."...

  7. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines Torben Mikkelsen, Jakob Mann and Michael Courtney Wind Energy Department, Risř National Laboratory:Torben.Mikkelsen@Risoe.dk Summary RISŘ DTU has started to build a newly designed laser-based lidar scanning facility for remote wind

  8. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01

    Wind Project Performance,”WindPower 2010, pp. 10-11. ErnestWind Project Performance,”WindPower 2010, pp. 10- Table 6:

  9. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    lagged the construction of new wind farms, leaving roughlythe construction and maintenance of the wind farm. Second,wind farms). Unlike the 1994 ?Opinion on Wind Power Construction

  10. Energy Department Offers Conditional Commitment to Cape Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation...

  11. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Offshore Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine...

  12. Energy Department Offers Conditional Commitment to Cape Wind...

    Energy Savers [EERE]

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project July 1,...

  13. Sandia Energy - Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Transport Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Offshore Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment TransportTara...

  14. Sandia Energy - Wind and Water Materials and Structures Database...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Materials and Structures Database Download Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Wind and Water Materials...

  15. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01

    Use Requirements of Modern Wind Power Plants in the UnitedScale Integration of Wind Power and on Transmission Networks11 Wind Power Density and Wind Speed

  16. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    China Wind Energy Development Roadmap 2050,? TechnologyChina Wind Energy Development Roadmap 2050. ? Technologyby which wind turbine technology converts wind energy into

  17. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  18. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  19. Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich

    E-Print Network [OSTI]

    Basin, David

    A Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich VINCENT JUG´E, MINES Paris: Basin, D., Jug´e, V., Klaedtke, F., Zalinescu, E. Enforceable Security Policies Revisited. To appear is an extended version of the conference paper [Basin et al. 2012a]. Author's addresses: D. Basin, F. Klaedtke

  20. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  1. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  2. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  3. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power...

  4. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Bolinger, M. ( 2011). 2010 Wind Technologies Market Report.Cost of Energy From U.S. Wind Power Projects. Presentationand Energy Capture at Low Wind Speed Sites. ” European Wind

  5. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER...

  6. A simple method to downscale daily wind statistics to hourly wind data

    E-Print Network [OSTI]

    Guo, Zhongling

    2013-01-01

    Wind is the principal driver in the wind erosion models. The hourly wind speed data were generally required for precisely wind erosion modeling. In this study, a simple method to generate hourly wind speed data from daily wind statistics (daily average and maximum wind speeds together or daily average wind speed only) was established. A typical windy location with 3285 days (9 years) measured hourly wind speed data were used to validate the downscaling method. The results showed that the overall agreement between observed and simulated cumulative wind speed probability distributions appears excellent, especially for the wind speeds greater than 5 m s-1 range (erosive wind speed). The results further revealed that the values of daily average erosive wind power density (AWPD) calculated from generated wind speeds fit the counterparts computed from measured wind speeds well with high models' efficiency (Nash-Sutcliffe coefficient). So that the hourly wind speed data can be predicted from daily average and maximu...

  7. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarter’s report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  8. Numerical Prediction of Experimentally Observed Behavior of a Scale Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Prowell, I.; Robertson, A.; Jonkman, J.; Stewart, G. M.; Goupee, A. J.

    2013-01-01

    Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.

  9. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind affect the power output and structural responses of a wind turbine. Wind field characteristics are conventionally described by time averaged features, such as mean wind speed, turbulence intensity and power

  10. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  11. Philippines Wind Energy Resource Atlas Development

    SciTech Connect (OSTI)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  12. Rhaglen Ynni Gwynt Wind Energy Programme

    E-Print Network [OSTI]

    Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    2011 Wind Technologies Market Report No Offshore Turbineswind turbine nacelle assembly capacity; Charlie Bloch and Bruce Hamilton (Navigant Consulting) for assistance with the section on offshore

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    federal loan programme. ” Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEA’s WINDPOWER 2010 Conference &discussion at AWEA’s WINDPOWER 2010 Conference & Exhibition,

  15. 2013 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for contributing data and information for this report: Ampair Energy; Bergey Windpower; Black Island Wind Turbines; Computronics; Dakota Turbines; Dyocore; Eclectic...

  16. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2012-08-01

    This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

  17. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    to Strengthen U.S. Electric Transmission Networks. DecemberElectric Corporation gigawatt generation and transmissionElectric Reliability Council of Texas Eastern Wind Integration and Transmission

  19. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    at the National Renewable Energy Laboratory’s National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex