Powered by Deep Web Technologies
Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

2

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

3

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

4

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

5

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

6

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

7

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

8

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

9

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

10

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

11

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network (OSTI)

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

12

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

13

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

14

Subsurface stratigraphy and petrophysical analysis of the Middle Devonian interval, including the Marcellus Shale, of the central Appalachian basin; northwestern Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the multiple organic-rich intervals of the Middle Devonian, including the Marcellus Shale, are an emerging large resource play with high (more)

Yanni, Anne.

2010-01-01T23:59:59.000Z

15

Sub-surface stratigraphy and petrophysical analysis of the Middle Devonian Interval of the Central Appalachian Basin; West Virginia and Southwest Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the Middle Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has (more)

Boyce, Matthew L. (Matthew Louis), 1985-

2010-01-01T23:59:59.000Z

16

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

Science Conference Proceedings (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

17

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

Science Conference Proceedings (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

18

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

19

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

DOE Green Energy (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

20

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - MRCSP Appalachian Basin 2008 FactSheet _09-08_-2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

R.E. Burger Site 1 September 2008 R.E. Burger Site 1 September 2008 FACT SHEET FOR PARTNERSHIP FIELD VALIDATION TEST Midwest Regional Carbon Sequestration Partnership (MRCSP) NETL Cooperative Agreement DE-FC26-05NT42589 DOE/NETL Project Manager: Lynn Brickett, Lynn.Brickett@NETL.DOE.GOV Submitted by Battelle September 2008 Appalachian Basin Geologic Test at R.E. Burger Power Plant Principal Investigator Dave Ball, Battelle (614-424-4901; balld@battelle.org) Test Location FirstEnergy R.E. Burger Plant, Shadyside, Ohio Amount and Source of CO 2 1,000-3,000 metric tons Source = commercial source FirstEnergy Ohio Geological Survey (Ohio Department of Natural Resources) Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations:

22

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect

The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

2005-04-01T23:59:59.000Z

23

Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Hatcher, Robert D

2005-11-30T23:59:59.000Z

24

Multi-offset vertical seismic profiles: fracture and fault identification for Appalachian basin reservoirs - two case examples  

SciTech Connect

Many Appalachian basin reservoirs occur in older rocks that are commonly fractured and faulted. These fractures and faults very often act as the reservoir trapping mechanism, especially in lithologies with no log-detectable matrix porosity. Traditional logging techniques, although possibly showing fault or fracture presence in the well bore, seldom provide clues to the extent of fracturing or location of nearby faults. Surface seismic data should show faults and perhaps even fracturing, but showing these features is often not possible in rugged terrain or in areas with thick coverings of unconsolidated surface material. Traditional seismic also has resolutions lower than that needed to detect small faults (less than 70 ft). Two case examples are shown from the northern Appalachian basin. The first example utilizes Schlumberger's slim hole seismic tool in cased holes in an area of thick unconsolidated glacial material along the Bass Island trend of western New York. The second example utilizes Schlumberger's SAT tool in an open-hole environment in an area of northwestern Pennsylvania with disturbed surface bedding and poor conventional surface seismic returns. The slim hole tool provides good data but with only slightly greater resolution than surface Vibroseis data. The SAT tool provides excellent resolution (down to 25 ft) in highly disturbed bedding.

Wyatt, D.E.; Bennett, B.A.; Walsh, J.J.

1988-08-01T23:59:59.000Z

25

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

Science Conference Proceedings (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

26

ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES  

SciTech Connect

The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in interviews and in the Workshop, as, perhaps, the key issue related to oil production in the Appalachian region - the price of a barrel of oil. Project members sought solutions to production problems from a number of sources. In general, the Petroleum Technology Transfer Council (PTTC) website, both regional and national, proved to be a fertile source of information. Technical issues included water production, paraffin accumulation, production practices, EOR and waterflooding were addressed in a number of SPE papers. Articles on reservoir characterization were found in both the AAPG Bulletin and in SPE papers. Project members extracted topical and keyword information from pertinent articles and websites and combined them in a database that was placed on the PUMP website. Because of difficulties finding potential members with the qualifications, interests, and flexibility of schedule to allow a long-term commitment, it was decided to implement the PMP Regional Council as a subcommittee of the Producer Advisory Group (PAG) sponsored by Appalachian Region PTTC. The advantages of this decision are that the PAG is in already in existence as a volunteer group interested in problem identification and implementation of solutions and that PAG members are unpaid, so no outside funds will be required to sustain the group. The PUMP website became active in October of 2002. The site is designed to evolve; as new information becomes available, it can be readily added to the site or the site can be modified to accommodate it. The site is interactive allowing users to search within the PUMP site, within the Appalachian Region PTTC site, or within the whole internet through the input of user-supplied key words for information on oil production problems and solutions. Since its inception in the Fall of 2002, the PUMP site has experienced a growing number of users of increasingly diverse nature and from an increasing geographic area. This indicates that the site is reaching its target audience in the Appalachian region and beyond. Following up on a commitment to technology transfer, a tota

Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

2003-09-01T23:59:59.000Z

27

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

Science Conference Proceedings (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

28

Table 10. Estimated rail transportation rates for coal, basin to state, STB dat  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, basin to state, STB data" Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real Dollars per Ton",,,,,,,,,,"Annual Percent Change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $16.45"," $14.29"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $21.45"," W"," W"," W"," W"," $28.57"," W"," W"," W",," W"," W"

29

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

30

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

Science Conference Proceedings (OSTI)

This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Robert D. Hatcher

2004-05-31T23:59:59.000Z

31

Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration  

Science Conference Proceedings (OSTI)

Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few months from regional to more detailed structural analyses. This new effort will include topics such as the determination of the source of the hot, dolomitizing fluids that created hydrothermal dolomite reservoirs in the Black River, and the probable migration paths of these fluids. Faults of suitable age, orientation and location to be relevant for hydrothermal dolomite creation in the Trenton-Black River play will be isolated and mapped, and potential fairways delineated. A detailed study of hydrothermal alteration of carbonate reservoirs was completed and is discussed at length in this report. New ideas that were developed from this research were combined with a literature review and existing concepts to develop a model for the development of hydrothermal dolomite reservoirs in the study area. Fault-related hydrothermal alteration is a key component of this model. Hydrothermal alteration produces a spectrum of features in reservoirs, ranging from leached limestone and microporosity to matrix dolomite, saddle dolomite-lined breccias, zebra fabrics and fractures. Mineralization probably occurred during the pressure drop associated with the rise of fluids up the fault system, and is due to the mixing of hydrothermal fluids with cooler, in situ fluids. Once they began to cool themselves, the hydrothermal fluids, which had a lower pH and higher salinity than formation fluids, were capable of leaching the host limestones. Microporosity is common in leached limestones, and it is likely that it was formed, in some cases, during hydrothermal alteration. Dolomite leaching occurs near the end of the paragenetic sequence, and may significantly enhance porosity. However, leaching of dolomite typically is followed by the precipitation of calcite or anhydrite, which reduces porosity. A final conclusion is that hydrothermal alteration may be more common than previously thought, and some features previously attributed to other processes may be in fact be hydrothermal in origin. Production d

Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

2005-09-30T23:59:59.000Z

32

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

33

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

34

DOE Solar Decathlon: News Blog Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

Appalachian State Below you will find Solar Decathlon news from the Appalachian State archive, sorted by date. Appalachian State Wins People's Choice Award Saturday, October 1,...

35

Devonian Marcellus Shale, Appalachian Basin  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Devonian Marcellus Shale; R. Bruner; Richard Smosna

2011-01-01T23:59:59.000Z

36

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

37

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

38

Office of Sustainability Appalachian State University  

E-Print Network (OSTI)

Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action

Rose, Annkatrin

39

Florida Growth Fund (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

40

Florida Web Sites  

U.S. Energy Information Administration (EIA)

Florida Web Sites Other Links : Florida Electricity Profile: Florida Energy Profile: Florida Restructuring: Last Updated: April 2007 . Sites: Links ...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

42

Solar Decathlon: Appalachian State Wins People's Choice Award...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30,...

43

Appalachian State | Open Energy Information  

Open Energy Info (EERE)

State State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Boone NC Coordinates 36.21342836°, -81.69232965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.21342836,"lon":-81.69232965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida September 11, 2013 Algae Biomass Summit July 12, 2013 Wildlife Management Areas (Florida) Certain sites in Florida are designated as wildlife management areas, and...

45

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

46

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

47

Appalachian Basin. The Central Appalachian Basin, a 10,000-square  

NLE Websites -- All DOE Office Websites (Extended Search)

cubic feet. SECARB initiated CO 2 injection in mid- January at its test site in Russell County, Virginia. An existing coalbed methane (CBM) well was converted for CO 2 injection...

48

Alabama Florida........................................................................  

Gasoline and Diesel Fuel Update (EIA)

Florida........................................................................ Florida........................................................................ 33 469,021 -468,988 Georgia...................................................................... 0 1,502,968 -1,502,968 Kentucky.................................................................... 0 b 1 -1 Louisiana ................................................................... 0 b 2 -2 Mississippi ................................................................. 3,231,525 0 3,231,525 Missouri ..................................................................... 0 b 2 -2 South Carolina........................................................... 0 b 16 -16 Tennessee................................................................. 368 1,423,143 -1,422,774 Total..........................................................................

49

Department of Energy - Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

089 en Wildlife Management Areas (Florida) http:energy.govsavingswildlife-management-areas-florida florida" class"title-link">

50

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Appalachian Electric Coop Appalachian Electric Coop Jump to: navigation, search Name Appalachian Electric Coop Place Tennessee Utility Id 727 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power rate (part 3) Commercial Commercial General Power rate (Part 2)- single phase self contained metering Commercial Commercial General Power rate (part 2)-single phase transformer rated metering Commercial Commercial General Power rate (part 2)-three phase transformer rated

51

The Appalachian Trail MEGA-Transect  

E-Print Network (OSTI)

and electric power generation facilities, pollution from large cities and along major highways, and relatively use the water for residential uses or power generation. Monitoring water sources on the A.T. will also) Steve Kahl (Center for the Environment) Ken Kimball (Appalachian Mountain Club) Daniel Lambert (Vermont

Wang, Y.Q. "Yeqiao"

52

ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY  

E-Print Network (OSTI)

, natural gas demand is forecast to increase through 2035. The Marcellus shale play and the new natural gas supply it represents is expected to meet this demand, provided that there is sufficient natural gas in the Appalachian region in West Virginia and Pennsylvania to meet the demand for natural gas from the residential

Mohaghegh, Shahab

53

Atlantic Oceanographic and Meteorological LaboratorySeptember-October 2008 Volume 12, Number 5 Miami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, Florida  

E-Print Network (OSTI)

, FloridaMiami, FloridaMiami, Florida AOML is an environmental research laboratory of NOAA's Office Miami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami of Oceanic and Atmospheric Research located on Virginia Key in Miami, Florida KeynotesKeynotes AOML AOML

54

FELDA W SUNOCO F ELDA SEMINOLE SUNNILAND BEAR ISLAND CORKSCREW  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class No 2001 gas reserves 1 - 10 MMCF 10 - 100 MMCF Appalachian Basin Boundary South Florida Peninsula Oil and Gas Fields By 2001 Gas...

55

Dam Safety Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

56

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

57

Trading Point: Central Appalachian (CAPP) is the nation's ...  

U.S. Energy Information Administration (EIA)

Central Appalachian (CAPP) coal spot prices are the most widely referenced prices for eastern coal in the United States. Coal producers, electric utilities, merchant ...

58

NYMEX Central Appalachian coal futures near-month contract final...  

Annual Energy Outlook 2012 (EIA)

Release Date: January 7, 2013 Next Release Date: January 2014 NYMEX Central Appalachian coal futures near-month contract final settlement price history Data as of 12312012....

59

Spot price for Central Appalachian coal up since early 2010 ...  

U.S. Energy Information Administration (EIA)

Average spot prices for Central Appalachian (CAPP) coal are up about 36% since January, 2010. Contributing factors include: global supply disruptions, slightly ...

60

Atlantic Oceanographic and Meteorological LaboratoryJanuary-February 2008 Volume 12, Number 1 Miami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, Florida  

E-Print Network (OSTI)

, FloridaMiami, Florida AOML is an environmental research laboratory of NOAA's Office of OceanicAtlantic Oceanographic and Meteorological LaboratoryJanuary-February 2008 Volume 12, Number 1 Miami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Solar Decathlon: News Blog » Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

'Appalachian State' 'Appalachian State' Appalachian State Wins People's Choice Award Saturday, October 1, 2011 By Carol Anna Appalachian State University won the U.S. Department of Energy Solar Decathlon 2011 People's Choice Award for its Solar Homestead today. This award gives the public the opportunity to vote for its favorite house. This year, 92,538 votes were cast. The award was announced at a Victory Reception in the solar Village in West Potomac Park-the last official event of Solar Decathlon 2011. Photo of Steven Chu shaking hands with Jeffrey Tiller as David Lee looks on. On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. (Credit: Stefano Paltera/U.S.

62

Solar Decathlon: Appalachian State Wins People's Choice Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon: Appalachian State Wins People's Choice Award Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State’s Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon Carol Anna Communications Manager for the 2011 Solar Decathlon EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on

63

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASION  

Science Conference Proceedings (OSTI)

During this reporting period, Fortuna retrieved the first oriented horizontal core from the Trenton/Black River in the northern Appalachian Basin. The core came from central New York State, the ''hottest'' play in the Appalachian Basin. A complete well log suite was also collected in the horizontal hole, including an FMI log. After reassembling the core sections, and orienting the core, we analyzed the whole core before it was cut for full-diameter core analyses (e.g., permeability) and before the core was split, in order that we did not miss any features that may be lost during cutting. We recognized and mapped along the core 43 stylolites, 99 veins and several large partially filled vugs. Kinematic indicators suggest multiple phases of strike-slip motion. Master-abutting relationships at intersections (primarily determined from which feature ''cuts'' which other feature) show three stages of stylolite growth: sub horizontal, nearly vertical, and steeply dipping. These development stages reflect vertical loading, tectonic horizontal loading, and finally oblique loading. Hydrothermal dolomite veins cut and are cut by all three stages of the stylolites. A set of horizontal veins indicates vertical unloading. Analyses of the core will continue, as well as the well logs.

Rober Jacobi

2006-05-31T23:59:59.000Z

64

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data" 3. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Nominal dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $28.49"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $38.51"," $39.67",," -", 3.0 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

65

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data" 4. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $26.24"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $35.10"," $35.74",," -", 1.8 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

66

Peninsular Florida Tornado Outbreaks  

Science Conference Proceedings (OSTI)

An analysis of statistics for 1448 tornadoes documented by the National Severe Storms Forecast Center from 1950 through 1994 at, or south of, 30 latitude in Florida was completed to determine the definition of a peninsular Florida tornado ...

Bartlett C. Hagemeyer

1997-09-01T23:59:59.000Z

67

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

68

Identification of Thermally Homogeneous Subunits in a Steep Appalachian Pasture  

Science Conference Proceedings (OSTI)

Pasture improvement in the central Appalachian region is facilitated by knowledge of spatial relationships in microclimate attributable to complex topography. A small, steep horseshoe-shaped pasture watershed, with aspects encompassing 210, in ...

