Powered by Deep Web Technologies
Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Origin Basin Destination State STB EIA STB EIA Northern Appalachian...  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Central Appalachian Basin Alabama 26.18 26.10 -0.3% 118.06 22.1% 930 37.4% 100.0% Central Appalachian Basin Delaware 23.73 15.12 -36.3% 88.59 17.1%...

2

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

3

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network [OSTI]

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

4

E-Print Network 3.0 - appalachian basin exploration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production in the Appalachian Basin. Consequently, natural gas development... energy demand in the United States has led to ... Source: USDA, Forestry Service, Northern...

5

E-Print Network 3.0 - appalachian basin gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: APPALACHIAN BASIN Nino Ripepi, Virginia Tech,...

6

Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002  

SciTech Connect (OSTI)

Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

Milici, R.C.; Hatch, J.R.

2004-09-15T23:59:59.000Z

7

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network [OSTI]

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

8

New oilfield air bit improves drilling economics in Appalachian Basin  

SciTech Connect (OSTI)

Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

1994-12-31T23:59:59.000Z

9

CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION  

E-Print Network [OSTI]

of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin favorable reservoirs for carbon sequestration due to their thickness, depth, rank, and permeability high gas content should provide the optimum reservoirs for carbon sequestration since these coals

10

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect (OSTI)

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

11

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

SciTech Connect (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

12

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

13

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

14

Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins  

SciTech Connect (OSTI)

In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

1987-09-01T23:59:59.000Z

15

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

16

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

17

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network [OSTI]

SPE 139101 Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky. O. Grujic, S. D. Mohaghegh, SPE, West Virginia University, G Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which

Mohaghegh, Shahab

18

Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin  

SciTech Connect (OSTI)

Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

Daly, A.R.

1988-01-01T23:59:59.000Z

19

Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin  

SciTech Connect (OSTI)

Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

1996-09-01T23:59:59.000Z

20

Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Hatcher, Robert D

2005-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

2005-04-01T23:59:59.000Z

22

Appalachian Energy Center Appalachian State University  

E-Print Network [OSTI]

technologies, conservation, and policy. HISTORY Appalachian Energy Center at Appalachian State UniversityAppalachian Energy Center Appalachian State University Annual Report, 2009 & 2010 December 2010 Appalachian Energy Center MISSION Appalachian Energy Center (AEC) is committed to research, development

Rose, Annkatrin

23

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

SciTech Connect (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

24

Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin  

SciTech Connect (OSTI)

For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

2007-03-31T23:59:59.000Z

25

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect (OSTI)

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

26

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Robert D. Hatcher

2004-05-31T23:59:59.000Z

27

The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin  

E-Print Network [OSTI]

gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

Lancaster, David Earl

1988-01-01T23:59:59.000Z

28

Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration  

SciTech Connect (OSTI)

Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few months from regional to more detailed structural analyses. This new effort will include topics such as the determination of the source of the hot, dolomitizing fluids that created hydrothermal dolomite reservoirs in the Black River, and the probable migration paths of these fluids. Faults of suitable age, orientation and location to be relevant for hydrothermal dolomite creation in the Trenton-Black River play will be isolated and mapped, and potential fairways delineated. A detailed study of hydrothermal alteration of carbonate reservoirs was completed and is discussed at length in this report. New ideas that were developed from this research were combined with a literature review and existing concepts to develop a model for the development of hydrothermal dolomite reservoirs in the study area. Fault-related hydrothermal alteration is a key component of this model. Hydrothermal alteration produces a spectrum of features in reservoirs, ranging from leached limestone and microporosity to matrix dolomite, saddle dolomite-lined breccias, zebra fabrics and fractures. Mineralization probably occurred during the pressure drop associated with the rise of fluids up the fault system, and is due to the mixing of hydrothermal fluids with cooler, in situ fluids. Once they began to cool themselves, the hydrothermal fluids, which had a lower pH and higher salinity than formation fluids, were capable of leaching the host limestones. Microporosity is common in leached limestones, and it is likely that it was formed, in some cases, during hydrothermal alteration. Dolomite leaching occurs near the end of the paragenetic sequence, and may significantly enhance porosity. However, leaching of dolomite typically is followed by the precipitation of calcite or anhydrite, which reduces porosity. A final conclusion is that hydrothermal alteration may be more common than previously thought, and some features previously attributed to other processes may be in fact be hydrothermal in origin. Production d

Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

2005-09-30T23:59:59.000Z

29

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

30

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect (OSTI)

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

31

Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station  

SciTech Connect (OSTI)

Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

32

Performance evaluation of Appalachian wells using a microcomputer gas simulation model  

SciTech Connect (OSTI)

The Appalachian Basin contains very low reservoir pressures (as low as 120 psi). To help solve these problems, a one-dimensional gas simulator has been developed for use on a microcomputer. The simulation program provides production engineers with tools to generate data and determine the inflow performance relationships (IPR) of Appalachian-type wells. These Appalachian well field case studies were conducted, whereby various production methods were analyzed using the Nodal analysis method. Consequently, improved design criteria were established for selecting compatible production methods and handling production problems in the Appalachian Basin.

Yu, J.P.; Mustafa, A. (West Virginia Univ., Morgantown (USA)); Hefner, M.H. (CNG Transmission Co., Clarksburg, WV (USA))

1990-04-01T23:59:59.000Z

33

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect (OSTI)

Two independent high-resolution aeromagnetic surveys flown by Airmag Surveys, Inc. and interpreted by Pearson, de Ridder and Johnson, Inc were merged, processed and reinterpreted by Pearson, de Ridder and Johnson, Inc for this study. Derived products included depth filtered and reduced to pole maps of total magnetic intensity, vertical and horizontal gradients, interpreted STARMAG structure, lineament analysis and an overall interpretation. The total magnetic intensity patterns of the combined survey conformed reasonably well to those of coarser grid, non-proprietary regional aeromagnetic surveys reviewed. The merged study also helped illustrate regional basement patterns adjacent to and including the northwest edge of the Rome trough. The tectonic grain interpreted is dominantly southwest-northeast with a secondary northwest-southeast component that is consistent with this portion of the Appalachian basin. Magnetic susceptibility appears to be more important locally than basement structure in contributing to the magnetic intensity recorded, based on seismic to aeromagnetic data comparisons made to date. However, significant basement structures cannot be ruled out for this area, and in fact are strongly suspected to be present. The coincidence of the Henderson Dome with a total magnetic intensity low is an intriguing observation that suggests the possibility that structure in the overlying Lower Paleozoic section may be detached from the basement. Rose diagrams of lineament orientations for 2.5 minute unit areas are more practical to use than the full-quadrangle summaries because they focus on smaller areas and involve less averaging. Many of these illustrate a northeast bias. Where orientations abruptly become scattered, there is an indication of intersecting fractures and possible exploration interest. However, the surface lineament study results are less applicable in a practical sense relative to the seismic, subsurface or aeromagnetic control used. Subjectivity in interpretation and uncertainty regarding the upward propagation of deeper faulting through multiple unconformities, salt-bearing zones and possible detachments are problematic. On the other hand, modern day basement-involved earthquakes like the nearby 1998 Pymatuning event have been noted which influenced near-surface, water-bearing fractures. This suggests there is merit in recognizing surface features as possible indicators of deeper fault systems in the area. Suggested future research includes confirmation of the natural mode-conversion of P-waves to down going S-waves at the level of the Onondaga Limestone, acquisition of 3-C, 2-D seismic as an alternative to more expensive 3-D seismic, and drilling one or two test wells in which to collect a variety of reservoir information. Formation Imaging Logs, a Vertical Seismic Profile and sidewall cores would be run or collected in each well, providing direct evidence of the presence of fractures and the calibration of fractured rocks to the seismic response. If the study of these data had indicated the presence of fractures in the well(s), and efforts to calibrate from well bores to VSPs had been successful, then a new seismic survey would have been designed over each well. This would result in a practical application of the naturally mode-converted, multi-component seismic method over a well bore in which microfractures and production-scale fractures had been demonstrated to exist, and where the well-bore stratigraphy had been correlated from well logs to the seismic response.

Douglas G. Patchen

2000-12-01T23:59:59.000Z

34

Appalachian Studies Student Survey Items  

E-Print Network [OSTI]

about Appalachian culture/history Historical Survey Data (Prior to 2006) ACT Appalachian Region Alumni selected Berea College. Major Reason Minor Reason Not a Reason Cost of attendance/affordable price Close

Baltisberger, Jay H.

35

Office of Sustainability Appalachian State University  

E-Print Network [OSTI]

1 Office of Sustainability Appalachian State University September 2010 Toward Climate Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action Plan Towards Climate Neutrality 2 September 2010 Submitted to: American College & University

Rose, Annkatrin

36

NY Green Bank  

Broader source: Energy.gov (indexed) [DOE]

Public Meeting in New York, NY: Energy Infrastructure Finance The conventional clean energy capital markets for large scale infrastructure are deep and robust. These markets...

37

Photo courtesy of Appalachian State University Appalachian State University  

E-Print Network [OSTI]

4 Report from the Appalachian State University Office of Sustainability to the American College of Sustainability Matt Parsons, Graduate Assistant Published spring 2010 A comparative survey of emissions from year to the greenhouse gas inventory completed fall 2009 by per the requirements of the American College and University

Rose, Annkatrin

38

Solar Decathlon: Appalachian State Wins People's Choice Award...  

Broader source: Energy.gov (indexed) [DOE]

Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011,...

39

Facility Design Manual Appalachian State University  

E-Print Network [OSTI]

at Charlotte Design and Construction Manual University of South Carolina Sustainable Design Guidelines US DOE & US Green Building Council (USGBC) Sustainable Building Technical Manual #12;A p p a l a c h i a nFacility Design Manual Appalachian State University #12;#12;© 2009 by Appalachian State University

Thaxton, Christopher S.

40

Study seeks to boost Appalachian gas recovery  

SciTech Connect (OSTI)

Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

Not Available

1992-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Appalachian State University October 11, 2010  

E-Print Network [OSTI]

of Ad-hoc Committee, Chair Michael Ramey, Chair Eric Marland, Vice-Chair Jeff Butts, Parliamentarian and its functions within Appalachian State University. Peter Petschauer, Chair Steve Williams, Vice Chair

Rose, Annkatrin

42

APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP  

E-Print Network [OSTI]

customized community economic development engagement strategies. · Provide on-site Partnership evaluation to undertake new economic development programs. Communication, Sustainability, and Evaluation--Years 1, 2 and 3APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP The UNC-Chapel Hill Office

Engel, Jonathan

43

Page 1 of 3 Appalachian State University  

E-Print Network [OSTI]

with the department head and appropriate vice chancellor. · Physical Plant · New River Light & Power · Food Service In the event of severe weather conditions, emergency situations, or serious public health threats, Appalachian

Rose, Annkatrin

44

Solar Decathlon Team Using Appalachian Mountain History to Model...  

Broader source: Energy.gov (indexed) [DOE]

Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis...

45

APPALACHIAN STATE UNIVERSITY OFFICE OF GENERAL COUNSEL  

E-Print Network [OSTI]

APPALACHIAN STATE UNIVERSITY OFFICE OF GENERAL COUNSEL MEMORANDUM TO: Faculty and Staff FROM: Dayton T. Cole, General Counsel DATE: October 22, 2013 SUBJECT: Political Activity [Please print and post Resources website: http://hrs.appstate.edu/announcements/552. Questions concerning the interpretation

Thaxton, Christopher S.

46

E-Print Network 3.0 - appalachian margin foundering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

margin foundering Page: << < 1 2 3 4 5 > >> 1 Appalachian State University Foundation, Inc. Monthly Payroll Deduction Form (A-3) Summary: Appalachian State University...

47

E-Print Network 3.0 - appalachian region Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appalachians) - May 1996 ... Source: Collection: Geosciences 23 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: APPALACHIAN...

48

appalachian ohio region: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thaxton, Christopher S. 34 ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY Fossil Fuels Websites Summary: , natural gas demand is forecast to increase through 2035. The...

49

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

50

appalachian clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appalachian clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 1 INTRODUCTION Appalachian coal...

51

Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study  

E-Print Network [OSTI]

£ectance(e.g.Chyietal.,1987;Hower&Rimmer, 1991; Zhang & Davis, 1993), £uid inclusion microthermo- metry (e.g. Burruss, 1989

Bodnar, Robert J.

52

CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS  

E-Print Network [OSTI]

This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

Baker, Ralph C.

2011-01-11T23:59:59.000Z

53

Sylvania Corporation, Hicksville, NY and Bayside, NY | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppressionSustainable SuccessSustainableL L 28, 2004 |NY

54

NY.O-20- I  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; I.-' NY.O-20- I ' 3% 3

55

NY  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21 theB DocumentGKNY 17.8

56

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.49 W

57

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.49

58

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network [OSTI]

of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal. Such an analysis requires the ability to predict potential surface ground movements, both vertical (i

59

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and  

E-Print Network [OSTI]

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

Fernandez, Eduardo

60

Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau  

SciTech Connect (OSTI)

Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - appalachian mountain region Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-week learning and living experience in the Appalachian Mountains. Students conduct independent... Mountain Lake Biological Station SUMMER2009 APPLY ONLINE: W W W . M L B S ....

62

E-Print Network 3.0 - appalachian assessment summary Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 CENTER FOR ECONOMIC RESEARCH & POLICY ANALYSIS Walker College of Business | Appalachian State University Summary: OF CONTENTS Executive Summary...

63

E-Print Network 3.0 - appalachian silvopasture pasture Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State University, Boone, NC Chris Thaxton... Department of Geology Carol Babyak, Ph.D., and Will Benner Department of Chemistry Appalachian State Source: Thaxton,...

64

E-Print Network 3.0 - appalachian spruce fir Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

topography, and potential insolation on the Summary: United States (Noss et al. 1995; White and Miller 1998). Appalachian montane spruce-fir forests... by wind, with natural...

65

E-Print Network 3.0 - appalachian mined lands Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appalachian State... of land-use history on the forest development of the Illinois Ozark Hills. B.S. Forest Science - Forest... AND RESEARCH APPOINTMENTS Assistant Professor...

66

Geothermal energy and district heating in Ny-Ålesund, Svalbard .  

E-Print Network [OSTI]

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ålesund. The current energy supply in Ny-Ålesund is a diesel generator,… (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

67

,"Waddington, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Waddington, NY...

68

,"Massena, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Massena, NY...

69

,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

70

Upstate NY Power Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:DelawareSchool SectorUpstate NY

71

Category:Syracuse, NY | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NY Jump to: navigation, search Go

72

NlZWYORK4,N.Y.  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; I.-' NY.O-20- IAFRICAN

73

Western NY Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,Western Cooling Efficiency Center Place:GeothermalNY

74

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics  

E-Print Network [OSTI]

Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro...

Flatley, William 1977-

2012-08-31T23:59:59.000Z

75

Appalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic Development Toolkit  

E-Print Network [OSTI]

Partnerships o Evaluation: Measuring Effectiveness #12;The Small Private Colleges Economic Development ToolkitAppalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic and sustainable economic development outreach programs. It contains carefully selected articles and case studies

Engel, Jonathan

76

Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People  

E-Print Network [OSTI]

Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People Ellesa Clay High and Daniel W. McNeil In the heart of Appalachia, Native American Studies has been growing for almost two decades.... West Virginia is the only state totally encompassed by the Appalachian region, the mountains of which stretch from Maine to Georgia. About the size of the Navajo Nation, "wild and wonderful" West Virginia is a place of intricate ridges, hollows...

High, Ellesa Clay; McNeil, Daniel W.

2001-03-01T23:59:59.000Z

77

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect (OSTI)

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

78

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

SciTech Connect (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

79

INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-06-30T23:59:59.000Z

80

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.  

E-Print Network [OSTI]

· Highly organically rich, dark, fine laminated, naturally fractured shale; · Porosity (core measurements ) is from 1 to 5%; · Permeability (core measurements) is in the range of 10-7 to 10-9 md; · Natural fracture was performed in support of the NETL- RUA Authors would like to acknowledge: · NETL/DOE for financially

Mohaghegh, Shahab

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2003-03-14T23:59:59.000Z

82

,"Niagara Falls, NY Natural Gas Pipeline Exports to Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Niagara Falls, NY...

