Powered by Deep Web Technologies
Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

2

Geochemistry of Delaware Basin groundwaters  

DOE Green Energy (OSTI)

Fluids from various formations were sampled and analyzed in order to characterize groundwaters in the Delaware Basin. Waters were analyzed for solute content and/or stable isotope ratios (D/H and /sup 18/O//sup 16/O). Three lines of geochemical arguments are summarized, in order to present the natures and probable origins of analyzed fluids: solute chemistry, thermodynamic modelling of low-temperature aqueous species, and stable isotope ratios. (JGB)

Lambert, S.J.

1977-04-25T23:59:59.000Z

3

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

4

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

5

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

6

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

7

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

8

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

9

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

10

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network (OSTI)

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

11

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

12

Forward stratigraphic modeling of the Permian of the Delaware Basin  

SciTech Connect

Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

Qiucheng, Ye; Kerans, C.; Bowman, S. (Univ. of Texas, Austin, TX (United States)) (and others)

1996-01-01T23:59:59.000Z

13

A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using Hierarchical Bayesian Regression  

Science Conference Proceedings (OSTI)

A hierarchical Bayesian regression model is presented for reconstructing the average summer streamflow at five gauges in the Delaware River basin using eight regional tree-ring chronologies. The model provides estimates of the posterior ...

Naresh Devineni; Upmanu Lall; Neil Pederson; Edward Cook

2013-06-01T23:59:59.000Z

14

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

15

Subsurface stratigraphy and petrophysical analysis of the Middle Devonian interval, including the Marcellus Shale, of the central Appalachian basin; northwestern Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the multiple organic-rich intervals of the Middle Devonian, including the Marcellus Shale, are an emerging large resource play with high (more)

Yanni, Anne.

2010-01-01T23:59:59.000Z

16

Sub-surface stratigraphy and petrophysical analysis of the Middle Devonian Interval of the Central Appalachian Basin; West Virginia and Southwest Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the Middle Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has (more)

Boyce, Matthew L. (Matthew Louis), 1985-

2010-01-01T23:59:59.000Z

17

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

Science Conference Proceedings (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

18

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

Science Conference Proceedings (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

19

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

20

Regional well-log correlation in the New Mexico portion of the Delaware Basin  

SciTech Connect

Although well logs provide the most complete record of stratigraphy and structure in the northern Delaware Basin, regional interpretations of these logs generate problems of ambiguous lithologic signatures and on-hole anomalies. Interpretation must therefore be based on log-to-log correlation rather than on inferences from single logs. In this report, logs from 276 wells were used to make stratigraphic picks of Ochoan horizons (the Rustler, Salado, and Castile Formations) in the New Mexico portion of the Delaware Basin. Current log correlation suggests that: (1) the Castile is characterized by lateral thickening and thinning; (2) some Castile thinnings are of Permian age; (3) irregular topography in the Guadalupian Bell Canyon Formation may produce apparent structures in the overlying Ochoan units; and (4) extensive dissolution of the Salado is not apparent in the area of the Waste Isolation Pilot Project (WIPP) site. 13 refs., 37 figs.

Borns, D.J.; Shaffer, S.E.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope  

SciTech Connect

New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1997-08-01T23:59:59.000Z

22

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect

The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

Dutton, Shirley P.; Flanders, William A.

2001-11-04T23:59:59.000Z

23

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

DOE Green Energy (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

24

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

25

Microsoft Word - MRCSP Appalachian Basin 2008 FactSheet _09-08_-2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

R.E. Burger Site 1 September 2008 R.E. Burger Site 1 September 2008 FACT SHEET FOR PARTNERSHIP FIELD VALIDATION TEST Midwest Regional Carbon Sequestration Partnership (MRCSP) NETL Cooperative Agreement DE-FC26-05NT42589 DOE/NETL Project Manager: Lynn Brickett, Lynn.Brickett@NETL.DOE.GOV Submitted by Battelle September 2008 Appalachian Basin Geologic Test at R.E. Burger Power Plant Principal Investigator Dave Ball, Battelle (614-424-4901; balld@battelle.org) Test Location FirstEnergy R.E. Burger Plant, Shadyside, Ohio Amount and Source of CO 2 1,000-3,000 metric tons Source = commercial source FirstEnergy Ohio Geological Survey (Ohio Department of Natural Resources) Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations:

26

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III  

Science Conference Proceedings (OSTI)

The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

2000-05-24T23:59:59.000Z

27

Table 10. Estimated rail transportation rates for coal, basin to state, STB dat  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, basin to state, STB data" Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real Dollars per Ton",,,,,,,,,,"Annual Percent Change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $16.45"," $14.29"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $21.45"," W"," W"," W"," W"," $28.57"," W"," W"," W",," W"," W"

28

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect

The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

2005-04-01T23:59:59.000Z

29

Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Hatcher, Robert D

2005-11-30T23:59:59.000Z

30

Multi-offset vertical seismic profiles: fracture and fault identification for Appalachian basin reservoirs - two case examples  

SciTech Connect

Many Appalachian basin reservoirs occur in older rocks that are commonly fractured and faulted. These fractures and faults very often act as the reservoir trapping mechanism, especially in lithologies with no log-detectable matrix porosity. Traditional logging techniques, although possibly showing fault or fracture presence in the well bore, seldom provide clues to the extent of fracturing or location of nearby faults. Surface seismic data should show faults and perhaps even fracturing, but showing these features is often not possible in rugged terrain or in areas with thick coverings of unconsolidated surface material. Traditional seismic also has resolutions lower than that needed to detect small faults (less than 70 ft). Two case examples are shown from the northern Appalachian basin. The first example utilizes Schlumberger's slim hole seismic tool in cased holes in an area of thick unconsolidated glacial material along the Bass Island trend of western New York. The second example utilizes Schlumberger's SAT tool in an open-hole environment in an area of northwestern Pennsylvania with disturbed surface bedding and poor conventional surface seismic returns. The slim hole tool provides good data but with only slightly greater resolution than surface Vibroseis data. The SAT tool provides excellent resolution (down to 25 ft) in highly disturbed bedding.

Wyatt, D.E.; Bennett, B.A.; Walsh, J.J.

1988-08-01T23:59:59.000Z

31

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion from the more than 100 other Delaware Mountain Group reservoirs.

Dutton, S.P.

1997-10-30T23:59:59.000Z

32

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more than 100 other Delaware Mountain Group reservoirs.

Shirley P. Dutton

1997-04-30T23:59:59.000Z

33

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

34

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

Science Conference Proceedings (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

35

ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES  

SciTech Connect

The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in interviews and in the Workshop, as, perhaps, the key issue related to oil production in the Appalachian region - the price of a barrel of oil. Project members sought solutions to production problems from a number of sources. In general, the Petroleum Technology Transfer Council (PTTC) website, both regional and national, proved to be a fertile source of information. Technical issues included water production, paraffin accumulation, production practices, EOR and waterflooding were addressed in a number of SPE papers. Articles on reservoir characterization were found in both the AAPG Bulletin and in SPE papers. Project members extracted topical and keyword information from pertinent articles and websites and combined them in a database that was placed on the PUMP website. Because of difficulties finding potential members with the qualifications, interests, and flexibility of schedule to allow a long-term commitment, it was decided to implement the PMP Regional Council as a subcommittee of the Producer Advisory Group (PAG) sponsored by Appalachian Region PTTC. The advantages of this decision are that the PAG is in already in existence as a volunteer group interested in problem identification and implementation of solutions and that PAG members are unpaid, so no outside funds will be required to sustain the group. The PUMP website became active in October of 2002. The site is designed to evolve; as new information becomes available, it can be readily added to the site or the site can be modified to accommodate it. The site is interactive allowing users to search within the PUMP site, within the Appalachian Region PTTC site, or within the whole internet through the input of user-supplied key words for information on oil production problems and solutions. Since its inception in the Fall of 2002, the PUMP site has experienced a growing number of users of increasingly diverse nature and from an increasing geographic area. This indicates that the site is reaching its target audience in the Appalachian region and beyond. Following up on a commitment to technology transfer, a tota

Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

2003-09-01T23:59:59.000Z

36

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

Science Conference Proceedings (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

37

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

38

Regional geologic characterization of the Second Bone Spring Sandstone, Delaware basin, Lea and Eddy Counties, New Mexico  

E-Print Network (OSTI)

The Bone Spring Formation is a series of interbedded siliciclastics and carbonates that were deposited in the Delaware basin during the Leonardian (Early Permian). It consists of the First, Second and Third Carbonate and the First, Second and Third Sandstone, as well as the informally named Avalon Sandstone. The Second Bone Spring Sandstone, the focus of the study, can be subdivided into 4 distinct sand bodies separated by pelagic zones. These sands are designated the A-D Sands. The depositional patterns of the Bone Spring Formation are reflective of the underlying structure that resulted from compression during the Mississippian and Pennsylvanian. The Second Bone Spring Sandstone (specifically the C Sand) is essentially a dolomitic, coarse siltstone that is composed of facies reflective of deposition by turbidity currents in a slope fan environment. The midfan, levee/overbank and hemipelagic environments of deposition identified in the Second Bone Spring Sandstone are consistent with those of the typical slope fan of Walker (1978). The slope fans of the C Sand were confined by north-to-south trending reverse faults, which inhibited lateral migration of both the fans and the channels within them. The A-D Sands are correlatable throughout the study area but thicken in the underlying structural lows. These thicker sands are lobate in plan view and are located adjacent to, rather than directly on top of, underlying thick sands. This is likely a result of differential compaction of underlying sediment which served to further confine the fans. The sediment comprising the Second Bone Spring Sandstone was likely transported through basinward migration of sand dunes in an arid environment during relative sea level lowstands. Periodically, brief rises in sea level choked off sediment supply allowing hemipelagic material to be draped over underlying sands. With sea level fall, sands were again deposited in the tectonic sub-basins.

Downing, Amanda Beth

2001-01-01T23:59:59.000Z

39

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

Science Conference Proceedings (OSTI)

This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Robert D. Hatcher

2004-05-31T23:59:59.000Z

40

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

42

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

43

Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration  

Science Conference Proceedings (OSTI)

Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few months from regional to more detailed structural analyses. This new effort will include topics such as the determination of the source of the hot, dolomitizing fluids that created hydrothermal dolomite reservoirs in the Black River, and the probable migration paths of these fluids. Faults of suitable age, orientation and location to be relevant for hydrothermal dolomite creation in the Trenton-Black River play will be isolated and mapped, and potential fairways delineated. A detailed study of hydrothermal alteration of carbonate reservoirs was completed and is discussed at length in this report. New ideas that were developed from this research were combined with a literature review and existing concepts to develop a model for the development of hydrothermal dolomite reservoirs in the study area. Fault-related hydrothermal alteration is a key component of this model. Hydrothermal alteration produces a spectrum of features in reservoirs, ranging from leached limestone and microporosity to matrix dolomite, saddle dolomite-lined breccias, zebra fabrics and fractures. Mineralization probably occurred during the pressure drop associated with the rise of fluids up the fault system, and is due to the mixing of hydrothermal fluids with cooler, in situ fluids. Once they began to cool themselves, the hydrothermal fluids, which had a lower pH and higher salinity than formation fluids, were capable of leaching the host limestones. Microporosity is common in leached limestones, and it is likely that it was formed, in some cases, during hydrothermal alteration. Dolomite leaching occurs near the end of the paragenetic sequence, and may significantly enhance porosity. However, leaching of dolomite typically is followed by the precipitation of calcite or anhydrite, which reduces porosity. A final conclusion is that hydrothermal alteration may be more common than previously thought, and some features previously attributed to other processes may be in fact be hydrothermal in origin. Production d

Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

2005-09-30T23:59:59.000Z

44

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

45

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

46

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

47

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

Dutton, S.P.