Douglas G. Boyer; Charles M. Feldhake

1994-10-01T23:59:59.000Z

69

Florida Water Resources Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Water Resources Act (Florida) Florida Water Resources Act (Florida) Florida Water Resources Act (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection It is the policy of the state of Florida: (a) To provide for the management

70

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

APCO) APCO) Jump to: navigation, search Name Appalachian Power Co Abbreviation APCO Affiliate Of AEP Place Ohio Service Territory Virginia, West Virginia, Tennessee Website www.appalachianpower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 733 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

71

DOE Solar Decathlon: Team Florida: The University of South Florida, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Florida: The University of South Florida, Florida State University, Team Florida: The University of South Florida, Florida State University, The University of Central Florida, and The University of Florida At the conclusion of the U.S. Department of Energy Solar Decathlon 2011, FLeX House returned to Tampa, Florida. Today, it is being reconstructed on the campus of the University of South Florida, where it will be used as a solar energy learning center and living laboratory for research on emerging technologies and sustainable building materials. Photo of FLeX House Enlarge image FleX House is a flexible, modular building system that is now located on the campus of the University of South Florida in Tampa. (Credit: Jim Tetro/U.S. Department of Energy Solar Decathlon) Who: The University of South Florida, Florida State University, The

72

Florida Coastal Management Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Coastal Management Act (Florida) Florida Coastal Management Act (Florida) Florida Coastal Management Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act is intended to provide for the development of natural, commercial, recreational, ecological, industrial, and aesthetic resources, including,

73

Florida Environmental Land and Water Management Act (Florida) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Economic Opportunity

74

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in...

75

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

water heating systems by the Florida Department of Professional Regulation's Construction Industry Licensing Board. October 16, 2013 Clay Electric Cooperative, Inc - Energy Smart...

76

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 CX-003149: Categorical Exclusion Determination Hydrogen Technology Electric Vehicle Charging Station CX(s) Applied: B5.1 Date: 07262010 Location(s): Boca Raton, Florida...

77

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solutions companies are developing to simplify the way we harvest and deliver biofuel crops. May 2, 2013 Inside Florida Power & Light's Transmission Performance Diagnostic...

78

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to install...

79

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection is responsible for regulating the production and conservation of oil and gas resources. July 12, 2013 Qualifying RPS State Export Markets (Florida) This entry...

80

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

82

Florida Venture Capital Program (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Venture Capital Program (Florida) Florida Venture Capital Program (Florida) Florida Venture Capital Program (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source US Department of the Treasury State Florida Program Type Equity Investment Grant Program Provider Florida Opportunity Fund The Florida Venture Capital Program provides equity investments and convertible debt instruments to emerging Florida companies and companies locating in Florida with long-term growth potential. Equity investments require a matching private capital investment or other credit assistance. Equity investments and debt instruments ranging from $1,000,000 to $5,000,000 are available, though larger transactions are permitted in

83

Florida Bay Program & Abstracts  

E-Print Network (OSTI)

Beth Miller-Tipton and her staff at the University of Florida/IFAS Office of Conferences and Institutes SITE: http://www.floridamarine.org Ms. Beth Miller-Tipton, Director, University of Florida/IFAS, Office Rickenbacker Causeway, Miami, FL 33149, PH: (305) 361-4388, FAX: (305) 361-4392, E-Mail: welcher

Watson, Craig A.

84

AEP Appalachian Power - Commercial and Industrial Rebate Programs (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Commercial and Industrial Rebate Programs AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $150,000/account/year Program Info Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount Custom: 50% Unitary/Split AC/Air Source Heat Pumps: $40/ton Packaged Terminal A/C: $30/ton Water/Air Cooled Chillers: $30/ton Ground Source Heat Pump: $50/ton VFDs: $40/HP Programmable Thermostat: $25/unit T8 and T5 Fluorescent Retrofits: $2-$21/fixture T8 and T5 High Bay Fixtures: $28-$209/fixture

85

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

Appalachian Power Co Appalachian Power Co Place West Virginia Utility Id 733 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png G.S. - T.O.D. Commercial L.G.S. Commercial R.S. Residential R.S. - T.O.D Residential Average Rates Residential: $0.0813/kWh Commercial: $0.0731/kWh Industrial: $0.0562/kWh The following table contains monthly sales and revenue data for Appalachian Power Co (West Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

86

AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Residential Energy Efficiency Rebate AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) < Back Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Attic or Sidewall Insulation: $300 Basement or Crawl Space Insulation: $200 HVAC Maintenance: $100 Duct Sealing: $100 Envelope Air Infiltration Reduction: $200 Program Info Funding Source ApCo HomeSMART Program Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount HVAC Maintenance: 50% of cost Insulation: $0.30/sq ft Air Source Heat Pump (replacing electric furnace): $100 or $200

87

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

88

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network (OSTI)

1 INTRODUCTION Appalachian coal recovered during mining fre- quently contains diluting material be re- moved in order to produce a marketable product. This is compounded by the fact that current coal- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal

89

Low-Level Cloudiness in the Appalachian Region  

Science Conference Proceedings (OSTI)

Low-level (<2 km) cloud frequencies have been derived for the Appalachian Mountain region for the period 198588 based on in situ measurements by optical cloud and relative humidity sensors, and regional analyses incorporating the U.S. Air Force ...

Michael J. Markus; Bruce H. Bailey; Ronald Stewart; Perry J. Samson

1991-08-01T23:59:59.000Z

90

Florida Air and Water Pollution Control Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Air and Water Pollution Control Act (Florida) Florida Air and Water Pollution Control Act (Florida) Florida Air and Water Pollution Control Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection It is the policy of the state of Florida to protect, maintain, and improve the quality of the air and waters of the state. This Act authorizes the Department of Environmental Protection to enact and implement regulations designed to control and abate activities which may contribute to air and

91

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 5, 2010 CX-001437: Categorical Exclusion Determination Market Title: Clean Energy Grant Program CX(s) Applied: A9, A11 Date: 04052010 Location(s): Florida Office(s): Energy...

92

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Energy Efficiency and Conservation Block Grant - Activity 8: Bio-Diesel CX(s) Applied: B5.1 Date: 04202010 Location(s): Lee County, Florida Office(s):...

93

Florida | OpenEI  

Open Energy Info (EERE)

Florida Florida Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 74, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Florida projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Florida Reliability Coordinating Council- Reference Case (xls, 259.3 KiB)

94

Climate Action Plan (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

On July 12 and 13, 2007, Governor Charlie Crist hosted Serve to Preserve: A Florida Summit on Global Climate Change. The summit brought together leaders of business, government, science and...

95

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

96

Florida Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

97

Contaminating Fresh Waters (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

It is illegal to discharge any dyestuff, coal tar, oil, sawdust, poison, or deleterious substances into any fresh running waters in Florida in quantities sufficient to injure, stupefy, or kill fish...

98

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines CX(s) Applied: A1, A9, B3.6 Date: 07062011 Location(s): Jupiter, Florida...

99

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This week we spoke with Shirley Coates Brostmeyer, co-founder, CEO and owner of Florida Turbine Technologies, to find out what it takes to run a large engineering company. March...

100

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Best Air Conditioner Technology by 20 - 30 Percent through a High Efficiency Fan and Diffuser Stage CX(s) Applied: B3.6 Date: 08262010 Location(s): Cocoa, Florida...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 21, 2010 CX-000626: Categorical Exclusion Determination Advanced Direct Methanol Fuel Cell for Mobile Computing CX(s) Applied: B3.6 Date: 01212010 Location(s): Florida...

102

Florida Aquatic Preserve Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aquatic Preserve Act (Florida) Aquatic Preserve Act (Florida) Florida Aquatic Preserve Act (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Program Info State Florida Program Type Environmental Regulations Provider Florida Department of Environmental Protection This Act provides for state-owned submerged lands in areas which have

103

Water Resources Restoration and Preservation Act (Florida) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Resources Restoration and Preservation Act (Florida) Water Resources Restoration and Preservation Act (Florida) Eligibility Agricultural Commercial Construction Developer...

104

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

105

Florida Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... mostly from Kentucky, Illinois, ... Florida Atlantic University - Southeast National Marine Renewable Energy Center; Benefits.Gov Energy ...

106

An Analysis of the Impact of a Split-Front Rainband on Appalachian Cold-Air Damming  

Science Conference Proceedings (OSTI)

Appalachian cold-air damming (CAD) is characterized by the development of a cool, stable air mass that is advected southwestward along the eastern slopes of the Appalachian Mountains by low-level ageostrophic flow. Operational forecasters have ...

Michael J. Brennan; Gary M. Lackmann; Steven E. Koch

2003-10-01T23:59:59.000Z

107

Florida.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

108

Florida.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

109

Progress Energy Florida - SunSense Schools Program (Florida) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Florida - SunSense Schools Program (Florida) Progress Energy Florida - SunSense Schools Program (Florida) < Back Eligibility Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Program Info Start Date 01/17/2012 State Florida Program Type Other Incentive Provider Progress Energy Florida Progress Energy Florida (PEF) offers the SunSense Schools Program which provides up to 11 public schools with fully installed solar photovoltaic systems annually. The application process is competitive with priority statues given to schools which have already been designated by Progress as Enhanced Hurricane Protection Areas (EHPA).

110

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

111

Deciduous Trees in Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

Deciduous Trees in Florida Deciduous Trees in Florida Name: Joanne Status: other Grade: other Location: Outside U.S. Country: USA Date: Winter 2011-2012 Question: Do peach trees loose there leaves in winter in Florida? Replies: Taylor Peach trees are deciduous, so yes, they lose their leaves: http://www.ehow.com/facts_7021010_information-deciduous-fruit-trees-florida.html Anthony R. Brach, Ph.D. Harvard University Herbaria c/o Missouri Botanical Garden This depends on the latitude. South of Immokalee, peach trees could stay evergreen year-round. However, they also will not bear fruit because a "chilling period" is needed to prime the tree for production in the spring. It simply doesn't get cool enough to pull this physiological trigger. Otherwise, a tree should drop its leaves in preparation for winter dormancy. If the early winter has been unseasonably warm and the trees have not dropped their leaves by mid-December, then a zinc sulfate solution can be applied to artificially induce defoliation.

112

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

113

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

114

Florida/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Florida/Incentives < Florida Jump to: navigation, search Contents 1 Financial Incentive Programs for Florida 2 Rules, Regulations and Policies for Florida Download All Financial Incentives and Policies for Florida CSV (rows 1 - 200) Financial Incentive Programs for Florida Download Financial Incentives for Florida CSV (rows 1 - 125) Incentive Incentive Type Active Beaches Energy Services - Residential Energy Efficiency Rebate Program (Florida) Utility Rebate Program No Beaches Energy Services - Solar Water Heating Rebate Program (Florida) Utility Rebate Program Yes

115

Florida Electric Transmission Line Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission Line Siting Act (Florida) Electric Transmission Line Siting Act (Florida) Florida Electric Transmission Line Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Transmission Line Siting Act (TLSA) is the state's centralized process for licensing electrical transmission lines which; (a) are 230 kV or larger; (b) cross a county line; and, (c) are 15 miles or longer. An

116

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

117

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

118

Florida Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

FloridaGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Florida Gas Prices (Ciudades Selectas) - GasBuddy.com Florida Gas Prices (Organizado por Condado) -...

119

Florida Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Clean Cities Coalitions Central ... Nuclear power produces most of the rest of Florida's net generation. ... thanks to both local initiatives and good ...

120

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Florida Electricity Restructuring not Active  

U.S. Energy Information Administration (EIA)

Last Updated: April 2007. 12/01: The Florida Energy 2020 Study Commission released its final report to Governor Bush and the Legislature on December ...

122

Coastal Louisiana and South Florida  

U.S. Energy Information Administration (EIA)

1 Separate news excerpts portray different results for two major wetland restoration initiatives proposed by Florida and Louisiana in 2000. This

123

2008 Florida Youth Tobacco Survey, County Data Book  

E-Print Network (OSTI)

Tobacco Survey County Data Book Florida Department of HealthFlorida County FYTS Data Book Map 2. Percentage of FloridaFlorida County FYTS Data Book Map 3. Percentage of Florida

Florida Department of Health, Brueau of Epidemiology; Crist, Charlie; Viamonte Ros, Ana M M.D., M.P.H.

2009-01-01T23:59:59.000Z

124

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

125

Gas Safety Law (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Safety Law (Florida) Gas Safety Law (Florida) Eligibility Commercial Construction Industrial Investor-Owned Utility MunicipalPublic Utility Retail Supplier Rural Electric...

126

Buckeye Florida Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Buckeye Florida Biomass Facility Jump to: navigation, search Name Buckeye Florida Biomass Facility Facility...

127

Dam Safety Program (Florida) | Open Energy Information  

Open Energy Info (EERE)

Summary Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United...

128

Energy Crossroads: Utility Energy Efficiency Programs Florida...  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Florida Power & Light Information for Businesses Gulf Power Company Information for...

129

Gulf of Mexico -West Florida  

E-Print Network (OSTI)

Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas #12;Regional Summary Gulf of Mexico Region Management Context The Gulf of Mexico Region includes Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region are managed by the Gulf of Mexico Fishery

130

Gulf of Mexico -West Florida  

E-Print Network (OSTI)

Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas #12;Regional Summary Gulf of Mexico Management Context The Gulf Region is comprised of Texas, Louisiana, Mississippi, Alabama and West Florida. Federal fisheries in this region are managed by the Gulf of Mexico Fishery Management Council

131

Microsoft Word - florida.doc  

Gasoline and Diesel Fuel Update (EIA)

Florida Florida NERC Region(s) ....................................................................................................... FRCC/SERC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 59,147 3 Electric Utilities ...................................................................................................... 50,853 1 Independent Power Producers & Combined Heat and Power ................................ 8,294 13 Net Generation (megawatthours) ........................................................................... 229,095,935 3

132

FLORIDA TOWER FOOTPRINT EXPERIMENTS  

SciTech Connect

The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

2007-01-01T23:59:59.000Z

133

Industrial structure and employment growth in the 1990s in Appalachian counties  

E-Print Network (OSTI)

Employment growth in the 1990s and its relationship with the initial industrial structure in 1990 are examined in the case of Appalachian counties, after controlling for labor-market conditions and other factors, such as ...

Tan, Zhijun (Zhijun Jeanne)

2005-01-01T23:59:59.000Z

134

Numerical Simulations of Cold Air Advection over the Appalachian Mountains and the Gulf Stream  

Science Conference Proceedings (OSTI)

Cold air advection over the Gulf Stream off the Carolinas and the Appalachian Mountains is studied using idealized two-dimensional cases for the Genesis of Atlantic Lows Experiment (GALE) lop 2 conditions. An anelastic hydrostatic mesoscale model ...

Ching-Yuang Huang; Sethu Raman

1990-02-01T23:59:59.000Z

135

A Collaborative Approach to Study Northwest Flow Snow in The Southern Appalachians  

Science Conference Proceedings (OSTI)

Upslope-enhanced snowfall events during periods of northwesterly flow in the southern Appalachians have been recognized as a significant winter forecasting problem for some time. However, only in recent years has this problem received noteworthy ...

Steve Keighton; Laurence Lee; Blair Holloway; David Hotz; Steven Zubrick; Jeffrey Hovis; Gary Votaw; L. Baker Perry; Gary Lackmann; Sandra E. Yuter; Charles Konrad; Douglas Miller; Brian Etherton

2009-07-01T23:59:59.000Z

136

Synoptic and Mesoscale Aspects of an Appalachian Ice Storm Associated with Cold-Air Damming  

Science Conference Proceedings (OSTI)

An interesting ice storm of moderate severity occurred along the east slopes of the Appalachians on 1314 January 1980. Though surface temperatures were initially below freezing in most of this region, objective guidance indicated that large-...