83

RenewableNY - An Industrial Energy Conservation Initiative  

SciTech Connect (OSTI)

The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

Lubarr, Tzipora

2009-09-30T23:59:59.000Z

84

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6APlasma APast andA

85

Central-northern Appalachian coalbed methane flow grows  

SciTech Connect (OSTI)

Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

Lyons, P.C. [Geological Survey, Reston, VA (United States)

1997-07-07T23:59:59.000Z

86

Uniform basin growth over the last 500 ka, North Anatolian Fault, Marmara Sea, Turkey  

E-Print Network [OSTI]

Uniform basin growth over the last 500 ka, North Anatolian Fault, Marmara Sea, Turkey Christopher C, Dokuz Eylül University, Izmir, Turkey c Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA d Department of Geophysics, Istanbul Technical University, Turkey e Department of Earth

Shillington, Donna J.

87

The Mars Hill Terrane: An enigmatic southern Appalachian terrane  

SciTech Connect (OSTI)

The Mars Hill Terrane (MHT) in the Appalachian Blue Ride Belt is bordered by complex, locally reactivated thrust and strike-slip faults. On the east, the MHT is bounded by the allochthonous, ensimatic Toe Terrane (TT) across the diachronous, ductile Holland Mountain-Soque River Fault System. The MHT is separated on the northwest from ensialic Laurentian basement (LB), by the Fries-Hayesville Fault System. On the south, the MHT is truncated by the Shope Fork Fault. The MHT is characterized by migmatitic biotite-pyroxene-hornblende gneiss, but contains 1--1.8 b.y. old quartz-feldspar gneisses, plus ultramafic rocks, calc-silicate rocks, mica schists and gneisses, and Neoproterozoic Bakersville gabbros. This rock assemblage contrasts with that of the adjoining terranes. The only correlative units between the MHT and adjoining terranes are Neoproterozoic gabbro, Ordovician-Devonian granitoid plutons, and ultramafic rocks. Gabbro links the MHT with LB rocks. Apparently similar calc-silicate rocks differ petrographically among terranes. During Taconic or Acadian events, both the TT and MHT reached amphibolite to granulite metamorphic grade, but the LB did not exceed greenschist grade. The data conflict. The O-D plutons, ultramafic rocks, and metamorphic histories suggest that the TT had docked with the MHT by Ordovician time. The premetamorphic character of the Holland Mtn.-Soque River Fault System supports that chronology. Neoproterozoic gabbros suggest a MHT-LB link by Cambrian time, but the LB experienced neither O-D plutonism nor Paleozoic amphibolite-granulite facies metamorphism.

Raymond, L.A.; Johnson, P.A. (Appalachian State Univ., Boone, NC (United States). Dept. of Geology)

1994-03-01T23:59:59.000Z

88

appalachian studies uniVeRsitY OF KentucKY  

E-Print Network [OSTI]

progress policy rural heritage humor democracy appalachian studies uniVeRsitY OF KentucKY a land about· NASA· Diego Gutiérrez 1562 Map of America·1888 Map, Lexington, Kentucky, C.J. Pauli (detail: State College of Kentucky). Cover QUotAtioNS: John C. Campbell, The Southern Highlander and His Homeland

MacAdam, Keith

89

The Influence of Fire and Other Disturbance on Ericaceous Shrubs in Xeric Pine-Oak Forests of the Appalachian Mountains  

E-Print Network [OSTI]

Fire suppression in the southern and central Appalachian Mountains has resulted in an alteration to vegetation structure and composition. For this research the dominant species, abundance, density and age structure of the ericaceous shrub layer...

Pipkin, Ashley

2012-07-16T23:59:59.000Z

90

The Geology of North America Vol. F-2, The Appalachian-OuachitaOrogen in the United States  

E-Print Network [OSTI]

- ing of the orogen are given in two other volumes in this series: Vogt and Tucholke (1986) and Sheridan., and Viele, G. W., eds., The Appalachian-Oachita Orogen in the United States: Boulder, Colorado, Geological

Olsen, Paul E.

91

Simulating Historic Landscape Patterns of Fire in the Southern Appalachian Mountains: Implications for Fire History and Management  

E-Print Network [OSTI]

Fire suppression policies implemented in the early 20th century led to a decrease in fire-associated species and ecosystems in the southern Appalachian Mountains. As managers work towards restoration, a greater understanding of the pre...

Gass, Ellen R

2014-05-21T23:59:59.000Z

92

Post-fire recovery and successional dynamics of an old growth red spruce forest in the southern Appalachian Mountains  

E-Print Network [OSTI]

of fire in a mesic ecosystem, specifically a high-elevation red spruce (Picea rubens Sarg.) forest on Whitetop Mountain in the southern Appalachian Mountains. Six plots were established in a high elevation red spruce stand to characterize the stand...

Krustchinsky, Adam R.

2009-05-15T23:59:59.000Z

93

Department of Economic Development EMERGENCY RULE MAKING START-UP NY Program  

E-Print Network [OSTI]

Department of Economic Development EMERGENCY RULE MAKING START-UP NY Program I.D. No. EDV-31 into law the SUNY Tax-free Areas to Revitalize and Transform UPstate New York (START-UP NY) program, which affiliated with New York universities and colleges. The START-UP NY program will leverage these tax benefits

Suzuki, Masatsugu

94

Interoperability of Demand Response Resources Demonstration in NY  

SciTech Connect (OSTI)

The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

Wellington, Andre

2014-03-31T23:59:59.000Z

95

Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

NONE

1996-05-23T23:59:59.000Z

96

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

97

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

98

Dept. of Applied Physics and Applied Math, Columbia University. NY, NY 10027. 212-854-4496 Web-site: http://depts.washington.edu/ufa/home.html  

E-Print Network [OSTI]

, recruit, and retain the best and the brightest students , scientists, and engineers..." is essential of physical sciences research budgets, are critical for maintaining America's long-term competitivenessDept. of Applied Physics and Applied Math, Columbia University. NY, NY 10027. 212-854-4496 Web

99

BuildSmart NY Innovators Summit Offers Sneak Peek at Better Buildings...  

Broader source: Energy.gov (indexed) [DOE]

prisons, mental health hospitals, office buildings, and facilities that house its trains, buses, and equipment. The New York Power Authority's BuildSmart NY program is...

100

DOE - Office of Legacy Management -- Electromet Corporation - NY 04  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28DorrE BElectromet

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE - Office of Legacy Management -- Ledoux and Co - NY 37  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY

102

DOE - Office of Legacy Management -- National Carbon Co - NY 48  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePA 3003A AEC OreOhioCarbon Co - NY

103

DOE - Office of Legacy Management -- Sylvania Corning Plant - NY 19  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02Sutton Steele andPlant - NY

104

DOE - Office of Legacy Management -- Niagara Falls Vicinity Properties NY -  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown SiteOhioMissouriMaywoodNY 17 Niagara

105

Property:EIA/861/IsoNy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed JumpMover JumpActivityTransmissionIsoCaIsoNy

106

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect (OSTI)

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

107

Patterns of Genetic Variation in Southern Appalachian Populations of Athyrium filix?femina var. asplenioides (Dryopteridaceae)  

E-Print Network [OSTI]

polymorphic if the frequency of the most common allele does not exceed 0.95. b Unbiased estimate (see Nei 1978). 769SCIARRETTA ET AL.—ALLOZYMES OF APPALACHIAN ATHYRIUM This content downloaded from 129.237.46.100 on Thu, 11 Sep 2014 15:09:49 PM All use subject... species involves a combination of sex- ual and vegetative reproduction, resulting in challenges to defining and recognizing genetic individuals for population genetic analysis (Cook 1983; Ellstrand and Roose 1987; Wolf et al. 1991; Parks and Werth 1993...

Sciarretta, Kimberly L.; Arbuckle, Erin Potter; Haufler, Christopher H.; Werth, Charles R.

2005-09-01T23:59:59.000Z

108

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect (OSTI)

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

109

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

SciTech Connect (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

110

Water Basins Civil Engineering  

E-Print Network [OSTI]

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

111

SHAHNOZA BOBOEVA Columbia University, The Fu Foundation School of Engineering and Applied Science New York, NY  

E-Print Network [OSTI]

SHAHNOZA BOBOEVA EDUCATION Columbia University, The Fu Foundation School of Engineering and Applied, Economic Theory PROJECT EXPERIENCE Columbia University Master's Thesis New York, NY Potential of Air Branch of Technological University of Tajikistan Khujand, Tajikistan Faculty "Agrotechnology" 2004

112

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

113

Origin of cratonic basins  

SciTech Connect (OSTI)

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

114

Built waterfront through edge, connection, and exchange : reclaiming a waterfront for Greenpoint, a project in Brooklyn, N.Y.  

E-Print Network [OSTI]

??Currently the waterfront of Brooklyn N.Y. between the Gowanus Canal of Redhook and the Newton Creek of Greenpoint is predominantly lined with various types of… (more)

Ziesemann, Rodney P. (Rodney Paul), 1967-

1998-01-01T23:59:59.000Z

115

K Basin safety analysis  

SciTech Connect (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

116

E-Print Network 3.0 - appalachian black warrior Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: and in the acquisition of new properties in the Black Warrior Basin of Alabama (coalbed methane Source: Texas at Austin, University of - George E. Brown, Jr. Network for...

117

Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

NONE

1996-04-23T23:59:59.000Z

118

Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES  

E-Print Network [OSTI]

-increasing proportion occurring as mountaintop mining with valley fill operations (MTVF). In MTVF, seams of coal to facilitate coal extraction. To date, MTVF throughout the Appalachians have converted 1.1 million hectares actually lowers watershed ridges to extract coal and fills watershed streams with the quantities

Palmer, Margaret A.

119

Contribution of the Reaction Ny-]Nnk to Antikaon Production in Relativistic Heavy-Ion Collisions  

E-Print Network [OSTI]

energy spectrum can also be understood qualitatively. ' There is another process NY ?+NNK which may also contribute to the production of antikaons in heavy-ion collisions. Since the threshold energies for this process are -455 MeV and -635 MeV for Y...=X and Y=A, respectively, and are larger than those for the process m Y?+KN, which are ?120 MeV and -215 MeV for Y=X and Y=A, respectively, one might intuitively think that the contribution from the reaction NY~NNK is negligible. To ensure...

Ko, Che Ming.

1984-01-01T23:59:59.000Z

120

LJUPKA ARSOVA 30-65 Steinway Street, Astoria, 11103 NY1-305-582-2559ljarsova@caa.columbia.edu  

E-Print Network [OSTI]

, Columbia University New York, NY Research Associate for sustainable waste management Sep. 2008- present DEKONTA d.o.o. Belgrade, Serbia Associate Engineer- waste management and soil bioremediation May 2007- Aug Foundation New York, NY Research assistant for waste management Nov. 2010- Feb. 2011 Earth Engineering Center

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES  

E-Print Network [OSTI]

Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Environmental endogenous RT doi: 10.1111/j.1749-6632.2012.06580.x Ann. N.Y. Acad. Sci. 1259 (2012) 1­9 c 2012 New York

Hammock, Bruce D.

122

Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES  

E-Print Network [OSTI]

Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Ecological decision making and interactions provides an Ann. N.Y. Acad. Sci. 1185 (2010) 39­53 c 2010 New York Academy

Tesfatsion, Leigh

123

Sediment Decontamination For Navigational And Environmental Restoration In NY/NJ Harbor Case Study: Passaic River, New Jersey  

E-Print Network [OSTI]

Sediment Decontamination For Navigational And Environmental Restoration In NY/NJ Harbor ­ Case, Arlington, VA 22230 Sediments in the NY/NJ Harbor are widely contaminated with toxic organic and inorganic compounds. Decontamination of these sediments is one tool that can be used to cope with the problems posed

Brookhaven National Laboratory

124

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

125

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

126

Concrete as a Green Building Material Columbia University, New York, NY 10027, USA  

E-Print Network [OSTI]

that influence resource utilization. Keywords: sustainable development, green buildings, supplementaryConcrete as a Green Building Material C. Meyer Columbia University, New York, NY 10027, USA to make it suitable as a "Green Building" material. Foremost and most successful in this regard is the use

Meyer, Christian

127

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments  

E-Print Network [OSTI]

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments K. Jones (BNL), H. Feng (Montclair State U.) and A. Lanzirotti (U. of Chicago) Beamline(s): X26A Sediments in the New York/New Jersey Waterways Sediments, is a useful material for use in investigation of the spatial variability. This standard

Brookhaven National Laboratory

128

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments  

E-Print Network [OSTI]

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments H. Jones (BNL) Beamline(s): U2B Sediments in urban rivers and estuaries are usually contaminated contaminated sediments cause to the environment and human health is now widely recognized and has stimulated

Brookhaven National Laboratory

129

THERMAL PROPERTIES AND PROCESSES D Hillel, Columbia University, New York, NY, USA  

E-Print Network [OSTI]

- lengths, is proportional to the fourth power of the absolute temperature Tof the body's surface. This lawTHERMAL PROPERTIES AND PROCESSES D Hillel, Columbia University, New York, NY, USA Ã? 2005, Elsevier, and microbial activity. Soil temperature varies in response to changes in the radiant, thermal, and latent

130

Parentage: MS702-80 x NY88 Developers: Michigan State University and  

E-Print Network [OSTI]

Boulder (MSF373-8) Parentage: MS702-80 x NY88 Developers: Michigan State University Douches at Michigan State University (517-355- 0271 x 194, douchesd@msu.edu). Morphological and the Michigan Agricultural Experiment Station Plant Variety Protection: In application Strengths: Boulder

Douches, David S.

131

Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY  

E-Print Network [OSTI]

Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY in western New York, were invading burrknots on dwarf apple trees. About the same time, Dick Straub seemed to be becoming more common in dwarf apple plantings, as well. Based on Deb's alert, we decided

Agnello, Arthur M.

132

Physics of Nuclear Medicine Polytechnic Institute of NYU, Brooklyn, NY 11201  

E-Print Network [OSTI]

to undergo radioactive decay, which gives off energy and results in a more stable nucleus #12;EL5823 NuclearPhysics of Nuclear Medicine Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Based on J. L are from the textbook. #12;EL5823 Nuclear Physics Yao Wang, Polytechnic U., Brooklyn 2 Lecture Outline

Suel, Torsten

133

DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY...  

Broader source: Energy.gov (indexed) [DOE]

in Ithaca, NY, that achieves a HERS 56 without PV or HERS 15 with 4-kW of PV. The two-story, 1,664-ft2 home is one of 17 single-family and 4 duplex homes built as part of an...

134

United States Department of  

E-Print Network [OSTI]

decade, advances in drilling technology, increasing natural gas prices, existing pipeline infrastructure of Energy 2003, 2005). The Appalachian Basin, centered along the Appalachian Mountains from New York

135

Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78 (2011) 134 MAXIMIZING CARBON STORAGE IN THE APPALACHIANS  

E-Print Network [OSTI]

may also provide a baseline for a full accounting of forestry carbon offset projects. The ability CARBON STORAGE IN THE APPALACHIANS: A METHOD FOR CONSIDERING THE RISK OF DISTURBANCE EVENTS Michael R to disturbance events can influence the prediction of carbon flux over a planning horizon, and can affect

136

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

137

ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION  

SciTech Connect (OSTI)

The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

Gary D. Kronrad

2002-12-01T23:59:59.000Z

138

Affirmatively furthering fair housing : overcoming barriers to implementation of the Westchester County, NY false claims case settlement  

E-Print Network [OSTI]

Westchester County, NY was sued by the Anti-Discrimination Center of Metro New York, Inc. (ADC) under the False Claims Act for allegedly failing to meet its Affirmatively Further Fair Housing obligation for Community ...

Stein, Julie Iris

2010-01-01T23:59:59.000Z

139

Built waterfront through edge, connection, and exchange : reclaiming a waterfront for Greenpoint, a project in Brooklyn, N.Y.  