1996-10-01T23:59:59.000Z

48

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

Dutton, S.P.

1997-01-01T23:59:59.000Z

49

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

Dutton, S.P.

1996-07-01T23:59:59.000Z

50

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico  

SciTech Connect

The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.

Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States)

1998-12-31T23:59:59.000Z

51

Delaware Strategic Fund (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Fund (Delaware) Strategic Fund (Delaware) Delaware Strategic Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Grant Program Provider Business Financing The Delaware Strategic Fund represents the primary funding source used by Delaware Economic Development Authority (DEDA) to provide customized loans and grants to businesses for job creation, relocation and expansion. For businesses considering locating in the state of Delaware, financial assistance may be provided in the form of low interest loans, grants, or other creative instruments to support the attraction of businesses that pay sustainable wages. Assistance terms are negotiated specific to each

52

Processes Influencing the Diversity of Middle Permian Brachiopods in the Bell Canyon Formation of the Delaware Basin (West Texas, Guadalupe Mountains National Park)  

E-Print Network (OSTI)

A fundamental question of long standing in the study of life on Earth is, Why are there so many species? This question concerns the distribution of and relationships among species in the present day, but also requires an understanding of the history of diversity. Patterns of diversity result from multiple, interconnected ecological processes operating at different spatial scales. The goal of this research is to gain knowledge about processes that control diversity by using fossil data to provide a temporal perspective that is unavailable when studying modern ecological communities. The fossil record provides the only natural historical account of changes in the diversity of ecological communities in Earths past. This research examines the taxonomic composition and diversity of brachiopod paleocommunities in the Delaware Basin of west Texas (Guadalupe Mountains National Park). The study interval is the Bell Canyon Formation, a 5.4-Myr interval of upper Middle Permian (Capitanian) siliciclastic and carbonate rocks deposited on the toe-ofslope of the basin. Silicified brachiopods extracted from the carbonate rocks provide the basis to test two hypotheses: (1) the taxonomic composition of local fossil brachiopod paleocommunities remains uniform, and (2) the changes in diversity of local fossil brachiopod paleocommunities reflects the relative importance of regional processes. Multivariate analyses of clustering analysis and ordination, diversity partitioning, and rank abundance plots are used to evaluate brachiopod taxonomic composition and diversity within an ecological framework. Sequence stratigraphic analysis provides the means to place the results within an environmental context related to sea-level changes. Results indicate that the reorganization of brachiopod paleocommunity structure coincides with major basinal-scale disruptions. Large disruptions allowed rare taxa and invaders from outside the basin to become dominant within paleocommunities. The dynamics within paleocommunities do not appear to prevent the replacement of the incumbent taxa with new taxa. The importance of these findings indicate that paleocommunities are not static through this interval and can be perturbed into configurations with new dominant taxa. Therefore, ecological responses of paleocommunities are resolvable at the geological time scale.

Fall, Leigh Margaret

2010-08-01T23:59:59.000Z

53

Climate Action Plan (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Climate Change Action Plan (DCCAP) was prepared with funding from the Delaware State Energy Office and the U.S. Environmental Protection Agencys State and Local Climate Change Program...

54

Delaware Land Protection Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

55

DOE Solar Decathlon: News Blog Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

Appalachian State Below you will find Solar Decathlon news from the Appalachian State archive, sorted by date. Appalachian State Wins People's Choice Award Saturday, October 1,...

56

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Control System for Buoyancy Stabilized Offshore Wind Turbine CX(s) Applied: A9, A11 Date: 12202011 Location(s): Delaware Offices(s):...

57

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

58

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

59

Devonian Marcellus Shale, Appalachian Basin  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Devonian Marcellus Shale; R. Bruner; Richard Smosna

2011-01-01T23:59:59.000Z

60

Delaware/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Delaware Jump to: navigation, search Contents 1 Financial Incentive Programs for Delaware 2 Rules, Regulations and Policies for Delaware Download All Financial Incentives and Policies for Delaware CSV (rows 1 - 61) Financial Incentive Programs for Delaware Download Financial Incentives for Delaware CSV (rows 1 - 22) Incentive Incentive Type Active DEMEC - Green Energy Program Incentives (Delaware) State Rebate Program No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives Utility Rebate Program Yes Delaware Energy An$wers Home Performance Program (Delaware) State Rebate Program No Delaware Energy An$wers for Business (Delaware) State Grant Program No

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

62

Delaware State University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Delaware State University Delaware State University Research Office of the Associate Provost for Research General Research Capability Center for Integrated Biological & Environmental Research Experimental Program to Stimulate Competitive Research Delaware IDeA Network of Biomedical Research Excellence Faculty Research DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more about this showcase project. Search this site: Search Prestigious research projects underway by Delaware State University (DSU) serve to enhance DSU's land-grant mission and its contributions to the

63

Delaware Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

64

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy CX(s) Applied: B3.6 Date: 01152010 Location(s): Delaware Office(s): Advanced Research Projects Agency - Energy October 27, 2009 Vice President Biden Announces...

65

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

66

Delaware.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

67

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

68

Office of Sustainability Appalachian State University  

E-Print Network (OSTI)

Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action

Rose, Annkatrin

69

Delaware - Green Power Requirement For State Facilities (Delaware...  

Open Energy Info (EERE)

to make the state government of Delaware a leader by example in clean energy and sustainability. The order includes a provision directing executive branch state agencies to...

70

Delaware Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The State added its first utility-scale wind project in 2010, a one-turbine project built by the University of Delaware. ... Kentucky, Colorado, and ...

71

Recovery Act State Memos Delaware  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

weatherization efforts in the state, creating jobs, reducing carbon emissions, and saving money for Delaware's low-income families. Over the course of the Recovery Act,...

72

Brownfield Assistance Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Delaware Strategic Fund State Delaware Program Type Grant Program Provider Business Financing The Brownfield Assistance Program, administrated by the Delaware Economic Development Office (DEDO) and funded from Delaware Strategic Fund, provides matching grants to owners and developers to encourage the redevelopment of environmentally distressed sites within the state. Brownfield redevelopment is an important tool for Delaware's livable growth, recycling the state's

73

Delaware Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Delaware Gas Prices (Ciudades Selectas) - GasBuddy.com Delaware Gas Prices (Organizado por Condado) -...

74

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

75

Energy Efficiency Resource Standards (Delaware) | Open Energy...  

Open Energy Info (EERE)

DSIRE1 Summary In July 2009 the Delaware legislature enacted legislation creating energy savings targets for Delaware's investor-owned, municipal, and cooperative electric...

76

Alternative Fuels Data Center: Delaware Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Information Delaware Information to someone by E-mail Share Alternative Fuels Data Center: Delaware Information on Facebook Tweet about Alternative Fuels Data Center: Delaware Information on Twitter Bookmark Alternative Fuels Data Center: Delaware Information on Google Bookmark Alternative Fuels Data Center: Delaware Information on Delicious Rank Alternative Fuels Data Center: Delaware Information on Digg Find More places to share Alternative Fuels Data Center: Delaware Information on AddThis.com... Delaware Information This state page compiles information related to alternative fuels and advanced vehicles in Delaware and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

77

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

78

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

79

Forestry Policies (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Forestry Policies (Delaware) < Back Eligibility Commercial Agricultural Program Info State Delaware Program Type Environmental Regulations Provider Agriculture Delaware's forests are managed by the State Forest Service (DFS), within the State Department of Agriculture. In 2010, the Forest Service issued its Resource Assessment and Strategy documents: Delaware Forest Resource Assessment: http://dda.delaware.gov/forestry/061810_DFS_ResourceAssessment.pdf Statewide Forest Strategy: http://dda.delaware.gov/forestry/061810_DFS_Strategy.pdf The Forest Strategy document sets several goals with respect to biomass energy, including an analysis of the resource, developing restrictions on wood energy facilities, promoting a Fuels for Schools program, and developing at least one new market for low-value wood such as bio-energy

80

Energy Crossroads: Utility Energy Efficiency Programs Delaware...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Chesapeake Utilities Information for Businesses Delmarva Power...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

82

Solar Decathlon: Appalachian State Wins People's Choice Award...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30,...

83

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD August 12, 2013 CX-011107: Categorical Exclusion Determination High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office September 18, 2012 CX-010528: Categorical Exclusion Determination Durability Investigation for Quarternary Phosphonium-based Polymer Hydroxide Exchange Membranes CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): Delaware Offices(s): Advanced Research Projects Agency-Energy September 6, 2012 CX-009147: Categorical Exclusion Determination Delaware State Energy Program Formula Grant Application

84

SREC Procurement Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Utility Savings Category Solar Buying & Making Electricity Program Info Start Date 04/02/2012 State Delaware Program Type Performance-Based Incentive Provider Delaware Sustainable Energy Utility '''''Note: The SREC procurement program will accept applications from March 25 to April 12, 2013. The summary below is intended to reflect the 2013 program as described in the [http://depsc.delaware.gov/electric/12-526%20Staff%20Report.pdf Public Service Commission Staff Report] and [http://depsc.delaware.gov/orders/8281.pdf Order No. 8281]. More information on bid requirements, the application process and payments

85

Appalachian State | Open Energy Information  

Open Energy Info (EERE)

State State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Boone NC Coordinates 36.21342836°, -81.69232965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.21342836,"lon":-81.69232965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

87

Delaware City, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, Delaware: Energy Resources City, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901°, -75.588815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5778901,"lon":-75.588815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

89

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD September 28, 2010 CX-004018: Categorical Exclusion Determination High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems CX(s) Applied: B3.6, B5.1 Date: 09/28/2010 Location(s): Newport, Delaware Office(s): Energy Efficiency and Renewable Energy August 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 18, 2010 CX-003402: Categorical Exclusion Determination

90

University of Delaware Wind | Open Energy Information  

Open Energy Info (EERE)

University of Delaware Wind University of Delaware Wind Jump to: navigation, search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Delaware Developer First Marine Wind Energy Purchaser University of Delaware Location Lewes DE Coordinates 38.783739°, -75.160654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.783739,"lon":-75.160654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Dam Safety (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety (Delaware) Dam Safety (Delaware) Dam Safety (Delaware) < Back Eligibility Construction Fed. Government Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info Start Date 2004 State Delaware Program Type Safety and Operational Guidelines Provider Delaware Department of Natural Resources and Environmental Control The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety, and welfare. The law requires licensing, inspections and preparation of emergency action plans (EAPs) for publicly owned dams with a high or significant hazard potential.

92

Delaware Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

93

,"Delaware Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural...