Gregory S. Forbes; Dennis W. Thomson; Richard A. Anthes

1987-02-01T23:59:59.000Z

137

Leffler's Method of Estimating Average Temperatures of Appalachian Summits: Evaluation in New York  

Science Conference Proceedings (OSTI)

R. J. Leffler recently presented regression equations to estimate average monthly temperatures of Appalachian summits based on the long-term average temperatures on Mt. Washington, New Hampshire, and temperature lapse rates as a function of ...

Thomas W. Schmidlin

1982-05-01T23:59:59.000Z

138

Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Airflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of ...

Stephen F. Mueller; Aaron Song; William B. Noms; Shekar Gupta; Richard T. McNider

1996-11-01T23:59:59.000Z

139

Orographic Effects during a Severe Wintertime Rainstorm in the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The evolution of precipitation features during a severe wintertime rainfall and flooding event associated with a cold front that crossed the central Appalachians on 19 January 1996 is illustrated through the analysis of radiosonde, rainfall, and ...

Ana P. Barros; Robert J. Kuligowski

1998-10-01T23:59:59.000Z

140

The Impact of the Appalachian Mountains on Cyclonic Weather Systems. Part I: A Climatology  

Science Conference Proceedings (OSTI)

A climatological study of cold fronts and cyclones crossing the Appalachian Mountains from the west through northwest has been performed. A sample size of 50 fronts and 40 cyclones was derived from the seven winter seasons (December through March)...

Christopher O'Handley; Lance F. Bosart

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Forecasting the Maintenance of Mesoscale Convective Systems Crossing the Appalachian Mountains  

Science Conference Proceedings (OSTI)

Forecasting the maintenance of mesoscale convective systems (MCSs) is a unique problem in the eastern United States due to the influence of the Appalachian Mountains. At times these systems are able to traverse the terrain and produce severe ...

Casey E. Letkewicz; Matthew D. Parker

2010-08-01T23:59:59.000Z

142

Better Buildings Neighborhood Program: Jacksonville, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

Jacksonville, Jacksonville, Florida to someone by E-mail Share Better Buildings Neighborhood Program: Jacksonville, Florida on Facebook Tweet about Better Buildings Neighborhood Program: Jacksonville, Florida on Twitter Bookmark Better Buildings Neighborhood Program: Jacksonville, Florida on Google Bookmark Better Buildings Neighborhood Program: Jacksonville, Florida on Delicious Rank Better Buildings Neighborhood Program: Jacksonville, Florida on Digg Find More places to share Better Buildings Neighborhood Program: Jacksonville, Florida on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC

143

Alternative Fuels Data Center: Florida Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Information to Florida Information to someone by E-mail Share Alternative Fuels Data Center: Florida Information on Facebook Tweet about Alternative Fuels Data Center: Florida Information on Twitter Bookmark Alternative Fuels Data Center: Florida Information on Google Bookmark Alternative Fuels Data Center: Florida Information on Delicious Rank Alternative Fuels Data Center: Florida Information on Digg Find More places to share Alternative Fuels Data Center: Florida Information on AddThis.com... Florida Information This state page compiles information related to alternative fuels and advanced vehicles in Florida and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

144

Florida International University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Spotlight Archive Spotlight Archive Contact Florida International University Professors and Faculty of Interest Prof. Osama Mohammed receives IEEE Energy Conversion Award Prof. Osama Mohammed receives IEEE Energy Conversion Award Prof. Madhavan Nair's groundbreading research may lead to new hope in the battle Prof. Madhavan Nair's groundbreading research may lead to new hope in the battle against Neuro-AIDS Asst. Prof. Vagelis Hristidis awarded Google Research Award Asst. Prof. Vagelis Hristidis awarded Google Research Award Exceptional Students and Alumnus DOE Fellow Duriem Calderin on his way to DOE's Hanford Site DOE Fellow Duriem Calderin on his way to DOE's Hanford Site DOE Fellow, Rosa Ramirez hired by DOE's Environmental Management Professional De DOE Fellow, Rosa Ramirez hired by DOE's Environmental Management Professional Development Corps

145

DOE Solar Decathlon: 2005 Teams - Florida International University  

NLE Websites -- All DOE Office Websites (Extended Search)

outside. The cultural and academic diversity of Florida's team is reflected in its house design. Computer-generated image of Florida's 2005 Solar Decathlon house. Florida's...

146

Florida's 1st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Florida. Registered Energy Companies in Florida's 1st congressional district Agri Source Fuels Florida Biomass Energy Group Retrieved from "http:en.openei.orgw...

147

Shaping Solutions FOR Florida's Future  

E-Print Network (OSTI)

, and wholesale/direct market development. Food system development also includes programs like Farm to School and process biofuel-producing crops without competing with food production. Florida Extension can provide

Florida, University of

148

Coastal Winds in South Florida  

Science Conference Proceedings (OSTI)

Thirteen-month records for the period of April 1994April 1995 from eight (out of nine) Coastal-Marine Automatic Network (C-MAN) stations in south Florida are analyzed statistically to study alongshore variability of observed atmospheric ...

Ge Peng; Christopher N. K. Mooers; Hans C. Graber

1999-12-01T23:59:59.000Z

149

Clean Energy Investment Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and...

150

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

151

University of South Florida | Open Energy Information  

Open Energy Info (EERE)

Florida Florida Jump to: navigation, search Name University of South Florida Place St. Petersburg, Florida Zip FL 33701 Product Educational and research university. References University of South Florida[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. University of South Florida is a company located in St. Petersburg, Florida . References ↑ "University of South Florida" Retrieved from "http://en.openei.org/w/index.php?title=University_of_South_Florida&oldid=352562" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

152

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

153

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30N-40N and 40N-50N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

154

Wildlife Management Areas (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida) Florida) Wildlife Management Areas (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Fish and Wildlife Conservation Commission Certain sites in Florida are designated as wildlife management areas, and

155

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

156

Florida Hydrogen Initiative Inc | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Initiative Inc Hydrogen Initiative Inc Jump to: navigation, search Name Florida Hydrogen Initiative Inc Place Florida Sector Hydro, Hydrogen Product Provides grants to aid the development of the hydrogen industry in Florida. References Florida Hydrogen Initiative Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Hydrogen Initiative Inc is a company located in Florida . References ↑ "Florida Hydrogen Initiative Inc" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Hydrogen_Initiative_Inc&oldid=345422" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

157

Evolution of a Florida Cirrus Anvil  

Science Conference Proceedings (OSTI)

This paper presents a detailed study of a single thunderstorm anvil cirrus cloud measured on 21 July 2002 near southern Florida during the Cirrus Regional Study of Tropical Anvils and Cirrus LayersFlorida Area Cirrus Experiment (CRYSTAL-FACE). ...

T. J. Garrett; B. C. Navarro; C. H. Twohy; E. J. Jensen; D. G. Baumgardner; P. T. Bui; H. Gerber; R. L. Herman; A. J. Heymsfield; P. Lawson; P. Minnis; L. Nguyen; M. Poellot; S. K. Pope; F. P. J. Valero; E. M. Weinstock

2005-07-01T23:59:59.000Z

158

Team Florida Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

NUMBER: 110 DRAWN BY: TEAM FLORIDA CHECKED BY: USF COPYRIGHT: CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2011 WWW.SOLARDECATHLON.GOV TEAM NAME: TEAM FLORIDA ADDRESS:...

159

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. Secondary goals in Phase I were also completed for the last reporting period. Thus, no new data were collected for this reporting period, and only soil gas surveys were reanalyzed and re-displayed in the region of the Trenton/Black River wells. The soil gas profiles in the region of the Trenton/Black River wells show that individual large-magnitude soil gas anomalies (spikes) are rarely wider than 50 m. Even clusters of soil gas spikes are only on the order of 200-250 m wide. Thus, widely-spaced sampling will not necessarily represent the actual number and location of soil gas seeps. The narrowness of the anomalies suggests that the seeps result from single fractures or narrow fracture intensification domains (FIDs). Many of the lineaments from EarthSat (1997) and straight stream segments coincide (or are very close to) soil gas spikes, but we collected many more soil gas spikes than lineaments. Among some of the soil gas box surveys, a possible ENE-trend of spikes can be discerned. This ENE-striking trend is, however, about 10{sup o} away from a nearby Earthsat (1997) trend. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2004-07-08T23:59:59.000Z

160

Microsoft Word - MRCSP Appalachian Basin 2008 FactSheet _09-08...  

NLE Websites -- All DOE Office Websites (Extended Search)

balld@battelle.org) Test Location FirstEnergy R.E. Burger Plant, Shadyside, Ohio Amount and Source of CO 2 1,000-3,000 metric tons Source commercial source...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2003-03-14T23:59:59.000Z

162

Subsurface structure of the north Summit gas field, Chestnut Ridge anticline of the Appalachian Basin  

SciTech Connect

The Chestnut Ridge anticline is the westernmost of the High Plateau folds in southwestern Pennsylvania and north-central West Virginia that are detached primarily in the Marcellus Shale, and the Martinsburg, Salina, and Rome Formations. The primary, basal detachment at the Summit field occurs in the Salina salt. Production from fracture porosity in the Devonian Oriskany Sandstone commenced in 1936. During the late 1980s and early 1990s, 14 wells were drilled preparatory to conversion of the reservoir to gas storage. Schlumberger`s Formation MicroScanner (FMS) logs were run in each of these wells to provide information on the structural configuration and fracture patterns of the reservoir. These data indicate that two inward-facing, tight folds at the Oriskany level form the upper flanks and core of the anticline at the northern end of the field, whereas the main part of the field to the south is a comparatively simple, broad closure at the Oriskany level. The structure is a broad, slightly asymmetric open fold in the Mississippian Greenbrier Formation at the surface. Fracture patterns mapped using FMS logs indicate a complex fracture system which varies slightly along the trend of the fold and among the units analyzed, including the Helderberg Formation, Huntersville Chert, Oriskany Sandstone, and Onondaga Formation. An orthogonal joint system strikes toward the northwest and northeast slightly askew to the trend of the fold`s crestal trace. A similar, but more complex fracture pattern is found in an oriented core of these units.

Zhou, G.; Shumaker, R.C. [West Virginia Univ., Morgantown, WV (United States); Staub, W.K. [Consolidated Gas Transmission Co., Clarksburg, WV (United States)

1996-09-01T23:59:59.000Z

163

Forecasting of mine price for central Appalachian steam coal  

SciTech Connect

In reaction to Virginia's declining share of the steam coal market and the subsequent depression in southwest Virginia's economy, an optimization model of the central Appalachian steam coal market was developed. The input to the cost vector was the delivered cost of coal, which is comprised of the mine price (FOB) and transportation cost. One objective of the study was to develop a purchasing model that could be used to minimize the cost of coal procurement over a multi-period time span. The initial case study used a six-month period (7/86-12/86); this requires short-term, forecasts of the mine price of coal. Mine-cost equations and regression models were found to be inadequate for forecasting the mine price of coal. Instead forecasts were generated using modified time series models. This paper describes the application of classical time-series modeling to forecasting the mine price of coal in central Appalachia; in particular, the special modification to the classical methodology needed to generate short-term forecasts and their confidence limits and the need to take into account market-specific considerations such as the split between long-term contracts and the spot market. Special consideration is given to forecasting the spot market. 7 references, 4 figures, 3 tables.

Smith, M.L.

1988-01-01T23:59:59.000Z

164

REGULATIONS OF THE UNIVERSITY OF FLORIDA  

E-Print Network (OSTI)

, the University Police, the University's armored car vendor, and the staff of the Florida Museum of Natural

Roy, Subrata

165

Transports through the Straits of Florida  

Science Conference Proceedings (OSTI)

Transports were calculated for four sections of the Florida Current from Key West to Jupiter, Florida, using a moored current-meter array and voltages from cross-channel telephone cables at the western and northern ends of the Straits of Florida. ...

Peter Hamilton; Jimmy C. Larsen; Kevin D. Leaman; Thomas N. Lee; Evans Waddell

2005-03-01T23:59:59.000Z

166

Comprehensive Everglades Restoration Plan Regulation Act (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Everglades Restoration Plan Regulation Act (Florida) Comprehensive Everglades Restoration Plan Regulation Act (Florida) Comprehensive Everglades Restoration Plan Regulation Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection

167

Climate Action Plan (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida) Florida) Climate Action Plan (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Climate Policies On July 12 and 13, 2007, Governor Charlie Crist hosted "Serve to Preserve: A Florida Summit on Global Climate Change." The summit brought

168

Enterprise Zone Incentives (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives (Florida) Incentives (Florida) Enterprise Zone Incentives (Florida) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Retail Supplier Systems Integrator Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Enterprise Zone Provider Florida Department of Economic Opportunity Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for several tax incentives, including sales and use tax credit, tax refunds for machinery or equipment, sales tax refund for building materials, and a sales tax exemption for electrical energy

169

Regulations of Wells (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations of Wells (Florida) Regulations of Wells (Florida) Regulations of Wells (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water management districts

170

Hydrology and geochemistry of thermal springs of the appalachians  

DOE Green Energy (OSTI)

Thermal springs in nine areas in the Appalachians from Georgia to New York were studied in 1975 and 1976 using satellite imagery, local well and spring data, and results of current and early studies by other investigators. All the springs investigated discharge from folded and faulted sandstone or carbonate rocks in valley areas. Where geologic structure is relatively uncomplicated, ground water discharging from thermal springs probably has circulated to great depths roughly parallel to the strike of the bedding and has moved upward rapidly where a fault or faults cross the bedding. Hydrologic and chemical data suggest that most of the water discharging from warm springs in the Devonian Oriskany Sandstone is derived from recharge entering and circulating through that formation. The discharge at springs where temperature fluctuates very little is primarily water from deep circulation. The discharge at springs where temperature fluctuates widely is warm water mixed with variable proportions of shallow-circulating cool water. Observed temperatures of the warm springs range from 18/sup 0/ to 41/sup 0/C; the highest chemical thermometer temperature is 84/sup 0/C. Agreement among observed, chalcedony, and cation temperatures of the warmest springs suggests reservoir temperatures of 30/sup 0/ to 50/sup 0/C. Dissolved helium, arsenic, potassium, and delta/sup 18/O are considered as geothermal indicators. Tritium analyses are used to calculate fractions of old and modern components of mixed waters. Computer calculations of carbonate saturation indices show (1) considerable undersaturation in silica-rock warm spring waters and (2) carbonate equilibrium in the limestone and dolomite thermal waters. Better values of saturation indices are obtained when analyzed carbon dioxide rather than field pH is used in the computer input data. A method is described for adjusting delta/sup 13/C to correct for carbon dioxide outgassing from water samples.

Hobba, W.A. Jr.; Fisher, D.W.; Pearson, F.J. Jr.; Chemerys, J.C.