E-Print Network [OSTI]

Currently the waterfront of Brooklyn N.Y. between the Gowanus Canal of Redhook and the Newton Creek of Greenpoint is predominantly lined with various types of industrial and manufacturing uses. Scattered throughout are ...

Ziesemann, Rodney P. (Rodney Paul), 1967-

1998-01-01T23:59:59.000Z

140

DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc., Sagaponack, NY, Custom HomeHomes,|

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DECONTAMINATION OF DREDGED MATERIAL FROM PORT OF NY/NJ DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF  

E-Print Network [OSTI]

District, CENAN-PL-ES, 26 Federal Plaza, New York, NY 10278-0090 4 Department of Environmental and Energy THE PORT OF NEW YORK AND NEW JERSEY 1 K. W. Jones, 2 E. A. Stern, 3 K. R. Donato, 4 N. L. Clesceri 1 - Region 2 - DEPP-PBPB, 290 Broadway, New York, NY 10007-1866 3 US Army Corps of Engineers - New York

Brookhaven National Laboratory

142

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

143

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

144

Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A  

E-Print Network [OSTI]

Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A

Graves, Michael V.

145

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

146

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

147

Optimizing Spectral Color Reproduction in Multiprimary Digital David Long, Mark D. Fairchild; Munsell Color Science Laboratory, Rochester Institute of Technology; Rochester, NY  

E-Print Network [OSTI]

. Fairchild; Munsell Color Science Laboratory, Rochester Institute of Technology; Rochester, NY Abstract of constructing an abridged spectral reproduction display environment from P3 digital cinema-based displays

Fairchild, Mark D.

148

Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.  

E-Print Network [OSTI]

??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because… (more)

Ripepi, Nino Samuel

2009-01-01T23:59:59.000Z

149

DOE - Office of Legacy Management -- Colorado Fuel and Iron - NY 0-08  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill -ElmorePlantFuel and Iron - NY

150

DOE - Office of Legacy Management -- Crucible Steel Co of America - NY 34  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28 CornellCrane Co

151

DOE - Office of Legacy Management -- Eastman Kodak Laboratory - NY 0-09  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28DorrE B Badger -

152

DOE - Office of Legacy Management -- Enterprise Metal Products - NY 0-10  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY

153

DOE - Office of Legacy Management -- Ithaca Gun Co Inc - NY 53  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38 Rare- IA

154

DOE - Office of Legacy Management -- Knolls Atomic Power Laboratory - NY 16  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38Kerr McGee -

155

DOE - Office of Legacy Management -- Utica Drop Forge and Tool Corp - NY 39  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL 0-01NY

156

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

157

Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect (OSTI)

Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

Mohamed, Sodky H.; Anders, Andre

2006-06-05T23:59:59.000Z

158

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect (OSTI)

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

159

Williston basin Seislog study  

SciTech Connect (OSTI)

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

160

Masato R. Nakamura, Eng.Sc.D. 420 Central Park West #1C New York, NY 10025  

E-Print Network [OSTI]

Project · Designed reactors for gasification of solid waste using Computer Aided Design (CAD) software.Sc.D), Earth and Environmental Engineering, May 2008 Stochastic simulation and integrated modeling of waste, NY Research Associate, May 2008 ­ August 2010 Solid Waste Modeling Project · Developed a 2

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA#  

E-Print Network [OSTI]

two orders-of-magnitude. Two techniques offering the potential to cool high- energy hadron beamsFREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA# Yaroslav S. Derbenev, TJNAF, Newport News, VA, USA) Abstract Cooling intense high

162

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

163

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

164

Delaware River Basin Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

165

INTERNATIONAL SERVICES OFFICE UNIVERSITY OF ROCHESTER 213 Morey Hall, Box 270446, Rochester, NY 14627 Phone: (585) 275-2866 Fax: (585) 276-2943  

E-Print Network [OSTI]

to your University funding, certification from your academic program is required, by signature below: $ Funding Sources University Funding (signature required): Non-University Funding Scholarship: $ PersonalINTERNATIONAL SERVICES OFFICE UNIVERSITY OF ROCHESTER 213 Morey Hall, Box 270446, Rochester, NY

Mahon, Bradford Z.

166

200 Seeley W. Mudd Building Mail Code 4701 500 West 120th Street New York, NY 10027 212-854-4458 Fax 212-854-8257  

E-Print Network [OSTI]

200 Seeley W. Mudd Building Mail Code 4701 500 West 120th Street New York, NY 10027 212 rooms are subject to state sales tax, city occupancy tax, and NYS hotel unit fee. Weekend rates may run

Columbia University

167

Supplementary information on K-Basin sludges  

SciTech Connect (OSTI)

Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

MAKENAS, B.J.

1999-03-15T23:59:59.000Z

168

Atlas of the Columbia River Basin  

E-Print Network [OSTI]

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

169

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

170

NILE BASIN INITIATIVE Claire Stodola  

E-Print Network [OSTI]

· Climate Change #12;Upstream states · Low water needs Downstream states · High water needs #12;Historical #12;Research Question How has the Nile Basin Initiative influenced the riparian states' management states 1959 ­ Still only BILATERAL 1960s to 1990s - Increasing frustration by upstream states #12;What

New Hampshire, University of

171

Genetic classification of petroleum basins  

SciTech Connect (OSTI)

Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

Demaison, G.; Huizinga, B.J.

1989-03-01T23:59:59.000Z

172

GOLF COURSES FRASER RIVER BASIN  

E-Print Network [OSTI]

practices (BMP's) for golf courses, entitled Greening your BC Golf Course. A Guide to Environmental. It also summarizes conditions and practices in the Fraser Basin, reviews best management practices.C. Prepared by: UMA ENVIRONMENTAL A Division of UMA Engineering Ltd. Burnaby, B.C. March 1996 #12;THIRD PARTY

173

File:EIA-Appalach1-NY-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail for versionBasin, New

174

File:EIA-Appalach1-NY-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail for versionBasin,

175

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect (OSTI)

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

176

Geology of interior cratonic sag basins  

SciTech Connect (OSTI)

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

177

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

Burger, James A

2005-07-20T23:59:59.000Z

178

CLEAR LAKE BASIN 2000 PROJECT  

SciTech Connect (OSTI)

The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

LAKE COUNTY SANITATION DISTRICT

2003-03-31T23:59:59.000Z

179

PENNSYLVANIA APPALACHIAN LABORATORY  

E-Print Network [OSTI]

. Planning Principles 10 4. Sustainable Design Goals and Initiatives 13 5. Major Capital Projects 15 #12;R knowledge through scientific discovery, integration, application, and teaching, that results in a comprehensive understanding of our environment and natural resources, helping to guide the State and world

Boynton, Walter R.

180

Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles  

E-Print Network [OSTI]

ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid of the Williston and Alberta basins. Under such con- ditions fluid fluxes in aquifers can be expected

Bense, Victor

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2001-09-28T23:59:59.000Z

182

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network [OSTI]

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

183

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

184

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

185

CRAD, Management - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

186

Refraction Survey At Northern Basin & Range Region (Heimgartner...  

Open Energy Info (EERE)

Northern Basin & Range Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin &...

187

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal...

188

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

189

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

190

Independent Oversight Review, Hanford K Basin and Cold Vacuum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K...

191

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy Savers [EERE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

192

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect (OSTI)

Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

Burger, James A

2006-09-30T23:59:59.000Z

193

Oil migration pattern in the Sirte Basin  

SciTech Connect (OSTI)

Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

194

6, 839877, 2006 Mexico City basin  

E-Print Network [OSTI]

emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

Boyer, Edmond

195

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov User Facilities  

E-Print Network [OSTI]

. The CFN's overarching research goal is to help solve the U.S.'s energy problems by exploring materials-based energy sources and more affordable solar energy systems. Basic research on catalysts, biological and softThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

196

ACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Benchmarking Approaches: An Alternate Method to Determine Best  

E-Print Network [OSTI]

: An Alternate Method to Determine Best Practice by Examining Plant-Wide Energy Signatures Yogesh Patil and JohnACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Benchmarking Approaches Seryak, Energy & Resource Solutions, Inc. Kelly Kissock, University of Dayton ABSTRACT Baselining

Kissock, Kelly

197

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Nuclear Physics  

E-Print Network [OSTI]

the Office of Nuclear Physics within the U.S. Department of Energy's Office of Science, RHIC gives physicists of Nuclear Physics within the U.S. Department of Energy's Office of Science Total Upgrade Cost: $ 700 millionThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

198

Presented at the 13 National Conference on Building Commissioning, May 4-6, 2005, New York, NY, and published in the Proceedings.  

E-Print Network [OSTI]

LBNL-58648 th Presented at the 13 National Conference on Building Commissioning, May 4-6, 2005, New York, NY, and published in the Proceedings. This work was supported by the State Technologies, Moosung Kim Lawrence Berkeley National Laboratory May 2005 #12;National Conference on Building

199

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Homeland Security  

E-Print Network [OSTI]

Security pilot program "Securing The Cities," assisting law enforcement in the tri-state area in deployingThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973 At Brookhaven National Laboratory New York City (NYC) has been, and continues to be, a major target of terrorism

200

Internship Philips Research North America, Briarcliff Manor, NY Philips Research North America (PRNA) is one of Philips' six worldwide research laboratories where  

E-Print Network [OSTI]

Internship ­ Philips Research North America, Briarcliff Manor, NY Philips Research North America an hour north of New York City. Length of Internship: 3 months Position Responsibilities: · Hands-on work to our area at the start and end of the internship. · If housing is necessary, PRNA supports home

Adams, Mark

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Internship Philips Research North America, Briarcliff Manor, NY Philips Research North America (PRNA) is one of Philips' six worldwide research laboratories where  

E-Print Network [OSTI]

Internship ­ Philips Research North America, Briarcliff Manor, NY Philips Research North America an hour north of New York City. Length of Internship: 3 months Position Responsibilities: · Gain knowledge expenses to our area at the start and end of the internship. · If housing is necessary, PRNA supports home

Adams, Mark

202

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2003-09-30T23:59:59.000Z

203

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2000-09-28T23:59:59.000Z

204

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2002-09-21T23:59:59.000Z

205

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2005-09-30T23:59:59.000Z

206

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-09-30T23:59:59.000Z

207

K Basins isolation barriers summary report  

SciTech Connect (OSTI)

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

208

Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1  

E-Print Network [OSTI]

: Mount Simon, Illinois Basin, CO2, earthquakes, pressure, brine transport69 #12;Page | 3 1. IntroductionPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4 sharp-interface models of CO2 injection were constructed for the Illinois49 Basin in which porosity

Gable, Carl W.

209

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY  

E-Print Network [OSTI]

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

Suzuki, Masatsugu

210

Petroleum potential of the Libyan sedimentary basins  

SciTech Connect (OSTI)

Contrary to prevailing opinion, all Libyan sedimentary basins and the Al-Jabal Al-Akhdar platform contain prolific petroleum accumulations with very high prospectivity. A systematic review of the types of traps and pays in this central part of the southern Mediterranean province reveals great variability in reservoir and source rock characteristics. The reservoir rocks are of almost all geologic ages. The thick source rock sequences also vary in nature and organic content. The organic-rich facies have accumulated in intracratonic and passive margin basins or in marginal seas. Most of the oil discovered thus far in these basins is found in large structural traps. Future discoveries of stratigraphic traps or small structural traps will require intensified efforts and detailed studies using up-to-date multidisciplinary techniques in sedimentary tectonics, biostratigraphic facies analysis, and geochemical prospecting in order to develop a better understanding of these basins, thus improving their prospectivity.

Hammuda, O.S.; Sbeta, A.M.

1988-08-01T23:59:59.000Z

211

Flathead Basin Commission Act of 1983 (Montana)  

Broader source: Energy.gov [DOE]

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

212

River Basins Advisory Commissions (South Carolina)  

Broader source: Energy.gov [DOE]

The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

213

Progress Update: H4 Basin Concrete Pour  

ScienceCinema (OSTI)

The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

None

2012-06-14T23:59:59.000Z

214

The Uinta Basin Case Robert J. Bayer  

E-Print Network [OSTI]

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

215

K-Basins S/RIDS  

SciTech Connect (OSTI)

The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

Watson, D.J.

1997-08-01T23:59:59.000Z

216

K-Basins S/RIDS  

SciTech Connect (OSTI)

The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

Watson, D.J.

1995-09-22T23:59:59.000Z

217

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network [OSTI]

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units,… (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

218

Late devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia  

E-Print Network [OSTI]

reef, Canning Basin, Western Australia. Palaeontology 43,the Canning Basin, Western Australia. In: Loucks, R.G. ,Canning Basin, Western Australia. Ph.D Thesis, University of

Stephens, N P; Sumner, Dawn Y.

2003-01-01T23:59:59.000Z

219

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network [OSTI]

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut,Canada Eric E. Hiatt,n Sarah E. Palmer,w1 T. Kurt Kyserw and Terrence K. O'Connorz n Geology Department, University of Wisconsin Oshkosh, Oshkosh,Wisconsin, USA wDepartment of Geological Sciences and Engineering

Hiatt, Eric E.

220

A Detailed Approach To Low-Grade Geothermal Resources In The Appalachian Basin Of New York And Pennsylvania: Heterogeneities Within The Geologic Model And Their Effect On Geothermal Resource Assessment .  

E-Print Network [OSTI]

??The potential to utilize widespread low -grade geothermal resources of the Northeastern U.S. for thermal direct use and combined heat and power applications can be… (more)

Shope, Elaina

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Williston in the family of cratonic basins  

SciTech Connect (OSTI)

The Williston basin is one of a clan of subcircular to elliptical elements in the interiors of all cratons; such basins are distinguished by characteristics common to all. In each, the basement consists of continental crust and each basin is surrounded by areas of continental crust. Subsidence rates are typically low, so that conditions near depositional base level prevailed during much of the history of sediment accumulation. Episodic subsidence occurred over time spans of 10/sup 7/-10/sup 8/ years; major episodes of subsidence are broadly concurrent on all cratons. Tectonic tempo and mode of subsidence evolved synchronously on all cratons; therefore, similar isopach and facies patterns (and similar oil or gas maturation, migration, and trap potentials) occur on all cratons. All members of the clan exhibit a range of individual variations imposed by latitude and climate. Intraplate tectonism and volcanism, approach to or distance from source areas, and distribution paths of detrital sediment. Nevertheless, facts and concepts developed by intensive study of basins with high-density documentation (outcrop and subsurface) are commonly applicable to basins such as the Williston, which is in a less mature stage of exploration.

Sloss, L.L.

1985-05-01T23:59:59.000Z

222

Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.  

SciTech Connect (OSTI)

This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

A.G. Crook Company; United States. Bonneville Power Administration

1993-07-01T23:59:59.000Z

223

E-Print Network 3.0 - athabasca basin western Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thelon Basin Boomerang Lake Western Thelon Basin Eastern Thelon... to the world-class uranium-producing Athabasca basin. At present, the Thelon basin is only known to host......

224

Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By  

E-Print Network [OSTI]

India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

225

Lawrence Head Volcanics and Dunnage Melange, Newfoundland Appalachians: Ordovician ridge subduction or back arc rift? William S.F. Kidd1, Adam Schoonmaker2, Stephen E. DeLong1, John F. Bender3  

E-Print Network [OSTI]

of Atmospheric and Environmental Sciences, University at Albany, Albany NY 12222 2 Department of Geology, Utica Abstract We review the geological setting and report new geochemical trace element data from the Ordovician Exploits Group in the same stratigraphic position just below the mid-Ordovician cherts and black shales

Kidd, William S. F.

226

Circulation of North American epicontinental seas during the Carboniferous using stable isotope and trace element analyses of brachiopod shells  

E-Print Network [OSTI]

of North America. These units include the Grove Church and Mattoon Formations (Illinois Basin), Glenshaw Formation (Appalachian Basin), Bird Spring Formation (Bird Spring Basin), and Oread Formation (US midcontinent). In all, 98 brachiopod shells were found...