94

Pollution Prevention Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Delaware Program Type Environmental Regulations This act lays out objectives for pollution prevention, education and outreach. The Department shall create a multimedia waste reduction assistance program to provide technical assistance to targeted industries, focusing on small

95

Appalachian Basin. The Central Appalachian Basin, a 10,000-square  

NLE Websites -- All DOE Office Websites (Extended Search)

cubic feet. SECARB initiated CO 2 injection in mid- January at its test site in Russell County, Virginia. An existing coalbed methane (CBM) well was converted for CO 2 injection...

96

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

97

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

98

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

99

Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...  

Open Energy Info (EERE)

Delaware) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Delaware Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 -...

100

Climate Action Plan (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Climate Action Plan (Delaware) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Climate Policies Provider Delaware Division of Energy and Climate To better understand the current and future vulnerabilities and risks to climate change, DNREC Secretary Collin O'Mara directed the Division of

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Incentive Programs, Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Energy Incentive Programs, Delaware October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in my state? Delaware's 1999 restructuring legislation mandated the creation of a systems benefit charge to fund low-income, energy efficiency, and renewable energy programs. Also, in the late 2000s, the state created the Delaware Sustainable Energy Utility, a non-profit corporation initially funded from bond issues, proceeds from the Regional Greenhouse Gas Initiative (RGGI), and federal government stimulus monies. The SEU's business and institutional programs have not been sustained, but the state's systems benefit charge continues to fund renewable energy programs for customers of the three largest utilities (see section below).

102

Delaware Electric Cooperative - Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Rural Electric Cooperative Savings Category Appliances & Electronics Commercial Lighting Lighting Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate

103

Alternative Fuels Data Center: Delaware Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Points of Delaware Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Delaware Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Delaware Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Google Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Delicious Rank Alternative Fuels Data Center: Delaware Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Delaware Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Points of Contact The following people or agencies can help you find more information about Delaware's clean transportation laws, incentives, and funding

104

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Laws and Delaware Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Delaware. Your Clean Cities coordinator at

105

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data" 3. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Nominal dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $28.49"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $38.51"," $39.67",," -", 3.0 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

106

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data" 4. Estimated rail transportation rates for coal, basin to state, EIA data" ,,"Real dollars per ton",,,,"Annual percent change" "Basin","Destination State",2008,2009,2010,," 2008-2010"," 2009-2010" "Northern Appalachian Basin","Delaware"," $26.24"," -"," W",," W"," -" "Northern Appalachian Basin","Florida"," -"," $35.10"," $35.74",," -", 1.8 "Northern Appalachian Basin","Georgia"," -"," W"," -",," -"," -"

107

Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9108325,"lon":-75.5276699,"alt":0,"address":"Delaware","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

DELAWARE  

Science Conference Proceedings (OSTI)

... formerly a division of Eastern Industrial Services (EIS), specializes in custom-engineered, LEED-eligible exterior and interior HVAC systems that ...

2013-02-27T23:59:59.000Z

109

Environmental Control (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control (Delaware) Control (Delaware) Environmental Control (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Environmental Regulations This act has various provisions set for the local governments for greenhouse gas trading initiatives, solid waste recycling and water protection. The act also includes the Clean Air Act Operating Permit Program with a detailed account of fees to be paid for air pollution sources. The act establishes the collection of CO2 allowances, with 65 percent of

110

University of Delaware | Open Energy Information  

Open Energy Info (EERE)

Delaware Delaware Jump to: navigation, search Name University of Delaware Place Newark, Delaware Sector Solar Product University with a research department leading a solar cell development consortium. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Delaware Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

112

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Appalachian Electric Coop Appalachian Electric Coop Jump to: navigation, search Name Appalachian Electric Coop Place Tennessee Utility Id 727 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power rate (part 3) Commercial Commercial General Power rate (Part 2)- single phase self contained metering Commercial Commercial General Power rate (part 2)-single phase transformer rated metering Commercial Commercial General Power rate (part 2)-three phase transformer rated

113

Tax-Exempt Bond Financing (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Financing (Delaware) Bond Financing (Delaware) Tax-Exempt Bond Financing (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Bond Program Provider Delaware Economic Development Office The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt from federal

114

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

115

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

116

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

117

Clean Cities: State of Delaware Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Delaware Clean Cities Coalition State of Delaware Clean Cities Coalition The State of Delaware Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Delaware Clean Cities coalition Contact Information Morgan Ellis 302-739-9053 morgan.ellis@state.de.us Clean Cities Coordinator Morgan Ellis Photo of Morgan Ellis Morgan Ellis has been with the Delaware Division of Energy and Climate for three years and became the Clean Cities coordinator in 2013. Her roles and responsibilities include representing the State of Delaware on the Transportation Climate Initiative, the Regional Greenhouse Gas Initiative, as well as working on climate related policies for the State of Delaware. Ellis worked with Delaware's Clean Cities Coalition on implementing the

118

Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Exemptions The list below contains summaries of all Delaware laws and incentives

119

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

120

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are the summaries of all current Delaware laws, incentives, regulations, funding opportunities, and other initiatives related to

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for NEVs The list below contains summaries of all Delaware laws and incentives

122

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

123

Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rebates to someone by E-mail Rebates to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Rebates The list below contains summaries of all Delaware laws and incentives

124

The Appalachian Trail MEGA-Transect  

E-Print Network (OSTI)

and electric power generation facilities, pollution from large cities and along major highways, and relatively use the water for residential uses or power generation. Monitoring water sources on the A.T. will also) Steve Kahl (Center for the Environment) Ken Kimball (Appalachian Mountain Club) Daniel Lambert (Vermont

Wang, Y.Q. "Yeqiao"

125

ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY  

E-Print Network (OSTI)

, natural gas demand is forecast to increase through 2035. The Marcellus shale play and the new natural gas supply it represents is expected to meet this demand, provided that there is sufficient natural gas in the Appalachian region in West Virginia and Pennsylvania to meet the demand for natural gas from the residential

Mohaghegh, Shahab

126

Delaware Electric Cooperative - Green Energy Program Incentives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: $7,500 for Class A, $10,000 for Class B or non-profits Solar Thermal (domestic water): $3,000 for residential, $7,500 for non-residential Solar Thermal (radiant space heating): $5,000 for residential, $7,500 for non-residential Wind: $2,500 Fuel Cells: $7,500 for residential, $10,000 for non-residential Geothermal Heat Pumps: $5,000 for residential, $10,000 for non-residential

127

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

128

COAL RESOURCES, GREATER GREEN RIVER BASIN By M.S. Ellis,1  

E-Print Network (OSTI)

Chapter GN COAL RESOURCES, GREATER GREEN RIVER BASIN By M.S. Ellis,1 G.L. Gunther,2 A.M. Ochs,2 J of Delaware, Newark, Delaware 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

129

Alternative Fuels Data Center: Delaware Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Driving / Idling

130

Alternative Fuels Data Center: Delaware Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Tax Incentives

131

Chrome Deposit Corporation and the University of Delaware IAC: Another  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chrome Deposit Corporation and the University of Delaware IAC: Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story November 2, 2011 - 2:11pm Addthis Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs

132

Alternative Fuels Data Center: Delaware Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Idle Reduction

133

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

134

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

135

Trading Point: Central Appalachian (CAPP) is the nation's ...  

U.S. Energy Information Administration (EIA)

Central Appalachian (CAPP) coal spot prices are the most widely referenced prices for eastern coal in the United States. Coal producers, electric utilities, merchant ...

136

NYMEX Central Appalachian coal futures near-month contract final...  

Annual Energy Outlook 2012 (EIA)

Release Date: January 7, 2013 Next Release Date: January 2014 NYMEX Central Appalachian coal futures near-month contract final settlement price history Data as of 12312012....

137

Spot price for Central Appalachian coal up since early 2010 ...  

U.S. Energy Information Administration (EIA)

Average spot prices for Central Appalachian (CAPP) coal are up about 36% since January, 2010. Contributing factors include: global supply disruptions, slightly ...

138

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

DOE Solar Decathlon: News Blog » Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

'Appalachian State' 'Appalachian State' Appalachian State Wins People's Choice Award Saturday, October 1, 2011 By Carol Anna Appalachian State University won the U.S. Department of Energy Solar Decathlon 2011 People's Choice Award for its Solar Homestead today. This award gives the public the opportunity to vote for its favorite house. This year, 92,538 votes were cast. The award was announced at a Victory Reception in the solar Village in West Potomac Park-the last official event of Solar Decathlon 2011. Photo of Steven Chu shaking hands with Jeffrey Tiller as David Lee looks on. On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. (Credit: Stefano Paltera/U.S.

140

Solar Decathlon: Appalachian State Wins People's Choice Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon: Appalachian State Wins People's Choice Award Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State’s Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon Carol Anna Communications Manager for the 2011 Solar Decathlon EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Energy Facilities Revolving Loan Fund (Delaware) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Revolving Loan Fund (Delaware) Facilities Revolving Loan Fund (Delaware) Renewable Energy Facilities Revolving Loan Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source U.S. Department of Commerce, Delaware Strategic Fund State Delaware Program Type Loan Program Provider Delaware Economic Development Office Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will create or retain jobs in industries that promote energy efficiency and/or recycling. The new fund was made possible with a $500,000 grant from the U.S. Department of

142

Delaware's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Delaware's At-large congressional district: Energy Resources Delaware's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Delaware. Registered Energy Companies in Delaware's At-large congressional district AstroPower Inc Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Butamax Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen Energy Hydra Energy LLC O2Diesel Corporation formerly Dynamic Ventures RNK Capital LLC Sentry Power LLC Sentry Power Technology Textronics Inc Tristabella Consulting LLC University of Delaware Registered Financial Organizations in Delaware's At-large congressional

143

Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

144

Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on

145

Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

146

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

147

Delaware Company Breathes New Life into Old Post Office Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Delaware company Brandywine CAD Design, Inc., (B-CAD) purchased a

148

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search

149

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

150

Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

151

Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

152

DOE Solar Decathlon: The University of Delaware: Soaring to New Heights  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Enlarge image The University of Delaware's Solar Decathlon entry has been integrated into the Innovation Technology Exploration Center at the Delaware AeroSpace Education Foundation. (Courtesy of Lynn Bloom, Delaware AeroSpace Education Foundation) Who: University of Delaware What: Solar House Where: Delaware AeroSpace Education Foundation 585 Big Oak Road Smyrna, Delaware 19977 Map This House Public tours: Contact the Delaware AeroSpace Education Foundation at 302-659-5003 for information about visiting the Innovation Technology Exploration Center. Solar Decathlon 2002 The University of Delaware: Soaring to New Heights The University of Delaware donated its solar-powered house to the Delaware

153

Delaware Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Electric Cooperative Electric Cooperative Jump to: navigation, search Name Delaware Electric Cooperative Place Delaware Utility Id 5070 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy Efficiency Rider Residential General Service--Schedule GS Commercial General Service--Schedule GS-TOU Commercial Home Surge Protection Program--Schedule HSPP Residential Irrigation Service--Schedule IR Commercial Irrigation-Demand Off-Peak--Schedule IR-DOP Lighting Service--Schedule L-1 - Yard Light (100w) Halide Lighting

