Sample records for appalachian basin florida

  1. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01T23:59:59.000Z

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  2. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01T23:59:59.000Z

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  3. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01T23:59:59.000Z

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  4. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    20.69 19.60 -5.3% 74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan 13.74 16.13 17.4% 99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New...

  5. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Gasoline and Diesel Fuel Update (EIA)

    19.73 19.64 -0.4% 81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W 14.02 W 76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W...

  6. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect (OSTI)

    Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

    1991-08-01T23:59:59.000Z

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  7. Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002

    SciTech Connect (OSTI)

    Milici, R.C.; Hatch, J.R.

    2004-09-15T23:59:59.000Z

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

  8. Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

  9. New oilfield air bit improves drilling economics in Appalachian Basin

    SciTech Connect (OSTI)

    Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

    1994-12-31T23:59:59.000Z

    Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

  10. Salt-related structures in northern Appalachian basin

    SciTech Connect (OSTI)

    Towey, P.

    1988-08-01T23:59:59.000Z

    The Plateau province of the northern Appalachian basin is characterized by a series of sharp, detached, thrust-faulted anticlines roughly parallel with the Allegheny Front. In southwestern Pennsylvania and northern West Virginia, major thrusting of Alleghenian age is dominantly from the east, with numerous smaller thrusts from the west. Although the principal decollement is in the Silurian Salina Group, evidence of deeper detachment zones close to the front is abundant. In central and northern Pennsylvania, however, major thrusting is from the west. In those areas, thrusts from the east are rare to absent. Folds there are thin skinned above a decollement in the Salina Group, with no evidence of deeper detachment. Some recent workers have dismissed thrusting from the west as merely back thrusts of Alleghenian age, but seismic and well information indicate that the structural history of the Plateau province was dominated by a tectonic regime characterized by faults from the west and later overprinted near the structural front by the structures of the Alleghenian orogeny with its compression from the east. The basic idea is not new, but evidence in support of it has not been widely published.

  11. CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION

    E-Print Network [OSTI]

    of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin favorable reservoirs for carbon sequestration due to their thickness, depth, rank, and permeability high gas content should provide the optimum reservoirs for carbon sequestration since these coals

  12. Eustatic and tectonic control of sedimentation in the Pennsylvanian strata of the Central Appalachian Basin

    SciTech Connect (OSTI)

    Chesnut, D.R. Jr. (Univ. of Kentucky, Lexington, KY (United States). Kentucky Geological Survey)

    1992-01-01T23:59:59.000Z

    Analysis of the Breathitt Group of the Central Appalachian Basin reveals three orders of depositional cycles or trends. The Breathitt coarsening-upward trend (20 million years (my)) represents increasing intensity of the Alleghenian Orogeny. The major transgression (MT) cycle (2.5 my) was controlled by an unknown eustatic or tectonic mechanism. The major coal beds and intervening strata make up the coal-clastic cycle (CC cycle) (=Appalachian cyclothem) which has a 0.4 my periodicity. This periodicity supports eustatic control of sedimentation modulated by an orbital periodicity. Extensive coastal peats deposited at lowstand (CC cycle) were preserved as coals, whereas highstand peats were eroded during the subsequent drop in sea level. Autocyclic processes such as delta switching and avulsion occurred within CC cycles. An Early Pennsylvanian unconformity represents uplift and erosion of mid-Carboniferous foreland basin deposits. Alluvial deposits (Breathitt Group) derived from the highlands were transported to the northwest toward the forebulge. During lowstand, the only outlet available to further sediment transport (Lee sandstones) was toward the southwest (Ouachita Trough), along the Black Warrior-Appalachian foreland basins. The Middle Pennsylvanian marks a period of intermittent overfilling of the foreland basin and cresting of the forebulge. Marine transgressions entered through the foreland basins and across saddles in the forebulge. After the Ouachita Trough was destroyed during the late Middle Pennsylvanian, marine transgressions migrated only across saddles in the forebulge. In the Late Pennsylvanian, marine waters entered the basin only across the diminished forebulge north of the Jessamine Dome.

  13. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    SciTech Connect (OSTI)

    Potter, P.E.; Maynard, J.B.; Pryor, W.A.

    1981-01-01T23:59:59.000Z

    The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

  14. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  15. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  16. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect (OSTI)

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01T23:59:59.000Z

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  17. appalachian basin exploration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits Geosciences Websites Summary: Mobile Pb-isotopes in Proterozoic sedimentary...

  18. appalachian basin gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Danis A. Wiloso; Eddy A. Subroto; Eddy Hermanto 2009-01-01 102 Depositional environment and reservoir morphology of Canyon sandstones, Central Midland Basin, Texas Texas...

  19. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

    2004-04-01T23:59:59.000Z

    Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

  20. Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin

    SciTech Connect (OSTI)

    Daly, A.R.

    1988-01-01T23:59:59.000Z

    Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

  1. Geohydrologic feasibility study of the Northern and Central Appalachian basin areas for the potential application of a production process patented by Jack W. McIntyre

    SciTech Connect (OSTI)

    Kvasnicka, D.

    1994-03-01T23:59:59.000Z

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of a patented (US Patent Office No. 4,766,957) process developed by Jack W. McIntyre for the recovery of natural gas from coalbed/sand formations in the Northern and Central Appalachian basin areas. General research, based on a review of published literature from both public and private sources, indicates that the generally thin, but numerous coalbeds found in the greater Appalachian Basin area do exhibit some potential for the application of this patented process. Estimates of total gas reserves in-place (Gas Research Institute, July 1991) for coalbeds in the Central and Northern Appalachian Basin areas are 5 trillion cubic feet (TCF) and 61 TCF respectively. Produced waters associated with coal deposits in the greater Appalachian Basin area can be characterized on the basis of established but limited production of coalbed methane. Central Appalachian coals generally produce small quantities of water (less than 50 barrels of water per day for the average producing well) which is high in total dissolved solids (TDS), greater than 30,000 parts per million (ppM). The chemical quality of water produced from these coal seams represents a significant disposal challenge to the operators of methane-producing wells in the Central Appalachian Basin. By contrast, water associated with the production of coalbed methane in the Northern Appalachian Basin is generally fair to good quality, and daily production volumes are low. However, the relatively slow desorption of methane gas from Northern Appalachian coals may result in a greater net volume of produced water over the economic life of the well. The well operator must respond to long-term disposal needs.

  2. Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin

    SciTech Connect (OSTI)

    Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

    1996-09-01T23:59:59.000Z

    Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

  3. Preliminary analysis of Devonian shale oil production in the Appalachian Basin

    SciTech Connect (OSTI)

    Duda, J.R.

    1985-12-01T23:59:59.000Z

    Devonian shale production has been continuous for many years in the Appalachian Basin. In the northwest portion of West Virginia and the southeast area of Ohio, the shale produces liquid hydrocarbons. A few wells have reported initial potentials (IP's) in excess of 1000 barrels per day (bpd). Inherent to this unconventional resource (low pressure, low permeability, low porosity, and naturally-fractured) is a rapid rate of production decline such that, after 4 to 6 months, many wells become inoperable. The US Department of Energy's (DOE's) Morgantown Energy technology Center. (METC) anticipates investigating the occurrence of liquid hydrocarbons in the shale, as well as the reservoir engineering and fluid properties aspects. DOE/METC intends to offer producers in the area information, techniques, and procedures that will optimize liquid production. Besides new well drilling ventures, results of the investigation should affect the approximately 2000 shale wells that are already completed but are plagued by a rapid decline in production. Ideally, these older wells will be regenerated, at least to some degree, leading to further resource exploitation. This report summarizes some of the available production data, characterizes decline rates for selected wells, and specifies a refined study area of high resource potential. 11 refs., 14 figs., 1 tab.

  4. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30T23:59:59.000Z

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  5. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01T23:59:59.000Z

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

  6. Fractures in oriented Devonian-shale cores from the Appalachian Basin. Vol. 1

    SciTech Connect (OSTI)

    Evans, M.A.

    1980-01-01T23:59:59.000Z

    Examination of thirteen oriented Devonian-shale cores from the Appalachian Basin revealed considerable fracturing and shearing at depth. Fracture frequency and orientation measurements were made on the fractures in each core. Fractures and associated structures were differentiated into core-induced fractures, unmineralized natural fractures, mineralized natural fractures, slickensided fractures, and slickenlines. Core-induced fractures exhibit a consistent northeast orientation both areally and with depth. This consistency indicates the presence of an anisotropy which is interpreted to be related to an east to northeast trending maximum compressive stress developed in eastern North America by the convective flow in the mantle associated with spreading along the Mid-Atlantic Ridge. Natural fracture, slickenside, and slickenline orientations are related to: (1) northwest directed tectonic compressive stresses associated with Alleghenian deformation, (2) stresses associated with local faulting, and (3) the same east to northeast maximum compressive stress responsible for the core-induced fractures. Higher frequencies of natural fractures and slickensides are associated primarily with incompetent, high-organic shales. Natural fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, and the Lower Huron Member of the Ohio Shale. Slickensided fractures occur most frequently in the Marcellus Shale, Tully Limestone, Geneseo Shale, West Falls Formation, base of the Java Formation, and Lower Huron and Cleveland Members of the Ohio Shale. These observations are consistent with a fracture facies concept that proposes fracture development in shales that have acted as decollement zones during Alleghenian deformation. Detailed reports are included in Volume 2 for each of the thirteen cores investigated. 25 figures, 4 tables.

  7. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01T23:59:59.000Z

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin sections, leading to an interpretation of the sequence of diagenetic events and development of porosity in the reservoir. Nearly 1000 stable isotope geochemistry samples have been collected from cores in four of the five states in the study area. More than 400 of these samples will be analyzed for fluid inclusion and/or strontium isotope analyses, as well. Gas samples have been collected from 21 wells in four states and analyzed for chemical content and isotope analyses of carbon and hydrogen. Because natural gases vary in chemical and isotope composition as a function of their formation and migration history, crossplots of these values can be very revealing. Gas from the Homer field in Kentucky indicates compartmentalization and at least two different sources. Gas from the York field in Ohio also came from at least two discrete compartments. Gas from the Cottontree field in West Virginia is very dry, probably generated from post-mature source rocks. Isotope reversals may be indicative of cracking of residual oil. Gas from Glodes Corners Road field in New York also is post-mature, dry gas, and again isotope reversals may indicate cracking of residual oil in the reservoir. Noble gases are predominantly of crustal origin, but a minor helium component was derived from the mantle. The project web server continues to evolve as the project progresses. The user/password authenticated website has 18 industry partner users and 20 research team users. Software has been installed to track website use. Two meetings of the research team were held to review the status of the project and prepare reports to be given to the full consortium. A meeting of the full consortium--industry partners and researchers--was very successful. However, the ultimate product of the research could be improved if industry members were more forthcoming with proprietary data.

  8. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01T23:59:59.000Z

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  9. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31T23:59:59.000Z

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

  10. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31T23:59:59.000Z

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  11. Abstract the search for new oil reserves in Florida and its offshore basins

    SciTech Connect (OSTI)

    Applegate, A.V.

    1985-01-01T23:59:59.000Z

    Potential for new oil discoveries both on land and offshore in Florida appears to be best in the offshore portion of the South Florida Basin and in the areas in northwest Florida which are underlain by the Smackover Formation. Evidence for this appraisal includes newly acquired deep reflection seismic lines in the South Florida Basin. Geologic features believed to be present include Paleozoic strata lying unconformably beneath an igneous flow, normal faulting, and reefal development in carbonate rocks. In offshore northwest Florida, although no official announcement has been made, there is a strong possibility that a thick section of pay is present in the Smackover and Norphlet Formations in OCS-G-6417 on the Destin Dome about 40 miles south of the city of Destin. This well and the excellent Norphlet tests in the Mobile Bay area should lead to more wildcat well drilling in northwest Florida. Paleozoic drilling in Florida has ceased, and large blocks of acreage have been dropped after five dry holes were drilled in the past few years. The Sunniland Formation of Lower Cretaceous is a favorite and enduring target. The Sunniland Field was discovered in 1943 and an estimated 100 million barrels of reserves have been found in the six major fields in the South Florida Basin.

  12. CERP, C&SF, Caloosahatchee River (C-43) West Basin Storage Project, Hendry County, Florida

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Selected Plan provides approximately 170,000 acre-feet of above-ground storage volume in a twoCERP, C&SF, Caloosahatchee River (C-43) West Basin Storage Project, Hendry County, Florida 23 August 2007 Abstract: The purpose of the Caloosahatchee River (C-43) West Basin Storage Reservoir project

  13. The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin 

    E-Print Network [OSTI]

    Lancaster, David Earl

    1988-01-01T23:59:59.000Z

    gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

  14. The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin

    E-Print Network [OSTI]

    Lancaster, David Earl

    1988-01-01T23:59:59.000Z

    gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

  15. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2004-05-31T23:59:59.000Z

    This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  16. Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration

    SciTech Connect (OSTI)

    Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

    2005-09-30T23:59:59.000Z

    Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few months from regional to more detailed structural analyses. This new effort will include topics such as the determination of the source of the hot, dolomitizing fluids that created hydrothermal dolomite reservoirs in the Black River, and the probable migration paths of these fluids. Faults of suitable age, orientation and location to be relevant for hydrothermal dolomite creation in the Trenton-Black River play will be isolated and mapped, and potential fairways delineated. A detailed study of hydrothermal alteration of carbonate reservoirs was completed and is discussed at length in this report. New ideas that were developed from this research were combined with a literature review and existing concepts to develop a model for the development of hydrothermal dolomite reservoirs in the study area. Fault-related hydrothermal alteration is a key component of this model. Hydrothermal alteration produces a spectrum of features in reservoirs, ranging from leached limestone and microporosity to matrix dolomite, saddle dolomite-lined breccias, zebra fabrics and fractures. Mineralization probably occurred during the pressure drop associated with the rise of fluids up the fault system, and is due to the mixing of hydrothermal fluids with cooler, in situ fluids. Once they began to cool themselves, the hydrothermal fluids, which had a lower pH and higher salinity than formation fluids, were capable of leaching the host limestones. Microporosity is common in leached limestones, and it is likely that it was formed, in some cases, during hydrothermal alteration. Dolomite leaching occurs near the end of the paragenetic sequence, and may significantly enhance porosity. However, leaching of dolomite typically is followed by the precipitation of calcite or anhydrite, which reduces porosity. A final conclusion is that hydrothermal alteration may be more common than previously thought, and some features previously attributed to other processes may be in fact be hydrothermal in origin. Production d

  17. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01T23:59:59.000Z

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  18. Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station

    SciTech Connect (OSTI)

    Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31T23:59:59.000Z

    Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

  19. SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA

    SciTech Connect (OSTI)

    Douglas G. Patchen

    2000-12-01T23:59:59.000Z

    Two independent high-resolution aeromagnetic surveys flown by Airmag Surveys, Inc. and interpreted by Pearson, de Ridder and Johnson, Inc were merged, processed and reinterpreted by Pearson, de Ridder and Johnson, Inc for this study. Derived products included depth filtered and reduced to pole maps of total magnetic intensity, vertical and horizontal gradients, interpreted STARMAG structure, lineament analysis and an overall interpretation. The total magnetic intensity patterns of the combined survey conformed reasonably well to those of coarser grid, non-proprietary regional aeromagnetic surveys reviewed. The merged study also helped illustrate regional basement patterns adjacent to and including the northwest edge of the Rome trough. The tectonic grain interpreted is dominantly southwest-northeast with a secondary northwest-southeast component that is consistent with this portion of the Appalachian basin. Magnetic susceptibility appears to be more important locally than basement structure in contributing to the magnetic intensity recorded, based on seismic to aeromagnetic data comparisons made to date. However, significant basement structures cannot be ruled out for this area, and in fact are strongly suspected to be present. The coincidence of the Henderson Dome with a total magnetic intensity low is an intriguing observation that suggests the possibility that structure in the overlying Lower Paleozoic section may be detached from the basement. Rose diagrams of lineament orientations for 2.5 minute unit areas are more practical to use than the full-quadrangle summaries because they focus on smaller areas and involve less averaging. Many of these illustrate a northeast bias. Where orientations abruptly become scattered, there is an indication of intersecting fractures and possible exploration interest. However, the surface lineament study results are less applicable in a practical sense relative to the seismic, subsurface or aeromagnetic control used. Subjectivity in interpretation and uncertainty regarding the upward propagation of deeper faulting through multiple unconformities, salt-bearing zones and possible detachments are problematic. On the other hand, modern day basement-involved earthquakes like the nearby 1998 Pymatuning event have been noted which influenced near-surface, water-bearing fractures. This suggests there is merit in recognizing surface features as possible indicators of deeper fault systems in the area. Suggested future research includes confirmation of the natural mode-conversion of P-waves to down going S-waves at the level of the Onondaga Limestone, acquisition of 3-C, 2-D seismic as an alternative to more expensive 3-D seismic, and drilling one or two test wells in which to collect a variety of reservoir information. Formation Imaging Logs, a Vertical Seismic Profile and sidewall cores would be run or collected in each well, providing direct evidence of the presence of fractures and the calibration of fractured rocks to the seismic response. If the study of these data had indicated the presence of fractures in the well(s), and efforts to calibrate from well bores to VSPs had been successful, then a new seismic survey would have been designed over each well. This would result in a practical application of the naturally mode-converted, multi-component seismic method over a well bore in which microfractures and production-scale fractures had been demonstrated to exist, and where the well-bore stratigraphy had been correlated from well logs to the seismic response.