Flake, Ryan Christopher

2012-07-16T23:59:59.000Z

227

Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle  

SciTech Connect (OSTI)

The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

Smith, D.A.

1985-01-01T23:59:59.000Z

228

annapolis basin area: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history Geosciences Websites Summary: ; and this was followed by an increase in the...

229

K West basin isolation barrier leak rate test  

SciTech Connect (OSTI)

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

230

Modeling thermal convection in supradetachment basins: example from western Norway  

E-Print Network [OSTI]

Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

Andersen, Torgeir Bjørge

231

Lithosphere structure beneath the Phanerozoic intracratonic basins of North America  

E-Print Network [OSTI]

Abstract Four intracratonic basins of North America, the Hudson Bay, Michigan, Illinois and Williston. The Williston and Illinois basins are associated with wide (V200 km) and thin anomalies (V100 km), whereas basin and 270 km beneath the Williston [4,6]. For two ba- sins of similar age located on the same Precam

Kaminski, Edouard

232

BIOSTRATIGRAPHY, WILLISTON BASIN By D.J. Nichols  

E-Print Network [OSTI]

Chapter WB BIOSTRATIGRAPHY, WILLISTON BASIN By D.J. Nichols in U.S. Geological Survey Professional .........................................................................................................WB-3 Figures WB-1. Biostratigraphic reference sections in the Williston Basin. WB-2. Occurrences. Palynostratigraphic zones of the Paleocene in the Williston Basin composite reference section. WB-4. Distribution

233

NE Pacific Basin --Tagging Data Kate Myers, Ph.D.  

E-Print Network [OSTI]

Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

234

The State of the Columbia River Basin  

E-Print Network [OSTI]

, and Washington. The Act authorized the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Overview 11 Sixth Northwest Power Plan boosts energy efficiency, renewable energy, Energy efficiency

235

GUNNISON BASIN CLIMATE CHANGE VULNERABILITY ASSESSMENT  

E-Print Network [OSTI]

Climate change is already changing ecosystems and affecting people in the southwestern United States, as well as ecosystem services, e.g., water supply. The climate of the Gunnison Basin, Colorado Fish and Wildlife Service, US Forest Service, Upper Gunnison River Water Conservancy District, Western

Neff, Jason

236

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

237

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

238

Mississippian Lodgepole Play, Williston Basin: A review  

SciTech Connect (OSTI)

Waulsortian-type carbonate mud mounds in the lower Mississippian Lodgepole formation (Bottineau interval, Madison Group) comprise an important new oil play in the Williston basin with strong regional potential. The play is typified by wells capable of producing 1000-2500 bbl of oil per day and by reserves that have as much as 0.5-3.0 million bbl of oil per well. Currently centered in Stark County, North Dakota, along the southern flank of the basin, the play includes 38 wells, with 21 producers and 6 new fields. Initial discovery was made at a Silurian test in Dickinson field, traditionally productive from Pennsylvanian sands. The largest pool discovered to date is Eland field, which has 15 producers and estimated total reserves of 12-15 million bbl. This report summarizes geologic, well-log, seismic, and production data for this play, which promises to expand considerably in the years to come.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-06-01T23:59:59.000Z

239

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network [OSTI]

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

240

The Climate of the South Platte Basin  

E-Print Network [OSTI]

://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers of Rockies Daily Temperatures - Denver, CO Water Year 2001 -20 0 20 40 60 80 100 120 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Temperature(degF) High Low Ave High Ave Low #12;Humidity Low humidity

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

K Basin sludge treatment process description  

SciTech Connect (OSTI)

The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

Westra, A.G.

1998-08-28T23:59:59.000Z

242

Exploration trends of the Sirte Basin  

SciTech Connect (OSTI)

A wave of intense exploration activity in the Sirte Basin began after the discovery of oil in 1958, and an enormous quantity of hydrocarbon was found in less than ten years. The oil discovery rate has been gradually declining since its peak in the 1960`s, and it is now becoming increasingly difficult and more expensive to find a new reserve. This paper is an attempt to discuss briefly the past exploration cycle, to indicate the present position and to predict the future trend of our activities in the Sirte Basin. The past exploration activities in the Sirte Basin were concentrated along the particular geological trends where the possibilities of finding more reserves are now drastically reduced. Therefore, for the future healthy exploration activities, new ideas are needed to bring about some new favourable areas under further investigation. A new cycle of exploration success will emerge if our exploratory efforts are purposely directed towards the stratigraphic, stratrigraphic/structural traps and subtle type traps, along the migrational pathways and deep plays in the potential oil generative areas.

Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

243

Geothermal fluid genesis in the Great Basin  

SciTech Connect (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

244

NY Green Bank  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NRELhilTon

245

Training Session: Buffalo, NY  

Broader source: Energy.gov [DOE]

This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

246

ACIM-~ NY.49  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 'Xxy";^it ! ( ,'

247

NY-%-3 P  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW

248

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect (OSTI)

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

249

Seismic stratigraphy and structure of the Progreso Basin, Ecuador  

E-Print Network [OSTI]

Background Geologic Setting and Location Previous Work Stratigraphy of the Progreso Basin and Vicinity . . II METHODS Seismic Stratigraphic Analysis Magnetic Source Depth Determination III SEISMIC STRATIGRAPHY . Seismic Depositional Sequences Seismic... proliferation of names and e. ges for the same rocks and formations complicates correlation between basins. The origin of the basins is not clear and the previous concepts of the evolution of the region h''s tsesis ol ows the style and format of the Bulletin...

Goyes Arroyo, Patricio

1987-01-01T23:59:59.000Z

250

The geochemistry of uranium in the Orca Basin  

E-Print Network [OSTI]

no uranium enrichment, with concentrations ranging from 2. 1 to 4. gppm, reflective of normal Gulf of Mexico sediments. This is the result of two dominant processes operating within the basin. First, the sharp pycnocline at the brine/seawater interface... . . . . . . . . , . . . , 37 xi Figure Page 16 Ores Basin Seismic Reflection Profile A 40 17 Ores Basin Seismic Reflection Profile B 42 18 Proposed Mechanism of Uranium Uptake in the Atlantis II Deep 59 INTRODUCTION Economic Status of Uranium in the United States...

Weber, Frederick Fewell

1979-01-01T23:59:59.000Z

251

Water Clarity Simulant for K East Basin Filtration Testing  

SciTech Connect (OSTI)

This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

Schmidt, Andrew J.

2006-01-20T23:59:59.000Z

252

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

253

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

254

Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

255

atacama basin northern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tucker 2007-02-02 44 BIOSTRATIGRAPHY, EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN Environmental Sciences and Ecology Websites Summary: of selected Tertiary coal beds...

256

Regional And Local Trends In Helium Isotopes, Basin And Range...  

Open Energy Info (EERE)

Range Province, Western North America- Evidence For Deep Permeable Pathways Abstract Fluids from the western margin of the Basin and Range have helium isotope ratios as high as...

257

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding...

258

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

259

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett...

260

Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Teleseismic-Seismic Monitoring At Northern Basin & Range Region...  

Open Energy Info (EERE)

Location Northern Basin and Range Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding...

262

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN  

E-Print Network [OSTI]

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

Luther, Douglas S.

263

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

264

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

265

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-12-31T23:59:59.000Z

266

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-01-01T23:59:59.000Z

267

The dynamics and physical processes of the Comoros Basin.  

E-Print Network [OSTI]

??Includes abstract. The main objective of this thesis was to investigate the circulation in the ComorosBasin using observed and model datasets. These data were used… (more)

Collins, Charine

2013-01-01T23:59:59.000Z

268

Cold test data for equipment acceptance into 105-KE Basin  

SciTech Connect (OSTI)

This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

Packer, M.J.

1994-11-09T23:59:59.000Z

269

atlantic basin etude: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rifian Corridor Utrecht, Universiteit 7 Prediction of Seasonal Atlantic Basin Accumulated Cyclone Energy from 1 July PHILIP J. KLOTZBACH Geosciences Websites Summary: Prediction of...

270

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

271

Teleseismic-Seismic Monitoring At Northern Basin & Range Region...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

272

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

273

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect (OSTI)

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

274

Appalachian State | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia(West Name

275

E-Print Network 3.0 - austrian molasse basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basin Page: << < 1 2 3 4 5 > >> 1 The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stuwe a,*, H. Fritz a Summary: The El Mayah molasse basin in the...

276

Seismic interpretation, distribution, and basin modelling of natural gas leakage in block 2 of the Orange Basin, offshore South Africa.  

E-Print Network [OSTI]

??Includes abstract. The aims of this study are to: (1) characterize different natural gas leakage features present throughout the basin, and (2) understand the relationship… (more)

Boyd, Donna Louise.

2010-01-01T23:59:59.000Z

277

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

278

8 River Basin Closure and Institutional Change in Mexico's LermaChapala Basin  

E-Print Network [OSTI]

for irrigation expansion, and the drilling of new wells and the construction of new dams has been prohibited. Moreover, water pollution is serious, with significant wastewater reuse for irrigation within the basin. Lastly, water is being transferred from agriculture to the urban and industrial sectors, without due

Scott, Christopher

279

Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins  

E-Print Network [OSTI]

…………………………………………………. 7.2 Conclusions ………………………………………………. 7.3 Recommendations ………………………………………... REFERENCES …………………………………………………………………… APPENDICES A DATABASE TABLES AND FIELDS AND THEIR DEFINITIONS…… B ANALOG PARAMETERS AND THEIR CLASSES ……..…………….. C VALIDATION... ………………………………………………………… LIST OF FIGURES ……………………………………………………………… LIST OF TABLES ……………………………………………………………….. CHAPTER I INTRODUCTION ……………………………………………….. 1.1 Unconventional Resources ……………………………….. 1.2 The Basin Analog Method of Evaluation ……….……….. 1.3...

Singh, Kalwant

2007-04-25T23:59:59.000Z

280

Baroclinic tides in an axially symmetric basin  

E-Print Network [OSTI]

Energetics Returning to the governing equations (66) through (6&7) and multiplving (66) by phu?, (66) by phv?, and (67) by php?gives the result; phu?? f v?~ ? ~ ~ p S? m=O 0(, = phu?g h?o, c3 T f&hv?g o'j r SH (96) (96) aud ap? 1 a I au? I ~ ah.... Rowe (Head of Department) December 1989 ABSTRACT Baroclinic Tides in an Axially Symmetric Basin. (December 1989) Edward Paul Dever. B. S. , Texas Ag-XI University Chair ol' Advisory Committee: Prof. Robert 0. Reid A. coupled normal mode model...

Dever, Edward Paul

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

282

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

283

Sediment Basin Flume | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville,Secret EnergySediment Basin

284

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,ShanghaiSheets Wave Basin Jump to:

285

Great Basin Consortium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysisTweet us! | Department ofas a FeedstockGreat Basin

286

Basin Scale Opportunity Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-Basic Energy SciencesBasicBasin

287

Summary - K Basins Sludge Treatment Process  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR Center | ETR-19 UnitedK Basin

288

Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models  

E-Print Network [OSTI]

the highest annual precipitation (1000­3200 mm per year) while the Vienna basin, the Pannonian basin, Romanian

Lucarini, Valerio

289

E-Print Network 3.0 - araripe basin north-eastern Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- cantly to our understanding of the structural geology, basin evolution, and tectonic history... our structural and tectonic database. It is now clear that these basins are...

290

Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia  

E-Print Network [OSTI]

Geol. Rundsch. , Western Australia: Geologic Maps of theof the Canning basin, Western Australia. West. Aust. Geol.the Canning Basin, Western Australia. In: Stromatolites (Ed.

Stephens, N P; Sumner, Dawn Y.

2003-01-01T23:59:59.000Z

291

Screening model optimization for Panay River Basin planning in the Philippines .  

E-Print Network [OSTI]

??The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity,… (more)

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

292

E-Print Network 3.0 - area tarim basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and evolution of the basin. Xinjiang... the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA... of shortening taken up...

293

E-Print Network 3.0 - artesian basins Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station 3 - The Fall Line... . open space mineral resource operations (flooded quarries or pits) ost recharge area groundwater basins... , interbasin, groundwater basins VI....

294

National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin  

SciTech Connect (OSTI)

The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

Not Available

1994-05-01T23:59:59.000Z

295

E-Print Network 3.0 - active single basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basins... ) existed during the Late Oligocene and Miocene when the rift basins of Thailand were active because active... into three main areas and tec- tonic provinces: 1)...

296

PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA  

E-Print Network [OSTI]

PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA BRIAN R. TURNER AND MICHAEL J. BENTONPaleozoicsuccessionin the southeastern part ofthe Kufra Basin, Libya, comprises a sequence of sedimentary facies up to 250 m thick THEK u m BASINin southeast Libya (Figure 1)occupiesan area of about 400,000km2and is filled

Benton, Michael

297

Economic Impact PermianBasin'sOil&GasIndustry  

E-Print Network [OSTI]

of Petroleum Evaluation Engineers (SPEE) parameters for evaluating Resource Plays 53 Appendix C: Detailed Play to traditional economic impacts, this report includes a petroleum engineering-based analysis that providesEconomic Impact PermianBasin'sOil&GasIndustry #12;The Economic Impact of the Permian Basin's Oil

Zhang, Yuanlin

298

Structural evolution and petroleum productivity of the Baltic basin  

SciTech Connect (OSTI)

The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of a thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.

Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1991-08-01T23:59:59.000Z

299

THE HISTORICAL YOLO BASIN What parts make the whole?  

E-Print Network [OSTI]

THE HISTORICAL YOLO BASIN LANDSCAPE What parts make the whole? Alison Whipple San Francisco Estuary The spatial and temporal variability of the Delta reflected fluvial-tidal interaction #12;YOLO BASIN NORTHEAST prevalent at the north end and along Miner Slough..." - Mellin 1918 North End Liberty Island Yolo By Pass

300

Dynamic management of water transfer between two interconnected river basins  

E-Print Network [OSTI]

Dynamic management of water transfer between two interconnected river basins Francisco Cabo Katrin cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the irrigated soil, or demand for water for highly productive activities like tourism), then the existence

Boyer, Edmond

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc. MARCEL DEKKER, INC. 270 MADISON AVENUE NEW YORK, NY 10016  

E-Print Network [OSTI]

­3). These moments are usually derived from a probability balance equation for the distribution of the neutron number©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any AVENUE · NEW YORK, NY 10016 A CLASS OF SEMI-LINEAR EVOLUTION EQUATIONS ARISING IN NEUTRON FLUCTUATIONS Z

Pázsit, Imre

302

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov National Synchrotron Light Source II  

E-Print Network [OSTI]

and harvest solar energy with high efficiency and low cost. Molecular Electronics NSLS-II will allowThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973, giving researchers here a competitive advantage in numerous scientific fields that will benefit our

Ohta, Shigemi

303

Spatially-resolved EELS and EDS Analysis of HfOxNy Gate Dielectrics Deposited by MOCVD using [(C2H5)2N]4Hf with NO and O2  

E-Print Network [OSTI]

-resolved electron energy loss spectroscopy (EELS) and energy-dispersive spectrometry (EDS). HfOxNy gate dielectrics a replacement for SiO2 as the gate dielectric material. HfO2 is a promising candidate due to its high dielectric constant its stability on Si. However, crystallization temperatures of less than 500 °C and high impurity

Ng, Wai Tung

304

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

Suzuki, Masatsugu

305

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Basic Energy Sciences  

E-Print Network [OSTI]

, to modulate the properties of light and to regulate energy transfer at the nanoscale. In particular be particularly use- ful for the efficient harvesting and conver- sion of solar energy into other usable formsThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

306

SURFACE OF THE EARTH: NORTH AMERICA 2006 IRIS 5-YEAR PROPOSAL Investigating Crust and Mantle Structure with the Florida-to-Edmonton  

E-Print Network [OSTI]

provinces of the continental interior, the Mid-Continent Rift and the Williston Basin. Data quality in Iowa, and the Williston Basin. Beneath FLED in the southern Appalachians, the ratio of surface

Wysession, Michael E.