154

Hockessin, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hockessin, Delaware: Energy Resources Hockessin, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112°, -75.6966001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7876112,"lon":-75.6966001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Odessa, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Odessa, Delaware: Energy Resources Odessa, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334°, -75.6613184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.457334,"lon":-75.6613184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington, Delaware: Energy Resources Wilmington, Delaware: Energy Resources (Redirected from Wilmington, DE) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7459467°, -75.5465889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7459467,"lon":-75.5465889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Brookside, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561°, -75.7268779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6670561,"lon":-75.7268779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Claymont, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Claymont, Delaware: Energy Resources Claymont, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685°, -75.4596404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8006685,"lon":-75.4596404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Clayton, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671°, -75.6343727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2906671,"lon":-75.6343727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Newport, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7137237°, -75.6093709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7137237,"lon":-75.6093709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Bear, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bear, Delaware: Energy Resources Bear, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788°, -75.6582628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6292788,"lon":-75.6582628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Delaware, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware, Ohio: Energy Resources Delaware, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2986724°, -83.067965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2986724,"lon":-83.067965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Edgemoor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edgemoor, Delaware: Energy Resources Edgemoor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139°, -75.4996414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7501139,"lon":-75.4996414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Ardentown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardentown, Delaware: Energy Resources Ardentown, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446°, -75.4829752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.808446,"lon":-75.4829752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Arden, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arden, Delaware: Energy Resources Arden, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794°, -75.4865866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8092794,"lon":-75.4865866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Ardencroft, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardencroft, Delaware: Energy Resources Ardencroft, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323°, -75.4861752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8051323,"lon":-75.4861752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Elsmere, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elsmere, Delaware: Energy Resources Elsmere, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796°, -75.5979812° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7392796,"lon":-75.5979812,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Spring 2009 Number 58 Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal Energy Policy Act (EPACT) dictated that states make several chang- es to their UST programs. The changes required by EPACT have deadlines rang- ing from 2008 to August 2009. Delaware could not make all the required changes by January 11, 2008 because the United States Environmental Protection Agency

169

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASION  

Science Conference Proceedings (OSTI)

During this reporting period, Fortuna retrieved the first oriented horizontal core from the Trenton/Black River in the northern Appalachian Basin. The core came from central New York State, the ''hottest'' play in the Appalachian Basin. A complete well log suite was also collected in the horizontal hole, including an FMI log. After reassembling the core sections, and orienting the core, we analyzed the whole core before it was cut for full-diameter core analyses (e.g., permeability) and before the core was split, in order that we did not miss any features that may be lost during cutting. We recognized and mapped along the core 43 stylolites, 99 veins and several large partially filled vugs. Kinematic indicators suggest multiple phases of strike-slip motion. Master-abutting relationships at intersections (primarily determined from which feature ''cuts'' which other feature) show three stages of stylolite growth: sub horizontal, nearly vertical, and steeply dipping. These development stages reflect vertical loading, tectonic horizontal loading, and finally oblique loading. Hydrothermal dolomite veins cut and are cut by all three stages of the stylolites. A set of horizontal veins indicates vertical unloading. Analyses of the core will continue, as well as the well logs.

Rober Jacobi

2006-05-31T23:59:59.000Z

170

Low E Brings High Savings in Newark, Delaware | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stood near four giant aluminum-framed picture windows in Newark, Delaware's municipal building, the sun streamed through with such intensity that it made staffers sweat from...

171

Consolidated Edison Sol Inc (Delaware) | Open Energy Information  

Open Energy Info (EERE)

References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleConsolidatedEdisonSolInc(Delaware)&oldid412475...

172

Delaware - State Energy Profile Overview - U.S. Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States...

173

Delaware - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Kansas: Kentucky Louisiana Maine Maryland ... (Conectiv Delmarva Gen Inc) ; Delaware City Plant (The Premcor Refining Group Inc) ; McKee Run ... Ethanol Plant Capacity

174

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

175

Delaware Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

176

Alternative Fuels Data Center: Delaware Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Code Title 30, Chapter 51, Subchapter II) Laws and Regulations State Agency Energy Plan To improve air quality and reduce operating expenses from state vehicle use,...

177

Alternative Fuels Data Center: Delaware Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware laws and incentives related to HEVs PHEVs. Laws and Regulations State Agency Energy Plan To improve air quality and reduce operating expenses from state vehicle use,...

178

Delaware - Rankings - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

179

Delaware Natural Gas Delivered for the Account of Others  

Annual Energy Outlook 2012 (EIA)

Gas Delivered for the Account of Others (Million Cubic Feet) Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

180

Home Performance with Energy Star Loans (Delaware) | Open Energy...  

Open Energy Info (EERE)

must meet the eligibility standards of the Delaware Green Energy Incentives programs.* Energy savings associated with renewable energy installations is not included in the...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Delaware - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas: Utah ... Delaware has few energy resources aside from wind power potential, ...

182

Tuesday, November 6, 2007 Arsenic Status in Delaware Soils.  

E-Print Network (OSTI)

Tuesday, November 6, 2007 186-4 Arsenic Status in Delaware Soils. Jennifer Seiter, University of Delaware, 531 South College Ave, Rm 152, Department of Plant & Soil Sciences, Newark, DE 19717 & Soil Sciences, Newark, DE 19717-1303. The Delmarva Peninsula is one of the most concentrated poultry

Sparks, Donald L.

183

Qualifying RPS State Export Markets (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Qualifying RPS State Export Markets (Delaware) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Delaware as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

184

Delaware Community Saves with Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Community Saves with Solar Delaware Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program

185

Identification of Thermally Homogeneous Subunits in a Steep Appalachian Pasture  

Science Conference Proceedings (OSTI)

Pasture improvement in the central Appalachian region is facilitated by knowledge of spatial relationships in microclimate attributable to complex topography. A small, steep horseshoe-shaped pasture watershed, with aspects encompassing 210, in ...

Douglas G. Boyer; Charles M. Feldhake

1994-10-01T23:59:59.000Z

186

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

APCO) APCO) Jump to: navigation, search Name Appalachian Power Co Abbreviation APCO Affiliate Of AEP Place Ohio Service Territory Virginia, West Virginia, Tennessee Website www.appalachianpower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 733 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

187

Delaware - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware - Seds - U.S. Energy Information Administration (EIA) Delaware - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

188

Washington Gas Energy Services (Delaware) | Open Energy Information  

Open Energy Info (EERE)

Services (Delaware) Services (Delaware) Jump to: navigation, search Name Washington Gas Energy Services Place Delaware Utility Id 20659 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1080/kWh Commercial: $0.0893/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Gas_Energy_Services_(Delaware)&oldid=412876" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes

189

Town of Clayton, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Clayton, Delaware (Utility Company) Clayton, Delaware (Utility Company) Jump to: navigation, search Name Town of Clayton Place Delaware Utility Id 3732 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand (less than 300 KW) Commercial Commercial/ non-demand (less than 3500 kwh) Commercial Residential Rate Residential Average Rates Residential: $0.1630/kWh Commercial: $0.1590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Clayton,_Delaware_(Utility_Company)&oldid=411710"

190

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

191

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

192

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

193

Public Utilities Tax Rebate (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Tax Rebate (Delaware) Utilities Tax Rebate (Delaware) Public Utilities Tax Rebate (Delaware) < Back Eligibility Commercial Agricultural Industrial Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Corporate Tax Incentive Provider Department of Finance This rebate is part of the Blue Collar Jobs Act, which establishes tax breaks for businesses that have sustainable jobs and make significant investments in the state. Firms meeting the criteria for targeted industry tax credits are eligible for a rebate of 50 percent of the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The

194

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

195

Delaware Natural Gas LNG Storage Additions (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

196

Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

197

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

198

Delaware Profile - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The State added its first utility-scale wind project in 2010, a one-turbine project built by the ... for developing offshore wind farms off the coast of Delaware ...

199

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

200

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Energy Institute Inauguration Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AEP Appalachian Power - Commercial and Industrial Rebate Programs (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Commercial and Industrial Rebate Programs AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $150,000/account/year Program Info Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount Custom: 50% Unitary/Split AC/Air Source Heat Pumps: $40/ton Packaged Terminal A/C: $30/ton Water/Air Cooled Chillers: $30/ton Ground Source Heat Pump: $50/ton VFDs: $40/HP Programmable Thermostat: $25/unit T8 and T5 Fluorescent Retrofits: $2-$21/fixture T8 and T5 High Bay Fixtures: $28-$209/fixture

202

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

Appalachian Power Co Appalachian Power Co Place West Virginia Utility Id 733 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png G.S. - T.O.D. Commercial L.G.S. Commercial R.S. Residential R.S. - T.O.D Residential Average Rates Residential: $0.0813/kWh Commercial: $0.0731/kWh Industrial: $0.0562/kWh The following table contains monthly sales and revenue data for Appalachian Power Co (West Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

203

AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Residential Energy Efficiency Rebate AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) < Back Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Attic or Sidewall Insulation: $300 Basement or Crawl Space Insulation: $200 HVAC Maintenance: $100 Duct Sealing: $100 Envelope Air Infiltration Reduction: $200 Program Info Funding Source ApCo HomeSMART Program Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount HVAC Maintenance: 50% of cost Insulation: $0.30/sq ft Air Source Heat Pump (replacing electric furnace): $100 or $200

204

Impacts of the 2009 IECC for Residential Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Delaware Summary Delaware recently adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective July 1, 2010. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

205

Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Natural Gas The list below contains summaries of all Delaware laws and incentives

206

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network (OSTI)

1 INTRODUCTION Appalachian coal recovered during mining fre- quently contains diluting material be re- moved in order to produce a marketable product. This is compounded by the fact that current coal- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal

207

Low-Level Cloudiness in the Appalachian Region  

Science Conference Proceedings (OSTI)

Low-level (<2 km) cloud frequencies have been derived for the Appalachian Mountain region for the period 198588 based on in situ measurements by optical cloud and relative humidity sensors, and regional analyses incorporating the U.S. Air Force ...