1979-01-01T23:59:59.000Z

171

FLORIDA STATE UNIVERSITY Procedures for  

E-Print Network (OSTI)

will be required that describes the purpose for the costs and the direct benefit to the proposed project's scopeFLORIDA STATE UNIVERSITY Procedures for Participant Support Costs Effective: May 15, 2006 Budgeting for Participant Costs Whenever Participant Support Costs are proposed in a budget, a detailed justification

Weston, Ken

172

Gulf of Mexico -West Florida  

E-Print Network (OSTI)

Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas 119 #12;Regional Summary Gulf of Mexico Key Gulf of Mexico Commercial Species · Blue crab · Mullets · Stone crab · Oyster are managed by the Gulf of Mexico Fishery Management Council (GMFMC) and NOAA Fisheries (NMFS) under seven

173

Florida Public Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Florida Public Utilities Co Florida Public Utilities Co Jump to: navigation, search Name Florida Public Utilities Co Place Florida Utility Id 6457 Utility Location Yes Ownership I NERC Location FRCC NERC FRCC Yes NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSLDT:General Service-Large Demand TOU(Experimental) Industrial General Service - Demand (GSD)-Northeast Florida Industrial General Service - Demand (GSD)-Northwest Florida Commercial General Service - Large Demand (GSLD)-Northeast Florida Industrial

174

PUBLICATION 460-144 More than a million acres in the Appalachian region  

E-Print Network (OSTI)

PUBLICATION 460-144 More than a million acres in the Appalachian region were surface mined for coal: Soil physical properties on unused coal mine sites are often poorly suited for planting trees on older coal mine sites applied P fertilizers at levels that were adequate for establishing grasses

Liskiewicz, Maciej

175

An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region  

Science Conference Proceedings (OSTI)

On 26 March 1999, an unexpectedly heavy and complex snowfall event occurred across the southern Appalachian region. This event produced 2030 cm (812 in.) of snow across the Smoky Mountains and 1015 cm (46 in.) across other portions of ...

David M. Gaffin; Stephen S. Parker; Paul D. Kirkwood

2003-04-01T23:59:59.000Z

176

Florida City, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, Florida: Energy Resources City, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.4478898°, -80.4792237° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.4478898,"lon":-80.4792237,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Clean Cities: Central Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Central Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Florida Clean Cities coalition Contact Information Colleen Kettles 321-638-1004 ckettles@fsec.ucf.edu Coalition Website Clean Cities Coordinator Colleen Kettles Photo of Colleen Kettles Colleen Kettles is the Coordinator of the Central Florida Clean Cities Coalition at the Florida Solar Energy Center. In addition to her role as the coordinator, Kettles is engaged in alternative energy workforce development and training initiatives. She has worked in both the public and private nonprofit sectors and has more than 30 years of legal and policy research, program development and implementation in the field of solar

178

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Southeast Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information Christine Heshmati 954-985-4416 cheshmati@sfrpc.com Coalition Website Clean Cities Coordinator Christine Heshmati Photo of Christine Heshmati In 2010, Christine Heshmati became the Florida Gold Coast Clean Cities Coalition Coordinator, merging her background in transportation planning with that of professionals in the field of alternative fuels in order to add depth this Region's mission and goals. Heshmati has 22 years of transportation planning experience in Florida. Her background includes intergovernmental coordination, short range

179

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 15, 2010 September 15, 2010 CX-003704: Categorical Exclusion Determination Florida Hydrogen Initiative - Florida State University (Development of a Low-Cost and High-Efficiency 500 Watts Portable Proton Exchange Membrane Fuel Cell) CX(s) Applied: A9, B3.6 Date: 09/15/2010 Location(s): Tallahassee, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 15, 2010 CX-003703: Categorical Exclusion Determination Florida Hydrogen Initiative - Florida Institute of Technology (Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program) CX(s) Applied: A9 Date: 09/15/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 14, 2010 CX-004020: Categorical Exclusion Determination Resonance Ultrasonic Vibration (RUV) Technology as an Industrial Tool for

180

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida Categorical Exclusion Determinations: Florida Location Categorical Exclusion Determinations issued for actions in Florida. DOCUMENTS AVAILABLE FOR DOWNLOAD September 16, 2013 CX-010969: Categorical Exclusion Determination "Clean Start" - Development of a National Liquid Propane (Autogas) Refueling Network CX(s) Applied: B5.22 Date: 09/16/2013 Location(s): Florida Offices(s): National Energy Technology Laboratory September 11, 2013 CX-011008: Categorical Exclusion Determination Coil Tubing (CT) Drilling and Intervention System Using Cost-Effective Vessels CX(s) Applied: A9 Date: 09/11/2013 Location(s): Florida Offices(s): National Energy Technology Laboratory August 19, 2013 CX-011108: Categorical Exclusion Determination Go SOLAR-Broward CX(s) Applied: A11, A9

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 11, 2009 November 11, 2009 CX-000182: Categorical Exclusion Determination Florida State Energy Office CX(s) Applied: A8, A9, A11, B2.2, B3.1, B3.6, B5.1 Date: 11/11/2009 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 11, 2009 CX-000181: Categorical Exclusion Determination Florida County Escambia CX(s) Applied: A9, A11, B5.1 Date: 11/11/2009 Location(s): Escambia County, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 11, 2009 CX-000180: Categorical Exclusion Determination Florida City Orlando CX(s) Applied: A9, A11, B5.1 Date: 11/11/2009 Location(s): Orlando, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 9, 2009 CX-000307: Categorical Exclusion Determination

182

The Impact of Forcing Datasets on the High-Resolution Simulation of Tropical Storm Ivan (2004) in the Southern Appalachians  

Science Conference Proceedings (OSTI)

The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the ...

Xiaoming Sun; Ana P. Barros

2012-10-01T23:59:59.000Z

183

The Role of Airmass Types and Surface Energy Fluxes in Snow Cover Ablation in the Central Appalachians  

Science Conference Proceedings (OSTI)

A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing ...

Daniel J. Leathers; Daniel Graybeal; Thomas Mote; Andrew Grundstein; David Robinson

2004-12-01T23:59:59.000Z

184

Near-Term Effects of the Lower Atmosphere in Simulated Northwest Flow Snowfall Forced over the Southern Appalachians  

Science Conference Proceedings (OSTI)

Northwest flow snowfall (NWFS) impacts the southern Appalachian Mountains after the upper-level trough has departed from the region, when moist northwesterly flow near the ground is lifted after encountering the mountains. Snowfall associated with ...

Douglas K. Miller

2012-10-01T23:59:59.000Z

185

Compendium of basins for the potential applicability of Jack W. McIntyre`s patented tool  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. McIntyre`s patented tool for the recovery of natural gas from coalbed formations in the San Juan, Powder River, Greater Green River, Piceance, Black Warrior, Appalachian and Michigan basins. Results from the surveys indicated that geology dominated research efforts for many of the basins. Limited information exists on the hydrology and water quality of the basins. All of the basins contain some potential for the use of Jack McIntyre`s patented production process. This process is designed specifically to separate produced water and produced gas in a downhole environment and may allow for more efficient and economical development of coalbed methane resources in this area.

Reed, P.D.

1994-03-01T23:59:59.000Z

186

Florida's 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida's 6th congressional district Florida's 6th congressional district 2 Registered Networking Organizations in Florida's 6th congressional district 3 Registered Energy Companies in Florida's 6th congressional district 4 Utility Companies in Florida's 6th congressional district US Recovery Act Smart Grid Projects in Florida's 6th congressional district City of Leesburg, Florida Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 6th congressional district North Florida Global Warming Study Group Registered Energy Companies in Florida's 6th congressional district American Solar Energy Barry Rutenberg and Associates Battery Park Industries Inc formerly Moltech Power Systems Inc Florida Home Energy and Resources Organization (Florida H.E.R.O.) G.W. Robinson Homes

187

Biodiesel of South Florida LLC | Open Energy Information  

Open Energy Info (EERE)

Name Biodiesel of South Florida, LLC Place Miami, Florida Zip 33176 Product Florida-based wholesale marketer of soy-based biodiesel to the US and export markets. References...

188

Economic Impacts of the Forest Industry in Florida, 2003 Final Report to the Florida Forestry Association  

E-Print Network (OSTI)

.......................................16 List of Tables Table ES-1. Florida forest industry groups surveyed, response rates, and reported .......................................................................15 Table 3.1. Florida forest industry survey responses and response rates was estimated at around 30 thousand jobs. Table ES-1. Florida forest industry groups surveyed, response rates

Florida, University of

189

Florida Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Florida Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ... Shale Gas Production;

190

Florida Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

191

Retail Unbundling - Florida - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Retail Unbundling - Florida. Status: The state has approved two pilot unbundling programs for residential customers. Overview: Two natural gas utilities (Chesapeake ...

192

DOE Solar Decathlon: Florida International University  

NLE Websites -- All DOE Office Websites (Extended Search)

which all of the university's sustainability initiatives are launched. It is the first LEED Platinum-rated building on campus. Capitalizing on the team's success in 2011, Florida...

193

,"Florida Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

194

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

195

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information...

196

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

197

Florida's 16th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Florida's 16th congressional district Kitson Partners LPG Electrical, Inc SEPCO - Solar Electric Power Company Retrieved from "http:en.openei.orgwindex.php?titleFlorida%27s16...

198

Florida County Helping Homeowners Save Energy and Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Helping Homeowners Save Energy and Money Florida County Helping Homeowners Save Energy and Money March 9, 2011 - 1:23pm Addthis Jennifer Holman Project Officer,...

199

Florida's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. US Recovery Act Smart Grid Projects in Florida's 8th congressional district Intellon Corporation Smart Grid Project Registered Energy Companies in Florida's 8th congressional district Alternative Concepts and Technology Florida Power Electronics Center FPEC Florida Solar Energy Center (Building America Partnership for Improved Residential Construction FuelClinic Iosil Energy Corporation Kinetic Energy Systems Planar Energy Devices Energy Generation Facilities in Florida's 8th congressional district Space Coast Next Generation Solar Energy Center Solar Power Plant Retrieved from "http://en.openei.org/w/index.php?title=Florida%27s_8th_congressional_district&oldid=182793" Categories: Places Stubs Congressional Districts What links here Related changes

200

Florida - State Energy Profile Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Wind Geothermal ... Missouri: Montana Nebraska Nevada New Hampshire ... Floridas retail electricity sales to the residential sector were second in the ...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

202

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

203

City of Newberry, Florida (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Florida (Utility Company) Jump to: navigation, search Name City of Newberry Place Florida Utility Id 13521 Utility Location Yes Ownership M NERC Location FRCC Activity Distribution...

204

Florida's 15th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Registered Research Institutions in Florida's 15th congressional district Technological Research and Development Authority (TRDA) Registered Energy Companies in Florida's 15th...

205

University of Central Florida Students' Energy Saving Work Showcased...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Florida Students' Energy Saving Work Showcased in New Department of Energy Video University of Central Florida Students' Energy Saving Work Showcased in New Department of...

206

FLSmidth Inc. and Titan Florida Cement Teaming Profile | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. and Titan Florida Cement Teaming Profile cover page of document FLSmidth reduces energy at processing facilities saving Titan Florida Cement 55,000 annually. FLSmidth...

207

Progress Energy Florida - SunSense Solar Photovoltaics Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida...

208

University of Nebraska-Lincoln and University of Florida (Building...  

Open Energy Info (EERE)

Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name University of Nebraska-Lincoln and University of Florida...

209

Florida's 10th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in Florida. Registered Energy Companies in Florida's 10th congressional district Fuel Cells Technology Transit Idea One Inc Jabil Circuit Inc SolarPower Restoration...

210

Florida's 5th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Florida Smart Grid Project Lakeland Electric Smart Grid Project Registered Energy Companies in Florida's 5th congressional district ECr Technologies Inc formerly GeoSolar...

211

Florida's 7th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Companies in Florida's 7th congressional district Advanced Solar Photonics BlueChip Energy Cetech America Florida Hydro Inc Iosil Energy Corporation New Generation Biofuels...

212

Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

213

Florida Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Florida Natural Gas % of Total Residential - Sales (Percent) Florida Natural Gas % of Total Residential - Sales (Percent)...

214

THE FLORIDA STATE UNIVERSITY UNIVERSITY HEALTH SERVICES  

E-Print Network (OSTI)

THE FLORIDA STATE UNIVERSITY UNIVERSITY HEALTH SERVICES HEALTH & WELLNESS CENTER University Health-8958 Healthcare Compliance Information Florida State University's University Health Services (UHS) is staffed service laboratory; pickup service is available for students whose insurance requires the use of Lab Corps

Weston, Ken

215

Page 1 of 8 FLORIDA STATE UNIVERSITY  

E-Print Network (OSTI)

among Federal agencies for the audits of State, local Governments, and non-profit organizationsPage 1 of 8 FLORIDA STATE UNIVERSITY PROGRAM INCOME POLICY Effective: May 15, 2006 Policy period. Florida State University is required to identify and document program income related to projects

Weston, Ken

216

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, basin to state, STB data" 9. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Nominal dollars per ton",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $15.49"," $13.83"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $19.46"," W"," W"," W"," W"," $29.49"," W"," W"," W",," W"," W"

217

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, STB data" 2. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real dollars per ton-mile",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $0.0343"," $0.0294"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $0.0161"," W"," W"," W"," W"," $0.0216"," W"," W"," W",," W"," W"

218

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 3, 2011 March 3, 2011 CX-005306: Categorical Exclusion Determination Revised Energy Efficiency and Conservation Strategy CX(s) Applied: B1.2, B1.32, B2.5, B5.1 Date: 03/03/2011 Location(s): Jupiter, Florida Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy March 1, 2011 CX-005305: Categorical Exclusion Determination Florida-City-Bradenton CX(s) Applied: A9, A11, B5.1 Date: 03/01/2011 Location(s): Bradenton, Florida Office(s): Energy Efficiency and Renewable Energy February 23, 2011 CX-007834: Categorical Exclusion Determination Florida -City - North Port CX(s) Applied: A1, A9, A11, B5.1., B5.23 Date: 02/23/2011 Location(s): Florida Offices(s): Energy Efficiency and Renewable Energy February 22, 2011 CX-005307: Categorical Exclusion Determination

219

Energy Incentive Programs, Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida Energy Incentive Programs, Florida October 29, 2013 - 11:29am Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? Florida has no public-purpose-funded energy efficiency programs. The state's utilities budgeted approximately $370 million for energy efficiency and load management programs in 2011. What utility energy efficiency programs are available to me? Florida Power and Light (FPL) offers the following opportunities: Free Business Energy Evaluations provide comprehensive analysis of facility energy use and recommendations for cost-effective energy efficiency improvements. Evaluations are available both online and on-site. Building Envelope rebates include window treatments (up to $1 per sf),

220

Alternative Fuels Data Center: Florida Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Points of Florida Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Florida Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Florida Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Florida Points of Contact on Google Bookmark Alternative Fuels Data Center: Florida Points of Contact on Delicious Rank Alternative Fuels Data Center: Florida Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Florida Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Points of Contact The following people or agencies can help you find more information about Florida's clean transportation laws, incentives, and funding opportunities.

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Florida's 20th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 20th congressional district 2 Registered Energy Companies in Florida's 20th congressional district 3 Registered Financial Organizations in Florida's 20th congressional district 4 Utility Companies in Florida's 20th congressional district US Recovery Act Smart Grid Projects in Florida's 20th congressional district Florida Power & Light Company Smart Grid Project Registered Energy Companies in Florida's 20th congressional district Advanced Green Technologies BTX Holdings Inc Biodiesel of South Florida LLC Biofuels Digest Cambridge Project Development Car Charging Group Inc Caribbean Energy Resources Corp ClimeCo Corporation Electron Solar Energy Formerly Envigra Inc Ener1 Inc EnerFuel Enventure Partners Ltd

222

Florida's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 2nd congressional district 2 Registered Research Institutions in Florida's 2nd congressional district 3 Registered Energy Companies in Florida's 2nd congressional district 4 Energy Generation Facilities in Florida's 2nd congressional district 5 Utility Companies in Florida's 2nd congressional district US Recovery Act Smart Grid Projects in Florida's 2nd congressional district City of Quincy, FL Smart Grid Project City of Tallahassee Smart Grid Project Talquin Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Florida's 2nd congressional district SunCity Registered Energy Companies in Florida's 2nd congressional district Center for Advanced Power Systems CAPS

223

Alternative Fuels Data Center: Florida Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Laws and Florida Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Florida. Your Clean Cities coordinator at

224

Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.6648274,"lon":-81.5157535,"alt":0,"address":"Florida","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Energy and Cost Implications of the Florida Energy Star Residential HVAC Rebate Program.  