  20. Alabama's Appalachian overthrust amid exploratory drilling resurgence

    SciTech Connect (OSTI)

    Taylor, J.D. (J.R. Holland and Associates, Northport, AL (US)); Epsman, M.L.

    1991-06-24T23:59:59.000Z

    Oil and gas exploration has been carried out sporadically in the Appalachian overthrust region of Alabama for years, but recently interest in the play has had a major resurgence. The Appalachian overthrust region of Alabama is best exposed in the valley and ridge physiographic province in the northeast part of the state. Resistant ridges of sandstone and chert and valleys of shales and carbonate have been thrust toward the northwest. Seismic data show that this structural style continues under the Cretaceous overlap. The surface and subsurface expression of the Alabama overthrust extends for more than 4,000 sq miles. Oil and gas have been produced for many years from Cambro-Ordovician, Ordovician, Mississippian, and Pennsylvanian rocks in the nearby Black Warrior basin in Alabama and Mississippi and the Cumberland plateau in Tennessee. The same zones are also potential producing horizons in the Alabama overthrust region.

  1. INTEGRATED BASIN ANALYSIS OF THE MARCELLUS FORMATION IN THE

    E-Print Network [OSTI]

    Slingerland, Rudy

    . of the Appalachian Basin requires accurate knowledge of their sedimentological, geochemical, and geomechanical performance is to first quantitatively relate gas content and geomechanical and petrophysical rock

  2. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    SciTech Connect (OSTI)

    Blount, G.; Millings, M.

    2011-08-01T23:59:59.000Z

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

  3. Florida Venture Capital Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Venture Capital Program provides equity investments and convertible debt instruments to emerging Florida companies and companies locating in Florida with long-term growth potential. ...

  4. Evaporite-bearing sequences in the Zechstein and Salina Basins, with a discussion on the origin of their cyclic features 

    E-Print Network [OSTI]

    Szatmari, Peter

    1972-01-01T23:59:59.000Z

    Factors controlling cyclic sedimentation are discussed in a parallel study of two evaporite-bearing sequence, the Zechstein of Germany and the Silurian Salina Group of the Appalachian Basin. The Zechstein sequence was deposited in a basin that had...

  5. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  6. Tectonic setting and origin of the Black Warrior basin

    SciTech Connect (OSTI)

    Thomas, W.A.; Whiting, B.M. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Black Warrior basin has a triangular outline that is framed by the Ouachita thrust belt on the southwest, the Appalachian thrust belt on the southeast, and the North American craton on the north. The stratigraphy of the Black Warrior basin includes two distinct parts: a Cambrian-Mississippian passive-margin carbonate-shelf succession, and a Mississippian-Pennsylvanian clastic succession, the lower (Mississippian) part of which grades northeastward into a carbonate-shelf facies. The provenance and dispersal system of the Mississippian-Pennsylvanian clastic deposits have been interpreted in four different ways, each of which has significantly different implications for origin of the basin: (1) Ouachita orogenic source and northeastward prograding; (2) Alabama Appalachian orogenic source and northwestward prograding; (3) Georgia-tennessee Appalachian orogenic source and westward prograding; and (4) cratonic source and southward prograding. Subsidence history determined from calculations of decompacted thickness indicates that (1) the Black Warrior basin is an orogenic foreland basin related primarily to the Ouachita thrust load on the southwest; (2) later emplacement of the Alabama Appalachian thrust belt modified the southeastern side of the Ouachita-related Black Warrior foreland basin; and (3) a separate foreland basin, representing the southern end of the Appalachian foreland basin, formed in response to the Georgia-Tennessee Appalachian thrust load. The previously used criteria do not necessarily support a unique interpretation, but synthesizing these data with subsidence history leads to the conclusion that the Black Warrior basin is a tectonically driven, orogenic foreland basin dominated by Ouachita thrusting and modified by Appalachian thrusting.

  7. Florida Growth Fund (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

  8. Study seeks to boost Appalachian gas recovery

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

  9. APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP

    E-Print Network [OSTI]

    Engel, Jonathan

    customized community economic development engagement strategies. · Provide on-site Partnership evaluation to undertake new economic development programs. Communication, Sustainability, and Evaluation--Years 1, 2 and 3APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP The UNC-Chapel Hill Office

  10. Page 1 of 3 Appalachian State University

    E-Print Network [OSTI]

    Rose, Annkatrin

    with the department head and appropriate vice chancellor. · Physical Plant · New River Light & Power · Food Service In the event of severe weather conditions, emergency situations, or serious public health threats, Appalachian

  11. The Appalachian Laboratory Graduate Student Handbook

    E-Print Network [OSTI]

    Boynton, Walter R.

    Biology/Biotechnology ....................... 11 Environmental Science. UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE APPALACHIAN LABORATORY #12;2 Table of Contents for Environmental Science .........................................6 Highlights of some of the University

  12. Florida Capital Access Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Capital Access Program, run by the Florida Department of Economic Development, is a loan portfolio insurance program enabling lenders to make loans to credit-worthy small businesses. ...

  13. AEP Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia)

    Broader source: Energy.gov [DOE]

    Appalachian Power and Wheeling Power are offering prescriptive incentives under the APCo C&I Prescriptive program to facilitate the implementation of cost-effective energy efficiency...

  14. appalachian region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thaxton, Christopher S. 27 ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY Fossil Fuels Websites Summary: , natural gas demand is forecast to increase through 2035. The...

  15. appalachian ohio region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thaxton, Christopher S. 34 ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY Fossil Fuels Websites Summary: , natural gas demand is forecast to increase through 2035. The...

  16. Appalachian States Low-Level Radioactive Waste Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

  17. Flexural interpretation of Mississippian stratigraphy in the Black Warrior basin

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Science); Pashin, J.C. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1994-03-01T23:59:59.000Z

    Interpretation of Mississippian rocks in the Black Warrior basin and adjacent parts of the Appalachian basin using basic viscoelastic flexural models suggests that this sequence of rocks is largely a response to deformational loading and relaxation accompany early phases of Ouachita orogeny. A Kinderhook-Valmeyer unconformity atop the Maury Shale apparently represents an initial tectophase of Ouachita orogeny too distant to affect the basin otherwise. However, a Valmeyer-Chesterian unconformity atop the Tuscumbia, along which the Genevievian Stage is absent or condensed, indicates that a second Ouachita tectophase had become localized along the southwest part of alabama promontory, close enough to generate the Black Warrior foreland basin, fill it with a flexural sequence of sediments, and alter sedimentation patterns in nearby parts of the Appalachian basin.

  18. appalachian clean coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appalachian clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 1 INTRODUCTION Appalachian coal...

  19. Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study

    E-Print Network [OSTI]

    Bodnar, Robert J.

    £ectance(e.g.Chyietal.,1987;Hower&Rimmer, 1991; Zhang & Davis, 1993), £uid inclusion microthermo- metry (e.g. Burruss, 1989

  20. Mechanical properties of Devonian shales from the Appalachian Basin

    SciTech Connect (OSTI)

    Blanton, T.L.; Dischler; Patti, N.C.

    1981-09-30T23:59:59.000Z

    A prime objective of the current study has been to establish wherever possible regional or stratigraphic trends in the various properties required by stimulation research. Lithologically Devonian shales tend to fall into two categories: gray shales and organic-rich black shales. Two black/gray pairs, Huron/Hanover and Marcellus/Mahantango, were selected from four localities in Pennsylvania and Ohio for comprehensive testing. Over 130 experiments were run on these zones to determine elasticity, fracture properties, yield and ultimate strength, and ductility. The results of these tests and previous tests run on core from West Virginia and Kentucky provide a basis for the following conclusions about Devonian shale mechanical properties and their applications in stimulation research: elasticity of Devonian shale matrix material showed no strong trends with respect to either lithology, locality, or confining pressure. Gray shales tended to have a slightly higher Young's modulus than black shales, but the difference between the averages was less than the standard deviation of each average. Ultimate strength, yield strength, and ductility all increase with increasing confining pressure, which is typical for most rocks. Ultimate strength and yield strength tend to be higher for gray shales, whereas black shales tend to be more ductile. Tensile strength showed no particular trends either regionally or lithologically, whereas fracture energy seemed to have the most consistent trends of any material property measured. Black shales tended to have a higher fracture energy, and fracture energy for both black and gray shales tended to increase with depth of burial. Two promising topics for continued study are the effect of confining pressure on fracture energy and the effect of deformation rate on material properties. 16 figures, 9 tables.

  1. Florida Water Resources Act (Florida)

    Broader source: Energy.gov [DOE]

    It is the policy of the state of Florida: (a) To provide for the management of water and related land resources; (b) To promote the conservation, replenishment, recapture, enhancement, development,...

  2. Appalachian Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan: EnergySalient ofApowerAppalachian Power

  3. AEP Appalachian Power- Non-Residential Custom Rebate Program

    Broader source: Energy.gov [DOE]

    The Appalachian Power Custom C&I program offers custom incentives for some of the more common energy efficiency measures. Program incentives are available under the Custom C&I program to ...

  4. CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    Baker, Ralph C.

    2011-01-11T23:59:59.000Z

    This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

  5. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  6. Forestry Policies (Florida)

    Broader source: Energy.gov [DOE]

    Florida's Forest Service completed in 2010 its study "Economic Impact Analysis of Woody Biomass Utilization for Bioenergy in Florida". The study summarizes the estimated economic benefits of...

  7. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear JanYear0.9Delaware W

  8. Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear JanYear0.9Delaware

  9. 1 INTRODUCTION Appalachian coal recovered during mining fre-

    E-Print Network [OSTI]

    of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal. Such an analysis requires the ability to predict potential surface ground movements, both vertical (i

  10. All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and

    E-Print Network [OSTI]

    Fernandez, Eduardo

    All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

  11. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01T23:59:59.000Z

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  12. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  13. Appalachian State University Water Resources Planning Committee Impacts of Urbanization on Headwater

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Temperature surges (Summer Months): · Contact and runoff from impervious surfaces during afternoon rain storms by groundwater influx UPSTREAM MIDSTREAM DOWNSTREAM #12;Appalachian State University ­ Water Resources Planning

  14. E-Print Network 3.0 - appalachian mountain region Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (GRAM) Program Award. Graduate School, Appalachian State University. "Arid region... of stream restoration on woody riparian vegetation of Southern ... Source: Collection:...

  15. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  16. Soil and Water Conservation (Florida)

    Broader source: Energy.gov [DOE]

    Florida’s 62 Soil and Water Conservation Districts were established in 1937 under Chapter 582 Florida Statutes. The law was based on federal model legislation to establish Soil and Water...

  17. Recovery Act State Memos Florida

    Energy Savers [EERE]

    of renewable energy. The Florida Energy and Climate Commission has awarded the Florida Solar Energy Center (FSEC) 10 million in Recovery Act money, enabling the center to set...

  18. Petrology and hydrocarbon reservoir potential of subsurface Pottsville (Pennsylvanian) sandstones, Black Warrior basin, Mississippi

    SciTech Connect (OSTI)

    Beard, R.H.; Maylan, M.A.

    1987-09-01T23:59:59.000Z

    The Black Warrior basin of Mississippi and Alabama is a Paleozoic foreland basin developed between the North American craton and the Appalachian and Ouachita orogenic belts. The basin fill consists of a middle Mississippian to Lower Pennsylvanian clastic wedge, transitional in character, between Appalachian molasse and Ouachita flysch. Pottsville (Pennsylvanian) sandstones, shales, coals, and thin conglomerates make up the greater part of the wedge, thickening to 11,000 ft in northeast Mississippi. Although the outcropping and near-surface Pottsville is economically importance as a source of coal in Alabama, only minor amounts of gas have been derived from the subsurface Pottsville of Mississippi (Clay and Monroe Counties). Production from the Black Warrior basin, mostly gas, is chiefly from Chesterian (Mississippian) sands and limestones in the shallower part of the basin, principally in Monroe County. Cores of Pottsville sandstones from four wells in the deeper part of the Black Warrior basin (Calhoun and Choctaw Counties) have been examined to determine their petrography, diagenetic history, and reservoir quality. This part of the basin is relatively unexplored, and the primary objective of the study was to determine if suitable hydrocarbon reservoirs are present.

  19. Florida State Bowling Team

    E-Print Network [OSTI]

    Weston, Ken

    The Florida State University Bowling Team Handbook 2012-2013 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2012-2013 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 7 Team Goals 7 Methods of Meeting Goals 7 Physical Game 8

  20. Florida State Bowling Team

    E-Print Network [OSTI]

    McQuade, D. Tyler

    The Florida State University Bowling Team Handbook 2014-2015 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2014-2015 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 8 Team Goals 8 Methods of Meeting Goals 9 Physical Game 10

  1. Florida State Bowling Team

    E-Print Network [OSTI]

    Ronquist, Fredrik

    The Florida State University Bowling Team Handbook 2014-2015 #12;THE FLORIDA STATE UNIVERSITY BOWLING TEAM HANDBOOK 2014-2015 2 Table of Contents WELCOME 3 VIRES, ARTES AND MORES 4 THE FSU BOWLING TEAM COACHING STAFF 5 PROGRAM PHILOSOPHY 7 Team Goals 7 Methods of Meeting Goals 7 Physical Game 8

  2. Invasive Whitefly Pests of Florida

    E-Print Network [OSTI]

    Watson, Craig A.

    - Dialeurodes citri Other Problems with Whiteflies in Florida Image credits: Lyle Buss, Department of Entomology in Florida Image credits: Right ­ Lyle Buss, Department of Entomology and Nematology, University of Florida Problems with Whiteflies in Florida Image credits: Lyle Buss, Department of Entomology and Nematology

  3. Sanford, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky, Ohio: EnergySprings,Florida:

  4. Appalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic Development Toolkit

    E-Print Network [OSTI]

    Engel, Jonathan

    Partnerships o Evaluation: Measuring Effectiveness #12;The Small Private Colleges Economic Development ToolkitAppalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic and sustainable economic development outreach programs. It contains carefully selected articles and case studies

  5. Microsoft PowerPoint - APPALACHIAN_STATE_Presentation 4 27 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Built Environment APPALACHIAN STATE UNIVERSITY 19 April 2015 2 The App State Team Jake Smith Chris Schoonover A.J. Smith Josh Brooks Chase Ambler Brad Painting Harrison Sytz...

  6. Contaminating Fresh Waters (Florida)

    Broader source: Energy.gov [DOE]

    It is illegal to discharge any dyestuff, coal tar, oil, sawdust, poison, or deleterious substances into any fresh running waters in Florida in quantities sufficient to injure, stupefy, or kill fish...

  7. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  8. Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People

    E-Print Network [OSTI]

    High, Ellesa Clay; McNeil, Daniel W.

    2001-03-01T23:59:59.000Z

    Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People Ellesa Clay High and Daniel W. McNeil In the heart of Appalachia, Native American Studies has been growing for almost two decades.... West Virginia is the only state totally encompassed by the Appalachian region, the mountains of which stretch from Maine to Georgia. About the size of the Navajo Nation, "wild and wonderful" West Virginia is a place of intricate ridges, hollows...

  9. Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians

    SciTech Connect (OSTI)

    Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

    1980-03-01T23:59:59.000Z

    The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

  10. Thermal effects of Kohout convection in the Bahamas and Florida

    SciTech Connect (OSTI)

    Simms, M.A.

    1985-01-01T23:59:59.000Z

    Kohout convection is a low-temperature groundwater thermal convection process in carbonate platform margins. It was first conceived of and postulated to occur in the subsurface of Florida by Francis Kohout in the 1960's. The flow is driven by buoyancy arising from subsurface differences in salinity and in temperature. Cold, dense seawater surrounding a platform at depth migrates inward, displacing warmer pore waters at the same elevation. This inflowing density current is in turn warmed within the platform and is buoyed upward to discharge on the platform shelf or margin resulting in a giant convective half-cell. In isolated platforms, such as the Bahamas, temperature differences alone drive Kohout convection. In Florida, the regional meteoric flow of the Floridan Aquifer mixes by dispersion with the convecting seawater resulting in an enhanced flow rate. Approximate analytical and numerical solutions of the governing differential equations allow the interactions of the flow and temperature fields to be determined. Permeability characteristics and platform margin geometry are the principal controls of the thermal structure and groundwater flow pattern in isolated platforms. In Florida, regional flow strength is also a control. High horizontal permeabilities (100 md to 1 darcy and higher) and tall, steep margins (1 km height, 30/sup 0/ slope) allow Kohout convection to penetrate 30 to 50 km inland causing substantial cooling. It may thus be a control of thermal evolution of the Florida-Bahamas Basin as well as parts of other sedimentary basins.