Michael J. Markus; Bruce H. Bailey; Ronald Stewart; Perry J. Samson

1991-08-01T23:59:59.000Z

208

City of Dover, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Dover, Delaware (Utility Company) Dover, Delaware (Utility Company) Jump to: navigation, search Name Dover City of Place Delaware Utility Id 5335 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Private Outdoor Lighting: Decorative Lighting, Metered, 150 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Metered, 70 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Unmetered, 150 watt HPS w/o

209

City of Newark, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Delaware (Utility Company) Delaware (Utility Company) Jump to: navigation, search Name Newark City of Place Delaware Utility Id 13519 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Industrial Large Light and Power Service(Classification UD) Industrial Large Light and Power Service(P) Industrial Large Light and Power Service(U) Industrial Residential Service Residential Average Rates Residential: $0.1550/kWh

210

City of Lewes, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lewes, Delaware (Utility Company) Lewes, Delaware (Utility Company) Jump to: navigation, search Name City of Lewes Place Delaware Utility Id 10935 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial, Three Phase Commercial Industrial Single Phase Industrial Industrial, Three Phase Industrial Residential Residential Average Rates Residential: $0.1880/kWh Commercial: $0.1690/kWh Industrial: $0.1300/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

211

Department of Energy Official in Newark, Delaware, to Highlight $168  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Official in Newark, Delaware, to Highlight Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's selection of 13 industry-led solar technology development projects for negotiation of up to $168 million (FY'07-'09), subject to appropriation from Congress. These solar projects serve as the centerpiece of the President's Solar America Initiative (SAI), which aims to make solar energy cost-competitive with conventional forms of electricity by 2015 - helping

212

City of Seaford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seaford, Delaware (Utility Company) Seaford, Delaware (Utility Company) Jump to: navigation, search Name City of Seaford Place Delaware Utility Id 16852 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL NON-DEMAND METERING Commercial COMMERCIAL WITH DEMAND METERING Commercial LARGE GENERAL SERVICE -PRIMARY ENERGY Industrial LARGE GENERAL SERVICE ENERGY Industrial MEDIUM GENERAL SERVICE Industrial RESIDENTIAL Residential SECURITY LIGHTS Lighting STREET CHARGE Commercial Average Rates Residential: $0.1580/kWh

213

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

214

Energy and water development appropriations for 1994. Hearings before the Subcommittee of the Committee on Appropriations, House of Representatives, One Hundred Third Congress, First Session, Part 3  

SciTech Connect

This document of part 3 of the hearings for the Energy and Water Development Appropriations for 1994. This document contains the testimony of the Federal Energy Regulatory Commission, Nuclear Regulatory Commission, Bureau of Reclamation, the Secretary of the Interior, Susquehanna River Basin Commission, Delaware River Basin Commission, Interstate Commission on the Potomac River Basin, Tennessee Valley Authority, and Appalachian Regional Commission.

1993-01-01T23:59:59.000Z

215

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

216

An Analysis of the Impact of a Split-Front Rainband on Appalachian Cold-Air Damming  

Science Conference Proceedings (OSTI)

Appalachian cold-air damming (CAD) is characterized by the development of a cool, stable air mass that is advected southwestward along the eastern slopes of the Appalachian Mountains by low-level ageostrophic flow. Operational forecasters have ...

Michael J. Brennan; Gary M. Lackmann; Steven E. Koch

2003-10-01T23:59:59.000Z

217

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

218

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

219

Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

220

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82: University of Delaware Lewes Campus Onsite Wind Energy 82: University of Delaware Lewes Campus Onsite Wind Energy Project EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project SUMMARY The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware's Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE Delaware Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2001 IECC. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Delaware. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings. Main Differences Between the Current State Code and Standard 90.1-2007

222

City of Milford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Milford Milford Place Delaware Utility Id 12540 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Contract Service-Primary Voltage Industrial General Service- Primary Voltage Industrial Large General Industrial Medium General Industrial Residential Residential Small General Commercial Average Rates Residential: $0.1470/kWh Commercial: $0.1450/kWh Industrial: $0.1200/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Milford,_Delaware_(Utility_Company)&oldid=409946

223

Town of Smyrna, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Smyrna Town of Smyrna Place Delaware Utility Id 17457 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Electric Hot Water/Heat Commercial Industrial Industrial Residential Residential Residential Electric Heat Only Residential Average Rates Residential: $0.1570/kWh Commercial: $0.1580/kWh Industrial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Smyrna,_Delaware_(Utility_Company)&oldid=411816

224

New Castle, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6620572°, -75.5663132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6620572,"lon":-75.5663132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

North Star, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226°, -75.7191006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7612226,"lon":-75.7191006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

New Castle County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castle County, Delaware: Energy Resources Castle County, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5392979°, -75.667356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5392979,"lon":-75.667356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

228

Pike Creek, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7309451°, -75.704099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7309451,"lon":-75.704099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Wilmington Manor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington Manor, Delaware: Energy Resources Wilmington Manor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6867795°, -75.5843694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6867795,"lon":-75.5843694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Kent County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2713804°, -76.1319953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2713804,"lon":-76.1319953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

COAL RESOURCES, POWDER RIVER BASIN By M.S. Ellis,1  

E-Print Network (OSTI)

Chapter PN COAL RESOURCES, POWDER RIVER BASIN By M.S. Ellis,1 G.L. Gunther,2 A.M. Ochs,2 S, Delaware 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

232

Delaware Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows

233

Industrial structure and employment growth in the 1990s in Appalachian counties  

E-Print Network (OSTI)

Employment growth in the 1990s and its relationship with the initial industrial structure in 1990 are examined in the case of Appalachian counties, after controlling for labor-market conditions and other factors, such as ...

Tan, Zhijun (Zhijun Jeanne)

2005-01-01T23:59:59.000Z

234

Numerical Simulations of Cold Air Advection over the Appalachian Mountains and the Gulf Stream  

Science Conference Proceedings (OSTI)

Cold air advection over the Gulf Stream off the Carolinas and the Appalachian Mountains is studied using idealized two-dimensional cases for the Genesis of Atlantic Lows Experiment (GALE) lop 2 conditions. An anelastic hydrostatic mesoscale model ...

Ching-Yuang Huang; Sethu Raman

1990-02-01T23:59:59.000Z

235

A Collaborative Approach to Study Northwest Flow Snow in The Southern Appalachians  

Science Conference Proceedings (OSTI)

Upslope-enhanced snowfall events during periods of northwesterly flow in the southern Appalachians have been recognized as a significant winter forecasting problem for some time. However, only in recent years has this problem received noteworthy ...

Steve Keighton; Laurence Lee; Blair Holloway; David Hotz; Steven Zubrick; Jeffrey Hovis; Gary Votaw; L. Baker Perry; Gary Lackmann; Sandra E. Yuter; Charles Konrad; Douglas Miller; Brian Etherton

2009-07-01T23:59:59.000Z

236

Synoptic and Mesoscale Aspects of an Appalachian Ice Storm Associated with Cold-Air Damming  

Science Conference Proceedings (OSTI)

An interesting ice storm of moderate severity occurred along the east slopes of the Appalachians on 1314 January 1980. Though surface temperatures were initially below freezing in most of this region, objective guidance indicated that large-...

Gregory S. Forbes; Dennis W. Thomson; Richard A. Anthes

1987-02-01T23:59:59.000Z

237

Leffler's Method of Estimating Average Temperatures of Appalachian Summits: Evaluation in New York  

Science Conference Proceedings (OSTI)

R. J. Leffler recently presented regression equations to estimate average monthly temperatures of Appalachian summits based on the long-term average temperatures on Mt. Washington, New Hampshire, and temperature lapse rates as a function of ...

Thomas W. Schmidlin

1982-05-01T23:59:59.000Z

238

Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Airflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of ...

Stephen F. Mueller; Aaron Song; William B. Noms; Shekar Gupta; Richard T. McNider

1996-11-01T23:59:59.000Z

239

Orographic Effects during a Severe Wintertime Rainstorm in the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The evolution of precipitation features during a severe wintertime rainfall and flooding event associated with a cold front that crossed the central Appalachians on 19 January 1996 is illustrated through the analysis of radiosonde, rainfall, and ...

Ana P. Barros; Robert J. Kuligowski

1998-10-01T23:59:59.000Z

240

The Impact of the Appalachian Mountains on Cyclonic Weather Systems. Part I: A Climatology  

Science Conference Proceedings (OSTI)

A climatological study of cold fronts and cyclones crossing the Appalachian Mountains from the west through northwest has been performed. A sample size of 50 fronts and 40 cyclones was derived from the seven winter seasons (December through March)...

Christopher O'Handley; Lance F. Bosart

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Forecasting the Maintenance of Mesoscale Convective Systems Crossing the Appalachian Mountains  

Science Conference Proceedings (OSTI)

Forecasting the maintenance of mesoscale convective systems (MCSs) is a unique problem in the eastern United States due to the influence of the Appalachian Mountains. At times these systems are able to traverse the terrain and produce severe ...

Casey E. Letkewicz; Matthew D. Parker

2010-08-01T23:59:59.000Z

242

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, basin to state, STB data" 9. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Nominal dollars per ton",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $15.49"," $13.83"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $19.46"," W"," W"," W"," W"," $29.49"," W"," W"," W",," W"," W"

243

Release Date: November 16, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, STB data" 2. Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real dollars per ton-mile",,,,,,,,,,"Annual percent change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $0.0343"," $0.0294"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $0.0161"," W"," W"," W"," W"," $0.0216"," W"," W"," W",," W"," W"

244

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

245

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30N-40N and 40N-50N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

246

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

247

How One Delaware County is Saving Money and Creating Jobs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Delaware County is Saving Money and Creating Jobs One Delaware County is Saving Money and Creating Jobs How One Delaware County is Saving Money and Creating Jobs April 26, 2011 - 3:23pm Addthis Tweedie Doe Project Officer, Golden Field Office What does this project do? New Castle County will carry out 158 conservation measures, including heat pump and boiler replacements, high-efficiency motors, lighting retrofits and controls, and a white reflective roof. The project impacts over 20 facilities and 461,643 square feet of building space. Solar arrays, installed on the Government Center and Hockessin Library roofs, will provide 128 kilowatts of electricity to the two buildings. Federal, state and county officials were in New Castle County, Delaware last week to kick off the next phase of the county's Smart Energy

248

Multiyear Observations of Cloud Lines Associated with the Chesapeake and Delaware Bays  

Science Conference Proceedings (OSTI)

Satellite and corresponding near-surface in situ observations have been made of single- and dual-band cloud events [dubbed anomalous cloud lines (ACLs)] associated with the Chesapeake and Delaware Bays. A previous study developed the basis for ...

Todd D. Sikora; David M. Halverson

2002-08-01T23:59:59.000Z

249

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. Secondary goals in Phase I were also completed for the last reporting period. Thus, no new data were collected for this reporting period, and only soil gas surveys were reanalyzed and re-displayed in the region of the Trenton/Black River wells. The soil gas profiles in the region of the Trenton/Black River wells show that individual large-magnitude soil gas anomalies (spikes) are rarely wider than 50 m. Even clusters of soil gas spikes are only on the order of 200-250 m wide. Thus, widely-spaced sampling will not necessarily represent the actual number and location of soil gas seeps. The narrowness of the anomalies suggests that the seeps result from single fractures or narrow fracture intensification domains (FIDs). Many of the lineaments from EarthSat (1997) and straight stream segments coincide (or are very close to) soil gas spikes, but we collected many more soil gas spikes than lineaments. Among some of the soil gas box surveys, a possible ENE-trend of spikes can be discerned. This ENE-striking trend is, however, about 10{sup o} away from a nearby Earthsat (1997) trend. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2004-07-08T23:59:59.000Z

250

Microsoft Word - MRCSP Appalachian Basin 2008 FactSheet _09-08...  

NLE Websites -- All DOE Office Websites (Extended Search)

balld@battelle.org) Test Location FirstEnergy R.E. Burger Plant, Shadyside, Ohio Amount and Source of CO 2 1,000-3,000 metric tons Source commercial source...