E-Print Network (OSTI)

??In July 2010, the Floridas Governors Energy Office released the Florida ENERGY STAR Residential HVAC Rebate Program. The program was funded by a grant from (more)

Strauss, Kurt

2012-01-01T23:59:59.000Z

226

San Juan Montana Thrust Belt WY Thrust Belt Black Warrior  

U.S. Energy Information Administration (EIA) Indexed Site

San San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern Great Basin Appalachian Denver Florida Peninsula Black Warrior W Y T h ru st B e lt Powder River Paradox- Uinta- Grtr Green River MT Thrust Belt Powder River North (1) Powder River South (2) Denver North (1) Denver South (3) Denver Middle (2) TX CA MT AZ ID NV NM CO IL OR UT KS WY IA NE SD MN ND OK FL WI MO AL WA GA AR LA MI IN PA NY NC MS TN KY VA OH SC

227

Composite Climatology of Florida Summer Thunderstorms  

Science Conference Proceedings (OSTI)

In an attempt to produce an objective climatology of peninsular Florida thunderstorms that does not suffer from observer bias, we composited 9088 hours of high-resolution manually digitized radar (MDR) data and 28 days of daytime satellite ...

Patrick J. Michaels; Roger A. Pielke; J. T. Mcqueen; D. E. Sappington

1987-11-01T23:59:59.000Z

228

Florida Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Florida Florida Name Florida Geological Survey Address 3900 Commonwealth Boulevard M.S. 49 City, State Tallahassee, Florida Zip 32399 Website http://www.dep.state.fl.us/geo Coordinates 30.47491°, -84.357967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.47491,"lon":-84.357967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

230

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 25, 2011 August 25, 2011 CX-006568: Categorical Exclusion Determination Florida-City-West Palm Beach CX(s) Applied: A1, A9, B1.32, B2.5, B5.1 Date: 08/25/2011 Location(s): West Palm Beach, Florida Office(s): Energy Efficiency and Renewable Energy August 23, 2011 CX-006530: Categorical Exclusion Determination Interstate 75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 08/23/2011 Location(s): North Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 11, 2011 CX-006449: Categorical Exclusion Determination A Lightweight, Direct Drive, Fully Superconducting Generator for Large Wind Turbines CX(s) Applied: A9 Date: 08/11/2011 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

231

Progress Energy Florida Inc | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Progress Energy Florida Inc (Redirected from Progress Energy Florida) Jump to: navigation, search Name Progress Energy Florida Inc Place Florida Utility Id 6455 Utility Location Yes Ownership I NERC Location FRCC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CISR-1 - Commercial/Industrial Service Rider Commercial

232

Initial Precipitation Formation in Warm Florida Cumulus  

Science Conference Proceedings (OSTI)

The microphysical processes that lead to the development of precipitation in small, warm cumulus are examined using data from the Small Cumulus Microphysics Study near Cape Canaveral, Florida. Aircraft measurements are used to determine the ...

Neil F. Laird; Harry T. Ochs III; Robert M. Rauber; L. Jay Miller

2000-11-01T23:59:59.000Z

233

Salinity Transport in the Florida Straits  

Science Conference Proceedings (OSTI)

A submarine cable across the Florida Straits yields a time series of volume and temperature transports using previously determined calibrations, and here a calibration is defined for salinity transport using data not yet compared to the cable. ...

Zoltan B. Szuts; Chris Meinen

2013-05-01T23:59:59.000Z

234

,"Florida Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas...

235

Solar Energy and the Florida Environment 1  

E-Print Network (OSTI)

On average, 585,000 Btus of solar energy reach every square foot of Florida each year. Overall, the energy in the sunlight annually falling on the state equals 840 quad. Eight hundred forty quads of energy is

Helen J-h. Whiffen

1994-01-01T23:59:59.000Z

236

Energy Vision International Florida | Open Energy Information  

Open Energy Info (EERE)

Vision International Florida Vision International Florida Jump to: navigation, search Name Energy Vision International Florida Place Florida, California Sector Geothermal energy, Services Product Provides geothermal heat pumps; and administrative services to EVI subsidiaries. Coordinates 27.9758°, -81.541061° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9758,"lon":-81.541061,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

University of Florida College of Pharmacy  

E-Print Network (OSTI)

University of Florida College of Pharmacy 2 0 1 2 Fa l l e v e n t s P l a n n e r a l u m n i b b (Dean's Circle) Sept.8 at Texas A&M Sept.15 at Tennessee Sept.22 Kentucky Oct.6 LSU (Advisory Board) Oct University of Florida tradition--Grand Guard! Your Grand Guard Reunion is a celebration of your 50 years

Roy, Subrata

238

New basins invigorate U.S. gas shales play  

SciTech Connect

While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

Reeves, S.R.; Kuuskraa, V.A. [Advanced Resources International Inc., Arlington, VA (United States); Hill, D.G. [Gas Research Inst., Chicago, IL (United States)

1996-01-22T23:59:59.000Z

239

Coming Full Circle in Florida: Improving Electric Grid Reliability and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coming Full Circle in Florida: Improving Electric Grid Reliability Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light.

240

Clean Energy Investment Program (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Investment Program (Florida) Clean Energy Investment Program (Florida) Clean Energy Investment Program (Florida) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info Funding Source US Department of Energy - ARRA State Florida Program Type Bond Program Provider Florida Opportunity Fund The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and technologies in Florida. The Fund will increase the availability of capital in Florida through both loan and equity investment instruments, and is designed to help Florida businesses and promote the adoption of commercialized clean energy technology. Fund

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Solar Decathlon: Florida International University: Weathering the Storm  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida International's Solar Decathlon 2005 house in its permanent location on the university's campus. Florida International's Solar Decathlon 2005 house in its permanent location on the university's campus. Enlarge image Engawa enjoys blue skies over the Florida International University campus. (Courtesy of Florida International University) Who: Florida International University What: Engawa Where: Florida International University 10555 West Flagler St. Miami, FL 33172 Map This House Public tours: Not available Solar Decathlon 2005 Florida International University: Weathering the Storm Student decathletes from Florida International University built Engawa for the U.S. Department of Energy Solar Decathlon 2005. After the competition, they reconstructed the hurricane-prone house near the engineering building on Florida International University's campus. They also made several

242

Florida's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida's 21st congressional district: Energy Resources Florida's 21st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. US Recovery Act Smart Grid Projects in Florida's 21st congressional district Florida Power & Light Company Smart Grid Project Registered Energy Companies in Florida's 21st congressional district Biodiesel of South Florida LLC Biofuels Digest Cambridge Project Development Caribbean Energy Resources Corp ClimeCo Corporation Electron Solar Energy Formerly Envigra Inc Enventure Partners Ltd Lennar Homes & Lennar Urban MGM International SRT Group Inc Utility Companies in Florida's 21st congressional district Florida Power & Light Co.

243

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

244

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

245

South Florida Sun-Sentinel.com Wells Fargo says South Florida customers got account  

E-Print Network (OSTI)

South Florida Sun-Sentinel.com Wells Fargo says South Florida customers got account information Wells Fargo confirmed Friday that South Floridians are among customers affected by a mistake in which at 800-ToWells or visit a branch. They will be reimbursed should losses occur in their account because

Belogay, Eugene A.

246

Soil and Water Conservation (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil and Water Conservation (Florida) Soil and Water Conservation (Florida) Soil and Water Conservation (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Environmental Regulations Provider Florida Department of Agriculture and Consumer Services Florida's 62 Soil and Water Conservation Districts were established in

247

Energy Economic Zone Pilot Program (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economic Zone Pilot Program (Florida) Energy Economic Zone Pilot Program (Florida) Energy Economic Zone Pilot Program (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Florida Program Type Enterprise Zone Provider Florida Department of Economic Opportunity In the 2009 Legislative Session, the Florida Legislature established the

248

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

249

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

250

Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Exemptions The list below contains summaries of all Florida laws and incentives

251

Alternative Fuels Data Center: Florida Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for EVs The list below contains summaries of all Florida laws and incentives related to EVs.

252

Alternative Fuels Data Center: Florida Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for NEVs The list below contains summaries of all Florida laws and incentives

253

Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Ethanol The list below contains summaries of all Florida laws and incentives

254

Florida's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 3rd congressional district 2 Registered Networking Organizations in Florida's 3rd congressional district 3 Registered Energy Companies in Florida's 3rd congressional district 4 Energy Generation Facilities in Florida's 3rd congressional district 5 Utility Companies in Florida's 3rd congressional district US Recovery Act Smart Grid Projects in Florida's 3rd congressional district Intellon Corporation Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 3rd congressional district

255

Okefenoke Rural El Member Corp (Florida) | Open Energy Information  

Open Energy Info (EERE)

Corp (Florida) Jump to: navigation, search Name Okefenoke Rural El Member Corp Place Florida Utility Id 31833 References EIA Form EIA-861 Final Data File for 2010 - File220101...

256

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida (PEF) has allocated $1.9 million per year towards residential photovoltaic (PV) incentives. PEF will accept applications annually from residential customers both wishing to install a PV system and qualifying for a rebate. Reservations for a rebate will be issued on a first-come basis, however a reservation does not guarantee that a rebate

257

Alternative Fuels Data Center: Florida Laws and Incentives for Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rebates to someone by E-mail Rebates to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Rebates The list below contains summaries of all Florida laws and incentives

258

Continentality of the South Florida Summertime CCN Aerosol  

Science Conference Proceedings (OSTI)

Measurements of cloud condensation nuclei (CCN) were obtained in the south Florida region as part of NOAA's Florida Area Cumulus Experiment (FACE). During the summer of 1975, CCN measurements were obtained near the bases of cumulus clouds by ...

Robert I. Sax; James G. Hudson

1981-07-01T23:59:59.000Z

259

Myakka River Wild and Scenic Designation and Preservation Act (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Myakka was designated as the state's only "Florida Wild and Scenic River" by the Florida State Legislature in 1985. The act provides for preservation and management of the 34-mile portion of...

260

Florida Power and Light Company | Open Energy Information  

Open Energy Info (EERE)

Power and Light Company Jump to: navigation, search Name Florida Power and Light Company Place Juno Beach, Florida Zip 33408 Product US utility serving 4.4 million customers in...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Solar Decathlon: News Blog Florida Int'l  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Int'l Below you will find Solar Decathlon news from the Florida Int'l archive, sorted by date. Video Blog: End of Assembly Tuesday, September 20, 2011 U.S. Department of...

262

,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

3:31:45 PM" "Back to Contents","Data 1: Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSFLMMCF" "Date","Florida Natural...

263

Florida's 11th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Florida. Registered Energy Companies in Florida's 11th congressional district All Solar Power, Inc. ECO2 Asset Solutions ELUTIONS Inc formerly TeCom EarthFirst Technologies Inc...

264

Alternative Fuels Data Center: Florida Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Other The list below contains summaries of all Florida laws and incentives

265

Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Biodiesel The list below contains summaries of all Florida laws and incentives

266

Alternative Fuels Data Center: Florida Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Grants The list below contains summaries of all Florida laws and incentives

267

Alternative Fuels Data Center: Florida Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives Listed below are the summaries of all current Florida laws, incentives, regulations, funding opportunities, and other initiatives related to

268

Alternative Fuels Data Center: Florida Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Other The list below contains summaries of all Florida laws and incentives

269

Alternative Fuels Data Center: Florida Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Other The list below contains summaries of all Florida laws and incentives

270

Florida Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

271

Florida - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... revenue and prices, power plants, fuel use, stocks, generation, ... landfill and waste gas, and waste heat recovery dominate Florida's renewable ...

272

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

273

Florida Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

274

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

275

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 7, 2010 April 7, 2010 CX-001609: Categorical Exclusion Determination Homestead Road Bicycle/Pedestrian Facility CX(s) Applied: B5.1 Date: 04/07/2010 Location(s): Lee County, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 7, 2010 CX-001608: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant City of Jacksonville: 6) Metropolitan Government Clean Transportation Program CX(s) Applied: B5.1 Date: 04/07/2010 Location(s): Jackson, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 5, 2010 CX-001437: Categorical Exclusion Determination Market Title: Clean Energy Grant Program CX(s) Applied: A9, A11 Date: 04/05/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, National Energy

276

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

277

Categorical Exclusion Determinations: Florida | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-003078: Categorical Exclusion Determination Planar Energy - Solid-State All Inorganic Rechargeable Lithium Batteries CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Florida Office(s): Advanced Research Projects Agency - Energy May 25, 2010 CX-002401: Categorical Exclusion Determination City of Tallahassee Innovative Energy Initiatives Phase 2 CX(s) Applied: B1.15 Date: 05/25/2010 Location(s): Tallahassee, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 20, 2010 CX-002331: Categorical Exclusion Determination Statement of Work (SOW) For Activity #7 Community Energy Efficiency Incentives Program (Supercedes DE-EE0000777.002) CX(s) Applied: A9, A11, B5.1 Date: 05/20/2010 Location(s): Jacksonville, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

278

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

Science Conference Proceedings (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

279

Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian basin  

Science Conference Proceedings (OSTI)

The success of shale gas in North America has attracted increased interest in ''unconventional'' reservoirs. Two critical factors for shale-gas reservoirs are units amenable to hydrologic fracture stimulation and sufficient natural gas content. The effectiveness ... Keywords: Lithofacies, Marcellus Shale, Mineral composition, Organic matter richness

Guochang Wang; Timothy R. Carr

2012-12-01T23:59:59.000Z

280

Quantification of uncertainty associated with injecting carbon dioxide, and design of ECBM reservoir in Appalachian Basin coals.  

E-Print Network (OSTI)

??There are tremendous coal bed methane resources throughout the world. However, with conventional production methods, 40-80% of methane is left behind as unrecoverable. Enhanced coal (more)

Mohan, Jesma.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network (OSTI)

a key role in making important and strategic field development decisions. Big Sandy Gas Field #12;SPE and naturally fractured gas-shale simulator developed at the National Energy Technology Laboratory (Mc Dynamic Recharge from the Matrix. Proc. DOE Natural Gas Conference. Houston: DOE. 6. Mohaghegh, S. D

Mohaghegh, Shahab

282

Florida Keys Electric Cooperative - Residential Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Keys Electric Cooperative - Residential Rebate Program Florida Keys Electric Cooperative - Residential Rebate Program Florida Keys Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount Rebates $25 - $500, max $1000 per member Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a free home energy audit. An FKEC trained auditor will assess the home and make recommendations for

283

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

284

Qualifying RPS State Export Markets (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida) Florida) Qualifying RPS State Export Markets (Florida) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Florida as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the

285

Capital Investment Tax Credit (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit (Florida) Tax Credit (Florida) Capital Investment Tax Credit (Florida) < Back Eligibility Commercial Construction Fuel Distributor Installer/Contractor Investor-Owned Utility Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Corporate Tax Incentive Provider Enterprise Florida The Capital Investment Tax Credit is an annual credit, provided for up to twenty years, against the corporate income tax. Eligible projects are those in designated high-impact portions of the following sectors: clean energy, biomedical technology, financial services, information technology, silicon technology, transportation equipment manufacturing, or be a corporate

286

Permitting of Consumptive Uses of Water (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permitting of Consumptive Uses of Water (Florida) Permitting of Consumptive Uses of Water (Florida) Permitting of Consumptive Uses of Water (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection Local water management districts are required to establish programs and

287

Evaluation of Aggregate Materials in Florida's Future  

E-Print Network (OSTI)

) Aggregates consultant Joe Besharat Districts Three Materials Office, FDOT Aggregates Roland Boney Florida operations Don Conner Rail Management, Inc. Rail logistics John Paul Crews District Two Materials Office Materials Office, FDOT Aggregates Rob Duke Rinker Materials Mine sales and marketing Robert (Bobbi G

288

Growing Caladiums in the Florida Garden  

E-Print Network (OSTI)

plants. This has been due in part to the limited supply of bulbs (botanically known as tubers) from which caladium growers, more bulbs (and better bulbs) have become available in recent years. `Florida Moonlight for caladiums. Caladiums are considered "light feeders", but do respond to low lev

Watson, Craig A.