307

Corrosion of aluminum alloys in a reactor disassembly basin  

SciTech Connect (OSTI)

This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl{sup {minus}}, NO{sub 3}{sup {minus}} and SO{sub 4}{sup {minus}} are controlled to the parts per million level and basin water conductivity is currently 170--190 {mu}mho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 {mu}mho/cm.

Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

1992-12-01T23:59:59.000Z

308

Radioactive air emissions notice of construction for the 105N Basin Stabilization  

SciTech Connect (OSTI)

The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations.

Coenenberg, E.T. [Westinghouse Hanford Co., Richland, WA (United States)

1994-05-01T23:59:59.000Z

309

Basin configuration and depositional trends in the Mission Canyon and Ratcliffe beds, U.S. portion of the Williston basin  

SciTech Connect (OSTI)

Construction of Mission Canyon and Ratcliffe depositional trends utilizing shoreline models and anhydrite edge maps shows a significant change in basin configuration associated with regional sea level changes. Sea level highstand, which began during deposition of the Scallion member of the Lodgepole Formation, was punctuated by two lowstand events. The first occurred during deposition of the MC-2 anhydrite (Tilston). During this lowstand event, the width of the carbonate basin decreased significantly. With sea level rise, a broad basin formed with carbonate and evaporate ramp deposition (Lands, Wayne, Glenburn and Mohall members). The top of the Mohall contains evidence of the second lowstand event. This event introduced quartz sand detritus into the basin (Kisbey Sandstone). Because of sea level lowstand, Sherwood and younger Mission Canyon beds were deposited during highstand in a narrower carbonate basin. Funneling of marine currents and tides in this basin created higher energy shoreline and shoal deposits than those commonly found in older Mission Canyon sediments. The top of the Mission Canyon (Rival) was capped by a deepening event or transgression which enlarged the basin and created broad Ratcliffe ramp systems similar to those that existed during Glenburn and Mohall deposition. By utilizing sequence stratigraphy and mapping shoreline trends and basin configuration, reservoir and trap geometries are identified, and exploration success is improved.

Hendricks, M.L. [Hendricks and Associates, Inc., Englewood, CO (United States)

1996-06-01T23:59:59.000Z

310

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect (OSTI)

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

311

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

312

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

313

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

NONE

1997-03-01T23:59:59.000Z

314

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

315

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

NONE

1997-12-31T23:59:59.000Z

316

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

317

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

318

Petroleum systems of the Southwest Caspian Basin  

SciTech Connect (OSTI)

The Southwest Caspian Basin, located in offshore Azerbaijan, contains significant accumulations of oil and gas in Upper Tertiary siliciclastic sediments. The central basin contains up to 25 km of sediments. The relatively low geothermal gradients and low degree of compaction from rapid burial provide favorable conditions or the retention of hydrocarbons at relatively great depths. A variety of structural styles occur, ranging from anticlinal folds to monoclines, with various degrees of reverse faulting and brecciation. Molecular characterization of selected oil samples indicate most of the oils have been sourced form the same or similar facies; a Tertiary Type II, slightly calcareous, marine clastic facies. Insufficient organic-rich rocks are available for a reliable oil-source correlation. Examination of oil molecular characteristics, oil-oil correlations, molecular characteristics of key stratigraphic horizons, paleofacies maps, maturation, and potential migration pathways suggest the oil was not syngenetic but most likely sourced from deeper Oligo-Miocene or older marine shales. Compositional data for a single offshore gas sample suggest the gas is a mixture of low maturity Type III and biogenic. A multi-stage model of hydrocarbon emplacement for evolving structural traps has been postulated. The first phase of emplacement occurred in the Middle Pliocene when tectonic movement and significant subsidence initiated early trap/reservoir formation, migration, and hydrocarbon generation. Late Quaternary tectonic activity lead to the replenishment of older depleted traps, additional hydrocarbons for enhanced traps, and charging of new traps. In addition, late tectonic activity caused extensive redistribution of hydrocarbon accumulations, degassing due to breached faults, and destruction of selected oil pools.

Abrams, M.A.; Narimanov, A.A. [State Oil Company of Azerbaijan, Baku (Azerbaijan)

1995-08-01T23:59:59.000Z

319

Regional aquifers and petroleum in Williston Basin region of US  

SciTech Connect (OSTI)

At least five major aquifers underlie the northern Great Plains of the US, which includes parts of the Williston basin in Montana and North Dakota. These aquifers form a hydrologic system that extends more than 960 km from recharge areas in the Rocky Mountains to discharge areas in eastern North Dakota and the Canadian Provinces of Manitoba and Saskatchewan. The regional flow system in the aquifers has had a major effect on the chemical composition of ground water within the Williston basin. Hydrodynamic forces may contribute to the accumulation of petroleum within the basin.

Downey, J.S.; Busby, J.F.; Dinwiddie, G.A.

1985-05-01T23:59:59.000Z

320

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal Pile Basin Project (4595), 5/31/2012  

Broader source: Energy.gov (indexed) [DOE]

Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit...

322

Cenozoic volcanic geology of the Basin and Range province in...  

Open Energy Info (EERE)

volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

323

Negotiating nature : expertise and environment in the Klamath River Basin  

E-Print Network [OSTI]

"Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

Buchanan, Nicholas Seong Chul

2010-01-01T23:59:59.000Z

324

Gravity modeling of Cenozoic extensional basins, offshore Vietnam  

E-Print Network [OSTI]

(Yinggehai) basins. Gravity modeling results provide important clues to the controversial tectonic development of Southeast Asia during the Tertiary. Combined Bouguer and free-air gravity maps and residual gravity anomaly maps were generated for the study...

Mauri, Steven Joseph

1993-01-01T23:59:59.000Z

325

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network [OSTI]

they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum...

Wu, Wenyan 1983-

2012-10-02T23:59:59.000Z

326

Exploration limited since '70s in Libya's Sirte basin  

SciTech Connect (OSTI)

Esso Standard made the first Libyan oil discovery in the western Ghadames basin in 1957. The Atshan-2 well tested oil from Devonian sandstones, and the play was a continuation of the Paleozoic trend found productive in the neighboring Edjeleh region of eastern Algeria. Exploration in the Sirte basin began in earnest in 1958. Within the next 10 years, 16 major oil fields had been discovered, each with recoverable reserves greater than 500 million bbl of oil. Libya currently produces under OPEC quota approximately 1.4 million b/d of oil, with discovered in-place reserves of 130 billion bbl of oil. The paper describes the structural framework, sedimentary basins of Libya, the Sirte basin, petroleum geology, play types, source rocks, generation and migration of hydrocarbons, oil reserves, potential, and acreage availability.

Thomas, D. (Thomas and Associates, Hastings (United Kingdom))

1995-03-13T23:59:59.000Z

327

Hydrology and Glaciers in the Upper Indus Basin  

E-Print Network [OSTI]

Examines the state of the science associated with the snow and ice hydrology in the Upper Indus Basin (IUB), reviewing the literature and data available on the present and projected role of glaciers, snow fields, and stream ...

Yu, Winston

328

Hydrologic and Institutional Water Availability in the Brazos River Basin  

E-Print Network [OSTI]

been constructed to facilitate management of the water resources of the various river basins of the state. Effective control and utilization of the water resource supplied by a stream/reservoir system requires an understanding of the amount of water...

Wurbs, Ralph A.; Bergman, Carla E.; Carriere, Patrick E.; Walls, W. Brian

329

amazon river basin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postal 70-153, CP 04510, Mexico D. F Mercado-Silva, Norman 149 Instream Flows in the San Antonio River Basin From Science to Environmental flow Standards Geosciences Websites...

330

arkansas river basin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postal 70-153, CP 04510, Mexico D. F Mercado-Silva, Norman 191 Instream Flows in the San Antonio River Basin From Science to Environmental flow Standards Geosciences Websites...

331

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network [OSTI]

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

332

Interstate Commission on the Potomac River Basin (Multiple States)  

Broader source: Energy.gov [DOE]

The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

333

Roanoke River Basin Bi-State Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina. The purpose of the...

334

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Gasoline and Diesel Fuel Update (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

335

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

336

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

337

A systematic approach for characterizing waves in a model basin  

E-Print Network [OSTI]

This research study focused upon the development of a general methodology to characterize regular and random waves in a large model basin. The objectives of the study were to both identify and quantify the various nonlinearities associated with wave...

Sarat, Andrew Charles

1994-01-01T23:59:59.000Z

338

The Nile Basin Initiative in Ethiopia: Voices from Addis Ababa  

E-Print Network [OSTI]

agreements will give Ethiopia more negotiating power. Egypt,WaterAid, and PANOS Ethiopia. 7 I interviewed stafT at theNUe Basin Initiative in Ethiopia: Voices from Addis Ababa'

Foulds, Kim

2006-01-01T23:59:59.000Z

339

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network [OSTI]

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

340

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect (OSTI)

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

alfonso basin gulf: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico Texas A&M University - TxSpace Summary: diapirs in the De Soto Canyon area, and a...

342

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

SciTech Connect (OSTI)

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

343

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect (OSTI)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

344

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

Hennier, Jeffrey Hugh

1984-01-01T23:59:59.000Z

345

California Basin Studies (CaBS). Final contract report  

SciTech Connect (OSTI)

The California Continental Borderland`s present configuration dates from about 4 to 5 X 10{sup 6} years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10{sup 6} years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation.

Gorsline, D.S.

1991-12-31T23:59:59.000Z

346

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect (OSTI)

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

347

Evolutionary sequences and hydrocarbon potential of Kenya sedimentary basins  

SciTech Connect (OSTI)

Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustatic sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.

Cregg, A.K. (Western Atlas International, Inc., Carrollton, TX (United States))

1991-03-01T23:59:59.000Z

348

Effect of the thermal gradient variation through geological time on basin modeling; a case study: The Paris basin  

E-Print Network [OSTI]

Toarcian black shales well known as source rocks for oil (Poulet and Espitalie, 1987, Bessereau et al basin. The numerical results were calibrated with organic matter maturity data. TherMO's simulates

Paris-Sud XI, Université de

349

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

SciTech Connect (OSTI)

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

350

Table 2 -Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN MO NE NY NC ND OH PA SD TX WI Area  

E-Print Network [OSTI]

Table 2 - Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN.7 Table 2 - Lime use and practices on Corn, major producing states, 2000 CO IL IN IA KS KY MI MN MO NE NY use and practices on Corn, major producing states, 1999 CO IL IN IA KS KY MI MN MO NE NC OH SD TX WI

Kammen, Daniel M.

351

FY2004 CORROSION SURVEILLANCE RESULTS FOR L-BASIN  

SciTech Connect (OSTI)

This report documents the results of the L-Basin Corrosion Surveillance Program for the fiscal year 2004. Test coupons were removed from the basin on February 12, 2004, shipped to Savannah River National Laboratory (SRNL), and visually examined in a contaminated laboratory hood. Selected coupons were metallurgically characterized to establish the extent of general corrosion and pitting. Pitting was observed on galvanically coupled and on intentionally creviced coupons, thus demonstrating that localized concentration cells were formed during the exposure period. In these cases, the susceptibility to pitting was not attributed to aggressive basin water chemistry but to localized conditions (intentional crevices and galvanic coupling) that allowed the development of oxygen and/or metal ion concentration cells that produced locally aggressive waters. General oxidation was also observed on all of the coupons with localized corrosion observed on some of the coupons. These coupons were not pretreated to produce a protective oxide layer prior to exposure in the basin water. Non-protected coupons are more susceptible to corrosion than fuel cladding which has developed a protective oxide layer from high temperature reactor operations. However, the oxide on spent nuclear fuel (SNF) stored in L-Basin is not necessarily in pristine condition. Some of the oxide may have spalled off or been mechanically damaged prior to arrival at SRS. These areas on the fuel cladding would have the same susceptibility to corrosion as the coupons. Current observations from the test coupons demonstrate that, even with rigorously controlled basin water chemistry, localized aggressive conditions can develop in intentional crevice and galvanic samples. These results do illustrate the potential for corrosion induced degradation and thus the importance of a routine surveillance program similar to that conducted on the Uruguay fuel and on the surveillance coupons stored in L-Basin and future in-service inspections proposed for additional SNF in L-Basin. The 2004 results are compared to previous results on coupons removed from SRS basins in fiscal years 2001, 2002 and 2003. The extent of corrosion is correlated with sample and storage conditions as well as the water chemistry during the storage period. Coupon weight gains from 2004 coupons are similar to those from 2003. Oxides were removed from furniture rack coupons from 2003 and 2004 and comparable pit depths were found in the filler metal. Corrosion induced-degradation of the spent nuclear fuels stored in L-Basin could potentially impact the storage process by causing cladding penetration, exposing fuel core material, and allowing release of radionuclides to the basin waters. Such releases could potentially lead to high water activity levels which could impact fuel integrity and present problems in future fuel handling and transfer operations. However, the collective results (to date) of the coupon and water chemistry evaluations and Uruguay spent fuel inspections indicate that the fuel in the SRS storage basins has not experienced corrosion-induced degradation that will limit the time for interim storage in the basin waters. Continued surveillance and inspection is essential due to the potential for corrosion induced degradation. The next withdrawal of surveillance coupons from L-Basin occurred on March 29, 2005.

VORMELKER, P

2005-09-05T23:59:59.000Z

352

A two-dimensional regional basin model of Williston basin hydrocarbon systems  

SciTech Connect (OSTI)

Institut Francais du Petrole`s two-dimensional model, TEMISPACK, is used to discuss the functioning of petroleum systems in the Williston basin along a 330-km-long section, focusing on four regional source intervals: Ordovician Yeoman formation, Lower Devonian Winnipegosis Formation, Upper Devonian-Lower Mississippian Bakken Formation, and Mississippian Lodgepole formation. Thermal history calibration against present temperature and source rock maturity profiles suggests that the Williston basin can be divided into a region of constant heat flow of about 55 mW/m{sup 2} away from the Nesson anticline, and a region of higher heat flow and enhanced thermal maturity in the vicinity of the Nesson anticline. Original kinetic parameters used in the calibration were derived for each of the four source rocks from Rock-Eval yield curves. Bakken overpressures are entirely due to oil generation, not compaction disequilibrium. Very low Bakken vertical permeabilities range from 0.01 to 0.001 and are matched against observed overpressures, whereas Bakken porosities based on the model and confirmed by measurements are inferred to be also unusually low, around 3%.

Burrus, J.; Wolf, S.; Doligez, B. [Institut Francais due Petrole, Rueil-Malmaison (France)] [and others

1996-02-01T23:59:59.000Z

353

South Atlantic sag basins: new petroleum system components  

SciTech Connect (OSTI)

Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

Henry, S.G. [GeoLearn, Houston, TX (United States)] Mohriak, W.U. [Petroleo Brasileiro, S.A., Exploration and Production, Rio de Janeiro (Brazil); Mello, M.R. [Petroleo Brasieiro, S.A., Research Center, Rio de Janeiro (Brazil)

1996-08-01T23:59:59.000Z

354

Utilizing Divers in Support of Spent Fuel Basin Closure Subproject  

SciTech Connect (OSTI)

A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

Allen Nellesen

2005-01-01T23:59:59.000Z

355

Little Knife field - US Williston basin  

SciTech Connect (OSTI)

Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

Wittstrom, M.D.; Lindsay, R.F. (Chevron USA, Inc., Midland, TX (United States))

1991-03-01T23:59:59.000Z

356

Fractal and Wada exit basin boundaries in tokamaks Jefferson S. E. Portela, Iber^e L. Caldas  

E-Print Network [OSTI]

Fractal and Wada exit basin boundaries in tokamaks Jefferson S. E. Portela, Iber^e L. Caldas an involved fractal structure. If three or more exit basins are considered, the respective basins exhibit

Rey Juan Carlos, Universidad

357

Williston basin oil exploration: Past, present, and future  

SciTech Connect (OSTI)

Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

Jennings, A.H.