251

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2003-03-14T23:59:59.000Z

252

Subsurface structure of the north Summit gas field, Chestnut Ridge anticline of the Appalachian Basin  

SciTech Connect

The Chestnut Ridge anticline is the westernmost of the High Plateau folds in southwestern Pennsylvania and north-central West Virginia that are detached primarily in the Marcellus Shale, and the Martinsburg, Salina, and Rome Formations. The primary, basal detachment at the Summit field occurs in the Salina salt. Production from fracture porosity in the Devonian Oriskany Sandstone commenced in 1936. During the late 1980s and early 1990s, 14 wells were drilled preparatory to conversion of the reservoir to gas storage. Schlumberger`s Formation MicroScanner (FMS) logs were run in each of these wells to provide information on the structural configuration and fracture patterns of the reservoir. These data indicate that two inward-facing, tight folds at the Oriskany level form the upper flanks and core of the anticline at the northern end of the field, whereas the main part of the field to the south is a comparatively simple, broad closure at the Oriskany level. The structure is a broad, slightly asymmetric open fold in the Mississippian Greenbrier Formation at the surface. Fracture patterns mapped using FMS logs indicate a complex fracture system which varies slightly along the trend of the fold and among the units analyzed, including the Helderberg Formation, Huntersville Chert, Oriskany Sandstone, and Onondaga Formation. An orthogonal joint system strikes toward the northwest and northeast slightly askew to the trend of the fold`s crestal trace. A similar, but more complex fracture pattern is found in an oriented core of these units.

Zhou, G.; Shumaker, R.C. [West Virginia Univ., Morgantown, WV (United States); Staub, W.K. [Consolidated Gas Transmission Co., Clarksburg, WV (United States)

1996-09-01T23:59:59.000Z

253

Forecasting of mine price for central Appalachian steam coal  

SciTech Connect

In reaction to Virginia's declining share of the steam coal market and the subsequent depression in southwest Virginia's economy, an optimization model of the central Appalachian steam coal market was developed. The input to the cost vector was the delivered cost of coal, which is comprised of the mine price (FOB) and transportation cost. One objective of the study was to develop a purchasing model that could be used to minimize the cost of coal procurement over a multi-period time span. The initial case study used a six-month period (7/86-12/86); this requires short-term, forecasts of the mine price of coal. Mine-cost equations and regression models were found to be inadequate for forecasting the mine price of coal. Instead forecasts were generated using modified time series models. This paper describes the application of classical time-series modeling to forecasting the mine price of coal in central Appalachia; in particular, the special modification to the classical methodology needed to generate short-term forecasts and their confidence limits and the need to take into account market-specific considerations such as the split between long-term contracts and the spot market. Special consideration is given to forecasting the spot market. 7 references, 4 figures, 3 tables.

Smith, M.L.

1988-01-01T23:59:59.000Z

254

Hydrology and geochemistry of thermal springs of the appalachians  

DOE Green Energy (OSTI)

Thermal springs in nine areas in the Appalachians from Georgia to New York were studied in 1975 and 1976 using satellite imagery, local well and spring data, and results of current and early studies by other investigators. All the springs investigated discharge from folded and faulted sandstone or carbonate rocks in valley areas. Where geologic structure is relatively uncomplicated, ground water discharging from thermal springs probably has circulated to great depths roughly parallel to the strike of the bedding and has moved upward rapidly where a fault or faults cross the bedding. Hydrologic and chemical data suggest that most of the water discharging from warm springs in the Devonian Oriskany Sandstone is derived from recharge entering and circulating through that formation. The discharge at springs where temperature fluctuates very little is primarily water from deep circulation. The discharge at springs where temperature fluctuates widely is warm water mixed with variable proportions of shallow-circulating cool water. Observed temperatures of the warm springs range from 18/sup 0/ to 41/sup 0/C; the highest chemical thermometer temperature is 84/sup 0/C. Agreement among observed, chalcedony, and cation temperatures of the warmest springs suggests reservoir temperatures of 30/sup 0/ to 50/sup 0/C. Dissolved helium, arsenic, potassium, and delta/sup 18/O are considered as geothermal indicators. Tritium analyses are used to calculate fractions of old and modern components of mixed waters. Computer calculations of carbonate saturation indices show (1) considerable undersaturation in silica-rock warm spring waters and (2) carbonate equilibrium in the limestone and dolomite thermal waters. Better values of saturation indices are obtained when analyzed carbon dioxide rather than field pH is used in the computer input data. A method is described for adjusting delta/sup 13/C to correct for carbon dioxide outgassing from water samples.

Hobba, W.A. Jr.; Fisher, D.W.; Pearson, F.J. Jr.; Chemerys, J.C.

1979-01-01T23:59:59.000Z

255

PUBLICATION 460-144 More than a million acres in the Appalachian region  

E-Print Network (OSTI)

PUBLICATION 460-144 More than a million acres in the Appalachian region were surface mined for coal: Soil physical properties on unused coal mine sites are often poorly suited for planting trees on older coal mine sites applied P fertilizers at levels that were adequate for establishing grasses

Liskiewicz, Maciej

256

An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region  

Science Conference Proceedings (OSTI)

On 26 March 1999, an unexpectedly heavy and complex snowfall event occurred across the southern Appalachian region. This event produced 2030 cm (812 in.) of snow across the Smoky Mountains and 1015 cm (46 in.) across other portions of ...

David M. Gaffin; Stephen S. Parker; Paul D. Kirkwood

2003-04-01T23:59:59.000Z

257

Subscriber access provided by University of Delaware | Library Environmental Science & Technology is published by the American Chemical  

E-Print Network (OSTI)

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article for Critical Zone Research, University of Delaware, Newark, Delaware 19717-1303, CNR-IMIP Instituto di. TEM analyses were made using a Philips CM 300 FEG microscope equipped with an Oxford light element

Sparks, Donald L.

258

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

The Impact of Forcing Datasets on the High-Resolution Simulation of Tropical Storm Ivan (2004) in the Southern Appalachians  

Science Conference Proceedings (OSTI)

The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the ...

Xiaoming Sun; Ana P. Barros

2012-10-01T23:59:59.000Z

260

The Role of Airmass Types and Surface Energy Fluxes in Snow Cover Ablation in the Central Appalachians  

Science Conference Proceedings (OSTI)

A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing ...

Daniel J. Leathers; Daniel Graybeal; Thomas Mote; Andrew Grundstein; David Robinson

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Near-Term Effects of the Lower Atmosphere in Simulated Northwest Flow Snowfall Forced over the Southern Appalachians  

Science Conference Proceedings (OSTI)

Northwest flow snowfall (NWFS) impacts the southern Appalachian Mountains after the upper-level trough has departed from the region, when moist northwesterly flow near the ground is lifted after encountering the mountains. Snowfall associated with ...

Douglas K. Miller

2012-10-01T23:59:59.000Z

262

Compendium of basins for the potential applicability of Jack W. McIntyre`s patented tool  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. McIntyre`s patented tool for the recovery of natural gas from coalbed formations in the San Juan, Powder River, Greater Green River, Piceance, Black Warrior, Appalachian and Michigan basins. Results from the surveys indicated that geology dominated research efforts for many of the basins. Limited information exists on the hydrology and water quality of the basins. All of the basins contain some potential for the use of Jack McIntyre`s patented production process. This process is designed specifically to separate produced water and produced gas in a downhole environment and may allow for more efficient and economical development of coalbed methane resources in this area.

Reed, P.D.

1994-03-01T23:59:59.000Z

263

Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware  

DOE Green Energy (OSTI)

This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

Mancus, J.; Perrone, E.

1982-08-01T23:59:59.000Z

264

Effect of Biocidal Treatments on Cation Exchange Capacity and Fusarium Blight of Soybean in Delaware Soils  

E-Print Network (OSTI)

in Delaware Soils H. A. Sandier, R. B. Carroll,* and D. L. Sparks ABSTRACT Fusarium wilt has caused it is caused by the soil-borne fungus Fusarium oxysporum. A better understanding of the relationship between soil characteristics and the pathogen and between biocidal treatments and physiochemical properties

Sparks, Donald L.

265

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

2013-06-01T23:59:59.000Z

266

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

267

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

268

Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1978-July 14, 1979  

DOE Green Energy (OSTI)

Results of temperature logging the five DOE 1000 foot test wells in Delaware indicate that the potential is good for a relatively low temperature geothermal resource (temperatures less than about 80/sup 0/C). A preliminary Bouguer gravity map was made for portions of Kent and Sussex counties in order to detect gravity anomalies possibly related to granitic plutons. The map indicates a gravity low trending northeast-southwest across Sussex County that could be indicative of other structural features within the basement rocks beneath the Coastal Plain. Other logging activities and study of the cores and drill cuttings in the DOE test holes were useful in better defining the stratigraphic framework and in determining the fresh-salt water interface in southern Delaware.

Woodruff, K.D.

1979-07-01T23:59:59.000Z

269

New basins invigorate U.S. gas shales play  

SciTech Connect

While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

Reeves, S.R.; Kuuskraa, V.A. [Advanced Resources International Inc., Arlington, VA (United States); Hill, D.G. [Gas Research Inst., Chicago, IL (United States)

1996-01-22T23:59:59.000Z

270

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

271

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

272

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

273

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

274

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

275

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

276

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

277

,"Delaware Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

278

Chemistry of atmospheric precipitation at Lewes, Delaware, as part of the MAP3S study  

Science Conference Proceedings (OSTI)

The purpose of this proposal is to request continuation of funding for the routine operation and research activities at the MAP3S precipitation chemistry site at Lewes, Delaware (Site No. 7). Specifically, financial support is being requested to provide for (1) collection of precipitation samples on an event basis, (2) routine field analyses, processing and shipment of samples to Battelle Northwest Laboratories for further analyses, and (3) modest additional salary and laboratory costs to partially support centrally related research projects as described later.

Church, T.M.

1986-07-31T23:59:59.000Z

279

,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (MMcf)" Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1350_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1350_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:42:28 PM"

280

,"Delaware Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (MMcf)" Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:19 PM"

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

282

Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

Science Conference Proceedings (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

283

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

Science Conference Proceedings (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

284

Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian basin  

Science Conference Proceedings (OSTI)

The success of shale gas in North America has attracted increased interest in ''unconventional'' reservoirs. Two critical factors for shale-gas reservoirs are units amenable to hydrologic fracture stimulation and sufficient natural gas content. The effectiveness ... Keywords: Lithofacies, Marcellus Shale, Mineral composition, Organic matter richness

Guochang Wang; Timothy R. Carr

2012-12-01T23:59:59.000Z

285

Quantification of uncertainty associated with injecting carbon dioxide, and design of ECBM reservoir in Appalachian Basin coals.  

E-Print Network (OSTI)

??There are tremendous coal bed methane resources throughout the world. However, with conventional production methods, 40-80% of methane is left behind as unrecoverable. Enhanced coal (more)

Mohan, Jesma.

2010-01-01T23:59:59.000Z

286

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network (OSTI)

a key role in making important and strategic field development decisions. Big Sandy Gas Field #12;SPE and naturally fractured gas-shale simulator developed at the National Energy Technology Laboratory (Mc Dynamic Recharge from the Matrix. Proc. DOE Natural Gas Conference. Houston: DOE. 6. Mohaghegh, S. D

Mohaghegh, Shahab

287

Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Work completed included additional gravity mapping in southern Delaware, development of a computer program for contouring gravity data, and some preliminary quantitative interpretations of gravity and magnetic data in southern Delaware. No significant changes were made in the original Bouguer gravity map produced during the original contract period as a result of this later mapping. The SYMAP and SCONTOUR computing programs, developed by Harvard Graphics and adapted for the B7700, were used to generate computer drawn Bouguer gravity maps for the study area. Maximum depths calculated for the top of a gravity anomaly in the Bridgeville area ranged from about 2.3 to 2.7 kilometers (7500 to 8000 feet). Depth to magnetic basement in the same general area was calculated to be between about 1.5 and 2.9 kilometers (4920 and 6200 feet). Both gravity and magnetic data agree with trends noted on regional maps and suggest that in selected cases fracture zones beneath the coastal plain might be a possible target for future geothermal exploration.