289

Inland Navigation Districts and Florida Inland Navigation District Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Navigation Districts and Florida Inland Navigation District Inland Navigation Districts and Florida Inland Navigation District Law (Florida) Inland Navigation Districts and Florida Inland Navigation District Law (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Inland Navigation District (FIND) The first part of this legislation establishes Inland Navigation Districts,

290

Alternative Fuels Data Center: Florida Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Driving / Idling

291

EA-1965: Florida Atlantic University Southeast National Marine Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Florida Atlantic University Southeast National Marine 5: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida SUMMARY The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida.

292

Solar for Schools and Shelters (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar for Schools and Shelters (Florida) Solar for Schools and Shelters (Florida) Solar for Schools and Shelters (Florida) < Back Eligibility Commercial Construction Installer/Contractor Institutional Nonprofit Retail Supplier Schools Systems Integrator Savings Category Solar Buying & Making Electricity Program Info Funding Source U.S. Department of Energy State Florida Program Type Grant Program Provider Florida Solar Energy Center This program will support the installation of photovoltaic systems with battery back-up on strategically located schools and emergency shelters throughout the state. The Office of Energy will coordinate with the Florida Solar Energy Center to select 90 co-located schools and emergency shelters in Florida and install 10 kW and larger solar systems with data loggers on each site. The program will include operation and maintenance workshops for

293

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

294

Alternative Fuels Data Center: Florida Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Idle Reduction

295

Florida Billboards Elevate Renewable Energy Education | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Billboards Elevate Renewable Energy Education Florida Billboards Elevate Renewable Energy Education Florida Billboards Elevate Renewable Energy Education July 9, 2010 - 10:26am Addthis A wind turbine tops a Lamar Advertising billboard in Pensacola, Florida | Photo courtesy of Karena Cawthon A wind turbine tops a Lamar Advertising billboard in Pensacola, Florida | Photo courtesy of Karena Cawthon Maya Payne Smart Former Writer for Energy Empowers, EERE Drivers along the Florida stretches of I-10, I-110, I-75 and other highways will soon see more than advertising messages on roadside signs. Lamar Advertising is converting almost 1500 of its Florida billboards to renewable energy devices. Solar panels and wind turbines will top the displays. The company hopes to communicate the value of renewable energy to millions

296

Alternative Fuels Data Center: Florida Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Tax Incentives

297

Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Soil organic carbon (SOC) was partitioned between unprotected and protected pools in six forests along an elevation gradient in the southern Appalachian Mountains using two physical methods: flotation in aqueous CaCl{sub 2} (1.4 g/mL) and wet sieving through a 0.053 mm sieve. Both methods produced results that were qualitatively and quantitatively similar. Along the elevation gradient, 28 to 53% of the SOC was associated with an unprotected pool that included forest floor O-layers and other labile soil organic matter (SOM) in various stages of decomposition. Most (71 to 83%) of the C in the mineral soil at the six forest sites was identified as protected because of its association with a heavy soil fraction (> 1.4 g/mL) or a silt-clay soil fraction. Total inventories of SOC in the forests (to a depth of 30 cm) ranged from 384 to 1244 mg C/cm{sup 2}. The turnover time of the unprotected SOC was negatively correlated (r = -0.95, p < 0.05) with mean annual air temperature (MAT) across the elevation gradient. Measured SOC inventories, annual C returns to the forest floor, and estimates of C turnover associated with the protected soil pool were used to parameterize a simple model of SOC dynamics. Steady-state predictions with the model indicated that, with no change in C inputs, the low- (235-335 m), mid- (940-1000 m), and high- (1650-1670 m) elevation forests under study might surrender {approx} 40 to 45% of their current SOC inventory following a 4 C increase in MAT. Substantial losses of unprotected SOM as a result of a warmer climate could have long-term impacts on hydrology, soil quality, and plant nutrition in forest ecosystems throughout the southern Appalachian Mountains.

Garten Jr, Charles T [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL; Cooper, Lee W [ORNL

1999-05-01T23:59:59.000Z

298

Mango, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mango, Florida: Energy Resources Mango, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9797439°, -82.3064808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9797439,"lon":-82.3064808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Jupiter, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jupiter, Florida: Energy Resources Jupiter, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.9342246°, -80.0942087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.9342246,"lon":-80.0942087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Tamarac, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tamarac, Florida: Energy Resources Tamarac, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.2128609°, -80.2497707° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.2128609,"lon":-80.2497707,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lutz, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lutz, Florida: Energy Resources Lutz, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.1511243°, -82.4614831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1511243,"lon":-82.4614831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Heathrow, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heathrow, Florida: Energy Resources Heathrow, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.7728194°, -81.3701881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.7728194,"lon":-81.3701881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Florida Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1996-2013

304

Sebastian, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebastian, Florida: Energy Resources Sebastian, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.816415°, -80.4706078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.816415,"lon":-80.4706078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Doral, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Doral, Florida: Energy Resources Doral, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8195424°, -80.3553302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8195424,"lon":-80.3553302,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Oviedo, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oviedo, Florida: Energy Resources Oviedo, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.669997°, -81.2081203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.669997,"lon":-81.2081203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Tamiami, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tamiami, Florida: Energy Resources Tamiami, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7587114°, -80.398387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7587114,"lon":-80.398387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Sunset, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunset, Florida: Energy Resources Sunset, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7059354°, -80.352275° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7059354,"lon":-80.352275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Surfside, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Surfside, Florida: Energy Resources Surfside, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8784284°, -80.1256007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8784284,"lon":-80.1256007,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Conway, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Conway, Florida: Energy Resources Conway, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5027809°, -81.3306245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5027809,"lon":-81.3306245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Bithlo, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bithlo, Florida: Energy Resources Bithlo, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5547225°, -81.106452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5547225,"lon":-81.106452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Keystone, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Keystone, Florida: Energy Resources Keystone, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.1558467°, -82.6212093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1558467,"lon":-82.6212093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Medley, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Medley, Florida: Energy Resources Medley, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8406526°, -80.3264404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8406526,"lon":-80.3264404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Haverhill, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haverhill, Florida: Energy Resources Haverhill, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6911767°, -80.1200433° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6911767,"lon":-80.1200433,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Chuluota, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chuluota, Florida: Energy Resources Chuluota, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6419419°, -81.123396° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6419419,"lon":-81.123396,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Gibsonton, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gibsonton, Florida: Energy Resources Gibsonton, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.8536365°, -82.382593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.8536365,"lon":-82.382593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Brownsville, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownsville, Florida: Energy Resources Brownsville, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8217642°, -80.2411604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8217642,"lon":-80.2411604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Davie, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Davie, Florida: Energy Resources Davie, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.0628664°, -80.2331038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.0628664,"lon":-80.2331038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Tequesta, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tequesta, Florida: Energy Resources Tequesta, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.960784°, -80.097366° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.960784,"lon":-80.097366,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Gainesville, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gainesville, Florida: Energy Resources Gainesville, Florida: Energy Resources (Redirected from Gainesville, FL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6516344°, -82.3248262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6516344,"lon":-82.3248262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Florida Hydro Inc | Open Energy Information  

Open Energy Info (EERE)

Hydro Inc Hydro Inc Jump to: navigation, search Name Florida Hydro Inc Place Palatka, Florida Zip 32177 Sector Hydro, Hydrogen Product Develops electrical generation and hydrogen production devices. Coordinates 29.648535°, -81.637029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.648535,"lon":-81.637029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Atlantis, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Atlantis, Florida: Energy Resources Atlantis, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5909025°, -80.1008762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5909025,"lon":-80.1008762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

University, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

University, Florida: Energy Resources University, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6435064°, -82.3506142° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6435064,"lon":-82.3506142,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Hypoluxo, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hypoluxo, Florida: Energy Resources Hypoluxo, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5664588°, -80.0533748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5664588,"lon":-80.0533748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Thonotosassa, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thonotosassa, Florida: Energy Resources Thonotosassa, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0614065°, -82.3023128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.0614065,"lon":-82.3023128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Golf, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Golf, Florida: Energy Resources Golf, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5052°, -80.110199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5052,"lon":-80.110199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Stuart, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stuart, Florida: Energy Resources Stuart, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.197548°, -80.2528257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.197548,"lon":-80.2528257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Greenacres, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenacres, Florida: Energy Resources Greenacres, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.627408°, -80.1400671° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.627408,"lon":-80.1400671,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Wabasso, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wabasso, Florida: Energy Resources Wabasso, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.7483622°, -80.4361629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.7483622,"lon":-80.4361629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Rio, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.2194917°, -80.2392142° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.2194917,"lon":-80.2392142,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Naranja, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naranja, Florida: Energy Resources Naranja, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5181647°, -80.4228332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5181647,"lon":-80.4228332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Orchid, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orchid, Florida: Energy Resources Orchid, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.7728055°, -80.4169956° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.7728055,"lon":-80.4169956,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Roseland, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roseland, Florida: Energy Resources Roseland, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.8358587°, -80.4931083° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.8358587,"lon":-80.4931083,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Margate, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Margate, Florida: Energy Resources Margate, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.2445263°, -80.206436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.2445263,"lon":-80.206436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Lockhart, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lockhart, Florida: Energy Resources Lockhart, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6194439°, -81.4425708° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6194439,"lon":-81.4425708,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Ocoee, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ocoee, Florida: Energy Resources Ocoee, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5691677°, -81.5439619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5691677,"lon":-81.5439619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Manalapan, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Manalapan, Florida: Energy Resources Manalapan, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5692364°, -80.0447635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5692364,"lon":-80.0447635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Parkland, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkland, Florida: Energy Resources Parkland, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.3100794°, -80.23727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.3100794,"lon":-80.23727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Orlovista, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orlovista, Florida: Energy Resources Orlovista, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5383357°, -81.4603494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383357,"lon":-81.4603494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Lantana, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lantana, Florida: Energy Resources Lantana, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5867358°, -80.0519859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5867358,"lon":-80.0519859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tampa, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources (Redirected from Tampa, FL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9475216°, -82.4584279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9475216,"lon":-82.4584279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Maitland, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maitland, Florida: Energy Resources Maitland, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6277767°, -81.3631244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6277767,"lon":-81.3631244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Valrico, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Valrico, Florida: Energy Resources Valrico, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9458566°, -82.2578687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9458566,"lon":-82.2578687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Homestead, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.4687224°, -80.4775569° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.4687224,"lon":-80.4775569,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Gotha, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gotha, Florida: Energy Resources Gotha, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5277804°, -81.5231283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5277804,"lon":-81.5231283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Brandon, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brandon, Florida: Energy Resources Brandon, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.937801°, -82.2859247° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.937801,"lon":-82.2859247,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Orlando, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orlando, Florida: Energy Resources Orlando, Florida: Energy Resources (Redirected from Orlando, FL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5383355°, -81.3792365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383355,"lon":-81.3792365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Princeton, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Princeton, Florida: Energy Resources Princeton, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5384417°, -80.408944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5384417,"lon":-80.408944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Boyette, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Boyette, Florida: Energy Resources Boyette, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.8383805°, -82.2909146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.8383805,"lon":-82.2909146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Westview, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Westview, Florida: Energy Resources Westview, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8820398°, -80.2419935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8820398,"lon":-80.2419935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Tampa, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tampa, Florida: Energy Resources Tampa, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9475216°, -82.4584279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9475216,"lon":-82.4584279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Pensacola, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pensacola, Florida: Energy Resources Pensacola, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.421309°, -87.2169149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.421309,"lon":-87.2169149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Miramar, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Miramar, Florida: Energy Resources Miramar, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.9873137°, -80.2322706° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.9873137,"lon":-80.2322706,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Utopia, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Utopia, Florida: Energy Resources Utopia, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.2900476°, -82.3600934° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.2900476,"lon":-82.3600934,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Southchase, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Southchase, Florida: Energy Resources Southchase, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.393063°, -81.3834037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.393063,"lon":-81.3834037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Fountainbleau, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fountainbleau, Florida: Energy Resources Fountainbleau, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7728774°, -80.3478301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7728774,"lon":-80.3478301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Seffner, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seffner, Florida: Energy Resources Seffner, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9836329°, -82.2756468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9836329,"lon":-82.2756468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Ruskin, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ruskin, Florida: Energy Resources Ruskin, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.7208633°, -82.4331495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.7208633,"lon":-82.4331495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Pinecrest, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pinecrest, Florida: Energy Resources Pinecrest, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.6670476°, -80.3081074° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.6670476,"lon":-80.3081074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Gifford, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gifford, Florida: Energy Resources Gifford, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.6753089°, -80.4092181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.6753089,"lon":-80.4092181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bloomingdale, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bloomingdale, Florida: Energy Resources Bloomingdale, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.877231°, -82.259925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.877231,"lon":-82.259925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Plantation, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plantation, Florida: Energy Resources Plantation, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1275862°, -80.2331036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1275862,"lon":-80.2331036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Hialeah, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hialeah, Florida: Energy Resources Hialeah, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8575963°, -80.2781057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8575963,"lon":-80.2781057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Clearwater, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clearwater, Florida: Energy Resources Clearwater, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.9658533°, -82.8001026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9658533,"lon":-82.8001026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Goulds, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Goulds, Florida: Energy Resources Goulds, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5626072°, -80.3822765° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5626072,"lon":-80.3822765,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Lauderhill, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lauderhill, Florida: Energy Resources Lauderhill, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1403635°, -80.2133808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1403635,"lon":-80.2133808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Gladeview, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gladeview, Florida: Energy Resources Gladeview, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8392635°, -80.2356044° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8392635,"lon":-80.2356044,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Aventura, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Aventura, Florida: Energy Resources Aventura, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.9564812°, -80.1392121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.9564812,"lon":-80.1392121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Weston, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weston, Florida: Energy Resources Weston, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1003654°, -80.3997748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1003654,"lon":-80.3997748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Wedgefield, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wedgefield, Florida: Energy Resources Wedgefield, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4877802°, -81.0772851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4877802,"lon":-81.0772851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Windermere, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Windermere, Florida: Energy Resources Windermere, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4955593°, -81.5347952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4955593,"lon":-81.5347952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Pahokee, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pahokee, Florida: Energy Resources Pahokee, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.8200607°, -80.665335° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.8200607,"lon":-80.665335,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Lakeland, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0394654°, -81.9498042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.0394654,"lon":-81.9498042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Casselberry, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casselberry, Florida: Energy Resources Casselberry, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.677775°, -81.3278455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.677775,"lon":-81.3278455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Jacksonville, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jacksonville, Florida: Energy Resources Jacksonville, Florida: Energy Resources (Redirected from Jacksonville, FL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3321838°, -81.655651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3321838,"lon":-81.655651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Eatonville, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eatonville, Florida: Energy Resources Eatonville, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6147216°, -81.3806249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6147216,"lon":-81.3806249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Tangerine, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tangerine, Florida: Energy Resources Tangerine, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.7649933°, -81.6306298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.7649933,"lon":-81.6306298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Tildenville, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tildenville, Florida: Energy Resources Tildenville, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5341645°, -81.6021358° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5341645,"lon":-81.6021358,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Riverview, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Riverview, Florida: Energy Resources Riverview, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.8661364°, -82.3264809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.8661364,"lon":-82.3264809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Pinewood, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pinewood, Florida: Energy Resources Pinewood, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8689846°, -80.2169927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8689846,"lon":-80.2169927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kendall, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kendall, Florida: Energy Resources Kendall, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.6792695°, -80.3172742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.6792695,"lon":-80.3172742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Fellsmere, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fellsmere, Florida: Energy Resources Fellsmere, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.767806°, -80.6014442° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.767806,"lon":-80.6014442,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Ojus, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ojus, Florida: Energy Resources Ojus, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.948426°, -80.1506014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.948426,"lon":-80.1506014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Certification of solar products - The Florida experience  

SciTech Connect

Florida legislation enacted in 1976 directed the Florida Solar Energy Center (FSEC) to develop standards for solar energy systems manufactured or sold in the state, establish criteria for testing the performance of solar energy systems, and provide a means to display compliance with approved performance tests for these systems. This mandate has been effectively implemented for both solar domestic water heating and solar pool heating systems. With growing interest and markets for photovoltaic systems, plans are presently being developed to expand the scope of the mandate to include photovoltaic technology. This paper discusses four complementary facets of a photovoltaic (PV) system certification program. They include PV module performance characterization and rating; PV system design review and approval; examination and authorization of photovoltaic system installers; and inspection and acceptance testing of PV system installation. The suggested photovoltaic system process builds on lessons learned from over 20 years of testing, certifying and labeling of solar thermal collectors, and the certification of solar thermal systems.