  11. Gulf of Mexico -West Florida

    E-Print Network [OSTI]

    Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas 119 #12;Regional Summary is comprised of Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region. Texas (85 million pounds), West Florida (59 million pounds), and Alabama (29 million pounds) followed

  12. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    SciTech Connect (OSTI)

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15T23:59:59.000Z

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  13. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  14. Compendium of basins for the potential applicability of Jack W. McIntyre`s patented tool

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-03-01T23:59:59.000Z

    Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. McIntyre`s patented tool for the recovery of natural gas from coalbed formations in the San Juan, Powder River, Greater Green River, Piceance, Black Warrior, Appalachian and Michigan basins. Results from the surveys indicated that geology dominated research efforts for many of the basins. Limited information exists on the hydrology and water quality of the basins. All of the basins contain some potential for the use of Jack McIntyre`s patented production process. This process is designed specifically to separate produced water and produced gas in a downhole environment and may allow for more efficient and economical development of coalbed methane resources in this area.

  15. Subsurface structure of the north Summit gas field, Chestnut Ridge anticline of the Appalachian Basin

    SciTech Connect (OSTI)

    Zhou, G.; Shumaker, R.C. [West Virginia Univ., Morgantown, WV (United States); Staub, W.K. [Consolidated Gas Transmission Co., Clarksburg, WV (United States)

    1996-09-01T23:59:59.000Z

    The Chestnut Ridge anticline is the westernmost of the High Plateau folds in southwestern Pennsylvania and north-central West Virginia that are detached primarily in the Marcellus Shale, and the Martinsburg, Salina, and Rome Formations. The primary, basal detachment at the Summit field occurs in the Salina salt. Production from fracture porosity in the Devonian Oriskany Sandstone commenced in 1936. During the late 1980s and early 1990s, 14 wells were drilled preparatory to conversion of the reservoir to gas storage. Schlumberger`s Formation MicroScanner (FMS) logs were run in each of these wells to provide information on the structural configuration and fracture patterns of the reservoir. These data indicate that two inward-facing, tight folds at the Oriskany level form the upper flanks and core of the anticline at the northern end of the field, whereas the main part of the field to the south is a comparatively simple, broad closure at the Oriskany level. The structure is a broad, slightly asymmetric open fold in the Mississippian Greenbrier Formation at the surface. Fracture patterns mapped using FMS logs indicate a complex fracture system which varies slightly along the trend of the fold and among the units analyzed, including the Helderberg Formation, Huntersville Chert, Oriskany Sandstone, and Onondaga Formation. An orthogonal joint system strikes toward the northwest and northeast slightly askew to the trend of the fold`s crestal trace. A similar, but more complex fracture pattern is found in an oriented core of these units.

  16. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-02-28T23:59:59.000Z

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  17. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-01-30T23:59:59.000Z

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  18. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    in Lower Huron Shale (Big Sandy Gas Field), were used in this study; · Production was history matched models were developed. #12;4 Location of the Study Area Big Sandy Gas Field #12;5 Lower Huron Shale Matching - Forecasting #12;12 Top Down Reservoir Modeleing - Workflow · Decline Curve analysis · Type Curve

  19. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2003-03-14T23:59:59.000Z

    In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  20. Economic Contributions of the Florida Craft Brewing Industry to the Florida Economy

    E-Print Network [OSTI]

    Florida, University of

    Economic Contributions of the Florida Craft Brewing Industry to the Florida Economy Timothy G.....................................................................................................34 #12;i Economic Contributions of the Florida Craft Brewing Industry to the Florida Economy of the Florida craft brewing industry on the state's economy, which was conducted using the University of Florida

  1. Economic Contributions of the Florida Craft Brewing Industry to the Florida Economy

    E-Print Network [OSTI]

    Florida, University of

    Economic Contributions of the Florida Craft Brewing Industry to the Florida Economy Timothy G Contributions of the Florida Craft Brewing Industry to the Florida Economy Executive Summary The Florida Brewers on the state's economy, which was conducted using the University of Florida's Food and Resource Economics

  2. A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPast

  3. Florida Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Florida Water Management District and Florida Geologic Survey) to investigate arsenic mobilization during between Florida's Universities and the state agencies that are responsible for managing Florida's water Management District, Southwest Florida Water Management District, St. Johns River Water Management District

  4. Central-northern Appalachian coalbed methane flow grows

    SciTech Connect (OSTI)

    Lyons, P.C. [Geological Survey, Reston, VA (United States)

    1997-07-07T23:59:59.000Z

    Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

  5. DEPARTMENT OF BIOLOGY Hurricane Savitz Hits Florida

    E-Print Network [OSTI]

    Kelly, John J.

    DEPARTMENT OF BIOLOGY Hurricane Savitz Hits Florida (Photo Credit: Michael Masellis, Biology Major Hurricane Savitz Hits Florida Future Science Teachers' Club Recent Grant Successes Forthcoming Publications

  6. Florida Billboards Elevate Renewable Energy Education | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Florida Billboards Elevate Renewable Energy Education Florida Billboards Elevate Renewable Energy Education July 9, 2010 - 10:26am Addthis A wind turbine tops a Lamar Advertising...

  7. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Florida Atlantic University's Engineering Scholars Program FLORIDA ATLANTIC UNIVERSITY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    of Ocean & Mechanical Engineering EOC1665 ­ Introduction to Ocean Engineering and Underwater VehiclesFlorida Atlantic University's Engineering Scholars Program FLORIDA ATLANTIC UNIVERSITY Department Summer 2014 (3 credits) COURSE SYNOPSIS: A hands-on course designed to introduce the field of Ocean

  9. Analysis of coal and coal bed methane resources of Warrior basin, Alabama

    SciTech Connect (OSTI)

    Wicks, D.E.; McFall, K.S.; Malone, P.

    1987-09-01T23:59:59.000Z

    The Warrior basin in Alabama is the most active area in the US producing natural gas from coal beds. As of 1986, 300 coal-bed methane wells were producing from eight degasification fields, mainly from the Pennsylvanian coal seams along the eastern margin of the basin. Despite difficult market conditions, drilling and expansion are continuing. A detailed geologic analysis of Warrior basin coal-bed methane targets the areas of the basin that show the most promise for future gas production. The geologic analysis is based on extensive well and core data and basin-wide correlations of the Pennsylvanian coal groups. Four detailed cross sections were constructed, correlating the target coal groups in the basin, namely the Cobb, Pratt, Mary Lee, and Black Creek. They estimate that the Warrior basin contains nearly 20 tcf of in-place coal-bed methane, mainly in three of the target coal groups - the Pratt, Mary Lee, and Black Creek coals, with 4, 7, and 8 tcf, respectively. The east-central area of the basin contains the greatest volume of natural gas resource due to its concentration of thicker, higher ranked coals with high gas content. The geologic analysis also provided the underlying framework for the subsequent engineering analysis of economically recoverable gas reserves. For example, analysis of structure and tectonics showed the east-central area to be promising for gas recovery due to its proximity to the Appalachian structural front and consequent structural deformation and permeability enhancement.

  10. 44 Journal of Student Research in Environmental Science at Appalachian Determining the viability of the practical

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    of the practical application of solar electric systems in Boone, North Carolina April Lail Environmental Sciences44 Journal of Student Research in Environmental Science at Appalachian Determining the viability. Solar electric systems are a common renewable energy technology in households throughout the United

  11. Spatio-temporal availability of soft mast in clearcuts in the Southern Appalachians

    E-Print Network [OSTI]

    Mitchell, Mike

    Spatio-temporal availability of soft mast in clearcuts in the Southern Appalachians Melissa J availability of soft mast though time is not fully understood. We tested a theoretical model of temporal availability of soft mast in clearcuts using empirical data on percent cover and berry production

  12. 96 Journal of Student Research in Environmental Science at Appalachian Genetically Modified Maize (Bt corn) and

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    to produce their own pesticides or insecticides. The engineering of genetically modified food is a rel96 Journal of Student Research in Environmental Science at Appalachian Genetically Modified Maize the short-term effects of genetically modified (GM) maize, specifically MON810 and MON863, on laboratory

  13. Gulf of Mexico -West Florida

    E-Print Network [OSTI]

    Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas #12;Regional Summary Gulf of Mexico Region Management Context The Gulf of Mexico Region includes Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region are managed by the Gulf of Mexico Fishery

  14. Florida Atlantic University Student Government

    E-Print Network [OSTI]

    Fernandez, Eduardo

    : The purpose of club funding is to assist Florida Atlantic University recognized student clubs2 #12;2 Florida Atlantic University Student Government Council of Student Organizations (COSO) Boca Raton Campus Funding and Emergency Funding Policies and Procedures CHAPTER I: STATEMENTS Title A

  15. Bull Test ID 1118 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1118 2013 Florida Bull Test #12;Bull Test ID 1119 2013 Florida Bull Test #12;Bull Test ID 1120 2013 Florida Bull Test #12;Bull Test ID 1121 2013 Florida Bull Test #12;Bull Test ID 1122 2013 Florida Bull Test #12;Bull Test ID 1123 2013 Florida Bull Test #12;Bull Test ID 1124 2013 Florida

  16. Bull Test ID 1181 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1181 2013 Florida Bull Test #12;Bull Test ID 1182 2013 Florida Bull Test #12;Bull Test ID 1183 2013 Florida Bull Test #12;Bull Test ID 1184 2013 Florida Bull Test #12;Bull Test ID 1185 2013 Florida Bull Test #12;Bull Test ID 1186 2013 Florida Bull Test #12;Bull Test ID 1187 2013 Florida

  17. Bull Test ID 1098 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1098 2013 Florida Bull Test #12;Bull Test ID 1099 2013 Florida Bull Test #12;Bull Test ID 1100 2013 Florida Bull Test #12;Bull Test ID 1101 2013 Florida Bull Test #12;Bull Test ID 1102 2013 Florida Bull Test #12;Bull Test ID 1103 2013 Florida Bull Test #12;Bull Test ID 1104 2013 Florida

  18. Bull Test ID 1160 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1160 2013 Florida Bull Test #12;Bull Test ID 1161 2013 Florida Bull Test #12;Bull Test ID 1162 2013 Florida Bull Test #12;Bull Test ID 1163 2013 Florida Bull Test #12;Bull Test ID 1164 2013 Florida Bull Test #12;Bull Test ID 1165 2013 Florida Bull Test #12;Bull Test ID 1166 2013 Florida

  19. Bull Test ID 1077 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    14th Annual Florida Bull Test #12;Bull Test ID 1077 2013 Florida Bull Test #12;Bull Test ID 1078 2013 Florida Bull Test #12;Bull Test ID 1079 2013 Florida Bull Test #12;Bull Test ID 1080 2013 Florida Bull Test #12;Bull Test ID 1081 2013 Florida Bull Test #12;Bull Test ID 1082 2013 Florida Bull Test #12

  20. Bull Test ID 1140 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1140 2013 Florida Bull Test #12;Bull Test ID 1141 2013 Florida Bull Test #12;Bull Test ID 1142 2013 Florida Bull Test #12;Bull Test ID 1143 2013 Florida Bull Test #12;Bull Test ID 1144 2013 Florida Bull Test #12;Bull Test ID 1145 2013 Florida Bull Test #12;Bull Test ID 1146 2013 Florida

  1. Sandalfoot Cove, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin ECSanatoga,Sandalfoot Cove, Florida:

  2. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect (OSTI)

    Grover, G. Jr. (Sauid Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  3. Florida Air and Water Pollution Control Act (Florida)

    Broader source: Energy.gov [DOE]

    It is the policy of the state of Florida to protect, maintain, and improve the quality of the air and waters of the state. This Act authorizes the Department of Environmental Protection to enact...

  4. Progress Energy Florida- SunSense Schools Program (Florida)

    Broader source: Energy.gov [DOE]

    Progress Energy Florida (PEF) offers the SunSense Schools Program which provides up to 11 public schools with fully installed solar photovoltaic systems annually. The application process is...

  5. Florida Power and Light- Solar Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the standby list will be contacted in the numerical...

  6. Clean Energy Investment Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and...

  7. Effects of a Highway Improvement Project on Florida key Deer

    E-Print Network [OSTI]

    Parker, Israel D.; Braden, Anthony W.; Lopez, Roel R.; Silvy, Nova J.; Davis, Donald S.; Owen, Catherine B.

    2007-01-01T23:59:59.000Z

    the primary inter-island roadway in the Florida Keys. DVCsprimary source of mortality for the endangered Florida Key

  8. Method for applying group selection in central appalachian hardwoods. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    Miller, G.W.; Schuler, T.M.; Smith, H.C.

    1995-03-01T23:59:59.000Z

    Public concern over the adverse visual impact of clearcutting has heightened interest in developing and testing alternative regeneration practices for central Appalachian hardwoods. Group selection can meet aesthetic goals while providing suitable light conditions to reproduce shade-intolerant species. Volume control and residual stand density are used to reg8ulate periodic cuts. In central Appalachian hardwoods, openings must have a minimum size of 0.4 acre; all stems 1.0 inch d.b.h. and larger are cut to reproduce desirable shade-intollerant species. Openings should be located using the worst first approach to give the growing space occupied by mature trees or risky trees to faster growing, desirable regeneration.

  9. Application of tidal mudflat model to Sunniland Formation (Lower Cretaceous) of south Florida

    SciTech Connect (OSTI)

    Mitchell-Tapping, H.J.

    1987-09-01T23:59:59.000Z

    For many years, the Lower Cretaceous Sunniland oil-producing fields have been interpreted as reef deposits. Petrologic evidence from cores from field and wildcat wells strongly indicates on the basis of faunal composition and character, that the fields are producing from moundlike shoals. These shoals are considered to have been deposited in a mudflat environment similar to that of present-day Florida Bay. This present-day Florida Bay analog is used to determine the various environmental subzones and controls on the deposition of the Sunniland Formation. This concept of using a model together with a modern analog can be a powerful tool in the exploration of stratigraphic traps. A petrologic and petrophysical study of the Sunniland Formation in the wells that have been drilled in the Florida Bay and Keys areas was made to extend the model and its application throughout the South Florida basin. The evaluation of these wells has produced new insights into the tectonics of this basin and its relationship to the Bahamas and Caribbean areas.

  10. More wells will expand knowledge of Knox group, Black Warrior basin

    SciTech Connect (OSTI)

    Raymond, D.E. (Geological Survey of Alabama, Tuscaloosa, AL (US))

    1991-05-20T23:59:59.000Z

    The Arbuckle group of the Arkoma, Ardmore, and Anadarko basins was essentially untested in 1986. This paper reports that in these basins, shallower Pennsylvanian reservoirs were easy to reach and more economical to develop. The general consensus was that if a karstic reservoir was not present at the top of the Arbuckle group then there was no potential for oil and gas. Today the story is different; production zones are being found throughout the Arbuckle group, and drilling has been as deep as 28,000 ft. The Black Warrior basin is in a similar setting to the Arkoma, it is a foreland basin that has produced from multiple Mississippian and Pennsylvanian horizons at shallow depths. The Knox carbonate is present in a similar structural setting to that of the Arbuckle group at depths generally above 15,000 ft. In addition, Alabama is even more fortunate in that the buried Appalachian fold and thrust belt along the southern boundary of the basin also provides additional Knox targets with great promise. In this area Knox dolomites are fractured and folded and are juxtaposed by thrust faulting against Mississippian and Pennsylvanian rocks that are excellent sources of oil and gas. Therefore, the Knox is essentially untested in the Black Warrior basin.

  11. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01T23:59:59.000Z

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  12. Florida Saves Week 1 2010 Superior Accomplishment 1

    E-Print Network [OSTI]

    Jawitz, James W.