Woodruff, K.D.

1980-08-01T23:59:59.000Z

288

Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Soil organic carbon (SOC) was partitioned between unprotected and protected pools in six forests along an elevation gradient in the southern Appalachian Mountains using two physical methods: flotation in aqueous CaCl{sub 2} (1.4 g/mL) and wet sieving through a 0.053 mm sieve. Both methods produced results that were qualitatively and quantitatively similar. Along the elevation gradient, 28 to 53% of the SOC was associated with an unprotected pool that included forest floor O-layers and other labile soil organic matter (SOM) in various stages of decomposition. Most (71 to 83%) of the C in the mineral soil at the six forest sites was identified as protected because of its association with a heavy soil fraction (> 1.4 g/mL) or a silt-clay soil fraction. Total inventories of SOC in the forests (to a depth of 30 cm) ranged from 384 to 1244 mg C/cm{sup 2}. The turnover time of the unprotected SOC was negatively correlated (r = -0.95, p < 0.05) with mean annual air temperature (MAT) across the elevation gradient. Measured SOC inventories, annual C returns to the forest floor, and estimates of C turnover associated with the protected soil pool were used to parameterize a simple model of SOC dynamics. Steady-state predictions with the model indicated that, with no change in C inputs, the low- (235-335 m), mid- (940-1000 m), and high- (1650-1670 m) elevation forests under study might surrender {approx} 40 to 45% of their current SOC inventory following a 4 C increase in MAT. Substantial losses of unprotected SOM as a result of a warmer climate could have long-term impacts on hydrology, soil quality, and plant nutrition in forest ecosystems throughout the southern Appalachian Mountains.

Garten Jr, Charles T [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL; Cooper, Lee W [ORNL

1999-05-01T23:59:59.000Z

289

,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM"

290

,"Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

291

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics  

E-Print Network (OSTI)

Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro-American settlement? Are fire regime changes resulting in broad vegetation changes in the forests of eastern North America? I used several approaches to address these questions. First, I used digitized fire perimeter maps from Great Smoky Mountains National Park and Shenandoah National Park for 1930-2009 to characterize spatial and temporal patterns of wildfire by aspect, elevation, and landform. Results demonstrate that fuel moisture is a primary control, with fire occurring most frequently during dry years, in dry regions, and at dry topographic positions. Climate also modifies topographic control, with weaker topographic patterns under drier conditions. Second, I used dendroecological methods to reconstruct historical fire frequency in yellow pine (Pinus, subgenus Diploxylon Koehne) stands at three field sites in the southern Appalachian Mountains. The fire history reconstructions extend from 1700 to 2009, with composite fire return intervals ranging from 2-4 years prior to the fire protection period. The two longest reconstructions record frequent fire during periods of Native American land use. Except for the recent fire protection period, temporal changes in land use did not have a significant impact on fire frequency and there was little discernible influence of climate on past fire occurrence. Third, I sampled vegetation composition in four different stand types along a topographic moisture gradient, including mesic cove, sub-mesic white pine (Pinus strobus L.) hardwood, sub-xeric oak (Quercus L.), and xeric pine forests in an unlogged watershed with a reconstructed fire history. Stand age structures demonstrate changes in establishment following fire exclusion in xeric pine stands, sub-xeric oak stands, and sub-mesic white pine-hardwood stands. Fire-tolerant yellow pines and oaks are being replaced by shade-tolerant, fire sensitive species such as red maple (Acer rubrum L.) and hemlock (Tsuga canadensis L. Carr.). Classification analysis and ordination of species composition in different age classes suggest a trend of successional convergence in the absence of fire with a shift from four to two forest communities.

Flatley, William 1977-

2012-12-01T23:59:59.000Z

292

Mortality in Appalachian coal mining regions: the value of statistical life lost  

SciTech Connect

We examined elevated mortality rates in Appalachian coal mining areas for 1979-2005, and estimated the corresponding value of statistical life (VSL) lost relative to the economic benefits of the coal mining industry. We compared age-adjusted mortality rates and socioeconomic conditions across four county groups: Appalachia with high levels of coal mining, Appalachia with lower mining levels, Appalachia without coal mining, and other counties in the nation. We converted mortality estimates to VSL estimates and compared the results with the economic contribution of coal mining. We also conducted a discount analysis to estimate current benefits relative to future mortality costs. The heaviest coal mining areas of Appalachia had the poorest socioeconomic conditions. Before adjusting for covariates, the number of excess annual age-adjusted deaths in coal mining areas ranged from 3,975 to 10,923, depending on years studied and comparison group. Corresponding VSL estimates ranged from $18.563 billion to $84.544 billion, with a point estimate of $50.010 billion, greater than the $8.088 billion economic contribution of coal mining. After adjusting for covariates, the number of excess annual deaths in mining areas ranged from 1,736 to 2,889, and VSL costs continued to exceed the benefits of mining. Discounting VSL costs into the future resulted in excess costs relative to benefits in seven of eight conditions, with a point estimate of $41.846 billion.

Hendryx, M.; Ahern, M.M. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-07-15T23:59:59.000Z

293

Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. The authors hypothesize that, if other environmental factors are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten, C.T. Jr.; Cooper, L.W.; Post, W.M. III; Hanson, P.J.

2000-04-01T23:59:59.000Z

294

Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains  

SciTech Connect

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil (20 cm deep) is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. We hypothesize that, if other environmental factors (like soil moisture) are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten Jr, Charles T [ORNL; Cooper, Lee W [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL

2000-04-01T23:59:59.000Z

295

Precambrian basement geology of the Permian basin region of west Texas and Eastern New Mexico: A geophysical perspective  

SciTech Connect

Because most of the Permian basin region of west Texas and southern New Mexico is covered by Phanerozoic rocks, other means must be found to examine the Precambrian upper crustal geology of the region. We have combined geologic information on the Precambrian from outcrops and wells with geophysical information from gravity and magnetic surveys in an integrated analysis of the history and structure of basement rocks in the region. Geophysical anomalies can be related to six Precambrian events: formation of the Early Proterozoic outer tectonic belt, igneous activity in the southern Granite-Rhyolite province, an episode of pre-Grenville extension, the Grenville orogeny, rifting to form the Delaware aulacogen, and Eocambrian rifting to form the early Paleozoic continental margin. Two geophysical features were studied in detail: the Abilene gravity minimum and the Central Basin platform gravity high. The Abilene gravity minimum is shown to extend from the Delaware basin across north-central Texas and is interpreted to be caused by a granitic batholith similar in size to the Sierra Nevada batholith in California and Nevada. This batholith appears to be related to formation of the southern Granite- Rhyolite province, possibly as a continental margin arc batholith. Because of this interpretation, we have located the Grenville tectonic front southward from its commonly quoted position, closer to the Llano uplift. Middle Proterozoic mafic intrusions are found to core the Central Basin platform and the Roosevelt uplift. These intrusions formed at about 1.1 Ga and are related in time to both the Mid-Continent rift system and the Grenville orogeny in Texas. Precambrian basement structures and changes in lithology have influenced the structure and stratigraphy in the overlying Permian basin, and thus have potential exploration significance.

Adams, D.C.; Keller, G.R. [Univ. of Texas, El Paso, TX (United States)

1996-03-01T23:59:59.000Z

296

Microbial enhanced waterflooding pilot project, Mink Unit, Delaware-Childers (OK) field  

Science Conference Proceedings (OSTI)

The first microbial-enhanced waterflood field project was initiated in October of 1986. The site selected for the project is in the Mink Unit of Delaware-Childers field in Nowata County, Oklahoma. The pilot area consists of four adjacent inverted five-spot patterns drilled on 5-acre spacing. There are 21 injection and 15 production wells on this pilot. Four of the 21 injection wells were treated with microbial formulation. Laboratory screening criteria were developed to evaluate microorganisms for this project. Several different microbial formulations were tested. Injectivity and microbial field survivability tests were conducted during the baseline period on two off-pattern wells, and a chemical tracer, fluorescein, was injected into the four injection wells during the baseline period. Methodologies for field applications of microorganisms in ongoing waterfloods were developed as a result of this project. Results from the field pilot showed that microorganisms could be injected into an ongoing waterflood without causing any problems in injectivity. Microbial treatment did improve oil production rate, and water/oil ratios for producing wells nearest the microbially treated injection wells continue to be more favorable than baseline values. 23 refs., 30 figs., 28 tabs.

Bryant, R.S.; Burchfield, T.E.; Dennis, D.M.; Hitzman, D.O.

1991-08-01T23:59:59.000Z

297

Soil Carbon Dynamics Along an Elevation Gradient in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

The role of soil C dynamics in the exchange of CO{sub 2} between the terrestrial biosphere and the atmosphere is at the center of many science questions related to global climate change. The purpose of this report is to summarize measured trends in environmental factors and ecosystem processes that affect soil C balance along elevation gradients in the southern Appalachian Mountains of eastern Tennessee and western North Carolina, USA. Three environmental factors that have potentially significant effects on soil C dynamics (temperature, precipitation, and soil N availability) vary in a predictable manner with altitude. Forest soil C stocks and calculated turnover times of labile soil C increase with elevation, and there is an apparent inverse relationship between soil C storage and mean annual temperature. Relationships between climate variables and soil C dynamics along elevation gradients must be interpreted with caution because litter chemistry, soil moisture, N availability, and temperature are confounded; all potentially interact in complex ways to regulate soil C storage through effects on decomposition. Some recommendations are presented for untangling these complexities. It is concluded that past studies along elevation gradients have contributed to a better but not complete understanding of environmental factors and processes that potentially affect soil C balance. Furthermore, there are advantages linked to the use of elevation gradients as an approach to climate change research when hypotheses are placed in a strong theoretical or mechanistic framework. Climate change research along elevation gradients can be both convenient and economical. More importantly, ecosystem processes and attributes affecting soil C dynamics along elevation gradients are usually the product of the long-term interactions between climate, vegetation, and soil type. Investigations along elevation gradients are a useful approach to the study of environmental change, and its effect on soil processes, which can complement data obtained from controlled, large-scale, field experiments as well as other empirical and theoretical approaches to climate change research.

Garten Jr., C.T.