POST,HAROLD N.; ROLAND,JAMES D.; VENTRE,GERARD G.; HUGGINS,JAMES C.

2000-02-02T23:59:59.000Z

385

Florida house aglow with lighting retrofit  

SciTech Connect

In a residential lighting retrofit, how much energy can be saved with current technology? The Florida Solar Energy Center decided to find out by retrofitting every lamp in a Miami home. Most lighting studies focus on average lighting energy use or on how much energy can be saved by retrofitting large numbers of homes. However, the Florida Solar Energy Center (FSEC) was interested in finding out how much lighting energy we could save in a single house. One house with high utility bills and extensive interior lighting was picked, throughly monitored, and retrofitted every light possible. The study also helped determine what sort of monitoring is most useful, and how residents respond to efficient lighting. 1 fig., 2 tabs.

Parker, D.; Schrum, L.

1997-01-01T23:59:59.000Z

386

Palatka, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palatka, Florida: Energy Resources Palatka, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6485801°, -81.6375819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6485801,"lon":-81.6375819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Goldenrod, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Goldenrod, Florida: Energy Resources Goldenrod, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6102772°, -81.2886784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6102772,"lon":-81.2886784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Wimauma, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wimauma, Florida: Energy Resources Wimauma, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.7125308°, -82.2989803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.7125308,"lon":-82.2989803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Westchase, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Westchase, Florida: Energy Resources Westchase, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.0646438°, -82.5943072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.0646438,"lon":-82.5943072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Hollywood, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.0112014°, -80.1494901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.0112014,"lon":-80.1494901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Indiantown, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiantown, Florida: Energy Resources Indiantown, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.0272756°, -80.4856083° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.0272756,"lon":-80.4856083,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Zellwood, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Zellwood, Florida: Energy Resources Zellwood, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.7311059°, -81.6011849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.7311059,"lon":-81.6011849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Cheval, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheval, Florida: Energy Resources Cheval, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.1486246°, -82.5145402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1486246,"lon":-82.5145402,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Alternative Fuels Data Center: Florida Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fueling / TSE Infrastructure Owner on

395

Alternative Fuels Data Center: Florida Laws and Incentives for Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

396

Solar and CHP Sales Tax Exemption (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and CHP Sales Tax Exemption (Florida) and CHP Sales Tax Exemption (Florida) Solar and CHP Sales Tax Exemption (Florida) < Back Eligibility Agricultural Commercial General Public/Consumer Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Maximum Rebate No limit Program Info Start Date 07/01/1997 State Florida Program Type Sales Tax Incentive Rebate Amount All Provider Florida Department of Revenue Solar energy systems have been exempt from Florida's sales and use tax since July 1, 1997. The term "solar energy system" means the equipment and requisite hardware that provide and are used for collecting, transferring, converting, storing or using incidental solar energy for water heating,

397

High Impact Performance Incentive Grant (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Performance Incentive Grant (Florida) Impact Performance Incentive Grant (Florida) High Impact Performance Incentive Grant (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Grant Program Provider Enterprise Florida The High Impact Performance Incentive Grant (HIPI) is a negotiated grant used to attract and grow major high impact facilities in Florida. Grants are provided to pre-approved applicants in certain high-impact sectors such as clean energy. Projects must create at least 50 new full-time jobs in a three-year period, and make a cumulative investment in the state of at least $50 million in a three year period. The business can be granted 50%

398

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

399

Competitive Grants to Local Governments (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Grants to Local Governments (Florida) Competitive Grants to Local Governments (Florida) Competitive Grants to Local Governments (Florida) < Back Eligibility Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info Funding Source US Department of Energy State Florida Program Type Grant Program Provider Florida Department of Agriculture and Consumer Services The State of Florida distributes more than 60 percent of the State's Energy Efficiency and Conservation Block Grant Program from the US Department of Energy funds for energy efficiency and small scale renewable energy initiatives to cities and counties that were not eligible for direct formula grants from the Department of Energy. The Office of Energy is distributing these funds based on a competitive

400

Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Florida Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

402

Alternative Fuels Data Center: Florida Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

403

Alternative Fuels Data Center: Florida Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

404

Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

405

Florida's 24th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district: Energy Resources district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. US Recovery Act Smart Grid Projects in Florida's 24th congressional district Intellon Corporation Smart Grid Project Registered Energy Companies in Florida's 24th congressional district Alternative Concepts and Technology Etatech Inc Florida Power Electronics Center FPEC Florida Solar Energy Center (Building America Partnership for Improved Residential Construction FuelClinic Iosil Energy Corporation Planar Energy Devices Solis Energy Inc Energy Generation Facilities in Florida's 24th congressional district Space Coast Next Generation Solar Energy Center Solar Power Plant

406

Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

407

Alternative Fuels Data Center: Florida Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

408

Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

409

Alternative Fuels Data Center: Florida Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

410

Partnerships as a Common Thread between Disparate Organizations: Florida SunSmart  

DOE Green Energy (OSTI)

This fact sheet explains how the Florida Solar Energy Center (FSEC), a lead organization in the Florida SunSmart (FSS) Million Solar Roofs (MSR) Partnership, expanded a pilot project to include solar energy technology in Florida's weatherization efforts.

Not Available

2005-09-01T23:59:59.000Z

411

City of Longwood - Raising Energy Efficiency Program (Florida) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Longwood - Raising Energy Efficiency Program (Florida) Longwood - Raising Energy Efficiency Program (Florida) City of Longwood - Raising Energy Efficiency Program (Florida) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Insulation Appliances & Electronics Water Heating Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Maximum Rebate $500 a year Program Info Start Date 01/18/2012 State Florida Program Type Local Rebate Program Rebate Amount Varies; 10% of project cost for solar panels or photovoltaic systems (including pools) The City of Longwood offers the Raising Energy Efficiency Program (REEP) to owner occupied residences within the City of Longwood for making energy

412

City of Winter Park Energy Conservation Rebate Program (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Solar Water Heating Program Info State Florida Program Type Local Rebate Program Rebate Amount Varies based upon technology and eligible sector The City of Winter Park is now offering rebates to Winter Park electric residential and commercial customers for implementing energy conservation measures. Residential customers can qualify for rebates on duct repair, attic

413

Wekiva River and Wekiva Parkway Protection Acts (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wekiva River and Wekiva Parkway Protection Acts (Florida) Wekiva River and Wekiva Parkway Protection Acts (Florida) Wekiva River and Wekiva Parkway Protection Acts (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider

414

Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown Challenge Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

415

Florida - Compare - U.S. Energy Information Administration (EIA...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

416

,"Florida Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

417

Decision Matrices for HVAC Systems for Florida Public Schools.  

E-Print Network (OSTI)

??The purpose of this research was to develop a decision matrix that would aid the Florida Department of Education in the selection of the most (more)

Mclaughlin, Kelly

2010-01-01T23:59:59.000Z

418

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

419

Florida Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

420

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Florida Natural Gas Liquids Proved Reserves...

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Florida Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

422

Florida Quantity of Production Associated with Reported Wellhead...  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Florida Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet)...

423

Florida - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... the state's per capita residential ... It combined a 75-megawatt concentrating solar power ... Florida has a number of small combined-heat-and-pow ...

424

Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power & Light July 2012 1 Smart devices have been installed on 78 substation transformer banks. Smart Grid Solutions Strengthen Electric Reliability and Customer Services...

425

Weston-Principles of Decoupling Florida. August 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Decoupling Florida. August 2008 More Documents & Publications Decoupling: Mechanics and Issues, Presentation to the New Mexico Public Regulation Commission Energy...

426

Florida Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

427

New natural gas pipeline capacity adds service into Florida ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on BENTEK Energy, LLC Note: Daily natural gas flow data and daily pipeline capacity derived from Florida's Gas ...

428

,"Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

429

Big Coppitt Key, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigCoppittKey,Florida&oldid227749" Categories: Places Stubs Cities What links here...

430

Big Pine Key, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigPineKey,Florida&oldid227765" Categories: Places Stubs Cities What links here...

431

,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

432

Retail Unbundling - Florida - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Regulatory Actions: 05/07: Phase 2 of Central Florida's pilot approved. The PSC approved implementation of Phase 2 of the transitional transportation ...

433

City of Tallahassee Utilities - Solar Water Heating Rebate (Florida...  

Open Energy Info (EERE)

certified by the Florida Solar Energy Center (FSEC), and installed by a state-licensed solar or plumbing contractor. For installations arranged by homeowners, the contractor...

434

Green Cove Springs, Florida: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Cove Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI...

435

Cutting Electricity Costs in Miami-Dade County, Florida | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Cutting Electricity Costs in Miami-Dade County, Florida Cutting Electricity Costs in Miami-Dade County,...

436

Florida's 12th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

12th congressional district Lakeland Electric Smart Grid Project Registered Energy Companies in Florida's 12th congressional district ECr Technologies Inc formerly GeoSolar...

437

Florida's 13th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

3th congressional district Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc Retrieved from "http:en.openei.orgwindex.php?titleFlorida%27s13thcongressionaldistr...

438

Florida - Rankings - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA) Indexed Site

not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

439

Florida Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

440

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics  

E-Print Network (OSTI)

Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro-American settlement? Are fire regime changes resulting in broad vegetation changes in the forests of eastern North America? I used several approaches to address these questions. First, I used digitized fire perimeter maps from Great Smoky Mountains National Park and Shenandoah National Park for 1930-2009 to characterize spatial and temporal patterns of wildfire by aspect, elevation, and landform. Results demonstrate that fuel moisture is a primary control, with fire occurring most frequently during dry years, in dry regions, and at dry topographic positions. Climate also modifies topographic control, with weaker topographic patterns under drier conditions. Second, I used dendroecological methods to reconstruct historical fire frequency in yellow pine (Pinus, subgenus Diploxylon Koehne) stands at three field sites in the southern Appalachian Mountains. The fire history reconstructions extend from 1700 to 2009, with composite fire return intervals ranging from 2-4 years prior to the fire protection period. The two longest reconstructions record frequent fire during periods of Native American land use. Except for the recent fire protection period, temporal changes in land use did not have a significant impact on fire frequency and there was little discernible influence of climate on past fire occurrence. Third, I sampled vegetation composition in four different stand types along a topographic moisture gradient, including mesic cove, sub-mesic white pine (Pinus strobus L.) hardwood, sub-xeric oak (Quercus L.), and xeric pine forests in an unlogged watershed with a reconstructed fire history. Stand age structures demonstrate changes in establishment following fire exclusion in xeric pine stands, sub-xeric oak stands, and sub-mesic white pine-hardwood stands. Fire-tolerant yellow pines and oaks are being replaced by shade-tolerant, fire sensitive species such as red maple (Acer rubrum L.) and hemlock (Tsuga canadensis L. Carr.). Classification analysis and ordination of species composition in different age classes suggest a trend of successional convergence in the absence of fire with a shift from four to two forest communities.

Flatley, William 1977-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

442

Collection and analyses of physical data for deep injection wells in Florida.  

E-Print Network (OSTI)

??Deep injection wells (DIW) in Florida are regulated by the U.S. Environmental Protection Agency (USEPA) and the state of Florida through the Underground Injection Control (more)

Gao, Jie.

2010-01-01T23:59:59.000Z

443

St. Lucie County - Solar and Energy Loan Fund (SELF)(Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lucie County - Solar and Energy Loan Fund (SELF)(Florida) St. Lucie County - Solar and Energy Loan Fund (SELF)(Florida) Eligibility Residential Savings For Home Weatherization...

444

Tobacco Control in Florida 1999-2011: The Good, The Bad, and The Ugly  

E-Print Network (OSTI)

a Program for the Florida Restaurant Associaiton. June 14,Philip Morris. Florida Restaurant Owners Mobilize againstBan Would Hurt Bar, Restaurant Industry. September 11, 1999.

Kennedy, Allison; Sullivan, Sarah; Hendlin, Yogi; Barnes, Richard L.; Glantz, Stanton A.

2011-01-01T23:59:59.000Z

445

Florida Regional Middle School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

will be approved by the regional coordinator to participate. Competition Location Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 32922 Important Links: Coach...

446

Florida Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Florida Regions Florida Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

447

Florida Power and Light Comments on Smart Grid Request For Information...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light Comments on Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges. Florida Power and Light Comments on Smart Grid Request For...

448

Mortality in Appalachian coal mining regions: the value of statistical life lost  

SciTech Connect

We examined elevated mortality rates in Appalachian coal mining areas for 1979-2005, and estimated the corresponding value of statistical life (VSL) lost relative to the economic benefits of the coal mining industry. We compared age-adjusted mortality rates and socioeconomic conditions across four county groups: Appalachia with high levels of coal mining, Appalachia with lower mining levels, Appalachia without coal mining, and other counties in the nation. We converted mortality estimates to VSL estimates and compared the results with the economic contribution of coal mining. We also conducted a discount analysis to estimate current benefits relative to future mortality costs. The heaviest coal mining areas of Appalachia had the poorest socioeconomic conditions. Before adjusting for covariates, the number of excess annual age-adjusted deaths in coal mining areas ranged from 3,975 to 10,923, depending on years studied and comparison group. Corresponding VSL estimates ranged from $18.563 billion to $84.544 billion, with a point estimate of $50.010 billion, greater than the $8.088 billion economic contribution of coal mining. After adjusting for covariates, the number of excess annual deaths in mining areas ranged from 1,736 to 2,889, and VSL costs continued to exceed the benefits of mining. Discounting VSL costs into the future resulted in excess costs relative to benefits in seven of eight conditions, with a point estimate of $41.846 billion.