    Florida Saves Week 1 2010 Superior Accomplishment 1 Awards Fresh Florida Seafood for Lunch 2 2011 Table of Contents Florida Saves Week 1 2010 Superior Accomplishment 1 Awards Fresh Florida Seafood Florida Saves Week Dr. Millie Ferrer-Chancy, Interim Dean for Extension and Dr. Michael Gutter, Assistant

  13. Shaping Solutions FOR Florida's Future

    E-Print Network [OSTI]

    Jawitz, James W.

    and agriculture. Today, our population has stabilized, but the need continues for new information on food and fiber production, water conservation, natural resource protection, alternative energy and conservation of Florida's 67 counties, sought input from focus groups and community leaders, read thousands of on

  14. REGULATIONS OF UNIVERSITY OF FLORIDA

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    REGULATIONS OF UNIVERSITY OF FLORIDA 6C1-3.0051 Lost or Abandoned Property. (1) For the purposes and Archer Road on the south, along with any other educational or residential facilities occupied as the date on which an identified owner of lost or abandoned property is notified by the Property Custodian

  15. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    SciTech Connect (OSTI)

    None available

    1999-07-29T23:59:59.000Z

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  16. Robin M. Kohn University of Central Florida School of Social Work

    E-Print Network [OSTI]

    Van Stryland, Eric

    Altamonte Springs, Florida Lucerne Medical Center Lucerne Rehabilitation & Spinal Center Orlando, Florida

  17. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 19762006 Landsat time series

    E-Print Network [OSTI]

    Radeloff, Volker C.

    of surface mining using heavy equipment can produce dramatic alterations in land cover, both ecologicallyChanges in the extent of surface mining and reclamation in the Central Appalachians detected using of Forest and Wildlife Ecology, 1630 Linden Drive, Madison, WI 53706, United States b Virginia Polytechnic

  18. Progress Energy Florida- SunSense Solar Photovoltaics Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.'''''

  19. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions

    SciTech Connect (OSTI)

    Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

    2009-11-15T23:59:59.000Z

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  20. Economic Impacts of the Forest Industry in Florida, 2003 Final Report to the Florida Forestry Association

    E-Print Network [OSTI]

    Florida, University of

    1 Economic Impacts of the Forest Industry in Florida, 2003 Final Report to the Florida Forestry was made possible by a grant provided by the Florida Forestry Association, Tallahassee, FL, under-Division of Forestry, represented by Eric Ford. Collaboration for the survey of forest product manufacturers

  1. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . Bromhal, Natl. Energy Technology Laboratory. Copyright 2010, Society of Petroleum Engineers This paper spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top

  2. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  3. Former presence of thick post-Devonian strata in northern Appalachian basin: Evidence from fluid-inclusion studies

    SciTech Connect (OSTI)

    Sarwar, G.; Friedman, G.M. (Brooklyn College of the City Univ. of New York, NY (USA))

    1989-08-01T23:59:59.000Z

    Along an 80-km long belt south of Syracuse, New York, the maximum fluid-inclusion homogenization temperatures (T{sub max}) of late-stage cements of the lower Middle Devonian Onondaga Limestone show a local high of 150{degree}-160{degree}C in central New York. T{sub max} decreases both west and east of this area reaching about 100{degree}C in outcrops near Buffalo and Albany, respectively. Southward from Albany, along the western margin of the Hudson Valley, T{sub max} again rises sharply to 170{degree}-180{degree}C in the Kingston area. The thermal alteration index (TAI) and vitrinite reflectance of the overlying Marcellus-Bakoven (Middle Devonian) black shales in central and eastern New York show a comparable trend. The east-west profile of T{sub max} of the Onondaga rocks as well as thermal maturity of the black shales show excellent correlation with similar profiles of authigenic magnetite in the Onondaga Limestone and of clay diagenesis and fission-track ages of the Middle Devonian Tioga Metabentonite Bed, as reported by others. The T{sub max} of the Onondaga Limestone is believed to have been attained during maximum burial, the extent of which can not be accounted for by the present thickness of post-Onondaga strata. As a result of an inferred late Paleozoic uplift, in western and eastern New York, 2-3 km of post-Devonian strata were removed, in central New York 4-5 km, and in southeastern New York 5-6 km were removed. The north-south variation in maximum burial along the Hudson Valley may be explained by additional impact of tectonic loading in the south.

  4. University of Nebraska-Lincoln and University of Florida (Building...

    Open Energy Info (EERE)

    Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name: University of Nebraska-Lincoln and University of Florida...

  5. Finance and Administration Florida State University

    E-Print Network [OSTI]

    Weston, Ken

    Finance and Administration Florida State University President Senior Vice President Finance for ERP Sustainability * Reports to Provost and VP for Academic Affairs, indirectly to VP for Finance

  6. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a...

  7. Energy Economic Zone Pilot Program (Florida)

    Broader source: Energy.gov [DOE]

    In the 2009 Legislative Session, the Florida Legislature established the Pilot Program to address economic development and the creation of energy efficient land use patterns. The Energy Economic...

  8. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  9. PROFESSIONAL SERVICES GUIDE FLORIDA ATLANTIC UNIVERSITY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    PROFESSIONAL SERVICES GUIDE FOR FLORIDA ATLANTIC UNIVERSITY APRIL 2003 #12;April 2003 FAU-PSG Page 2 of 74 FLORIDA ATLANTIC UNIVERSITY PROFESSIONAL SERVICES GUIDE Table of Contents Page 2-4 ARTICLE 1 of Contract 5.2 Construction Manager Projects Page 34 ARTICLE 6 Construction Administration 6.1 General Page

  10. MAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    to generate energy by harnessing the power of Florida's ocean currents. FAU has been named to Military TimesMAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY QUICK FACTS #12;About FAu 1 PeoPle 7 AcAdemics 12 Marine Renewable Energy Center, a federally funded research facility that is developing technology

  11. Update: Shaping Solutions for 1 Florida's Future

    E-Print Network [OSTI]

    Jawitz, James W.

    . The grant, part of the federal American Recovery and Reinvestment Act (ARRA), will fund energy efficiencies of Commerce. The Florida Scorecard contains many interesting statistics about Florida and outlines the Chamber opportunity to advance the energy conservation in Leon County and make further strides toward our alternative

  12. FLORIDA STATE UNIVERSITY STATEMENT CONCERNING OUTSIDE EMPLOYMENT

    E-Print Network [OSTI]

    Weston, Ken

    FLORIDA STATE UNIVERSITY STATEMENT CONCERNING OUTSIDE EMPLOYMENT A&P/USPS/OPS · It is understood that this employment will not interfere with my regular work and is consistent with the laws and regulations required to disclose to Florida State University any other employment information for which I am being paid

  13. Financial aspects of partial cutting practices in central Appalachian hardwoods. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    Miller, G.W.

    1993-06-01T23:59:59.000Z

    Unveven-aged silvicultural practices can be used to regenerate and manage many eastern hardwood stands. Single-tree selection methods are feasible in stands where a desirable shade-tolerant commercial species can be regenerated following periodic harvests. A variety of partial cutting practices, including single-tree selection and diameter-limit cutting have been used for 30 years or more to manage central Appalachian hardwoods on the Fernow Experimental Forest near Parsons, West Virginia. Results from these research areas are presented to help forest managers evaluate financial aspects of partial cutting practices. Observed volume growth, product yields, changes in species composition, and changes in residual stand quality are used to evaluate potential financial returns. Also, practical economic considerations for applying partial cutting methods are discussed.

  14. Epicormic branching on Central Appalachian hardwoods 10 years after deferment cutting. Forest Service research paper

    SciTech Connect (OSTI)

    Miller, G.W.

    1996-03-01T23:59:59.000Z

    Epicormic branching as monitored over a 10-year period following deferment cutting in four central Appalachian hardwood stands in West Virginia. Data from 545 codominant residual trees indicated that the average number of epicormic branches on the butt and second 16-food log sections increased significantly for the first 2 years after treatment. For upper log sections of basswood, northern red oak, and black cherry, significant increases continued from the second to the tenth year. The net effect on quality was that 11 percent of residual trees exhibited a reduction in butt-log grade due to epicormic branching. Of the few grade reductions observed, white oak, northern red oak, and black cherry were the most susceptible. Less than 1 percent of yellow-poplar trees had lower grades due to epicormic branching.

  15. Upper Jurassic carbonate/evaporite shelf, south Alabama and west Florida

    SciTech Connect (OSTI)

    Moore, B.R.

    1986-05-01T23:59:59.000Z

    The association of Upper Jurassic carbonates and evaporites in south Alabama and west Florida defines a brining upward and inward sequence that is indicative of deposition on an increasingly evaporitic marine shelf. Structural features that bound this evaporitic shelf were the Pensacola arch, the South Mississippi platform, and the State Line flexure. Paleo-drainage of the surrounding highlands also affected shelf salinities as fresh waters were funneled into the Covington and Manila Embayments. During the Late Jurassic, marine carbonates and evaporites of the Smackover and Lower Haynesville (Buckner) Formations were deposited over Middle Jurassic Norphlet clastics that accumulated in arid continental and marginal-marine environments. Initially, Smackover carbonate deposition was pervasive across the shallow shelf. Later, as a result of increasing water salinities, contemporaneous precipitation of central-shelf evaporites and basin-edge carbonates occurred. Maximum restriction of the basin and the culmination of subaqueous deposition resulted in the formation of a basin-wide lower Haynesville salt unit. The overlying upper Haynesville strata represents a shift to subaerial environments. Application of a shelf-basin evaporite model explains the spatial and temporal lithologic relationships observed within the study area. Onlap of evaporites over porous carbonates, due to brining-upward processes, suggest that large-scale stratigraphic traps exist within the Smackover Formation in a sparsely explored part of the basin.

  16. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotalFlorida

  17. Florida Nuclear Profile - St Lucie

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotalFloridaSt

  18. Cyclicity and stacking patterns in Carboniferous strata of the Black Warrior Foreland Basin

    SciTech Connect (OSTI)

    Pashin, J.C. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1994-09-01T23:59:59.000Z

    Cyclicity in Carboniferous stratigraphic successions has long been attributed to tectonism and climate, but the ways these variables interact to determine the architecture of sedimentary basin fills remain a subject of intense debate. Geophysical well logs and cores from the Black Warrior basin were used to test the effects of tectonism and climate on cyclicity and stacking patterns in a foreland-basin setting. The Black Warrior basin formed in Carboniferous time by diachronous tectonic loading of the Alabama continental promontory along the Appalachian-Ouachita juncture. Climatic changes affecting the basin during this time include drift of southeastern North America from the arid southern tradewind belt toward the humid equatorial belt, as well as the onset of a major Gondwana glaciation just prior to the end of the Chesterian. The fill of the Black Warrior basin comprises carbonate and coal-bearing depositional cycles, and the composition, frequency, and stacking patterns of those cycles reflect dynamically interwoven tectonic and climatic factors. Tectonic loading evidently gave rise to flexural movements that determined cycle stacking patterns by controlling spatial and temporal variation of subsidence rate. Evolving tectonic highlands, moreover, fostered a shift from cratonic to orogenic sources of terrigenous elastic sediment, thereby affecting stratal geometry. Climate, by contrast, regulated the composition and frequency of the cycles. The transition from carbonate-bearing cycles with oxidized, calcic paleosols to coal-bearing cycles with reduced, histic paleosols reflects drift of southeastern North America into the humid equatorial belt. Change of average cycle duration from 1.3 m.y. to less than 0.4 m.y. corresponds with the onset of Gondwana glaciation, suggesting significant climatic forcing of sea level variation.

  19. Stem cubic-foot volume tables for tree species in the Appalachian area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 20 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Appalachian Area. Tables are based on form class measurement data for 2,670 trees sampled in the Appalachian Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  20. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  1. University of Central Florida College of Medicine

    E-Print Network [OSTI]

    Foroosh, Hassan

    1 University of Central Florida College of Medicine 2011-2012 STUDENT FINANCIAL SERVICES GUIDEBOOK M.D. PROGRAM College of Medicine- Office of Student Financial Services Tel: 407.266.1381 or 407................................................................................................................................6 Satisfactory Academic Progress

  2. Florida Sunshine -- Natural Source for Heating Water

    SciTech Connect (OSTI)

    Not Available

    2002-05-01T23:59:59.000Z

    This brochure, part of the State Energy Program (SEP) Stellar Project series, describes a utility solar hot water program in Lakeland, Florida. It is the first such utility-run solar hot water program in the country.

  3. Solar and CHP Sales Tax Exemption (Florida)

    Broader source: Energy.gov [DOE]

    Solar energy systems have been exempt from Florida's sales and use tax since July 1, 1997. The term "solar energy system" means the equipment and requisite hardware that provide and are used for...

  4. Solar Energy and the Florida Environment 1

    E-Print Network [OSTI]

    Helen J-h. Whiffen

    1994-01-01T23:59:59.000Z

    On average, 585,000 Btus of solar energy reach every square foot of Florida each year. Overall, the energy in the sunlight annually falling on the state equals 840 quad. Eight hundred forty quads of energy is

  5. Alternative Fuels Data Center: Florida Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Florida, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  6. SSL GATEWAY UNIVERSITY OF FLORIDA DANCE SHOWCASE

    Broader source: Energy.gov [DOE]

    View the video showing side-by-side dance performances with halogen and LED sidelighting as part of the Solid-State Lighting GATEWAY demonstration at the University of Florida.

  7. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  8. USCG Multi-site UESC in Florida

    Broader source: Energy.gov (indexed) [DOE]

    USCG Multi-site UESC in Florida April 11, 2012 USCG: Daniel Gore, Jesse Maestas, FPL: Ed Anderson Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA US COAST...

  9. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  10. Atlantic Oceanographic and Meteorological LaboratoryNovember-December 2007 Volume 11, Number 6 Miami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, FloridaMiami, Florida

    E-Print Network [OSTI]

    the first Category 5 hurricane to make landfall in the Atlantic Basin since Hurricane Andrew struck South Atlantic Hurricane Season Ends But Questions Remain As the 2007 Atlantic hurricane season officially came lower- than-expected hurricane activity across theAtlantic Basin.As a result, the United States

  11. Blue Cross and Blue Shield of Florida is now Florida Blue State Employees' PPO Plan health insurance provider Blue Cross and Blue Shield of

    E-Print Network [OSTI]

    Ronquist, Fredrik

    Blue Cross and Blue Shield of Florida is now Florida Blue State Employees' PPO Plan health insurance provider Blue Cross and Blue Shield of Florida has recently changed its name to Florida Blue Resources Benefits Office at (850) 6444015, or insben@admin.fsu.edu. RELATED LINKS ­ Florida Blue

  12. September 12, 2013 THE FLORIDA STATE UNIVERSITY DEPARTMENT OF STATISTICS

    E-Print Network [OSTI]

    Shepp, Larry

    September 12, 2013 THE FLORIDA STATE UNIVERSITY DEPARTMENT OF STATISTICS ASSISTANT PROFESSOR POSITION IN STATISTICS, BIOSTATISTICS, OR COMPUTATIONAL STATISTICS (TENURE-TRACK) The Department of Statistics at Florida State University invites applications for a tenure-track position in statistics

  13. Economic Impacts of the Florida Environmental Horticulture Industry in 20051

    E-Print Network [OSTI]

    Florida, University of

    FE675 Economic Impacts of the Florida Environmental Horticulture Industry in 20051 Sponsored;1 Economic Impacts of the Florida Environmental Horticulture Industry in 2005 Sponsored Project Report ............................................................ 17 Impacts of Hurricanes on the Environmental Horticulture Industry in 2004 and 2005

  14. Planet Earth: South Florida: GLY-5159 Meeting time: By Arrangement

    E-Print Network [OSTI]

    Sukop, Mike

    Earth: South Florida (1) Geology, water resources and geologic environments of South Florida. Instructor. Mangrove forest and peat iii. Shell beaches, sandy beaches iv. Hurricane effects d. Aquifer testing

  15. Myakka River Wild and Scenic Designation and Preservation Act (Florida)

    Broader source: Energy.gov [DOE]

    The Myakka was designated as the state's only "Florida Wild and Scenic River" by the Florida State Legislature in 1985. The act provides for preservation and management of the 34-mile portion of...

  16. The Florida Energy Efficiency Building Code, the Second Generation

    E-Print Network [OSTI]

    Dixon, R. W.

    1985-01-01T23:59:59.000Z

    This paper discusses the Revision of the Residential Sections of the Florida Energy Efficiency Code for Building Construction. The procedures utilized in the Revision and the concepts integrated in to the 2nd Generation of the Florida Specific...

  17. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

  18. Florida School IPM Best Management Practices Aug 17, 2012

    E-Print Network [OSTI]

    Jawitz, James W.

    the implementation of inte- grated pest management practices in Florida schools. In 2004, the Florida School IPM Work in pest management pro- grams implemented in Florida schools. The Work Group also identified what IPMFlorida School IPM Best Management Practices Aug 17, 2012 FINAL DRAFT OPEN FOR COMMENT UNTIL SEPT

  19. The Florida Economy and a Federal Carbon Cap

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Florida Economy and a Federal Carbon Cap A QuAntitAtive AnAlysis Authors David Roland-Holst Dep-and-trade program--the policy recommended by Governor Crist's Action Team--on the Florida economy over the coming decades. The model looks at the entire Florida economy on an interactive basis over time, and takes

  20. Sun-Sentinel How Florida's nuclear plants compare to Japan's

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Sun-Sentinel How Florida's nuclear plants compare to Japan's By Julie Patel March 17, 2011 01:35 PM What went wrong at the Fukushima nuclear plant in Japan and how are Florida's nuclear plants prepared to deal with similar problems? Nuclear operators in Florida say the biggest risk their plants face is from

  1. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED REGULATION AMENDMENT

    E-Print Network [OSTI]

    Richman, Fred

    to the Florida administrative and judicial appeal process. The Regulation was last amended in 1987. The proposed of the General Counsel, 777 Glades Road, Boca Raton, Florida, 33431, (561) 297-3007 (phone), (561) 297-2787 (fax) The address of the Agency Clerk is Room 333367, Administration Building, Florida Atlantic University, Boca

  2. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  3. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  4. FLORIDA KEYS WATER WATCH The University of Florida, Institute of Food and Agricultural Sciences/Monroe County Extension

    E-Print Network [OSTI]

    Florida, University of

    FLORIDA KEYS WATER WATCH The University of Florida, Institute of Food and Agricultural Sciences/Monroe County Extension are developing Florida Keys Water Watch, a community-based volunteer water quality- monitoring program to promote awareness of the importance of water quality, reduce nonpoint source pollution

  5. Ordovician platform, slope, and basin facies in subsurface of southern North America

    SciTech Connect (OSTI)

    Alberstadt, L.P.; Colvin, G.; Sauve, J.