1991-06-01T23:59:59.000Z

358

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect (OSTI)

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type [open quote]inverted Gaussian function[close quote] that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. (Univ. of Saskatchewan, Saskatoon (Canada))

1996-01-01T23:59:59.000Z

359

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect (OSTI)

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type {open_quote}inverted Gaussian function{close_quote} that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. [Univ. of Saskatchewan, Saskatoon (Canada)

1996-12-31T23:59:59.000Z

360

Sedimentology, Stratigraphy and Petrography of the Permian-Triassic Coal-bearing New Lenton Deposit, Bowen Basin, Australia .  

E-Print Network [OSTI]

??The Bowen Basin is one of the most intensely explored sedimentary basins in Australia and hosts one of the world’s largest coking coal deposits. This… (more)

Coffin, Lindsay M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coalbed methane potential assessed in Forest City basin  

SciTech Connect (OSTI)

This paper reports that the Forest City basin is a shallow cratonic depression located in northeastern Kansas, southeastern Nebraska, southern Iowa and northern Missouri. Historically, the Forest City basin in northeastern Kansas has been a shallow oil and gas province with minor coal production. The Iowa and Missouri portion has had minor oil production and moderate coal mining. In recent years there has been little coal mining in the Forest City in Iowa and Kansas and only minor production in Missouri. Before 1940, gas was produced from coal beds and shales in the Kansas portion of the Forest City basin. The Cherokee group (Altokan and Desmoinesian age) includes section containing the largest number of actively mined coals and has the greatest available data for coalbed methane evaluation.

Tedesco, S.A. (CST Oil and Gas Corp., Denver, CO (US))

1992-02-10T23:59:59.000Z

362

Mississippian ''Warsaw'' play makes waves in Illinois basin  

SciTech Connect (OSTI)

Recent completions of relatively prolific wells in the mid-Missippian Ullin limestone have generated considerable excitement about this Illinois basin play. Reservoirs found within this limestone, commonly referred to by industry as the Warsaw, are scattered and are prolific oil producers in some areas of the basin. The widespread development of reservoir quality facies at depths ranging from 2,400--4,400 ft and the stratigraphic proximity of thermally mature New Albany shale, the primary Illinois basin source rock are factors that make the Warsaw an excellent exploration target. The paper discusses a depositional model, reservoir development, reservoir facies of the upper and lower Warsaw, factors controlling porosity and permeability, and regional and structural considerations.

Lasemi, Z.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

1995-01-09T23:59:59.000Z

363

Zuni sequence in Williston basin - evidence for Mesozoic paleotectonism  

SciTech Connect (OSTI)

The Zuni sequence in the Williston basin is a largescale lithogenetic package bounded by interregional unconformities. Within the sequence, three major subdivisions are separated by unconformities or marker beds and correspond with chronostratigraphic units: (1) Middle and Upper Jurassic, (2) Lower Cretaceous, and (3) Upper Cretaceous and Paleocene. The basin has clear expression in the Jurassic subdivision, poor expression in the Lower Cretaceous, and good expression in the Upper Cretaceous. A series of seven marginal paleotectonic elements surround the basin center on the west, south, and east in the US. Five more marginal elements have been described in Canada. Occurrences of oil in the Jurassic and Lower Cretaceous and of natural gas in the Upper Cretaceous are broadly related to the pattern of marginal paleotectonic elements. 14 figures, 1 table.

Shurr, G.W.; Anna, L.O.; Peterson, J.A.

1989-01-01T23:59:59.000Z

364

Economic appraisal of oil potential of Williston basin  

SciTech Connect (OSTI)

An economic appraisal was made of the potential of more than 80 producing fields in the Williston basin of Montana, North Dakota, and South Dakota. The major oil producing formations investigated were in the Mississippian, Devonian, Silurian and Ordovician. Data for the study came from field production and drilling statistics. An extrapolated oil production decline curve for a theoretical average producing well first was made for each field. The value of the total extrapolated amount of producible oil for the average well was then calculated, discounted for royalty, taxes, etc., and divided by the estimated cost for a completed producing well. This gave an estimate of the return per dollar invested. No considerations were given for exploration and land acquisition costs. The estimated return per dollar values, after posting on Williston basin geologic maps, show relative economic comparisons of producing formations and where within the basin the best economic returns can be expected.

Jennings, A.H.

1983-08-01T23:59:59.000Z

365

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2001-03-14T23:59:59.000Z

366

Acoustic impedance inversion of the Lower Permian carbonate buildups in the Permian Basin, Texas  

E-Print Network [OSTI]

Carbonate reservoirs are usually diffcult to map and identify in seismic sections due to their complex structure, lithology and diagenetic frabrics. The Midland Basin, located in the Permian Basin of West Texas, is an excellent example...

Pablo, Buenafama Aleman

2004-11-15T23:59:59.000Z

367

Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin  

E-Print Network [OSTI]

The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

368

A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO  

E-Print Network [OSTI]

............................................................................................................SR-13 Coal-bed Methane and potential coal-bed methane production in Raton Basin. Adapted from Hemborg (1996). 1999 RChapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R

369

The River Runs Dry: Examining Water Shortages in the Yellow River Basin  

E-Print Network [OSTI]

Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the river’s basin. Ina median level of runoff water shortages in the basin would

Zusman, Eric

2000-01-01T23:59:59.000Z

370

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES  

E-Print Network [OSTI]

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES ........................................................................................................ 2 2.2 Net Basin Supplies . . . . . . . . . . . 4 Table lb.--Lag-Zero Cross Covariances and Cross Correlations Among Great Lakes Annual Connecting

371

Pliocene to recent stratigraphy of the Cuu Long and Nam Con Son Basins, offshore Vietnam  

E-Print Network [OSTI]

The Cuu Long and Nam Con Basins, offshore Vietnam, contain sediment dispersal systems, from up-dip fluvial environments to down-dip deep-water slope and basinal environments that operated along the southern continental margin of Vietnam during...

Yarbrough, Christopher Neil

2006-08-16T23:59:59.000Z

372

E-Print Network 3.0 - african river basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: african river basin Page: << < 1 2 3 4 5 > >> 1 Adaptation to climate change in international river basins in Africa: a review* Summary: ). There are 60...

373

Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota  

E-Print Network [OSTI]

The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

Spicer, James Frank

1994-01-01T23:59:59.000Z

374

Screening model optimization for Panay River Basin planning in the Philippines  

E-Print Network [OSTI]

The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

375

Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)  

Broader source: Energy.gov [DOE]

This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

376

The use of turbulent jets to destratify the Charles River Basin  

E-Print Network [OSTI]

This study examines the feasibility of using turbulent jets to destratify the Lower Charles River Basin between the Longfellow and Craigie Bridges between Boston and Cambridge. The basin is currently filled with salt water ...

Church, Jeffrey H. (Jeffrey Harrison)

2012-01-01T23:59:59.000Z

377

Functions and requirements for 105-KE Basin sludge retrieval and packaging  

SciTech Connect (OSTI)

Sludge, and the clouding due to sludge, interferes with basin operation and maintenance activities. This document defines the overall functions and requirements for sludge retrieval and packaging activities to be performed in the 105-KE Basin.

Feigenbutz, L.V.

1994-12-16T23:59:59.000Z

378

SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA)  

E-Print Network [OSTI]

SWAT TO IDENTIFY WATERSHED MANAGEMENT OPTIONS: (ANJENI WATERSHED, BLUE NILE BASIN, ETHIOPIA Biniam Biruk Ashagre #12;ABSTRACT Ethiopia is known for its wealth of natural resources. These result Basin, Ethiopia) #12;iv This study is dedicated to my

Walter, M.Todd

379

Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.  

SciTech Connect (OSTI)

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01T23:59:59.000Z

380

Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.  

SciTech Connect (OSTI)

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mineralogy and diagenesis of sediments in Yamato Basin, Japan Sea  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analytical Methods TEXTURE OF YAMATO BASIN SEDIMENTS . . MINERALOGICAL VARIATIONS . Unit VI (646. 9-900. 1 mbsf). Unit V (426. 6-627. 3 mbsf). Unit IV (301. 5-426. 6 mbsf). Unit III (224-301. 5 mbsf) and Unit II (119. 9-224 mbsf) . . . Semiquantitative... distribution of 34 samples selected from Site 797, ODP Leg 127 in the Yamato Basin, Japan Sea. . . . . . . . . . . . . . . . . . . . . Figure 6A. Photomicrograph of a sandy sample from Unit VI, in which chlorite forms as a matrix occuping all intergranular...

Lo, Pei-Hua

1992-01-01T23:59:59.000Z

382

Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783  

E-Print Network [OSTI]

changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts the center of their range usually exhibit a more complex relationship with climate (Hughes, 2002Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783

Evans, Michael N.

383

Columbia River Basin Accords -Narrative Proposal Form 1 200880000 ISRP FAN1B  

E-Print Network [OSTI]

: The Columbia Basin Fish Accords (Accords) are ten-year agreements between the federal action agencies and states and tribes. The Accords supplement the Columbia Basin Fish and Wildlife Program and are intended substantial biological benefits for Columbia Basin fish. The Accords also acknowledge the tribes' and states

384

Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late Miocene  

E-Print Network [OSTI]

Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late, Spain ABSTRACT A Tortonian to Pliocene magnetostratigraphy of the Fortuna basin supports a new Betics in SE Spain. The Neogene Fortuna basin is an elongated trough which formed over a left

Utrecht, Universiteit

385

Original article On the Late Miocene continentalization of the Guadix Basin: More evidence for a  

E-Print Network [OSTI]

connection existed through the Guadix-Baza, Fortuna and Lorca basins during the Messinian (Mu¨ ller and Hsu of the sedimentary fill of the Fortuna (Garce´s et al., 1998, 2001) and Lorca Basins (Krijgsman et al., 2000). These studies revealed that the marine-continental transition in the Fortuna and Lorca basins occurred

Utrecht, Universiteit

386

Fluids in sedimentary basins: an introduction Kurt Kysera,*, Eric E. Hiattb,1  

E-Print Network [OSTI]

to document significant fluid events in basins and how this information can be used in some cases to evaluate the economic potential of basins. The focus of these studies deals with the interaction between basinal fluids significant sources of the energy-related commodities, such as petroleum, natural gas, coal, uranium and many

Hiatt, Eric E.

387

Numerical determination of the basin of attraction for exponentially asymptotically autonomous dynamical  

E-Print Network [OSTI]

Numerical determination of the basin of attraction for exponentially asymptotically autonomous the basin of attraction for autonomous equations focus on a bounded subset of the phase space. For non-autonomous asymptotically autonomous systems, we can map the infinite time interval to a finite, compact one. The basin

Dettweiler, Michael

388

Colorado Basin 3D Structure and Evolution, Argentine passive J. Autin (1)  

E-Print Network [OSTI]

1 Colorado Basin 3D Structure and Evolution, Argentine passive margin J. Autin (1) , M. Scheck, department of Geophysics, Christian-Albrechts-University, Kiel, Germany. Highlights The Colorado Basin. ABSTRACT This 3D structural model of the Colorado Basin provides new insights into the crustal geometry

Boyer, Edmond

389

Multiscale Sagebrush Rangeland Habitat Modeling in the Gunnison Basin of Colorado  

E-Print Network [OSTI]

Multiscale Sagebrush Rangeland Habitat Modeling in the Gunnison Basin of Colorado Open-File Report" in Gunnison Basin, Colorado, 2007 (photograph by Lorie Brummer, U.S. Geological Survey). #12;Multiscale Sagebrush Rangeland Habitat Modeling in the Gunnison Basin of Colorado By Collin G. Homer, Cameron L

Aldridge, Cameron

390

Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia  

E-Print Network [OSTI]

Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia Shimelis G. Setegn,1 investigated the sensitivity of water resources to climate change in the Lake Tana Basin, Ethiopia, using on the hydroclimatology of Lake Tana Basin, Ethiopia, Water Resour. Res., 47, W04511, doi:10.1029/2010WR009248. 1

391

Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1  

E-Print Network [OSTI]

Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1 Daniel M. Sigman,2 of Venezuela. Water column denitrification occurring in the basin has only a very small isotopic imprint-Karger, Y. Astor, and R. Varela (2004), Nitrogen isotope dynamics of the Cariaco Basin, Venezuela, Global

Sigman, Daniel M.

392

A gravity study of the Great Basin-Sonoran Desert transition zone, Basin and Range province, western United States  

E-Print Network [OSTI]

chairman, Neville Carter approved funding for me to attend a GSA field trip in the Great Basin-Sonoran Desert transition area for an initial look at the rocks. As I wrote computer programs and ran models, it really helped me to remember..., they did not use a modeling technique; instead, Bancroft's method (1960) was used to determine the maximum possible depth to an assumed step-source. SEISMIC STUDIES Because of the basin and range physiography, and the generally north-south orientation...

Brooks, Debra Ann

1989-01-01T23:59:59.000Z

393

Independent External Evaluation of The Columbia Basin Water Transactions Program  

E-Print Network [OSTI]

three objectives since its inception in 2003: 1) Experimenting with open market transactions a market for instream water (153 open-market transactions have been made to date), and QLEs have beenIndependent External Evaluation of The Columbia Basin Water Transactions Program (2003

394

Columbia River Basin Accords -Narrative Proposal Project Number 200845800 1  

E-Print Network [OSTI]

proposes to take advantage of iteroparity in natural-origin (NOR) steelhead populations to increase,000 fish) between 1941-1954 (Mullan et al. 1992). Subsequent to this dramatic increase, wild stock escapements to the Columbia Basin have fluctuated widely. Wild stock productivity and abundance declined again

395

Distributed Usage Control Alexander Pretschner, Manuel Hilty, David Basin  

E-Print Network [OSTI]

Distributed Usage Control Alexander Pretschner, Manuel Hilty, David Basin 1 Introduction Computer to potentially uncontrolled distribution. These technologies improve, for the most part, the quality of our lives technical challenges here are controlling data access and usage. While the fundamentals of access control

Basin, David

396

Beta Advection-Diffusion Model Columbia Basin Research  

E-Print Network [OSTI]

Beta Advection-Diffusion Model Jim Norris Columbia Basin Research University of Washington Box Model (SSM) is loosely called a Beta Advection-Diffusion model. The SSM estimates a single parameter this single parameter characterized fish migration. The purpose of this note is to define the Beta Advection

Washington at Seattle, University of

397

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network [OSTI]

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

398

book reviews Climate Changeon the Great Lakes Basin. 1992.  

E-Print Network [OSTI]

,personal communication). The second paper, "Effects of Climate Change on the Water Resources of the Great is a compilation of five papers presented at the Symposium of Climate Change on the Great Lakes Basin held as part- ested in learning more a out climate change issues andstudiesintheGreatL kesisadvisedtoconsultthe

399

Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin  

SciTech Connect (OSTI)

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J. I.; Murphy, T. R.; Deible, R.

2012-10-01T23:59:59.000Z

400

POSTDOCTORAL FELLOW: BASIN-SCALE MODELING AND SALINITY MANAGEMENT  

E-Print Network [OSTI]

: The International Water Management Institute (IWMI) (www.iwmi.org) is looking for a person with a PhD in hydrology, hydrogeology, water resources management or a related discipline, which was awarded not more than 5 years ago. The person should have an in-depth understanding of the concepts of basin water resources management

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An entropy-based morphological analysis of river basin networks  

E-Print Network [OSTI]

related to the logarithm of the magnitude of the basin network. This relation leads to a nonlinear relation between the network diameter and magnitude, where the exponent is found to be related to the fractal dimension of the drainage network. Also...

Fiorentino, Mauro; Claps, Pierluigi; Singh, Vijay P.

402

Successful Alternatives to Conventional Cement Designs in the Williston Basin  

SciTech Connect (OSTI)

Since mid-1981, 36 wells have been cemented in the Williston Basin with a cementing system diametrically opposed to conventional cementing designs used for bonding across massive salt members. Since implementation, along with the use of relaxed invert emulsion oil mud, not one casing problem has arisen in the wells where these systems were used.

Bryant, G.A.