Hendryx, M.; Ahern, M.M. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-07-15T23:59:59.000Z

449

Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. The authors hypothesize that, if other environmental factors are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten, C.T. Jr.; Cooper, L.W.; Post, W.M. III; Hanson, P.J.

2000-04-01T23:59:59.000Z

450

Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains  

SciTech Connect

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil (20 cm deep) is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. We hypothesize that, if other environmental factors (like soil moisture) are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten Jr, Charles T [ORNL; Cooper, Lee W [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL

2000-04-01T23:59:59.000Z

451

The 12 July 1995 Pinellas County, Florida, Tornado/Waterspout  

Science Conference Proceedings (OSTI)

On 12 July 1995, a tornado developed over south St. Petersburg, Florida, producing F1 damage and injuring one person before moving offshore. The tornado/waterspout was within 25 km of the Ruskin Florida WSR-88D, which provided detailed radar ...

Waylon G. Collins; Charles H. Paxton; Joseph H. Golden

2000-02-01T23:59:59.000Z

452

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network (OSTI)

The 2007 Florida Building Code (ICC, 2008) requires building designers and architects to achieve a minimum energy efficiency rating for commercial buildings located throughout Florida. Although the Florida Building Code is strict in the minimum requirements for new construction, several aspects of building construction can be further improved through careful thought and design. This report outlines several energy saving features that can be used to ensure that new buildings meet a new target goal of 85% energy use compared to the 2007 energy code in order to achieve Governor Crists executive order to improve the energy code by 15%. To determine if a target goal of 85% building energy use is attainable, a computer simulation study was performed to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency. The impacts of reducing outside air requirements and employing solar water heating were also investigated. The purpose of the energy saving features described in this document is intended to provide a simple, prescriptive method for reducing energy consumption using the methodology outlined in ASHRAE Standard 90.1 (ASHRAE, 2007). There are two difficulties in trying to achieve savings in non-residential structures. First, there is significant energy use caused by internal loads for people and equipment and it is difficult to use the energy code to achieve savings in this area relative to a baseline. Secondly, the ASHRAE methodology uses some of the same features that are proposed for the new building, so it may be difficult to claim savings for some strategies that will produce savings such as improved ventilation controls, reduced window area, or reduced plug loads simply because the methodology applies those features to the comparison reference building. Several measures to improve the building envelope characteristics were simulated. Simply using the selected envelope measures resulted in savings of less than 10% for all building types. However, if such measures are combined with aggressive lighting reductions and improved efficiency HVAC equipment and controls, a target savings of 15% is easily attainable.

Raustad, R.; Basarkar, M.; Vieira, R.

2008-12-01T23:59:59.000Z

453

Regulation of Oil and Gas Resources (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Department of Environmental Protection It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment of the rights of landowners, producers, and interested parties; and to safeguard the health,

454

Florida Power & Light Co. | Open Energy Information  

Open Energy Info (EERE)

Florida Power & Light Co. Florida Power & Light Co. (Redirected from Florida Power & Light Company) Jump to: navigation, search Name Florida Power & Light Co Place Miami, Florida Website www.fpl.com/ Utility Id 6452 Utility Location Yes Ownership I NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data[2] SGIG Category[3] Tariff Page[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

455

Florida County Seeks to Reduce Emissions and Improve Traffic | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Seeks to Reduce Emissions and Improve Traffic Florida County Seeks to Reduce Emissions and Improve Traffic Florida County Seeks to Reduce Emissions and Improve Traffic September 27, 2010 - 10:30am Addthis A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo | A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo | Lindsay Gsell What does this project do? St. Johns County, Florida uses Recovery Act funding to resynchronize 23 traffic signals at five major segments of roadway. The new light patterns will save nearly 729,000 gallons of gas and reduce CO2 emissions by more than 2,200 metric tons. The intersection of State Road A1A and State Road 312 in St. Augustine is messy at 5 o'clock. On one side, tourists returning from Florida's

456

Qualified Target Industry Tax Refund (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Target Industry Tax Refund (Florida) Qualified Target Industry Tax Refund (Florida) Qualified Target Industry Tax Refund (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Corporate Tax Incentive Sales Tax Incentive Provider Enterprise Florida The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full-time employee, $6000 in an Enterprise Zone. More tax refunds are available if companies reach certain wage levels. This incentive also includes refunds on corporate income, sales, ad valorem, intangible personal property,

457

Florida's 19th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. Registered Energy Companies in Florida's 19th congressional district AE Biofuels Inc formerly Marwich II Ltd Advanced Green Technologies Apollo Energy Systems Inc Atlas Solar Innovations BTX Holdings Inc Biomass Resources Corporation China Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc Citrus Energy LLC Cyclone Power Technologies Inc Ener1 Inc EnerFuel Energy 5 0 Energy 5 0 LLC Enerize Corp Hydro Alternative Energy LPG Electrical, Inc NanoEner Technologies Power Tree Corp RAM Capital Management Group Renewable Spirits LLC Silescent Lighting Corp SmartGridCareers.com Southeast Renewable Fuels LLC SRF Registered Financial Organizations in Florida's 19th congressional district USGlobal LLC Retrieved from "http://en.openei.org/w/index.php?title=Florida%27s_19th_congressional_district&oldid=182748

458

DOE - Office of Legacy Management -- University of Florida - FL 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida - FL 09 Florida - FL 09 FUSRAP Considered Sites Site: UNIVERSITY OF FLORIDA (FL.09) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Gainesville , Florida FL.09-1 Evaluation Year: 1995 FL.09-1 Site Operations: Research and development using test quantities of radioactive metal. FL.09-2 Site Disposition: Eliminated - No Authority - NRC licensed FL.09-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Test Quantities of Uranium and Plutonium FL.09-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to NRC FL.09-2 Also see Documents Related to UNIVERSITY OF FLORIDA FL.09-1 - DOE Letter; Wagoner to DeLaney; Subject: University of

459

City of Leesburg, Florida (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Leesburg, Florida (Utility Company) Leesburg, Florida (Utility Company) (Redirected from City of Leesburg, Florida) Jump to: navigation, search Name City of Leesburg Place Leesburg, Florida Utility Id 10868 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Leesburg, Florida Smart Grid Project was awarded $9,748,812 Recovery Act Funding with a total project value of $19,497,625. Utility Rate Schedules Grid-background.png Commercial Demand Commercial

460

"2. Turkey Point","Nuclear","Florida Power & Light Co",3334  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "1. Martin","Gas","Florida Power & Light Co",3695 "2. Turkey Point","Nuclear","Florida Power & Light Co",3334 "3. Crystal River","Coal","Progress Energy Florida Inc",3151 "4. Manatee","Gas","Florida Power & Light Co",2735 "5. West County Energy Center (WCEC)","Gas","Florida Power & Light Co",2438 "6. Fort Myers","Gas","Florida Power & Light Co",2403 "7. Sanford","Gas","Florida Power & Light Co",2050 "8. Hines Energy Complex","Gas","Progress Energy Florida Inc",1912 "9. H. L. Culbreath Bayside","Gas","Tampa Electric Co",1854

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CHAIR OF THE DEPARTMENT OF CHEMICAL & BIOMEDICAL ENGINEERING The Florida A & M University -Florida State University, College of Engineering  

E-Print Network (OSTI)

.eng.fsu.edu/cbe/research/) include: Biomass conversion to biofuels & value added chemicals Cellular & tissue engineering Designer is filled. Application materials in PDF format should be sent electronically via: https://jobs.fsu.edu, choose Job Opening ID #35044. The Florida A & M University and Florida State University are AA

Weston, Ken

462

Florida Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 375,090 409,248 765,597 854,064 886,147 859,996 1980's 279,690 272,239 270,004 265,840 247,870 218,288 228,721 226,028 260,627 1990's 258,984 222,893 226,254 207,975 10,265 9,061 8,514 8,364 8,174 8,439 2000's 7,844 7,186 6,063 5,771 4,805 3,584 3,972 2,422 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Processed Florida Natural Gas Plant Processing

463

ANALYSIS, MODELING, AND SIMULATION OF THE TIDES IN THE LOXAHATCHEE RIVER ESTUARY (SOUTHEASTERN FLORIDA)  

E-Print Network (OSTI)

of Central Florida, the Florida Department of Environmental Protection, and the South Florida Water firsthand by studying under his direction. I would also like to thank Drs. Manoj Chopra and Gour-Tsyh Yeh; Dr. Gordon Hu and other South Florida Water Management District (SFWMD) members for coordinating

Central Florida, University of

464

Soil Carbon Dynamics Along an Elevation Gradient in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

The role of soil C dynamics in the exchange of CO{sub 2} between the terrestrial biosphere and the atmosphere is at the center of many science questions related to global climate change. The purpose of this report is to summarize measured trends in environmental factors and ecosystem processes that affect soil C balance along elevation gradients in the southern Appalachian Mountains of eastern Tennessee and western North Carolina, USA. Three environmental factors that have potentially significant effects on soil C dynamics (temperature, precipitation, and soil N availability) vary in a predictable manner with altitude. Forest soil C stocks and calculated turnover times of labile soil C increase with elevation, and there is an apparent inverse relationship between soil C storage and mean annual temperature. Relationships between climate variables and soil C dynamics along elevation gradients must be interpreted with caution because litter chemistry, soil moisture, N availability, and temperature are confounded; all potentially interact in complex ways to regulate soil C storage through effects on decomposition. Some recommendations are presented for untangling these complexities. It is concluded that past studies along elevation gradients have contributed to a better but not complete understanding of environmental factors and processes that potentially affect soil C balance. Furthermore, there are advantages linked to the use of elevation gradients as an approach to climate change research when hypotheses are placed in a strong theoretical or mechanistic framework. Climate change research along elevation gradients can be both convenient and economical. More importantly, ecosystem processes and attributes affecting soil C dynamics along elevation gradients are usually the product of the long-term interactions between climate, vegetation, and soil type. Investigations along elevation gradients are a useful approach to the study of environmental change, and its effect on soil processes, which can complement data obtained from controlled, large-scale, field experiments as well as other empirical and theoretical approaches to climate change research.

Garten Jr., C.T.

2004-04-13T23:59:59.000Z

465

Progress Energy Florida - Home Energy Check Audit and Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Florida - Home Energy Check Audit and Rebate Program Progress Energy Florida - Home Energy Check Audit and Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Windows, Doors, & Skylights Maximum Rebate Duct Test: $$150 Duct Repair: $100 per unit Reflective Roof: $150 Wall Insulation: $300 Replacement Windows - $250 Window Films/Screens - $100 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat Pump (Heat Pump Replacement): $100 - $150 Heat Pump (Strip Heat Replacement): $250 - $350

466

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

467

"1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 "3. Mt Storm","Coal","Virginia Electric & Power Co",1571 "4. Mitchell","Coal","Ohio Power Co",1560 "5. Mountaineer","Coal","Appalachian Power Co",1310 "6. Pleasants Power Station","Coal","Allegheny Energy Supply Co LLC",1288 "7. Fort Martin Power Station","Coal","Monongahela Power Co",1107 "8. Philip Sporn","Coal","Appalachian Power Co",1020 "9. Kammer","Coal","Ohio Power Co",600

468

On High Winds and Foehn Warming Associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Extremely high winds of 4049 m s?1 [90110 miles per hour (mph)] were reported across the western foothills of the southern Appalachian Mountains on 2223 December 2004, 17 October 2006, 2425 February 2007, and 1 March 2007. The high winds in ...

David M. Gaffin

2009-02-01T23:59:59.000Z

469

USCG Multi-site UESC in Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-site UESC in Multi-site UESC in Florida April 11, 2012 USCG: Daniel Gore, Jesse Maestas, FPL: Ed Anderson Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA US COAST GUARD ENERGY PROGRAM PERSPECTIVE Mr. Danny Gore USCG Energy Program Manager Shore Energy Conservation Metrics Energy Management Requirement Percent Change FY 2003 - FY 2011 FY 2011 Goal Target Reduction in energy intensity in facilities subject to the NECPA/E.O. 13423 goals from FY2003 Baseline -26.4% 18.0% Renewable Energy Requirement FY 2011 Percentage FY 2011 Goal Target Self Generated Renewable Energy Credits Eligible renewable electricity use as a percentage of total electricity use -7.1% 5.0% 39.1% 60.9% Water Intensity Reduction Requirement FY 2011 Percentage

470

July 1, 2008 College of Engineering and Mineral Resources  

E-Print Network (OSTI)

of the Appalachian basin, the application of nuclear fuel reprocessing technology to the separation of petroleum

Mohaghegh, Shahab

471

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

472

AEO2011: Electric Power Projections for EMM Region - Florida Reliability  

Open Energy Info (EERE)

Florida Reliability Florida Reliability Coordinating Council Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 74, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Florida projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Florida Reliability Coordinating Council- Reference Case (xls, 259.3 KiB)

473

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

474

Florida City Gas - Residential Energy Smart Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Gas - Residential Energy Smart Rebate Program City Gas - Residential Energy Smart Rebate Program Florida City Gas - Residential Energy Smart Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Appliances & Electronics Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Water Heater: $350 - $500 Tankless Water Heater: $550 - $ 675 Furnace: $500 - $725 Cooking Range: $100 - $200 Dryer: $100 - $150 Space Conditioning Conversion: $1,200 Provider Florida City Gas Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate amounts depend on whether appliances are converted from a different power source or natural

475

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

476

Renewable Energy Production Tax Credit (Florida) | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credit (Florida) This is the approved revision of this page, as well...

477

Is Florida's Growth Management Act protecting agricultural lands?  

E-Print Network (OSTI)

Florida has experienced more population growth over the past half century than any other state, which has led to some of the most extensive urban development on valuable agricultural lands. To address this and other impacts ...

Lloyd, Stephen (Stephen Charles Rhys)

2011-01-01T23:59:59.000Z

478

The Preconvective Environment of Summer Thunderstorms over the Florida Panhandle  

Science Conference Proceedings (OSTI)

The preconvective environment of summer thunderstorms over the Florida Panhandle is investigated. Geostationary satellite imagery as well as surface and radiosonde data were examined during the summers of 1990 and 1991. Days were classified ...

Henry E. Fuelberg; David G. Biggar

1994-09-01T23:59:59.000Z

479

Florida Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Florida Regions Florida Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Florida Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Florida Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

480

City of Leesburg, Florida Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

City of Leesburg, Florida City of Leesburg, Florida Country United States Headquarters Location Leesburg, Florida Recovery Act Funding $9,748,812.00 Total Project Value $19,497,625.00 Coverage Area Coverage Map: City of Leesburg, Florida Smart Grid Project Coordinates 28.810823°, -81.8778582° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "appalachian basin florida" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Florida Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities - Commercial Energy Efficiency Rebate Public Utilities - Commercial Energy Efficiency Rebate Programs Florida Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Maximum Rebate Lamp Only Lighting Upgrade: $100 Window Film: $100 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Ballast and Lamp Lighting Upgrade: $0.10/watt saved Lamp Only Lighting Upgrade: $0.025/watt saved AC/Heat Pump: $100 Window Film: $0.50/sq. ft. Chiller: Up to $100/kW Provider Florida Public Utilities Florida Public Utilities offers the Energy for Life Conservation program to