    1986-05-01T23:59:59.000Z

    Ordovician carbonates of the Nashville dome and Ozark dome regions have long been considered typical shelf deposits. In the subsurface to the south, in the Black Warrior basin, Mississippi Embayment, and Arkoma basin, these shelf carbonate units changed facies. The most significant change is the occurrence of a thick limestone unit characterized by a faunal and floral assemblage of Nuia, Girvanella (isolated long strands), Sphaerocodium, a delicate stacked-chambered organism (.algal), and sponge spicules and sponge mudstone clumps. In ascending order, the complete Ordovician sequence consists of: a lower dolostone, the Nuia-sponge limestone, a dolostone, and a limestone. The upper part of this four-fold sequence changes character westward into the Arkoma basin. The lower two units maintain their character for long distances along depositional strike and occur in parts of the Appalachians as far north as Newfoundland, and on the opposite side of the continent in Nevada. The Nuia-sponge assemblage is a distinctive petrographic marker and seems to be a persistent Ordovician rock and fossil assemblage of widespread occurrence. In Nevada, it occurs on the surface where it is associated with slump and slide features that suggest that it is an outer shelf or upper slope deposit. Coeval carbonates in the Ouachita Mountains are different and show indications of being deep water (basinal). Biostratigraphic evidence indicates that the succession in the subsurface is continuous; the regional Lower Ordovician-Middle Ordovician unconformity is absent. The Lower Ordovician-Middle Ordovician boundary falls near the top of the Nuia-sponge mudstone unit and not at the top of the underlying thick dolostone unit.

  6. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Evolution of Extensional Basins and Basin and Range Topography West of Death Valley California...

  7. Disposal of produced waters: Undergrown injection option in the Black Warrior Basin

    SciTech Connect (OSTI)

    Ortiz, I.; Weller, T.F.; Anthony, R.V. (United Energy Development Consultants, Pittsburgh, PA (United States)); Dziewulski, D. (BioIndustrial Technologies, Pittsburgh, PA (United States)); Lorenzen, J. (ResTech, Pittsburgh, PA (United States)); Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States))

    1993-08-01T23:59:59.000Z

    The disposal of large volumes of water produced simultaneously with coal-bed methane is a costly, environmentally sensitive problem. Underground injection into deeper, naturally fractured, low-porosity formations is feasible provided that the total dissolved solids level of these formation waters comply with Environmental Protection Agency guidelines. Greater fracture density in proximity to structures formed by Appalachian and Ouachita tectonism, along with a higher total dissolved solids level in both the production and injection formation waters, occurs in the eastern, southern, and northern margins of the coal-bed methane (CBM) area of the Black Warrior basin in Alabama. Injection permeability is developed where fractures intersect formations with suitable lithologies and thickness. Initial results indicate that the lower Pottsville sands, which thicken to the south, have the highest initial injection potential, although these sands appear dirty and tight on the logs. Normal faulting and matrix porosity, in addition to fracturing, may increase permeability in this formation. In the shallower, northern edge of the CBM area, thin-bedded Mississippian sands with high porosity, such as the Hartzelle, may be present. Injection potential also occurs in the fractured Devonian chert and silecous carbonate lithologies in the Upper Silurian where they thicken to the southwest, and in sandy carbonate lithologies in the undifferentiated Silurian and Ordovician at the eastern margin of the overthrust. The Cambrian-Ordovician Knox Formation has injection potential in a 6-mi wide zone at the eastern margin of the basin, where the upper Knox is dolomitized below the unconformity.

  8. Geology, exploration status of Uruguay's sedimentary basins

    SciTech Connect (OSTI)

    Goso, C.; Santa Ana, H. de (Administracion Nacional de Combustibles, Alcohol y Portland (Uruguay))

    1994-02-07T23:59:59.000Z

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  9. 7/6/12 Florida Blue Key Homecoming 1/8fbk.org/homecoming/

    E-Print Network [OSTI]

    Latchman, Haniph A.

    7/6/12 Florida Blue Key Homecoming 1/8fbk.org/homecoming/ Since 1923, Florida Blue Key has served in the fall, Homecoming and Gator Growl are produced by a team of over 500 students working in Florida Blue Blue Key on Facebo 430 people like Florida Blue Key Like Florida Blue Key via Growl & UF Homecoming

  10. FLORIDA STATE UNIVERSITY Participant Support Costs

    E-Print Network [OSTI]

    Weston, Ken

    FLORIDA STATE UNIVERSITY Policy on Participant Support Costs Effective: May 15, 2006 Purpose costs are separately accounted for, and expended for appropriate and intended objectives. Background in the conference, workshop or training activity. Participant supports costs are defined as direct costs for items

  11. University of Florida College of Fine Arts

    E-Print Network [OSTI]

    Watson, Craig A.

    ­ pursuing the degree ­ final project and exams ­ graduation. General information for both Master's degree1 University of Florida College of Fine Arts School of Music GRADUATE STUDIES HANDBOOK Section 1 for International Student Services Graduate Music Placement Exams Graduate Listserv Graduate Advisory Group Section

  12. Chemical Hygiene Plan For University of Florida

    E-Print Network [OSTI]

    Slatton, Clint

    Chemical Hygiene Plan For University of Florida Laboratories This is a site specific Chemical Hygiene Plan for: Laboratory or Room number(s): Building: Principal Investigator/Lab Manager: Department Reviewed August 2007 Revised August 2007 #12;2 I. Introduction This Chemical Hygiene Plan has been

  13. FOR 6005 Conservation Behavior University of Florida

    E-Print Network [OSTI]

    Florida, University of

    FOR 6005 ­ Conservation Behavior University of Florida School of Forest Resources and Conservation, 846-0878, 347 NZ Hall, mcmonroe@ufl.edu Office Hours: Wednesday 9-12 and on request Conservation and resolving environmental challenges. This course will explore what we know about human behavior and apply

  14. University of South Florida S-parameters

    E-Print Network [OSTI]

    V V I12 1 2 1 0 | (Put a Short Circuit at Port #2) h I V I22 2 2 1 0| (Put an Open Circuit at Port/MW total current and voltage. · Difficulty of obtaining perfect opens/shorts · Active devices may be unstable under open/short conditions. #12;7 © University of South Florida SS

  15. Florida State University Online New Employee Orientation

    E-Print Network [OSTI]

    Weston, Ken

    . Health insurance covers many forms of inpatient and outpatient care in private and public treatment: · marital and family conflicts, job stress, alcohol & drug abuse, eating disorders, financial difficulties, physical/sexual/emotional abuse, and communication problems #12;Florida State University Employee

  16. REGULATIONS OF THE UNIVERSITY OF FLORIDA

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    and official recognition that the behavior has violated the Student Conduct Code. #12;2 (b) Loss of University1 REGULATIONS OF THE UNIVERSITY OF FLORIDA 4.047 Student Honor Code and Student Conduct Code Code or the Student Conduct Code shall be subject to sanctions commensurate with the offense

  17. University of Florida Student Body Constitution

    E-Print Network [OSTI]

    Roy, Subrata

    . The right to recall and remove. D. The right to address student government officials at regularly scheduled times and places. Section 3. Honor Code.--All Students are bound by the Honor Code and shall be held accountable to it. The Honor Code states: We, the members of the University of Florida community, pledge

  18. University of North Florida Logistics and Supply

    E-Print Network [OSTI]

    Asaithambi, Asai

    AST&L University of North Florida Logistics and Supply Chain Management Logistics and distribution skills training to begin and advance your career #12;Certification in Transportation and Logistics Cohort Program The UNF Certification in Transportation and Logistics (CTL) Cohort Program is a jointly sponsored

  19. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01T23:59:59.000Z

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

  20. Benefit-Cost Analysis of Melaleuca Management in South Florida1

    E-Print Network [OSTI]

    Florida, University of

    and Resource Economics Department, Florida Cooperative Extension Service, Institute of Food and Agricultural, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida authorized to provide research, educational information and other services only to individuals

  1. Cenozoic basin development in Hispaniola

    SciTech Connect (OSTI)

    Mann, P.; Burke, K.

    1984-04-01T23:59:59.000Z

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  2. Natural gas plays in Jurassic reservoirs of southwestern Alabama and the Florida panhandle area

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Mink, R.M.; Tew, B.H.; Bearden, B.L. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three Jurassic natural gas trends can be delineated in Alabama and the Florida panhandle area. They include a deep natural gas trend, a natural gas and condensate trend, and an oil and associated natural gas trend. These trends are recognized by hydrocarbon types, basinal position, and relationship to regional structural features. Within these natural gas trends, at least eight distinct natural gas plays can be identified. These plays are recognized by characteristic petroleum traps and reservoirs. The deep natural gas trend includes the Mobile Bay area play, which is characterized by faulted salt anticlines associated with the Lower Mobile Bay fault system and Norphlet eolian sandstone reservoirs exhibiting primary and secondary porosity at depths exceeding 20,000 ft. The natural gas and condensate trend includes the Mississippi Interior Salt basin play, Mobile graben play, Wiggins arch flank play, and the Pollard fault system play. The Mississippi Interior Salt basin play is typified by salt anticlines associated with salt tectonism in the Mississippi Interior Salt basin and Smackover dolomitized peloidal and pelmoldic grainstone and packstone reservoirs at depths of approximately 16,000 ft. The Mobile graben play is exemplified by faulted salt anticlines associated with the Mobile graben and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Wiggins arch flank play is characterized by structural traps consisting of salt anticlines associated with stratigraphic thinning and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Pollard fault system play is typified by combination petroleum traps. The structural component is associated with the Pollard fault system and reservoirs at depths of approximately 15,000 ft. These reservoirs are dominantly Smackover dolomitized oomoldic and pelmoldic grainstones and packstones and Norphlet marine, eolian, and wadi sandstones exhibiting primary and secondary porosity.

  3. Energy Performance Aspects of a Florida Green Roof

    E-Print Network [OSTI]

    Sonne, J.

    2006-01-01T23:59:59.000Z

    by the University of Central Florida’s Stormwater Management Academy under a grant from the Florida Department of Environmental Protection (FDEP). While the primary purpose of the project is to evaluate rainwater runoff benefits of the green roof, FDEP.... The roof geometry and drainage were designed to allow both the conventional and green roofs to have similar “mirror image” insulation levels and corresponding temperature sensor locations as shown in the roof surface and building section diagrams...

  4. Florida Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    second registered teams will be approved to participate. Competition Location Florida Solar Energy Center (UCF) 1679 Clearlake Road Cocoa, Florida 32922 Regional Contact...

  5. Team Florida Takes "Sunshine State" Moniker Seriously | Department...

    Broader source: Energy.gov (indexed) [DOE]

    insulation for temperature extremes, resistance to air infiltration, transparency for daylight, and flexibility" --a common challenge to homebuilders in central Florida. After the...

  6. Progress Energy Florida- SunSense Commercial PV Incentive Program

    Broader source: Energy.gov [DOE]

    '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.'''''

  7. Florida Public Utilities- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers the Energy for Life Conservation program to commercial electric customers to save energy in facilities. Rebates are available for lighting, chiller, heat pump, air...

  8. SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure Coast committed to helping homeowners reduce their rising...

  9. University of Central Florida Students' Energy Saving Work Showcased...

    Energy Savers [EERE]

    video encouraging college students to help America save energy, save money and cut pollution. The video highlights the work of students at the University of Central Florida in...

  10. Florida City Gas- Residential Energy Smart Rebate Program

    Broader source: Energy.gov [DOE]

    Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate...

  11. Evidence for an allocyclic origin of marine strata bounding the Upper Carboniferous Mary Lee coal zone, Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Gastaldo, R.A. (Auburn Univ., AL (United States). Dept. of Geology); Demko, T.M. (Univ. of Arizona, Tucson, AZ (United States). Dept. of Geosciences)

    1992-01-01T23:59:59.000Z

    The Black Warrior Basin, a triangular foreland basin of Carboniferous age, is located at the southern end of the Appalachian orogen. A southwestward wedge of Mississippian and Lower Pennsylvanian sedimentary rocks occurs in the basin. The generally accepted model for basin-fill involves the progradation of a single delta, or multiple deltas (the Pottsville Formation), over an offshore carbonate bank (the Bangor Limestone). The Pottsville Formation is typical of Euramerican Carboniferous strata and is composed of the cyclical alternation of marine and terrestrial facies. The deposition of marine facies overlying terrestrial facies has been interpreted to have been the result of delta lobe switching and the compaction of underlying sediments, hence, autocyclic processes. Sedimentological features associated with the marine strata bounding the Mary Lee coal zone, the informal Jagger bedrock sandstone below and the Morris Shale above, are not indicative of circumstances generated by autocyclic processes. Rather, the marine strata highlight features resulting from allocyclic processes. The Jagger bedrock sandstone is a thick (> 15 m) sublitharenite interpreted as representing subtidal, shore-parallel bars. It is a sandstone body that was stranded on the shoreline during regional regression. The terrestrial coal-bearing strata are truncated by an erosional surface, marking the base of the Morris Shale. This ravinement surface is overlain by a ravinement bed representing a substrate developed by regional transgressive erosion that was subsequently colonized by open-marine macroinvertebrates. The ravinement bed is interpreted as a condensed section that accumulated under maximum water depth. Both of these features are indicative of development in response to extrinsic causes rather than intrinsic ones.

  12. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  13. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  14. South Florida Ecosystem Restoration: Scientific Information Needs in the Southern

    E-Print Network [OSTI]

    South Florida Ecosystem Restoration: Scientific Information Needs in the Southern Coastal Areas information needed for ecosystem restoration in the Southern Coastal Areas of South Florida. In 1996 that time, ecosystem restoration has advanced from planning to implementation; progress in research has

  15. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: October 13, 2011 REGULATION-support organizations (DSOs) are governed by Florida Statute s. 1004.28 and Board of Governors Regulation 6 conditions, controls and requirements as each board deems appropriate for oversight. The proposed regulation

  16. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: October 9, 2007 REGULATION: At its March 2007 meeting, the Florida Board of Governors ("BOG") promulgated new regulations that relate to new program authorization (6C-8.011, Academic Program Authorization). The Regulations require

  17. University of Florida Institute of Food and Agricultural Sciences

    E-Print Network [OSTI]

    Jawitz, James W.

    for Organic Agriculture 7 Center for Remote Sensing 7 Center for Renewable Chemicals and Fuels 7 Center Nutrition 16 Forest Resources and Conservation, School of 16 Horticultural Sciences 17 Microbiology and Cell ­ Diagnostic Laboratories 19 Florida Extension Plant Disease Clinic ­ Gainesville 19 Florida Extension Mycology

  18. Addressing the Level of Florida's Electricity Prices Theodore Kury1

    E-Print Network [OSTI]

    Jawitz, James W.

    such transactions occur; · Florida, compared to other states in the region, relies greatly on natural gas which has Utility Research Center Department of Economics University of Florida September 28, 2011 ratepayers; · Electric utilities also buy on the spot market and prices can fluctuate quickly when

  19. Persistent borderland: freedom and citizenship in territorial Florida

    E-Print Network [OSTI]

    Smith, Philip Matthew

    2009-05-15T23:59:59.000Z

    Florida’s Spanish borderland was the result of over two hundred and fifty years of cooperation and contention among Indians, Spain, Britain, the United States and Africans who lived with them all. The borderland was shaped by the differing cultural...

  20. Florida Democrats point fingers at Gov. Scott, GOP lawmakers

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Florida Democrats point fingers at Gov. Scott, GOP lawmakers By GEORGE BENNETT Palm Beach Post Staff Writer Updated: 4:56 p.m. Saturday, Oct. 29, 2011 Posted: 4:37 p.m. Saturday, Oct. 29, 2011 from Democrats about Rick Scott, George W. Bush and the tea party next year. At the Florida Democratic

  1. Climate change and land use in Florida: Interdependencies and opportunities

    E-Print Network [OSTI]

    Watson, Craig A.

    a comprehensive greenhouse gas (GHG) inventory, which the Florida Department of Environmental Protection will develop over the next year. In addition to a GHG inventory and mitigation tools, a state climate action to increasingly dominate urban climate. · Florida ranks sixth in the US for total GHG emissions. The agricultural

  2. RESOLUTION OF THE FACULTY SENATE OF THE UNIVERSITY OF FLORIDA

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    cells to biofuels and nuclear power ­ in order to create a sustainable energy future for Florida-building LEED-EB portfolio for energy efficiency in renovations. · The Florida Institute for Sustainable Energy brings together 150 faculty to develop new technologies ­ from fuel cells, batteries, and solar

  3. The Florida Forest Steward A Quarterly Newsletter for Florida Landowners and Resource Professionals

    E-Print Network [OSTI]

    Watson, Craig A.

    prices, woody biomass is an energy source we should utilize to the fullest. Most wood biomass fuel has Volume 12, No. 4 Spring 2006 In this issue: · Happy 2006! · Biomass as an Alternative Energy Source biomass is an abundant renewable energy source readily available here in Florida and southern Georgia

  4. Preliminary analyses of matrix properties of Silurian and Devonian carbonate rocks in the Indiana and Ohio parts of the Midwestern Basins and Arches Region

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States). Water Resources Div.)