1984-05-01T23:59:59.000Z

403

Thermal history of Bakken shale in Williston basin  

SciTech Connect (OSTI)

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

404

Regional stratigraphy and general petroleum geology, Williston Basin  

SciTech Connect (OSTI)

Paleozoic sedimentary rocks in the Northern Great Plains and northern Rocky Mountain region include a sequence of dominantly shallow-water marine carbonate, clastic, and evaporite deposits of Middle Cambrian through Early Permian age. The lower part of the Paleozoic section is a sequence of marine sandstone, shale, and minor limestone, rangeing in age from Middle Cambrian through Middle Ordovician. Some porous sandstone beds occur in this section, mainly in the eastern and southern bordering areas of the Williston basin and Central Montana trough. Upper Ordovician through middle Upper Mississippian rocks are primarily carbonate beds, which contain numerous widespread cyclic interbeds of evaporite and fine-grained clastic deposits. Carbonate mounds or banks were deposited through most of this time in the shallow-water areas of the Williston basin and northern Rocky Mountains. Porous units, mainly dolomite or dolomitic limestone, are common but discontinuous in most of this sequence, and are more widespread in the eastern and southern margins of the Williston basin. Cumulative petroleum production (January 1982) in the United States part of the Williston basin was about 1.1 billion bbl of oil and 1.6 tcf gas. Estimated remaining recoverable reserves are about 400 million bbl of oil and 0.8 tcf gas. U.S. Geological Survey 1980 estimates of undiscovered recoverable oil and gas resources are about 900 million bbl of oil and 3.5 tcf gas.

Peterson, J.A.; Maccary, L.M.

1985-05-01T23:59:59.000Z

405

488-D Ash Basin Vegetative Cover Treatibility Study  

SciTech Connect (OSTI)

The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

2003-01-01T23:59:59.000Z

406

Operability test report for K east basin canister cleaning system  

SciTech Connect (OSTI)

This document summarizes test data computed during the operability test procedure for the K East Basin Canister Cleaning System. Test Results show that the canister cleaning system successfully lowered the dose of each canister tested so that each canister could be disposed of as low level waste.

Crystal, J.B.

1997-01-09T23:59:59.000Z

407

Geothermal resources of the Wind River Basin, Wyoming  

SciTech Connect (OSTI)

The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

Hinckley, B.S.; Heasler, H.P.

1985-01-01T23:59:59.000Z

408

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network [OSTI]

irradiated fuel prior to Spent Nuclear Fuel (SNF) processing. In 1980, irradiated N-Reactor fuel was placed products and uranium. This sludge must be removed and disposed as part of the basin decommissioning) and the definition of High Level Waste (HLW) and Spent Nuclear Fuel (SNF) from the Nuclear Waste Policy Act of 1982

409

Linking Taiwan's subcritical Hsuehshan Range topography and foreland basin architecture  

E-Print Network [OSTI]

Linking Taiwan's subcritical Hsuehshan Range topography and foreland basin architecture T. Wilcox,1 that initiate and maintain a subcritical state in a thinskinned compressive wedge. Orogenscale analyses foreland may affect the onset of a topographically subcritical state. Citation: Wilcox, T., K. Mueller, P

Mueller, Karl

410

Structural deformation in the offshore Santa Maria basin, California  

SciTech Connect (OSTI)

The authors divide the offshore Santa Maria basin into the southern, central, and northern provinces based on the pattern, style, and timing of late Cenozoic deformation. From their analyses of over 2,000 km of CDP seismic data and offshore well data they prepared time structure contour maps for three basin-wide unconformities: top of basement, top of Miocene, and the unconformity between early and late Pliocene chronostratigraphic units. Isochron maps were constructed between these horizons and between the early/late Pliocene unconformity and the sea floor to evaluate timing of the deformation. All maps were converted to depth and isopach values based on a three-dimensional velocity model. The regional structure contour and isopach maps show that the offshore Santa Maria basin is characterized by localized crustal shortening orthogonal to the Pacific/North America plate margin and indications of post-Miocene to recent lateral slip along the eastern basin boundary, the San Simeon/Hosgri fault system.

Willingham, C.R. (Explorametrics, Carpinteria, CA (United States)); Heck, R.G. (R.G. Heck and Associates, Carpinteria, CA (United States)); Rietman, J.M. (Rietman Consultants, Santa Ana, CA (United States))

1991-02-01T23:59:59.000Z

411

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network [OSTI]

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

412

SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO  

E-Print Network [OSTI]

Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

413

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network [OSTI]

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

414

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network [OSTI]

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

415

Regional Slip Tendency Analysis of the Great Basin Region  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

- The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

Faulds, James E.

416

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

417

DOE - Office of Legacy Management -- Buffalo NY Site - NY 54  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L*AliquippaNewBuffalo

418

Sylvania Corporation, Hicksville, NY and Bayside, NY - Addendum to July  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppressionSustainable SuccessSustainableL L 28, 2004 |

419

Sylvania Corporation, Hicksville, NY and Bayside NY | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109 Historical Perspective

420

Crustal rifting and subsidence of Sirte basin, Libya: a mature hydrocarbon Province  

SciTech Connect (OSTI)

The complex rifting and subsidence history of the Sirte basin serves as an instructive case study of the tectonic evolution of an intercratonic extensional basin. The Sirte basin formed by collapse of the Sirte arch in the mid-Cretaceous. Marine sediments accumulated following initial crustal arching and rifting as the basin was flooded from the north. Upper Cretaceous strata lie unconformably on igneous and metamorphic rocks of the Precambrian basement complex, Cambrian-Ordovician Gargaf Group, or the pre-Cretaceous continental Nubian Sandstone. The most rapid subsidence and accumulation of basinal strata occurred in the early Cenozoic; however, the basin has been relatively stable since the Oligocene. The basin is floored by a northwest-southeast-trending mosaic of narrow horsts and grabens, an important structural characteristic that distinguishes it from the adjacent intracratonic Kufra, Murzuk, and Ghadames basins. The details of basin subsidence, sediment accumulation rates, and facies variations have been reconstructed for the northern Sirte basin from a suite of approximately 100 well logs and numerous seismic lines. Subsidence-rate maps for short time intervals from the mid-Cretaceous through the Eocene show a continual shifting of the loci of maximum and minimum subsidence. The nonsteady character of basin subsidence may reflect a periodicity of movement on the major basement-rooted growth faults bounding the underlying horsts and grabens.

Gumati, Y.; Schamel, S.; Nairn, A.E.M.

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction Seismic Wave Propagation in Alluvial Basins  

E-Print Network [OSTI]

Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures

Paris-Sud XI, Université de

422

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep-profiling results  

E-Print Network [OSTI]

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep) There is no evidence for a precursor rift basin beneath the axis of the Williston basin_ With the exception of small-scale structures (e.g., Nesson and Cedar Creek anticlines), the basement surface beneath the Williston basin

Jones, Alan G.

423

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R. Aurand and Andrew J. Long  

E-Print Network [OSTI]

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R Cretaceous aquifer system in the Powder River and Williston structural basins. The study area covers about 75 production in the Powder River structural basin and oil production in the Williston structural basin

Torgersen, Christian

424

Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China  

E-Print Network [OSTI]

basin, China Jiazhong Qian & Lulu Wang & Hongbin Zhan & Zhou Chen Abstract Groundwater, surface water

Zhan, Hongbin

425

Geological development, origin, and energy and mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston Basin of North Dakota, Montana, South Dakota, and S.-Central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Located on the western periphery of the Phanerozoic North American Craton, the Williston Basin has undergone only relatively mild tectonic distortion during Phanerozoic time. This distortion is related largely to movement of Precambrian basement blocks. Oil exploration and development in the US portion of the Williston basin from 1972 to present have given impetus to restudy of basin evolution and geologic controls for energy resource locations. Major structures in the basin, and the basin itself, may result from left-lateral shear along the Colorado-Wyoming and Eromberg zones during pre-Phanerozoic time. Deeper drilling in the basin has established several major new structures with indications of others.

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-05-01T23:59:59.000Z

426

ny_50m_wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation SpatialReferenceInformation EntityandAttributeI...

427

Gravity modeling of the Song Hong basin: an insight into its crustal structure and implication for the formation of the basin  

E-Print Network [OSTI]

3-D gravity inversion and rift stretching models are used in the Song Hong basin to determine the general configuration of the upper mantle and the mechanism for its formation in the region. The basin approximately 200 km wide by 600 km in length...

Nguyen, Vu Giang

1996-01-01T23:59:59.000Z

428

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

SciTech Connect (OSTI)

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01T23:59:59.000Z

429

Test reports for K Basins vertical fuel handling tools  

SciTech Connect (OSTI)

The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

Meling, T.A.

1995-02-01T23:59:59.000Z

430

Test plan for K-Basin fuel handling tools  

SciTech Connect (OSTI)

The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use.

Bridges, A.E.

1995-02-08T23:59:59.000Z

431

Hazardous waste research and development in the Pacific Basin  

SciTech Connect (OSTI)

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

432

Evaluation of Cask Drop Criticality Issues at K Basin  

SciTech Connect (OSTI)

An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuum Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.

GOLDMANN, L.H.

2000-01-24T23:59:59.000Z

433

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

434

Interactive Maps from the Great Basin Center for Geothermal Energy  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

435

Sedimentary basin geochemistry and fluid/rock interactions workshop  

SciTech Connect (OSTI)

Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

NONE

1991-12-31T23:59:59.000Z

436

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect (OSTI)

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

437

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

438

Energy development and water options in the Yellowstone River Basin  

SciTech Connect (OSTI)

Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

1980-08-01T23:59:59.000Z

439

Cedar Creek: a significant paleotectonic feature of Williston basin  

SciTech Connect (OSTI)

Cedar Creek is the major anticlinal structure demarcating the southwest flank of the Williston basin. This pronounced fold developed through a geologic history of recurrent tectonic movements along a northwest-southeast striking fault zone. The four major periods of tectonism documentable in the Cedar Creek area from early Paleozoic through mid-Tertiary affected the local and regional distribution, erosion, and/or preservation, and, though moderately, the depositional facies of sedimentary strata since Ordovician time.

Clement, J.H.

1983-08-01T23:59:59.000Z

440

Subsidence history of Williston basin in North Dakota  

SciTech Connect (OSTI)

The tectonic subsidence history of the Williston basin in North Dakota has been estimated through the examination of wireline logs from 30 wells that penetrated to Precambrian basement. The initial subsidence of the basin in North Dakota began at a time not later than during deposition of the middle portion of the Deadwood Formation (earliest Ordovician; about 495-490 Ma), significantly earlier than had been estimated by most workers. The initial subsidence was centered in a north-south-trending elongate area in western North Dakota; the maximum calculated tectonic subsidence rate for this event is about 15 m/m.y. Since the Early Ordovician, exclusive of the basin initiation event, the basin has undergone at least five distinct episodes of tectonic subsidence: (1) from about 450-420 Ma, (2) from 420-355 Ma, (3) from 355-315 Ma, (4) from 270-245 Ma, and (5) beginning in the interval between about 90 and 70 Ma. Each of the subsidence episodes was characterized by a rapid initial subsidence, followed by a decline to very low subsidence rates. The maximum calculated initial subsidence rates for these episodes are 26, 32, 16, 9, and 15 m/m.y, respectively. The time between episodes 4 and 5 seems to have been one of relative quiescence; the few rocks preserved from that time interval were deposited during highstands of sea level. The subsidence history curves for episodes 1-4 are consistent with a thermal expansion model; however, with the exception of episode 3 and possibly episode 4, none of the first four subsidence events appears to be temporally coincident with major tectonic events elsewhere in North America.

Lefever, R.D.

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin andNsbowde's

442

CX-010606: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development of Subsurface Brine Disposal Framework in the Northern Appalachian Basin CX(s) Applied: B3.1 Date: 07/25/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

443

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL  

E-Print Network [OSTI]

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

444

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2004-04-26T23:59:59.000Z

445

Hydrodynamics of Denver basin: an explanation of subnormal fluid pressures  

SciTech Connect (OSTI)

Anomalously low fluid pressures are found in the Lower Cretaceous, Mesozoic, and Paleozoic rocks of the Denver basin. Drill-stem test data and published hydrogeologic information are used to construct a potentiometric map for the Lower Cretaceous sandstones in the area. Normally, one expects the potential surface to be at or near the land surface (0.43 psi/ft). However, the potential surface for the Lower Cretaceous sandstones and underlying Paleozoic rocks is up to 2500 ft (762 m) beneath the land surface (0.35 psi/ft) in parts of the Denver basin in Colorado and the Nebraska panhandle. The low pressures seem especially anomalous considering the elevation of the outcrops along the Rocky Mountain Front and the Black Hills. The hydrostratigraphy is defined based on the known regional geology. Structure, isopach, and lithofacies maps are used to estimate the hydraulic characteristics of the rocks in the basin. A numerical model is constructed, based on the hydrostratigraphy, which simulates the regional flow system. Both transient and steady-state flow regimes are simulated. The interaction of the Lower Cretaceous sandstones with overlying and underlying hydrostratigraphic units is investigated. The significance of recharge in the outcrop areas is evaluated. The model is used to define the conditions under which subnormal fluid pressures may occur. The subnormal fluid pressures are reasonably explained as a consequence of regional ground-water flow.

Belitz, K.; Bredehoeft, J.

1983-03-01T23:59:59.000Z

446

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect (OSTI)

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

447

Fractal boundary basins in spherically symmetric $?^4$ theory  

E-Print Network [OSTI]

Results are presented from numerical simulations of the flat-space nonlinear Klein-Gordon equa- tion with an asymmetric double-well potential in spherical symmetry. Exit criteria are defined for the simulations that are used to help understand the boundaries of the basins of attraction for Gaussian "bubble" initial data. The first exit criteria, based on the immediate collapse or expan- sion of bubble radius, is used to observe the departure of the scalar field from a static intermediate attractor solution. The boundary separating these two behaviors in parameter space is smooth and demonstrates a time-scaling law with an exponent that depends on the asymmetry of the potential. The second exit criteria differentiates between the creation of an expanding true-vacuum bubble and dispersion of the field leaving the false vacuum; the boundary separating these basins of attraction is shown to demonstrate fractal behavior. The basins are defined by the number of bounces that the field undergoes before inducing a phase transition. A third, hybrid exit criteria is used to determine the location of the boundary to arbitrary precision and to characterize the threshold behavior. The possible effects this behavior might have on cosmological phase transitions are briefly discussed.

Ethan P. Honda

2011-06-14T23:59:59.000Z

448

Data Quality Objectives Process for Designation of K Basins Debris  

SciTech Connect (OSTI)

The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO process and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.

WESTCOTT, J.L.

2000-05-22T23:59:59.000Z

449

Information technology and decision support tools for stakeholder-driven river basin salinity management  

SciTech Connect (OSTI)

Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

Quinn, N.W.T; Cozad, D.B.; Lee, G.

2010-01-01T23:59:59.000Z

450

Oil and gas basins in the former Soviet Union  

SciTech Connect (OSTI)

The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

Clayton, J. (Geological Survey, Denver, CO (United States))

1993-09-01T23:59:59.000Z

451

Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin  

SciTech Connect (OSTI)

Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

Putnam, P.E.; Moore, S. (Petrel Robertson Ltd., Calgary, Alberta (Canada)); Ward, G. (Ward Hydrodynamics, Calgary, Alberta (Canada))

1990-05-01T23:59:59.000Z

452

Submarine geomorphology and sedimentation patterns of the Gyre Intraslope Basin, northwest Gulf of Mexico  

E-Print Network [OSTI]

portions of the basin. The presence of high percentages of sand size quartz grains, rock fragments, displaced benthonic foraminifers and shallow water mollusc shells indicate that Pleistocene sediments from the basin margins have been carried... into the basin via slumping and possibly sediment gravity flow mechanism. Heavy mineral identification indicate" that the source of sand size sediment during Late Pleistocene was from the Rio Grande and Mississippi Rivers and there was very little, if any...