    1994-04-01T23:59:59.000Z

    The US Geological Survey's Regional Aquifer-Systems Analysis (RASA) in the Midwestern Basins and Arches Region is investigating the Silurian and Devonian carbonate-rock aquifer in parts of Indiana, Ohio, Michigan, and Illinois. Core samples from the carbonate-rock aquifer in Indiana and Ohio were analyzed for horizontal permeability and porosity. These matrix properties were used to describe the hydrogeologic aspects of the carbonate-rock aquifer throughout the regional study area. Core descriptions by the Indiana and Ohio State Geological surveys, were used for sub-dividing the core into the various lithostratigraphic groups. The lithostratigraphic groups are: the Brassfield/Sexton Creek Limestone, the Sublockport (including the Dayton Limestone and the Rochester Shale Equivalent), the Lockport Dolomite or the Salamonie Dolomite, the Salina Group, the lower section of the Muscatatuck Group and the upper section of the Muscatatuck Group. The porosities and horizontal permeabilities determined from the 38 samples were analyzed by nonparametric statistical methods. The data were grouped by lithologic unit, well location, and position within a depositional basin (the Appalachian, Michigan and Illinois Basins). In each case, all groups of data had identical distributions. These results show that the horizontal permeability and porosity of the matrix in the Silurian and Devonian carbonate rocks that were sampled are statistically similar and that variation between the groups is not statistically important.

  5. LOUIS DE LA PARTE FLORIDA MENTAL HEALTH INSTITUTE UNIVERSITY OF SOUTH FLORIDA -2004/2005 UNDERGRADUATE CATALOG

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    , addictive and developmen- tal disorders) in the State of Florida through research, training, and education for a variety of audiences including behavioral health and health care professionals, the Florida legislature. New, scientifically based treatment approaches are available to treat and prevent many

  6. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  7. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  8. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  9. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  10. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-05-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  11. Green Machine Florida Canyon Hourly Data 20130731

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-08-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  12. 20130416_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-04-24T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  13. Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-07-15T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  14. EIS-0513: Jacksonville LNG Project, Jacksonville, Florida

    Broader source: Energy.gov [DOE]

    Notice of Intent: Public Scoping Period Ends 04/24/15The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS that analyzes the potential environmental impacts of a proposal to construct and operate a natural gas liquefaction, storage, and export facility on the St. Johns River in Jacksonville, Florida. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the export of natural gas, including liquefied natural gas, unless it finds that the export is not consistent with the public interest.

  15. Alachua, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View NewAlachua, Florida:

  16. Brownsville, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont,Florida: Energy Resources Jump to:

  17. Florida Hydrogen Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cellsan FFV?Florida

  18. Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida: Energy Resources Jump

  19. Wabasso, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to: navigation,WSDNRWabasso, Florida: Energy

  20. Westchester, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota: Energy ResourcesFlorida:

  1. Williamsburg, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, NewKansas:Williams,Florida: Energy

  2. Cheval, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: Energy ResourcesCheval, Florida: Energy

  3. Categorical Exclusion Determinations: Florida | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia| DepartmentFlorida

  4. Progress Energy Florida Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrincetonProgramProgressFlorida Inc

  5. Indiantown, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: Energy Resources Jump to:

  6. Pensacola, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation US Recovery ActPensacola, Florida:

  7. Parkland, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus,NewParkland, Florida:

  8. Pinecrest, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermalPinecrest, Florida: Energy

  9. Gifford, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation, searchAccess,Gibson,Gifford, Florida:

  10. Goldenrod, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes, Florida:Golden's Bridge,Goldenrod,

  11. Golf, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes, Florida:Golden'scompanyGolf,

  12. Gotha, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon,Vermont:Gotha, Florida:

  13. Fermilab Today | University of Florida Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruaryInThe,Michigan0 Dec.DavisFlorida July 9,

  14. Melbourne, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to:Inc MTIDiscoveriesFlorida:

  15. Stuart, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, search NameFlorida: Energy Resources Jump to:

  16. Sunrise, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectraSunnyside,Sunreps JumpFlorida: Energy

  17. Edgewood, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,deEdgecombe-Martin CountyFlorida: Energy

  18. Oakland, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees forMichigan:Oakham,Park,Florida:

  19. Orlovista, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: EnergyOrlovista, Florida: Energy

  20. Miramar, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuano EnergiasMiramar, Florida:

  1. Tamiami, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMPTallmadge, Ohio:Tamiami, Florida:

  2. Thonotosassa, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo JumpThonotosassa, Florida: Energy

  3. Arcadia, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),Arborview Capital JumpFlorida: Energy

  4. Naranja, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellar IncNaranja, Florida: Energy

  5. Baldwin, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs,Florida: Energy Resources

  6. Riverview, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio: Energy Resources JumpRiverview, Florida:

  7. Roseland, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: Energy Resources JumpFlorida: Energy

  8. Florida Biomass Energy Consortium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation, searchFlorida

  9. Florida Biomass Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation, searchFloridaBiomass

  10. Florida Biomass Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation, searchFloridaBiomass

  11. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation,HydrogenFlorida

  12. University, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place:2.850084°,KansasUniversity, Florida:

  13. Estero, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation IncentivesEshone EnergyEstero, Florida:

  14. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13T23:59:59.000Z

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  15. Pre-convective environmental conditions indicative of non-tornadic severe thunderstorm winds over Southeast Florida 

    E-Print Network [OSTI]

    Wilhelm, Jeffrey Michael

    1987-01-01T23:59:59.000Z

    thunderstorm wind events over Southeast Florida during the period of study. Upper-air data were obtained for several stations on and around the Florida peninsula. These stations include: Key West, Florida (EYW), West Palm Beach, Florida (PBI), Tampa Bay...PRE-CONVECTIVE ENVIRONMENTAL CONDITIONS INDICATIVE OF NON-TORNADIC SEVERE THUNDERSTORM WINDS OVER SOUTHEAST FLORIDA A Thesis by JEFFREY MICHAEL WILHELM Submitted to the Graduate College of Texas ARM University in partial fulfillment...

  16. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect (OSTI)

    Robert Caldwell

    1998-04-01T23:59:59.000Z

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  17. K-Basins design guidelines

    SciTech Connect (OSTI)

    Roe, N.R.; Mills, W.C.

    1995-06-01T23:59:59.000Z

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  18. Operational Performance of Sedimentation Basins

    E-Print Network [OSTI]

    Bleything, Matthew D.

    2012-12-14T23:59:59.000Z

    and sludge pumps and clog pipes. (Lee, 2007) Composition of grit varies widely, with moisture content ranging from 13 to 63 percent, and volatile content ranging from 1 to 56 percent. The specific gravity of clean grit particles may be as high as 2... for unobstructed flow of the inlet water into the basin when the basin was almost full to capacity with sediment. The outlet of the sediment basin is an oil/water separator. This is for oil leaks and spills from the plant island. The design called...

  19. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  20. Water, waterworks and water journeys in South Florida's Everglades

    E-Print Network [OSTI]

    Weitzman, Sabina D. (Sabina Diane)

    1990-01-01T23:59:59.000Z

    This thesis is an exploration of how architectural form could make the movement of water through a particular landscape evident. The project is a design of a journey through a portion of South Florida's Everglades traversed ...

  1. Coming Full Circle in Florida: Improving Electric Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo courtesy of Florida Power & Light. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the 3.4 billion Smart Grid Investment...

  2. COMPREHENSIVE EVERGLADES RESTORATION PLAN CENTRAL AND SOUTHERN FLORIDA PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Florida ecosystem while providing for other water- related needs of the region in the 2000 Water Resources incremental restoration of natural processes critical for the development of peat soils and tree islands

  3. Florida Power and Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

  4. Assessing land conservation strategies : the case of the Florida Everglades

    E-Print Network [OSTI]

    Lassiter, Allison (Allison Blythe)

    2009-01-01T23:59:59.000Z

    South Florida's Everglades is home to 67 threatened and endangered species. By 2100 it is estimated that sea level rise will inundate over 20% of existing conservation lands. Species will be dislocated and migrate to new ...

  5. Cutting Electricity Costs in Miami-Dade County, Florida

    SciTech Connect (OSTI)

    Alvarez, Carlos; Oliver, LeAnn; Kronheim, Steve; Gonzalez, Jorge; Woods-Richardson, Kathleen

    2011-01-01T23:59:59.000Z

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity needs.

  6. Liability for Defective Documentation FloridaInstitute of Technology

    E-Print Network [OSTI]

    Liability for Defective Documentation Cem Kaner FloridaInstitute of Technology 150 West University behind its claims. False claims in documentation might subject the manufacturer to liability for breach Engineering]: Distribution, Maintenance and Enhancement ­ documentation. General Terms Documentation, Human

  7. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of the Florida Canyon gold deposit, Pershing County, Nevada, in: Gold and Silver...

  8. The impacts of urbanization on endangered florida key deer

    E-Print Network [OSTI]

    Harveson, Patricia Moody

    2006-04-12T23:59:59.000Z

    for resources between man and wildlife continues, it is important to understand the effects of urbanization on species. Endangered Key deer (Odocoileus virginianus clavium) are endemic to the Florida Keys archipelago stretching southwest off the southern tip...

  9. Is Florida's Growth Management Act protecting agricultural lands?

    E-Print Network [OSTI]

    Lloyd, Stephen (Stephen Charles Rhys)

    2011-01-01T23:59:59.000Z

    Florida has experienced more population growth over the past half century than any other state, which has led to some of the most extensive urban development on valuable agricultural lands. To address this and other impacts ...

  10. Cutting Electricity Costs in Miami-Dade County, Florida

    ScienceCinema (OSTI)

    Alvarez, Carlos; Oliver, LeAnn; Kronheim, Steve; Gonzalez, Jorge; Woods-Richardson, Kathleen;

    2013-05-29T23:59:59.000Z

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity needs.

  11. Cutting Electricity Costs in Miami-Dade County, Florida

    Broader source: Energy.gov [DOE]

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity...

  12. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED REGULATION REPEAL

    E-Print Network [OSTI]

    Richman, Fred

    in 1975 and last amended in 1987. Regulation 4.002 is no longer necessary in lieu of the implementation, Boca Raton, Florida, 33431, (561) 297-3007 (phone), (561) 297-2787 (fax), GeneralCounsel@fau.edu. #12;

  13. FLORIDA ATLANTIC UNVIERSITY NOTICE OF PROPOSED REGULATION REPEAL

    E-Print Network [OSTI]

    Richman, Fred

    , and last revised in 1987. It details procedures for continuing education courses which were implemented Dessalines, Paralegal, Office of the General Counsel, 777 Glades Road, Boca Raton, Florida, 33431, (561) 297

  14. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED REGULATION AMENDMENT

    E-Print Network [OSTI]

    Richman, Fred

    .005 was last amended in November 1987 and required amendment to conform with new administrative titles Dessalines, Paralegal, Office of the General Counsel, 777 Glades Road, Boca Raton, Florida, 33431, (561) 297

  15. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED REGULATION AMENDMENTS

    E-Print Network [OSTI]

    Richman, Fred

    and distribution of financial aid to students. It was last amended November 11, 1987. This proposal updates: Myrlande Dessalines, Paralegal, Office of the General Counsel, 777 Glades Road, Boca Raton, Florida, 33431

  16. FLORIDA ATLANTIC UNVIERSITY NOTICE OF PROPOSED REGULATION REPEAL

    E-Print Network [OSTI]

    Richman, Fred

    TITLE AND NUMBER: Declaratory Statements (1.006). SUMMARY: Regulation 1.006 was last amended in 1987, Boca Raton, Florida, 33431, (561) 297-3007 (phone), (561) 297-2787 (fax), GeneralCounsel@fau.edu. #12;

  17. Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

  18. Property Tax Exclusion for Residential Renewable Energy Property (Florida)

    Broader source: Energy.gov [DOE]

    Florida provides a property tax exemption for residential photovoltaic systems, wind energy systems, solar water heaters, and geothermal heat pumps installed on or after January 1, 2013. For the...

  19. FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975

    E-Print Network [OSTI]

    FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute at temperatures as low as -40°C Employ gas permeable matrices for the pigment encapsulation that make them

  20. Local lattice distortions and thermal transport in perovskite manganites Department of Physics, University of Miami, Coral Gables, Florida 33124

    E-Print Network [OSTI]

    of Physics, University of Miami, Coral Gables, Florida 33124 J. J. Neumeier Department of Physics, Florida, Coral Gables, Florida 33124 K. J. McClellan Materials Science and Technology Division, Los Alamos

  1. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  2. 52 Journal of Student Research in Environmental Science at Appalachian F A C U L T Y C O N T R I B U T I O N

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    52 Journal of Student Research in Environmental Science at Appalachian F A C U L T Y C O N T R I B U T I O N Call for Papers­ongoing The Journal of Student Research in Environmental Science. This journal will annually publish a collection of non-peer reviewed student and faculty articles based

  3. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  4. Low reservoir ages for the surface ocean from mid-Holocene Florida corals

    E-Print Network [OSTI]

    Druffel, Ellen R. M; Robinson, Laura F; Griffin, Sheila; Halley, Robert B; Southon, John R; Adkins, Jess F

    2008-01-01T23:59:59.000Z

    Druffel, E. M. (1982), Banded corals: Changes in oceanic 14Radio- carbon in annual coral rings of Florida, Geo- phys.Radiocarbon in annual coral rings of Belize and Florida,

  5. Original documentation created by University of Central Florida. Outlook 2010 vs GroupWise

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Original documentation created by University of Central Florida. Outlook #12;Original documentation created by University of Central Florida. Cabinet as a grey envelope. #12;Original documentation created by University of Central

  6. Distribution and plant association records for Homalodisca coagulata (Hemiptera : Cicadellidae) in Florida

    E-Print Network [OSTI]

    Hoddle, M S; Triapitsyn, S V; Morgan, DJW

    2003-01-01T23:59:59.000Z

    coagulata (Say) (Hemiptera: Clypeorrhyncha: Cicadellidae) toHOMALODISCA COAGULATA (HEMIPTERA: CICADELLIDAE) IN FLORIDA Mnigricans [Walker] [Hemiptera: Ci- cadellidae: Cicadellinae:

  7. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  8. Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan Joseph K. Goode,1 the controls on this intramontane basin deformation, we study the Naryn Basin of south central Kyrgyzstan central Kyrgyzstan, Tectonics, 30, TC6009, doi:10.1029/2011TC002910. 1. Introduction [2] Deformation

  9. Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

  10. MANATEE OCCURRENCE IN THE NORTHERN GULF OF MEXICO, WEST OF FLORIDA

    E-Print Network [OSTI]

    36547 USA 4US Geological Survey, Florida Integrated Science Center, Sirenia Project, 412 NE 16th Avenue Coast from the Suwannee River in Florida to the Bay of Campeche, Mexico, and considered common in south in each state west of Florida, current literature, as well as files of the Sirenia Project (US Geological

  11. Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event

    E-Print Network [OSTI]

    of a dark water plume from near Charlotte Harbor, Florida, to the Dry Tortugas in the Florida Keys in mid, respectively. The dark color became increasingly dominated by colored dissolved organic matter, toward the DryLinkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event

  12. The Climate of the South Platte Basin

    E-Print Network [OSTI]

    The Climate of the South Platte Basin Colorado Climate Center http://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers #12;Precipitation Monthly Average Precipitation for Selected Sites in the South Platte Basin 0.00 0

  13. Geological Modeling of Dahomey and Liberian Basins

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16T23:59:59.000Z

    The objective of this thesis is to study two Basins of the Gulf of Guinea (GoG), namely the Dahomey and the Liberian Basins. These Basins are located in the northern part of the GoG, where oil and gas exploration has significantly increased...

  14. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15T23:59:59.000Z

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  15. Genetic classification of petroleum basins

    SciTech Connect (OSTI)

    Demaison, G.; Huizinga, B.J.

    1989-03-01T23:59:59.000Z

    Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

  16. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01T23:59:59.000Z

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  17. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

  18. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Florida Solar Energy Center (FSEC) and Florida Power and Light are pursuing a collaborative energy research/utility partnership to retrofit a large number of homes using a phased approach. The project is creating detailed data on the energy and economic performance of two levels of home retrofit - simple and deep. Acting as a pilot, this project is expected to provide the information necessary to significantly reduce energy use through much larger community-scale projects in collaboration with utilities, program administrators and other market leader stakeholders.

  19. Lake Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida:Montezuma,Park, Florida:

  20. Hamilton County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandale Beach, Florida:HamblenNewFlorida:

  1. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:

  2. Bay Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:Lake,

  3. Mississippian facies relationships, eastern Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Peace, H.W. (Oryx Energy, Inc., Midland, TX (United States)); Forgotson, J.M. (Univ. of Oklahoma, Norman (United States))

    1991-08-01T23:59:59.000Z

    Mississippian strata in the eastern Anadarko basin record a gradual deepening of the basin. Late and post-Mississippian tectonism (Wichita and Arbuckle orogenies) fragmented the single large basin into the series of paired basins and uplifts recognized in the southern half of Oklahoma today. Lower Mississippian isopach and facies trends (Sycamore and Caney Formations) indicate that basinal strike in the study area (southeastern Anadarko basin) was predominantly east-west. Depositional environment interpretations made for Lower Mississippian strata suggest that the basin was partially sediment starved and exhibited a low shelf-to-basin gradient. Upper Mississippian isopach and facies trends suggest that basinal strike within the study area shifted from dominantly east-west to dominantly northwest-southeast due to Late Mississippian and Early Pennsylvanian uplift along the Nemaha ridge. Within the study area, the Chester Formation, composed of gray to dove-gray shales with interbedded limestones deposited on a carbonate shelf, thins depositionally into the basin and is thinnest at its facies boundary with the Springer Group and the upper portion of the Caney Formation. As basin subsidence rates accelerated, the southern edge of the Chester carbonate shelf was progressively drowned, causing a backstepping of the Chester Formation calcareous shale and carbonate facies. Springer Group sands and black shales transgressed northward over the drowned Chester Formation shelf.

  4. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States))

    1992-01-01T23:59:59.000Z

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  5. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect (OSTI)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05T23:59:59.000Z

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

  6. University of Central Florida Department of Housing and Residence Life

    E-Print Network [OSTI]

    Kaup, David J.

    2008 Student Intern Agreement-Terms and Conditions 1. ORAL REPRESENTATION POLICY: To avoid any misunderstandings concerning the UCF Department of Housing and Residence Life agreement, the UCF DHRL does not enter: Authorized University of Central Florida personnel may enter any residential room for normal inspection, fire

  7. A Program Plan for Photovoltaic Buildings in Florida

    Broader source: Energy.gov [DOE]

    This document outlines plans developed by the Florida Solar Energy Center (FSEC) to support photovoltaic buildings application in the state through the first decade of the 21st century. The emphasis of this program is on identifying and increasing the value of rooftop systems to targeted end users through the use of application experiments.

  8. Managing Florida Ponds for Fishing 1 Charles E. Cichra2

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR802 Managing Florida Ponds for Fishing 1 Charles E. Cichra2 1. This document is CIR802, one-out and impounded waters, limerock pits, and sand or gravel pits, commonly called borrow pits. Fishing pressure in fishing as a source of recreation and food. Competition for public fishery resources, coupled

  9. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: October 9, 2007 REGULATION Board of Governors ("BOG") promulgated new regulations that relate to new program termination (6C-8.012, Academic Program Termination). The Regulations require that each university board of trustees adopt

  10. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: February 11, 2011 REGULATION.009). SUMMARY: The University administration seeks approval to amend FAU Regulation 4.009, Major Medical Insurance Requirements for Foreign Students. This proposed amended regulation, renamed Health Insurance

  11. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: April 29, 2008 REGULATION TITLE for the proposed FAU Regulation 4.014, Medical Advisory Committee. This committee will advise and make to themselves or others in the University. Approval of this proposed regulation allows the University to have

  12. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: June 18, 2009 REGULATION TITLE of Governors is required to promulgate a regulation to implement the Textbook Affordability Act of 2008. The BOG promulgated Regulation 8.003 on March 26, 2009, which requires each Board of Trustees

  13. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    -1- FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: April 5, 2010 REGULATION of Academic Affairs seeks approval of the proposed FAU Regulation 4.002, Student Academic Grievance Procedures for Grade Reviews. Approval is dependent on the repeal of the current FAU Regulation 4.002 and the approval

  14. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: April 29, 2008 REGULATION TITLE approval FAU Regulation 4.013, Exceptional Circumstance Withdrawals. This regulation outlines the process, and staff when it is appropriate to use this regulation. The committee, composed of representatives from all

  15. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: April 14, 2011 REGULATION TITLE College of Medicine seeks approval of the proposed FAU Regulation 9.001, Faculty Practice Plan and administration of the Faculty Practice Plan. FULL TEXT OF THE REGULATION: The full text of the proposed

  16. FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION

    E-Print Network [OSTI]

    Richman, Fred

    FLORIDA ATLANTIC UNIVERSITY NOTICE OF PROPOSED NEW REGULATION Date: April 16, 2009 REGULATION TITLE AND NUMBER: Institutes and Centers (2.006). SUMMARY: Board of Governors Regulation 10.015(3), University with Board of Governors criteria. Proposed Regulation 2.006 responds to this requirement and provides

  17. University of Central Florida College of Optics & Photonics Optics

    E-Print Network [OSTI]

    Van Stryland, Eric

    University of Central Florida College of Optics & Photonics Optics Spring 2010 OSE-6432: Principles of guided wave optics; electro -optics, acousto-optics and optoelectronics. Location: CREOL-A-214 or by Appointment Reference Materials: 1. Class Notes. 2. "Fundamentals of Optical Waveguides", K. Okamoto, Academic

  18. Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR 912 Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1 Martin B. Main by establishing and managing desirable native plants. Native wetland plants play important ecological roles many more species than non-native plants because native wildlife evolved with native plant communities

  19. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Request for New Fund DEPARTMENT INFORMATION FUND INFORMATION CHARTFIELD INFORMATION CONTACT INFORMATION Custodian Prepared by (if College name Amount requested ($) Type of fund Research stipendPetty cashChange What is the primary

  20. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information for the stewardship of the University's cash and investments, including research stipend funds. We need assurance - Research Stipend Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  1. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information - Petty for the stewardship of the University's cash and investments, including petty cash funds. We need assurance Cash Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  2. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Change to Existing Fund EXISTING FUND INFORMATION CHANGES TO FUND Complete all areas that are applicable for your fund request. CHANGE IN FUND LOCATION CHANGE IN CUSTODIANSHIP New Custodian InformationExisting Custodian Information

  3. The University of Florida, IFAS St. Johns County

    E-Print Network [OSTI]

    Jawitz, James W.

    Andrew could have been prevented by professionally installed hurricane shutters over windows and doors- versity of Florida, is one of only four such facilities in the state. It showcases multiple hurricane Mitigation Window Protection is utmost important for providing protection against hurricane damage

  4. The Florida State University Department of Computer Science

    E-Print Network [OSTI]

    Ronquist, Fredrik

    The Florida State University Department of Computer Science Combined Bachelor's / Master's Degree Program Introduction: The combined BS/MS degree program in the Department of Computer Science is designed degree in Computer Science and a Master of Science degree in Computer Science. This program allows up

  5. STATE UNIVERSITY SYSTEM OF FLORIDA CONSOLIDATED FINANCIAL STATEMENTS

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UF UNF FAMU FSU NCF FGCU USF FIU FAU STATE UNIVERSITY SYSTEM OF FLORIDA CONSOLIDATED FINANCIAL to generally accepted accounting principles applicable to public colleges and universities as prescribed by the Governmental Accounting Standard Board's (GASB) statements. The Universities also adhere to the recommendations

  6. An Equity Profile of the Southeast Florida Region

    E-Print Network [OSTI]

    Rohs, Remo

    and 2006-2010 (all figures adjusted to 2010 dollars) 37 26. Poverty Rate, 1980 to 2006-2010 37 27. Working Poverty Rate, 1980 to 2006-2010 #12;PolicyLink and PEREAn Equity Profile of the Southeast Florida Region 4 List of figures Economicvitality (continued) 38 28. Working Poverty Rate in 2006-2010: Largest 150

  7. Florida Atlantic University Response to Governor Rick Scott

    E-Print Network [OSTI]

    Fernandez, Eduardo

    ;FAU Response to Governor Scott --ii Table of Contents A. ..........................................................................................................................................................48 #12;FAU Response to Governor Scott --1 A. What studies has your university done in the last three#12;#12;#12;#12;Florida Atlantic University Response to Governor Rick Scott November 15, 2011 #12

  8. FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET JULY 1, 2004 TO DECEMBER 31, 2004 SECOND QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  9. FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET JULY 1, 2004 TO MARCH 31, 2005 THIRD QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget Athletics

  10. FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    FLORIDA ATLANTIC UNIVERSITY 2004-2005 UNIVERSITY OPERATING BUDGET JULY 1, 2004 TO SEPTEMBER 30, 2004 FIRST QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  11. FLORIDA ATLANTIC UNIVERSITY 2008-09 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2008-09 UNIVERSITY OPERATING BUDGET JULY 1, 2008 TO DECEMBER 31, 2008 SECOND QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget Athletics

  12. FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET JULY 1, 2005 TO DECEMBER 31, 2005 SECOND QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  13. FLORIDA ATLANTIC UNIVERSITY 2010-11 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2010-11 UNIVERSITY OPERATING BUDGET JULY 1, 2010 TO DECEMBER 31, 2010 SECOND QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  14. FLORIDA ATLANTIC UNIVERSITY 2008-09 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2008-09 UNIVERSITY OPERATING BUDGET JULY 1, 2008 TO SEPTEMBER 30, 2008 FIRST QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  15. FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET JULY 1, 2005 TO MARCH 15, 2006 THIRD QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget Athletics

  16. FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET JULY 1, 2007 TO MARCH 31, 2008 THIRD QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget Athletics

  17. FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET JULY 1, 2007 TO DECEMBER 31, 2007 SECOND QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  18. FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2007-2008 UNIVERSITY OPERATING BUDGET JULY 1, 2007 TO SEPTEMBER 30, 2007 FIRST QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  19. FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 FLORIDA ATLANTIC UNIVERSITY 2005-2006 UNIVERSITY OPERATING BUDGET JULY 1, 2005 TO SEPTEMBER 30, 2005 FIRST QUARTER REPORT Educational and General Operating Budget Student Financial Aid Operating Budget Grants and Contracts-Sponsored Research Operating Budget Auxiliary Enterprises Operating Budget

  20. Judy Genshaft, PhD President, University of South Florida

    E-Print Network [OSTI]

    Meyers, Steven D.

    Judy Genshaft, PhD President, University of South Florida Charles (Charly) Lockwood, MD, MHCM President Health Law, Policy & Safety Dianne Morrison- Beedy, PhD, RN, WHNP-BC, FNAP, FAANP, FAAN Senior Officer Gretchen Koehler, PhD Assistant Vice President, Academic Program Administration & Inst

  1. Judy Genshaft, PhD President, University of South Florida

    E-Print Network [OSTI]

    Meyers, Steven D.

    Judy Genshaft, PhD President, University of South Florida Charles (Charly) J. Lockwood, MD, MHCM & Safety Dianne Morrison- Beedy, PhD, RN, WHNP-BC, FNAP, FAANP, FAAN Senior Associate Vice President Officer Gretchen Koehler, PhD Assistant Vice President, Academic Program Administration & Inst

  2. Judy Gensha,, PhD President, University of South Florida

    E-Print Network [OSTI]

    Meyers, Steven D.

    Judy Gensha,, PhD President, University of South Florida Morsani College, MPH Vice Dean, Educa:on LyneHe J. Menezes, PhD Assistant Dean Interna Zinder, PhD, ATC Director, Athle:c Training Program John S. Curran, MD Senior

  3. Silurian of Illinois basin - a carbonate ramp

    SciTech Connect (OSTI)

    Coburn, G.W.

    1986-05-01T23:59:59.000Z

    The Silurian of the Illinois basin has classically been defined as a shelf-basin sequence. According to the shelf-basin model, the Illinois basin is a deep-water basin in the extreme southern part (southern Illinois-Tennessee), with a slope in the south (Illinois-Indiana) and a shelf extending from central Illinois and Indiana northeast to the Michigan basin. Reef buildups are in a continuous trend along the shelf break. However, the author proposes that the silurian of the Illinois basin represents a carbonate ramp. The down-ramp position is located in southern Illinois and grades into deeper water environments south of Illinois. In this environment, reef buildups would form in the late Alexandrian of early St. Clair, and would begin in the down-ramp position. Therefore, using the new model, reef buildups are expected throughout the basin, rather than being confined to an imaginary shelf break. This model would facilitate exploration in southern Illinois, Indiana, and western Kentucky for reefal hydrocarbon deposits. A ramp model is indicated for the Illinois basin because: (1) the basin lacks a shelf-slope break; (2) the facies sequence is compatible with a ramp environment and incompatible with a shelf-slope environment; (3) discontinuous reef trends are typical of a ramp environment; and (4) facies changes and slope are gradual, extending over hundreds of miles as expected in a ramp environment. Modern carbonate models border on ocean basins. However, the Illinois basin is a cratonic basin, which may have affected the depositional environments. How much that environment differed from present-day models is unknown.

  4. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31T23:59:59.000Z

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  5. Soil and Water Science Department University of Florida IMPLEMENTING EFFECTIVE BMPs TO IMMOBILIZE Pb AND As IN FLORIDA

    E-Print Network [OSTI]

    Ma, Lena

    they are constituents of lead shot/bullets (pellets) currently in use. Thus, it is important to understand immobilize lead in soils and are recommended by FDEP (i.e. BMPs for environmental stewardship of Florida and iron oxide have high affinity for binding As in soils, hence may be used in shooting range soils

  6. NATIONAL HIGH MAGNETIC FIELD LABORATORY Operated by Florida State University, University of Florida, Los Alamos National Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    cords in use at the Lab. Supported by the U.S. National Science Foundation and the State of Florida #12 cords you purchase. This means that representative samples of the cord have been tested for foreseeable wire) · As a safety feature, extension cords and most appliances have polarized plugs (one blade wider

  7. LOUIS DE LA PARTE FLORIDA MENTAL HEALTH INSTITUTE UNIVERSITY OF SOUTH FLORIDA -2008/2009 UNDERGRADUATE CATALOG

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    Institute's mission is to improve the lives of people with mental, addictive and developmental disorders and health care profes- sionals, the Florida legislature, administrators, policy makers, consumers are available to treat and prevent many behavioral health problems. Students will be exposed to treatment ap

  8. LOUIS DE LA PARTE FLORIDA MENTAL HEALTH INSTITUTE UNIVERSITY OF SOUTH FLORIDA -2006/2007 UNDERGRADUATE CATALOG

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    Institute's mission is to improve the lives of people with mental, addictive and developmental disorders and health care profes- sionals, the Florida legislature, administrators, policy makers, consumers are available to treat and prevent many behavioral health problems. Students will be exposed to treatment ap

  9. LOUIS DE LA PARTE FLORIDA MENTAL HEALTH INSTITUTE UNIVERSITY OF SOUTH FLORIDA -2007/2008 UNDERGRADUATE CATALOG

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    Institute's mission is to improve the lives of people with mental, addictive and developmental disorders and health care profes- sionals, the Florida legislature, administrators, policy makers, consumers are available to treat and prevent many behavioral health problems. Students will be exposed to treatment ap

  10. LOUIS DE LA PARTE FLORIDA MENTAL HEALTH INSTITUTE UNIVERSITY OF SOUTH FLORIDA -2005/2006 UNDERGRADUATE CATALOG

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    Institute's mission is to improve the lives of people with mental, addictive and developmental disorders and health care profes- sionals, the Florida legislature, administrators, policy makers, planners, consumers treatment approaches are available to treat and prevent many of these behavioral health problems. Students

  11. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

  12. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  13. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multi-year field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annual energy savings of 15-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. Our new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012. ?

  14. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01T23:59:59.000Z

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  15. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  16. area sichuan basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 59 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  17. area tarim basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 65 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  18. area groundwater basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concerning aspects of petroleum geochemistry in the basin, especially in determining source rock(s) in the western part of this basin. It has been speculated that Ngimbang...

  19. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  20. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  1. Ridge station eases Florida's waste-disposal problems

    SciTech Connect (OSTI)

    Swanekamp, R.

    1994-10-01T23:59:59.000Z

    Two results of Florida's continuing population growth are (1) a critical need for electricity, and (2) a solid-waste disposal crisis. During a recent winter cold snap, electric demand in one service territory surged 25% over generating capacity and 10% over net system capability. Rolling blackouts ensued. At the same time, Florida's fragile wetlands environment is suffering from years of unfettered development. Groundwater sources are contaminated, landfill space is scarce, and illegal tire dumps blight the landscape. The recently constructed Ridge generating station in Polk County, Fla. is addressing both the state's electrical and environmental needs. Ridge, which entered commercial operation in May, burns a unique mix of urban woodwaste and scrap tires to provide 45 MW of critically needed electricity while keeping large quantities of solid waste out of landfills. When pipeline construction at an adjacent landfill is completed, the facility also will burn the methane gases produced when garbage decomposes.

  2. E-Print Network 3.0 - aerosolized florida red Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Geosciences 15 27. R. Bessinger, P. Akwara, "Trends in Sexual and Fertility-Related Behavior: Cameroon, Kenya, Uganda, Zambia, Summary: over the southwest Florida penin- sula....

  3. Microsoft PowerPoint - Weston-Principles of Decoupling-Florida...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer-Sited Resources and Utility Profits: Aligning Incentives with Public Policy Goals Aligning Incentives with Public Policy Goals Florida Public Service Commission 7 August...