Smith, Lester Badder

1975-01-01T23:59:59.000Z

453

Chemical and Radiochemical Analysis of Consolidated Sludge Samples from the K East Basin  

SciTech Connect (OSTI)

Consolidated sludge samples described in this report were collected from the Hanford K East Basin fuel storage pool in March and April 1999. Material for the samples was collected from both the basin floor and fuel canisters within the basin. Analyses persented include weight percent solids determination, uranium analysis by kinetic phosphorescence (KPA), plutonium isotope analysis by alpha energy analysis (AEA), gross beta analysis, gamma energy analysis (GEA), and metals analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Elmore, Monte R.; Schmidt, Andrew J.; Silvers, Kurt L.; Thornton, Brenda M.; Gano, Susan R.

2000-10-31T23:59:59.000Z

454

Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin  

SciTech Connect (OSTI)

The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

Wood, James R.; Harrison, William B.

2002-12-02T23:59:59.000Z

455

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect (OSTI)

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

456

Water scarcity and development in the Tigris-Euphrates river basin. Master`s thesis  

SciTech Connect (OSTI)

This report will examine aspects of water scarcity and development, and discuss solutions available to avoid conflict over water in the Tigris-Euphrates River Basin. (MM).

NONE

1995-08-01T23:59:59.000Z

457

Structure and stratigraphy of Dungeness Arch, and western Malvinas basin, offshore Tierra Del Fuego, Argentina  

E-Print Network [OSTI]

. To the south-east, the basin connects with the Malvinas Basin (Natland, 1974) (figure 4). Basement rocks crop out along the present edge of the Magallanes Basin in small areas on the western Deseado massif, and along a discontinuous belt in the Patagonian... Andes and coastal Chile. Basement also hss encountered in a few wells in the basin (Lesta and Ferello, 1972; Natland, 1974). Most known basement rocks are lower to middle greenschist-grade slates. phyllites, mica schists, and metacherts derived from...

Kalkan, Fercan Engin

1989-01-01T23:59:59.000Z

458

E-Print Network 3.0 - amazon basin region Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1984. Heavy metal concentrations in some non-vascular plants in an Amazonian rainforest. Water, Air, and Summary: heavy metal concentrations in bryophytes from the Amazon basin...

459

Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration  

SciTech Connect (OSTI)

Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

Taha, M.A. (Conoco, Cairo (Egypt))

1988-08-01T23:59:59.000Z

460

E-Print Network 3.0 - amazon basin peru Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Michael E. McClain Department of Environmental Summary: WATER RESOURCES MANAGEMENT IN THE AMAZON BASIN ISSUES, CHALLENGES, AND OPPORTUNITIES...

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - amazon basin northern Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Michael E. McClain Department of Environmental Summary: WATER RESOURCES MANAGEMENT IN THE AMAZON BASIN ISSUES, CHALLENGES, AND OPPORTUNITIES...

462

Record of Decision/Remedial Alternative Selection for the Motor Shops Seepage Basin (716-A)  

SciTech Connect (OSTI)

This decision document presents the selected remedial alternative for the Motor Shops Seepage Basin located at the Savannah River Site in Aiken, South Carolina

Palmer, E.

1999-02-03T23:59:59.000Z

463

alps-molasse basin system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in quasiperiodically forced systems Ulrike Feudel,1 Engineering Websites Summary: fractal and Wada basin boundaries. Specifically, by utilizing a class of representative...

464

Sedimentology and diagenesis of the lower Lodgepole Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Scallion and overlying False Bakken intervals represent the lowermost portion of the Mississippian Lodgepole Formation, a predominantly carbonate unit located in the Williston Basin… (more)

Mackie, James

2013-01-01T23:59:59.000Z

465

Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North… (more)

Spicer, James Frank

2012-01-01T23:59:59.000Z

466

Subsurface horizontal microfracture propagation within the middle member of the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Devonian-Mississippian Bakken Formation of the Williston basin does not outcrop. All rock samples are obtained by coring. Open, uncemented, horizontal mode I (joints, with… (more)

Warner, Travis Blackburn.

2011-01-01T23:59:59.000Z

467

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Upper Devonian–Lower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of… (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

468

Minimum 186 Basin levels required for operation of ECS and CWS pumps  

SciTech Connect (OSTI)

Operation of K Reactor with a cooling tower requires that 186 Basin loss of inventory transients be considered during Design Basis Accident analyses requiring ECS injection, such as the LOCA and LOPA. Since the cooling tower systems are not considered safety systems, credit is not taken for their continued operation during a LOPA or LOCA even though they would likely continue to operate as designed. Without the continued circulation of cooling water to the 186 Basin by the cooling tower pumps, the 186 Basin will lose inventory until additional make-up can be obtained from the river water supply system. Increasing the make-up to the 186 Basin from the river water system may require the opening of manually operated valves, the starting of additional river water pumps, and adjustments of the flow to L Area. In the time required for these actions a loss of basin inventory could occur. The ECS and CWS pumps are supplied by the 186 Basin. A reduction in the basin level will result in decreased pump suction head. This reduction in suction head will result in decreased output from the pumps and, if severe enough, could lead to pump cavitation for some configurations. The subject of this report is the minimum 186 Basin level required to prevent ECS and CWS pump cavitation. The reduction in ECS flow due to a reduced 186 Basin level without cavitation is part of a separate study.

Reeves, K.K.; Barbour, K.L.

1992-10-01T23:59:59.000Z

469

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

470

Climate Change Effects on the Sacramento Basin's Flood Control Projects ANN DENISE FISSEKIS  

E-Print Network [OSTI]

Climate Change Effects on the Sacramento Basin's Flood Control Projects By ANN DENISE FISSEKIS B.......................................................................6 Chapter III. Climate Change................................................................11 models...........................................................20 Climate change data

Lund, Jay R.

471

Feasibility for Reintroducing Sockeye and Coho Salmon in the Grande Ronde Basin, 1998 Final Report.  

SciTech Connect (OSTI)

A report concerning the feasibility of reintroducing Sockeye Salmon into Wallowa Lake and Coho Salmon into the Grande Ronde River Basin.

Cramer, Steven P.; Witty, Kenneth L. (S.P. Cramer and Associates, Inc., Gresham, OR)

1998-07-01T23:59:59.000Z

472

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: GeonomicsKLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.

Stark, M.

2011-01-01T23:59:59.000Z

473

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.survey of the Swan Lake Valley area, Oregon: Geonornicssurvey of the Swan Lake Valley Area, Oregon: Geonomics

Stark, M.

2011-01-01T23:59:59.000Z

474

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

KLAMATH BASIN, OREGON SWAN LAKE AND KLAMATH HILLS AREA M.of the Swan Lake-Yonna Valley area, Klamath County, Oregon:

Stark, M.

2011-01-01T23:59:59.000Z

475

E-Print Network 3.0 - alluvial basin numerical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Great Britain. Palaeocurrents and provenance of the Mae Rim Formation, Northern Thailand Summary: as alluvial fans along the basin's edge. The main goals for this study...

476

E-Print Network 3.0 - alluvial basins in-depth Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Great Britain. Palaeocurrents and provenance of the Mae Rim Formation, Northern Thailand Summary: as alluvial fans along the basin's edge. The main goals for this study...

477

E-Print Network 3.0 - anoxic cariaco basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Florida Collection: Geosciences 3 Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1 Summary: and ammonium, sinking particles, and sediments from the...

478

E-Print Network 3.0 - aquifer paris basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on which potential site(s) in deep saline aquifers are investigated. KKeeyywwoorrddss:: CO2... geological storage; Site selection; Saline aquifer; Paris Basin; PICOREF I....

479

E-Print Network 3.0 - athabasca basin canada Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alberta Collection: Fossil Fuels 18 Precambrian Research 148 (2006) 125144 The uranium mineralization potential of the Paleoproterozoic Summary: -rich Athabasca Basin,...

480

ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY  

E-Print Network [OSTI]

May 2010 © 2010 West Virginia University Research Corporation Funding for this report was provided Bureau of Business and Economic Research College of Business and Economics West Virginia University and do not necessarily represent those of the West Virginia University Board of Trustees or Dominion

Mohaghegh, Shahab

Note: This page contains sample records for the topic "appalachian basin ny" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Do Appalachian Herbaceous Understories Ever Recover  

E-Print Network [OSTI]

(3) que plantus herbaceus colonizan la microtopografia del suelo que ha sido remo- vido a causa de la

Duffy, David Cameron

482

Workplace Charging Challenge Partner: Appalachian State University |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer ExchangeEnergy

483

Appalachian Advanced Energy Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:

484

Appalachian Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:4 E

485

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:4

486

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:

487

Appalachian Power Co (Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia

488

Role of the basin boundary conditions in gravity wave turbulence  

E-Print Network [OSTI]

Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Sébastien Aumaitre; Michael Berhanu; Eric Falcon; Félicien BONNEFOY

2014-12-16T23:59:59.000Z

489

Hydrotreating Uinta Basin bitumen-derived heavy oils  

SciTech Connect (OSTI)

Heavy oils derived from Uinta Basin bitumens have been hydrotreated under varying conditions. The process variables investigated included total reactor pressure (11.0-16.9 MPa), reactor temperature (616-711 K), feed rate (0.29-1.38 WHSV), and catalyst composition. The extent of heteroatom removal and residuum conversion were determined by the feed molecular weight and catalyst selection. Catalytic activity for heteroatom conversion removal was primarily influenced by metal loading. The heteroatom removal activity of the catalysts studied were ranked HDN catalysts > HDM catalysts > HDN-support. Catalytic activity for residuum conversion was influenced by both metal loading and catalyst surface area. The residuum conversion activity of HDN catalysts were always higher than the activity of HDM catalysts and HDN supports. The residuum conversion activity of HDN-supports surpassed the activity of HDM catalyst at higher temperatures. The conversions achieved with HDN catalysts relative to the HDM catalysts indicated that the low metals contents of the Uinta Basin bitumens obviate the need for hydrodemetallation as an initial upgrading step with these bitumens. The upgrading of Uinta Basin bitumens for integration into refinery feed slates should emphasize molecular weight and boiling range reduction first, followed by hydrotreating of the total liquid product produced in the pyrolysis process. Kinetics of residuum conversion can be modeled by invoking a consecutive-parallel mechanism in which native residuum in the feed is rapidly converted to volatile products and to product residuum. Deep conversion of residuum is only achieved when the more refractory product residuum is converted to volatile products.

Longstaff, D.C.; Balaji, G.V.; Kim, J.W. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1995-12-31T23:59:59.000Z

490

Petroleum geochemistry of Atrau region, Pre-Caspian Basin, Kazakhstan  

SciTech Connect (OSTI)

Pre-Caspian Basin covers an area of approx. 500,000 sq. km. and is characterized mainly by thick (0-5000 m) Kungurian salts. Atrau region occupies 100,000 sq.km. and is located at the southern part of the basin. Oils of this basin are found in the sub-salt (Carboniferous reefs) and supra-salts (Triassic red beds and Jurassic-Cretaceous clastics) reservoirs. Seventeen crude oil samples analyzed from different wells appear to be paraffinic and paraffinic-naphthenic type. Some of the oils hardly contained any n-alkanes, probably owing to biodegradation. Biomarker signatures of saturate and aromatic fractions and stable carbon isotopes of whole oils revealed two genetically different oil families; family I and family II. Family I was generated from clastic supra-salt sediments having immature (%Rc=0.55) terrestrial organic matter. Family II was generated from carbonate rich sub-salt sediments, containing mature (%Rc=0.65-0.80) marine organic matter. Majority of Triassic, Kungurian and Upper Cretaceous successions contained enough organic matter with considerably low total petroleum potential (S1+S2). Upper Carboniferous sediments, on the other hand, contain enough and oil prone organic matter that reached peak oil generation stage (233.1 Ma) and hydrocarbon saturation level for expulsion as a result of high sedimentation rates in the Lower to Middle Triassic succession in Kobyekovskaya-2 well. Maximum paleotemperature reached in the area was not enough for H{sub 2}S formation and cracking of already generated hydrocarbons to natural gas.

Guerge, K. [TPAO dis Projeler Grup Baskanligi, Ankara (Turkey)

1995-08-01T23:59:59.000Z

491

The distribution of organic carbon in the Brazos River basin  

E-Print Network [OSTI]

of 6. 12 mgC/1 for a station in Brazoria County. This sample was taken 8 April 1962 and was analyzed by an infrared method. This method consists of: (1) removing all inorganic carbonate from a sample of water by acidifying the sample and pass- ing... is often too saline. The salt load of the Brazos River comes from the entire basin and is the result of solution, accretion of un- determined amounts of oil-field brine, and accretion of brine from springs and seeps---such as those in Salt Croton Creek...

Brooks, James Mark

1970-01-01T23:59:59.000Z

492

Conditional Reliability Modeling of Short-term River Basin Management  

E-Print Network [OSTI]

CONDITIONAL RELIABILITY MODELING OF SHORT-TERM RIVER BASIN MANAGEMENT ASCE Texas Section Spring Meeting 2003 By: A.Andr?s Salazar, Ph.D. Freese and Nichols, Inc. and Ralph A. Wurbs, P.E., Ph.D. Texas A&M University 2 TEXAS WATER AVAILABITY MODEL...-88Year Storage (x 1000 ac-ft) Periods without shortage = 657 out of 672 (97.8%) What is the probability of satisfying demand when reservoir falls below 100,000 ac-ft? 9 CONDITIONAL RELIABILITY Statistical analysis of small sequences. Simulation 1...

Salazar, A.; Wurbs, R. A.

2003-01-01T23:59:59.000Z

493

Lodgepole reef potential seen in Montana Williston basin  

SciTech Connect (OSTI)

The Williston basin Mississippian Lodgepole oil play has suffered a string of dry holes lately eroding the confidence of explorationists to find these prolific reefs, particularly in North Dakota. Detailed mapping of the Lodgepole trend suggests more Lodgepole reefs will be found in the Montana part of the trend than in North Dakota. Companies seeking impact plays should certainly give this area strong consideration. The paper discusses the delineation of a lower Lodgepole fairway extending into Montana with identification of reef facies in key wells (reef clusters), good source rocks, high quality seismic data, and impact reserve potential which makes Montana good hunting ground for significant new discoveries.

Brogdon, L. [H.A. Hedberg Trust, Fort Worth, TX (United States); Ball, S.M.; Ball, D.S. [Ball Exploration Inc., Fort Worth, TX (United States)

1996-12-16T23:59:59.000Z

494

K Basins Sludge Treatment Process | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergyLowJoelProcess K Basins Sludge

495

K Basins Sludge Treatment Project Phase 1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergyLowJoelProcess K Basins

496

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin and Range Geothermal Region Jump to:

497

Gravity waves in a rotating basin - normal modes  

E-Print Network [OSTI]

desired portion of all roots in the initial range of sigma are found in this manner. From the output of sigma and the shoreline condition values, the accuracy of the original values of sigma can be improved by linear interpolation. Thus a set of eigen... circular nodes (s = 0, 1, 2) about the basin. Within the s = 1, 2 cases, three positive eigenvalues less than f, four positive eigen- values greater than f, and four negative eigenvalues with magnitude greater than f are obtained. For the s = 0 case...

Royer, Thomas Clark

1966-01-01T23:59:59.000Z

498

A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada  

E-Print Network [OSTI]

alpine watershed of western Canada inferred from spatially-Basin, British Columbia, Canada. Hydrol. Earth Syst. Sci.Mackenzie River Basin, Canada. Adv. Water Resour. Derksen,

Tong, Jinjun; Velicogna, Isabella

2010-01-01T23:59:59.000Z

499

The use of a distributed hydrologic model to predict dynamic landslide susceptibility for a humid basin in Puerto Rico  

E-Print Network [OSTI]

This thesis describes the use of a distributed hydrology model in conjunction with a Factor of Safety (FS) algorithm to predict dynamic landslide susceptibility for a humid basin in Puerto Rico. The Mameyes basin, located ...

Kamal, Sameer A. (Sameer Ahmed)

2009-01-01T23:59:59.000Z

500

Heimgartner, Louie, Scott, Thelen, Lopez, Coolbaugh The crustal thickness of the Great Basin: using seismic refraction to assess  

E-Print Network [OSTI]

for Geothermal Energy, University of Nevada, Reno Keywords: seismic refraction, Basin and Range, Great Basin flow can be higher, and the potential for geothermal energy may be greater. In addition, crustal