  4. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  5. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  6. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  7. Oil migration pattern in the Sirte Basin

    SciTech Connect (OSTI)

    Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

    1995-08-01T23:59:59.000Z

    Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

  8. Sedimentary basins of the late Mesozoic extensional

    E-Print Network [OSTI]

    Johnson, Cari

    17 Sedimentary basins of the late Mesozoic extensional domain of China and Mongolia S.A. Graham,* T Mongolia was extended during the Late Jurassic and Early Cretaceous. As noted by various authors (Li et al in southern Mongolia (Lamb and Badarch, 1997), a crushed late Paleozoic flysch basin along the China­Mongolia

  9. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  10. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004VENTURA

  11. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  12. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30T23:59:59.000Z

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  13. Florida Emergency Information Line (Only activated during disasters). . . . . . . . . . . . . . . . . . . . . . . . . . . 1-800-342-3557 Florida Division of Emergency Management (www.FloridaDisaster.org) . . . . . . . . . . . Non-Emergencies 850-413-9900

    E-Print Network [OSTI]

    /) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-800-874-7561 Seminole Tribe Police . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863-983-2285 Seminole Tribe Fire.fpl.com) . . . . . . . . . . . . . . . . . . . . . . . . . . . Outage 1-800-4-OUTAGE (1-800-468-8243) Florida Keys Electric Cooperative (www

  14. University of Florida Cooperative Extension Service / Institute of Food and Agricultural Sciences Volume 4 Number 1 2000 Calendar of

    E-Print Network [OSTI]

    Florida, University of

    from Oviedo High School in 1980. In 1985, she graduated from the University of Florida with a bachelor1 University of Florida Cooperative Extension Service / Institute of Food and Agricultural Sciences of the University of Florida Department of Fisheries andAquatic Sciences Continued on page 3. January 12 General

  15. Mid-Continent basin: a reappraisal

    SciTech Connect (OSTI)

    Berg, J.R.

    1983-08-01T23:59:59.000Z

    One of the largest unevaluated basins in the Mid-Continent is the Salina basin in Kansas and its extension into eastern Nebraska. The purpose of this study is to update all older data, reconstruct new maps, and reappraise the potential for further exploration. The last comprehensive publications on the area were in 1948 and 1956. The Salina basin includes 12,700 mi/sup 2/ (33,000 km/sup 2/) in north-central Kansas, and approximately 7000 mi/sup 2/ (18,000 km/sup 2/) in east-central Nebraska. The basin is delineated by the zero isopach of Mississippian rocks bordering the basin. The Central Kansas uplift borders the basin on the southwest and Nemaha ridge on the east; the southern limit is an ill-defined saddle in the vicinity of T17S. Boundaries of the Nebraska basin are less well defined, but the axis of the basin trends directly north from the Kansas border along the boundary of Ts10 and 11W, to 41/sup 0/N lat., and then bifurcates to the northwest toward the Siouxiana arch and northeast for an unknown distance. Conventional structure maps have been constructed on several horizons, and a series of cross sections depicts anomalous structures. Recent gravity, magnetic, and seismic reflection profiling also provide information on basement tectonics which may influence structures in the younger sediments. Basement depth ranges from 600 ft (180 m) on the northeast Nemaha ridge boundary of the basin, to a depth of 4750 ft (1450 m) or -3000 ft (-915 m) below sea-level datum in Jewell County; therefore, there may be an approximate total of 10,000 mi/sup 3/ (42,000 km/sup 3/ of sediments for future exploration.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  18. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  19. A Web-Based Task-Tracking Collaboration System for the Florida Public Hurricane Loss Model

    E-Print Network [OSTI]

    Chen, Shu-Ching

    A Web-Based Task-Tracking Collaboration System for the Florida Public Hurricane Loss Model Raul, FL 33199, U.S.A. hamids@fiu.edu Abstract--The Florida Public Hurricane Loss Model (FPHLM) is a large of residential insurance premiums as they relate to insured losses caused by hurricane winds. The modeling

  20. Hurricane Clusters in the Vicinity of Florida THOMAS H. JAGGER AND JAMES B. ELSNER

    E-Print Network [OSTI]

    Elsner, James B.

    Hurricane Clusters in the Vicinity of Florida THOMAS H. JAGGER AND JAMES B. ELSNER Department form 14 December 2011) ABSTRACT Models that predict annual U.S. hurricane activity assume a Poisson distribution for the counts. Here the authors show that this assumption applied to Florida hurricanes leads

  1. Florida Public Hurricane Loss Model (FPHLM): Research Experience in System Integration

    E-Print Network [OSTI]

    Chen, Shu-Ching

    Florida Public Hurricane Loss Model (FPHLM): Research Experience in System Integration 1 Shu International University, Miami, FL 33199, USA hamids@fiu.edu ABSTRACT The Florida Public Hurricane Loss Model on probabilistic assessment of insured hurricane wind risk to residential properties and has successfully passed

  2. Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues

    E-Print Network [OSTI]

    Ma, Lena

    Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current simulating ash slurry stored in ash ponds. Our research should greatly benefit FDEP, the public and utility

  3. Regulations Pertaining to Non-native Fish in Florida Aquaculture1

    E-Print Network [OSTI]

    Watson, Craig A.

    FA-121 Regulations Pertaining to Non-native Fish in Florida Aquaculture1 Jeffrey E. Hill2 1 of a wide variety of warm-water and tropical species of ornamental, food, bait, and sport fish. In 2012, the farm-gate value of Florida aquaculture was US$69 million, with 40% of that value in ornamental fish

  4. Composting Waste Alternatives University of Florida Soil and Water Science Department

    E-Print Network [OSTI]

    Ma, Lena

    1 Composting ­ Waste Alternatives M.J. Depaz University of Florida Soil and Water Science to agricultural fields. Agricultural soils in Florida have low residual fertility due to erosion, nutrient run-off, leaching, and organic matter loss (Crecchio et al., 2001). Low residual fertility has lead

  5. South Florida Sun-Sentinel.com NSU, FAU among schools selected to research Gulf oil spill

    E-Print Network [OSTI]

    Belogay, Eugene A.

    South Florida Sun-Sentinel.com NSU, FAU among schools selected to research Gulf oil spill By Scott in an effort to research the impact of the BP oil spill on the Gulf of Mexico. Florida Atlantic University. Among the projects selected: ·FIU and Nova will use sharks and scavengers to assess the impact of oil

  6. Directions from MCO to Hilton University of Florida Starting from: Orlando International Airport MCO, Orlando, FL

    E-Print Network [OSTI]

    Slatton, Clint

    Directions from MCO to Hilton University of Florida Starting from: Orlando International Airport MCO, Orlando, FL Arriving at: Hilton University of Florida (1714 SW 34th St. Gainesville, FL 32607-4138) Distance: 120.4 miles Approximate Travel Time: 2 hours 29 min 1. Exit MCO on AIRPORT BLVD E - go 0.7 mi 2

  7. A Literature Review of the History and Future of Reclaimed Water Use in Florida Jamie Lewis

    E-Print Network [OSTI]

    Ma, Lena

    of wastewater is produced for every person in Florida. Proper treatment of this wastewater and disposal or reuse treatment or from discharge of reclaimed water for wetlands restoration; Fire protection; or Other usefulA Literature Review of the History and Future of Reclaimed Water Use in Florida Jamie Lewis

  8. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-Print Network [OSTI]

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  9. Wir weisen auf die folgende Ausschreibung hin: Florida Institute of Technology

    E-Print Network [OSTI]

    Habel, Annegret

    2010-02-22 Wir weisen auf die folgende Ausschreibung hin: Florida Institute of Technology Melbourne, Florida, USA PhD Studentship: Function allocation in human-centered design of future nuclear power plant control rooms Topic. The design and development of new nuclear control rooms require more attention

  10. Florida International University Technical Report TR-2006-09-02 STORM: An Approach to Database Storage

    E-Print Network [OSTI]

    Rangaswami, Raju

    Storage Management in Data Center Environments Kaushik Dutta Raju Rangaswami Florida International University Miami, FL 33199 kaushik.dutta@fiu.edu raju@cs.fiu.edu #12;STORM: An Approach to Database Storage Sciences Florida International University Miami, FL - 33199, USA raju@cs.fiu.edu Abstract Database storage

  11. Florida ethics panel approves Gov. Scott's placement of assets into blind trust

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Florida ethics panel approves Gov. Scott's placement of assets into blind trust By JOHN KENNEDY Palm Beach Post Staff Writer Updated: 1:46 p.m. Saturday, May 14, 2011 Posted: 6:13 p.m. Friday, May 13, 2011 The Florida Commission on Ethics unanimously approved Gov. Rick Scott's plan Friday to put his

  12. Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for Strong and Weak Binding and Competition by Dissolved Organic Matter Released from the Peat R . T O D D D R E X E L , M A R K U S H A I 80309 The binding of mercury(II) to two peats from Florida Everglades sites with different rates

  13. Observed Interannual Variability of the Florida1 Current: Wind Forcing and the North Atlantic2

    E-Print Network [OSTI]

    Miami, University of

    School of Marine and Atmospheric Science, University of Miami, Miami,8 Florida9 10 Lewis J. Gramer11 to produce daily estimates of the total volume transport of seawater through the8 Straits of Florida (Larsen and Sanford, 1985; Baringer and Larsen, 2001).9 This cable record has been used to study seasonal variations

  14. Death of a carbonate basin: The Niagara-Salina transition in the Michigan basin

    SciTech Connect (OSTI)

    Leibold, A.W.; Howell, P.D. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-01T23:59:59.000Z

    The A-O Carbonate in the Michigan basin comprises a sequence of laminated calcite/anhydrite layers intercalated with bedded halite at the transition between normal marine Niagaran carbonates and lower Salina Group evaporites. The carbonate/anhydrite interbeds represent freshing events during initial evaporative concentration of the Michigan basin. Recent drilling in the Michigan basin delineates two distinct regions of A-O Carbonate development: a 5 to 10 m thick sequence of six 'laminites' found throughout most of the western and northern basin and a 10 to 25 m thick sequence in the southeastern basin containing both thicker 'laminates' and thicker salt interbeds. Additionally, potash deposits of the overlying A-1 evaporite unit are restricted to the northern and western basin regions. The distribution of evaporite facies in these two regions is adequately explained by a source of basin recharge in the southeast-perhaps the 'Clinton Inlet' of earlier workers. This situation suggest either that: (1) the source of basin recharge is alternately supplying preconcentrated brine and more normal marine water, or (2) that the basin received at least two distinct sources of water during A-O deposition.

  15. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  16. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  17. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  18. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  19. Petroleum potential of the Libyan sedimentary basins

    SciTech Connect (OSTI)

    Hammuda, O.S.; Sbeta, A.M.

    1988-08-01T23:59:59.000Z

    Contrary to prevailing opinion, all Libyan sedimentary basins and the Al-Jabal Al-Akhdar platform contain prolific petroleum accumulations with very high prospectivity. A systematic review of the types of traps and pays in this central part of the southern Mediterranean province reveals great variability in reservoir and source rock characteristics. The reservoir rocks are of almost all geologic ages. The thick source rock sequences also vary in nature and organic content. The organic-rich facies have accumulated in intracratonic and passive margin basins or in marginal seas. Most of the oil discovered thus far in these basins is found in large structural traps. Future discoveries of stratigraphic traps or small structural traps will require intensified efforts and detailed studies using up-to-date multidisciplinary techniques in sedimentary tectonics, biostratigraphic facies analysis, and geochemical prospecting in order to develop a better understanding of these basins, thus improving their prospectivity.

  20. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01T23:59:59.000Z

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  1. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  2. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22T23:59:59.000Z

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  3. Petrology and provenance of Norphlet Formatin, Florida Panhandle

    SciTech Connect (OSTI)

    Scott, G.W.; Young, L.M.

    1988-09-01T23:59:59.000Z

    The Norphlet Formation of the Florida Panhandle is primarily a sandstone that underlies the Smackover Formation and overlies the Louann and Werner Formations. Three lithofacies of Norphlet strata have been identified in the Florida Panhandle: an updip conglomerate, red beds, and an upper quartzose sandstone (Denkman Member). The Denkman Member consists of an upper gray and a lower brown to reddish-brown quartzose sandstone. Generally, these sandstones are fine- to medium-grained and well sorted with rounded to subrounded grains. The upper Denkman is massively bedded to faintly horizontally or wavy laminated; the lower Denkman is either horizontally laminated or has low to high-angle cross-stratification. The average composition of the member is 62% quartz, 26% feldspar, and 13% rock fragments. The red bed lithofacies has fine to coarse-grained, moderately sorted sandstones with subrounded to rounded grains. The most distinctive feature of the lithofacies is its closely spaced horizontal to slightly inclined (1/degrees/-5/degrees/) laminae. The average composition of the facies is 35% quartz, 16% feldspar, and 49% rock fragments. The conglomeratic lithofacies is a multilayered section of gray conglomerates and red, coarse-grained sandstones. The conglomerates consist of poorly sorted, subangular to subrounded, cobble to pebble-size plutonic and metamorphic rock fragments. Principal source areas for Norphlet sediments in the Florida Panhandle were the basement rock of the Conecuh arch (Talladega slate belt) to the north and the Pensacola arch (Piedmont belt) to the south and east. Additionally, contributions from the Eagle Mills, Werner, and Louann Formations probably were significant.

  4. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  5. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  6. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  7. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  8. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  9. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  10. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  11. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  12. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  13. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  14. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  15. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  16. Florida Wax Scales: Control Measures in Texas for Hollies 

    E-Print Network [OSTI]

    Drees, Bastiaan M.; Reinert, James; Williams, Michael L.

    2006-11-30T23:59:59.000Z

    mold. Wax scales injure plants by removing large amounts of plant sap. Severe infestations may discol- or the leaves, cause shoots or branches to die back and occasionally kill the entire plant. Wax scales also produce honeydew, which serves as a..., and the foliage containing acephate will kill young scales that settle on the leaves and begin to feed on the plant sap. Timing: In Texas, the Florida wax scale eggs hatch primarily twice per year, although some eggs can hatch at any time. Egg hatch occurs...

  17. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-12-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  18. 20140501-0531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  19. 20131001-1031_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-11-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  20. 20130901-0930_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-10-25T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  1. 20140101-0131_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-02-03T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  2. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-07-31T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  3. 20140601-0630_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  4. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-06-18T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  5. 20131201-1231_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-01-08T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  6. 20140201-0228_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-03-03T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  7. 20130801-0831_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-09-10T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  8. 20140301-0331_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-04-07T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  9. Lake Forest, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: Energy Resources Jump to:

  10. Lake Harbor, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: Energy Resources

  11. Lake Hart, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: Energy ResourcesHart,

  12. Lake Magdalene, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: EnergyKatrine, New

  13. Lake Worth, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake RegionWorth, Florida: Energy Resources

  14. Levy County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:NewLeupp,Levy County, Florida:

  15. Boulevard Gardens, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:Boulevard Gardens, Florida: Energy

  16. Florida Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43and Statement of FindingsFlorida

  17. Florida Power & Light Co. | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisia BabcockFlexColorado:Florida

  18. Volusia County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energydba Vision MotorVolusia County, Florida:

  19. Washington County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformation Construction Storm WaterFlorida: Energy

  20. West Vero Corridor, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York:Springfield,Vero Corridor, Florida: Energy

  1. Winter Garden, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,Winslow West,Garden, Florida:

  2. Winter Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,Winslow West,Garden,Park, Florida:

  3. Seminole Manor, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: Energy Resources Jump to:Manor, Florida:

  4. Key Biscayne, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility | OpenBiscayne, Florida:

  5. Key West, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility | OpenBiscayne,West, Florida:

  6. Kings Point, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:Kimble County, Texas:andPoint, Florida: Energy

  7. Hillsborough County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNew Jersey:County, Florida:

  8. Jupiter Island, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: Energy Resources Jump to:

  9. North River Shores, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New PagesRiver Shores, Florida:

  10. Orange County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to:Optony Inc JumpFlorida:

  11. Palm City, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump2011) | Open EnergyCity, Florida:

  12. Hendry County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation StationHendry County, Florida: Energy

  13. Hillsboro Beach, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, searchCounty,City,Hillsboro Beach, Florida:

  14. Holmes County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights, New Jersey:Michigan:Florida:

  15. Hunters Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to:Hunter,Creek, Florida:

  16. Palm Beach, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey: Energy ResourcesFlorida:

  17. Palm Harbor, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey: EnergyHarbor, Florida:

  18. Palm Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey:Florida: Energy Resources

  19. Palmetto Bay, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey:Florida: EnergyPalmer,Bay,

  20. Palmetto Estates, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park, New Jersey:Florida:

  1. Pinellas County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermalPinecrest, Florida: EnergyPinellas

  2. Polk County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S6665°,JumpFlorida: Energy Resources Jump

  3. Indian Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek, Florida:

  4. Indian River Shores, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport andShores, Florida: Energy

  5. City of Mount Dora, Florida (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka,City of Mount Dora, Florida

  6. Golden Lakes, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes, Florida: Energy Resources Jump to:

  7. Hallandale Beach, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandale Beach, Florida: Energy Resources

  8. South Apopka, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to:Sound(FIRM)Apopka, Florida:

  9. South Bay, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc JumpBarrington ElectricBay, Florida:

  10. Stacey Street, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis County,Stacey Street, Florida: Energy

  11. Duval County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:JumpOregon:DurhamFlorida: Energy

  12. Oakland Park, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees forMichigan:Oakham,Park, Florida:

  13. Olympia Heights, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice ofInformation OlkariaHeights, Florida:

  14. Osceola County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon:Orrtanna,Florida: Energy Resources Jump

  15. The MetroPCS South Florida Fuel Cell Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, January 2000 | Department ofSouth Florida The

  16. Miami Gardens, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open Energy InformationGardens, Florida: Energy

  17. Miami Lakes, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open Energy InformationGardens, Florida:

  18. Miami Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open Energy InformationGardens,Springs, Florida:

  19. Mission Bay, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV Jump to:1980)Bay, Florida:

  20. Coral Terrace, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown,Terrace, Florida: Energy