2004-04-13T23:59:59.000Z

298

Morrowan sedimentation in the Orogrande basin, west Texas and south-central New Mexico  

SciTech Connect

Morrowan strata in the Hueco and Franklin Mountains reflect deposition within a shallow, gradually subsiding, carbonate shelf lagoon. Postulated environments fluctuated between open shelf lagoon with localized shoaling, restricted inner shelf lagoon, and peritidal settings. Variations in depth were slight, probably not exceeding several tens of meters within the photic zone. The La Tuna Formation (Franklin Mountains) was deposited near the axis (center) of the Orogrande basin; the lower division of the Magdalena limestone (Hueco Mountains), 30 mi east, was deposited 20-30 mi west of the paleoshoreline. Physiographically, the Orogrande sea was a small gulf, offering a certain degree of protection from the Morrowan seaway to the south. Sedimentologically, it was a wide expanse of predominantly quiet-water carbonate sedimentation with subordinate argillaceous influex and coarser peripheral clastics. The Orogrande basin, a stratigraphic feature, corresponds to a blanket deposit of shallow epeiric carbonates. Climatic and orographic effects are invoked to explain the contrasting style of clastic sedimentation in the Delaware and orogrande basins, east and west of the Pedernal uplift. Analysis of Morrowan carbonates reveals no evidence of cyclicity, major transgressions or regressions, or local tectonic activity. Deposition was stable and in equilibrium with a gradually subsiding shallow basin. Based on lithologic, faunal, biostratigraphic, and paleogeographic criteria, the lower division is both laterally and temporally equivalent with the La Tuna Formation. Accordingly, the latter term is advocated in favor of the former, which lacks both priority and formal status.

Connolly, W.M.; Stanton, R.J. Jr.

1986-03-01T23:59:59.000Z

299

"1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 "3. Mt Storm","Coal","Virginia Electric & Power Co",1571 "4. Mitchell","Coal","Ohio Power Co",1560 "5. Mountaineer","Coal","Appalachian Power Co",1310 "6. Pleasants Power Station","Coal","Allegheny Energy Supply Co LLC",1288 "7. Fort Martin Power Station","Coal","Monongahela Power Co",1107 "8. Philip Sporn","Coal","Appalachian Power Co",1020 "9. Kammer","Coal","Ohio Power Co",600

300

On High Winds and Foehn Warming Associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Extremely high winds of 4049 m s?1 [90110 miles per hour (mph)] were reported across the western foothills of the southern Appalachian Mountains on 2223 December 2004, 17 October 2006, 2425 February 2007, and 1 March 2007. The high winds in ...

David M. Gaffin

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

July 1, 2008 College of Engineering and Mineral Resources  

E-Print Network (OSTI)

of the Appalachian basin, the application of nuclear fuel reprocessing technology to the separation of petroleum

Mohaghegh, Shahab

302

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

303

The Oquirrh basin revisited  

SciTech Connect

The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

Erskine, M.C.

1997-04-01T23:59:59.000Z

304

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

305

K Basin safety analysis  

DOE Green Energy (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

306

Kinetics of nickel precipitate formation in soils Edward Peltier and D. L. Sparks. Department of Plant and Soil Sciences, University of Delaware, 152  

E-Print Network (OSTI)

GEOC 26 Kinetics of nickel precipitate formation in soils Edward Peltier and D. L. Sparks. Department of Plant and Soil Sciences, University of Delaware, 152 Townsend Hall, Newark, DE 19711 and sequestration of nickel in contaminated soils. As these precipitates age, their stability increases, resulting

Sparks, Donald L.

307

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

308

Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I  

DOE Green Energy (OSTI)

As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

Strongin, O.

1980-09-30T23:59:59.000Z

309

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

310

Geology, drill holes, and geothermal energy potential of the basal Cambrian rock units of the Appalachian Basin of New York State  

DOE Green Energy (OSTI)

The published geologic and geophysical records plus data gathered from deep wells during hydrocarbon exploration were inventoried, discussed and summarized to evaluate hydro-geothermal energy potential in the western counties of New York, south of the 42/sup 0/ latitude. An assessment is provided of local geothermal energy potential based on these data. The assessed potential is a function of the geothermal gradient, the depth of porous Cambrian age sedimentary units and a variety of features thought to be related to deep fracturing and hence enhanced porosity and permeability. The completion history of a selected set of plugged and abandoned deep wells was examined to determine the feasibility and advisability of re-entering these holes for geothermal development. All wells showed extensive cement plugging and uncertain materials introduced for bridging. It was recommended that no attempt be made to re-enter these wells. The hydro-geothermal energy potential in Western New York State is largely comparable to that of other regions possessing porous/permeable units of sedimentary rock at sufficient depth to contain formation waters of useful temperatures (>140/sup 0/F). A comparison of geothermal reservoirs in New York to similar sites now under development in Canada and France has revealed that potential resources in New York State are slightly hotter, though somewhat thicker and less permeable with significantly higher proportions of dissolved constituents.

Pferd, J.W.

1981-06-01T23:59:59.000Z

311

Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407  

Science Conference Proceedings (OSTI)

Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N. [University of Maryland, Frostburg, MD (United States)

2009-04-15T23:59:59.000Z

312

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas. Technical progress report, April 1--June 30, 1995  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine Unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored.

Dutton, S.P.

1995-06-30T23:59:59.000Z

313

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

314

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

315

EA-64-A Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin...

316

Appalachian Energy Center Appalachian State University  

E-Print Network (OSTI)

research. One such publication and presentation was the Revised Duct Design presentation and power point while reducing installation costs and saving space. The major potential benefit for two story homes with open stairwells would be the option to move the air handler from the attic into the space

Rose, Annkatrin

317

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

318

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

319

West Virginia - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

These basins also hold smaller conventional natural gas and crude oil reserves. Unconventional shale gas can also be found within the Appalachian Basins Marcellus ...

320

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Abyssal Mixing in the Brazil Basin  

Science Conference Proceedings (OSTI)

One of the major objectives of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment, was to quantify the intensity and spatial distribution of deep vertical mixing within the Brazil Basin. In this study, basin-averaged ...

Michele Y. Morris; Melinda M. Hall; Louis C. St. Laurent; Nelson G. Hogg

2001-11-01T23:59:59.000Z

322

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

323

Elevational trends in the fluxes of sulphur and nitrogen in throughfall in the southern Appalachian Mountains: some surprising results  

Science Conference Proceedings (OSTI)

From 1986-1989, a team of scientists measured atmospheric concentrations and fluxes in precipitation and throughfall, and modeled dry and cloudwater deposition in a spruce-fir forest of the Great Smoky Mountains National Park which is located in the Southern Appalachian Region of the United States. The work was part of the Integrated Forest Study (IFS) conducted at 12 forests in N. America and Europe. The spruce-fir forest at 1740 m consistently received the highest total deposition rates ({approx}2200, 1200, and 700 eq ha{sup -1} yr{sup -1} for SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, and NH{sub 4}{sup +}). During the summers of 1989 and 1990 we used multiple samplers to measure hydrologie, SO{sub 4}{sup 2-}, and NO{sub 3}{sup -} fluxes in rain and throughfall events beneath spruce forests above (1940 m) and below (1720 m) cloud base. Throughfall was used to estimate total deposition using relationships determined during the IFS. Although the SO{sub 4}{sup 2-} fluxes increased with elevation by a factor of 2 due to higher cloudwater interception at 1940 m, the NO{sub 3}{sup -} fluxes decreased with elevation by 30%. To investigate further, we began year round measurements of fluxes of all major ions in throughfall below spruce-fir forests at 1740 m and at 1920 m in 1993-1994. The fluxes of most ions showed a 10-50% increase with elevation due to the 70 cm yr{sup -1} cloudwater input at 1920 m. However, total inorganic nitrogen exhibited a 40% lower flux in throughfall at 1920 m than at 1740 m suggesting either higher dry deposition to trees at 1740 m or much higher canopy uptake of nitrogen by trees at 1920 m. Differential canopy absorption of N by trees at different elevations would have significant consequences for the use of throughfall N fluxes to estimate deposition. We used artificial trees to understand the foliar interactions of N.

Shubzda, John [ORNL; Lindberg, Steven Eric [ORNL; Garten Jr, Charles T [ORNL; Nodvin, S. [University of Tennessee, Knoxville (UTK)

1995-12-01T23:59:59.000Z

324

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-02-15T23:59:59.000Z

325

Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program  

Science Conference Proceedings (OSTI)

Adhering to Delawares Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

Britt, Michelle L.; Makela, Eric J.

2011-01-30T23:59:59.000Z

326

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

327

H. R. 2427: A bill making appropriations for energy and water development for the fiscal year ending September 30, 1992, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, May 22, 1991  

SciTech Connect

Appropriations are provided for expenses necessary for the collection and study of basic information pertaining to river and harbor, flood control, and shore protection; for prosecuting work of flood control; for the preservation, operation, maintenance, and care of existing river and harbor, flood control, and related works; and for administration of laws pertaining to regulation of navigable waters and wetlands. Appropriations are detailed for the Department of Defense, Civil Department of the Army; Department of the Interior, Bureau of Reclamation; Department of Energy for energy supply, research and development activities, general science and research activities, nuclear waste disposal fund, isotope production and distribution program fund, atomic energy defense activities, power marketing administrations, and minority participation in the superconducting super collider. Additional appropriations are described for the following agencies: Appalachian Regional Commission, Defense Nuclear Facilities Safety Board, Delaware River Basin Commission, Interstate Commission of the Potomac River Basin, Nuclear Regulatory Commission, Nuclear Waste Technical Review Board, Susquehanna River Basin Commission, and Tennessee Valley Authority.

1991-01-01T23:59:59.000Z

328

K-Basins design guidelines  

Science Conference Proceedings (OSTI)

The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

Roe, N.R.; Mills, W.C.

1995-06-01T23:59:59.000Z

329

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

330

Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes  

Science Conference Proceedings (OSTI)

In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected to the classical Rossby basin modes of a flat-bottom (constant depth), rectangular basin. First, the spectrum of basin modes is calculated for ...

Wilbert Weijer; Frdric Vivier; Sarah T. Gille; Henk A. Dijkstra

2007-12-01T23:59:59.000Z

331

Data report: resource ratings of the RARE II tracts in the Idaho-Wyoming-Utah and the central Appalachian thrust belts  

DOE Green Energy (OSTI)

The assessment forms contained in this report constitute the data used in two resource assessments described in A Systematic Method for Resource Rating with Two Applications to Potential Wilderness Areas (Voelker et al. 1979). The assessments were performed for two geologic subprovinces containing proposed wilderness areas identified in the Forest Service Roadless Area Review and Evaluation (RARE II) program. The subprovinces studied are the Idaho-Wyoming-Utah thrust belt and the central Appalachians thrust belt. Each assessment form contains location data, resource ratings, and supporting information for a single tract. A unique dual rating that reflects geologic favorability and certainty of resource occurrence is assigned to each resource category evaluated. Individual ratings are synthesized into an overall tract-importance rating. Ratings created by others are included for comparative purposes wherever available. Supporting information consists of commentary and references that explain and document the ratings listed.

Voelker, A.H.; Wedow, H.; Oakes, E.; Scheffler, P.K.

1979-11-01T23:59:59.000Z

332

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

333

Colorado River Basin Hydroclimatic Variability  

Science Conference Proceedings (OSTI)

An analysis of annual hydroclimatic variability in the Upper Colorado River basin (UCRB) for the period of 19062006 was performed to understand the dominant modes of multidecadal variability. First, wavelet-based spectral analysis was employed ...

Kenneth Nowak; Martin Hoerling; Balaji Rajagopalan; Edith Zagona

2012-06-01T23:59:59.000Z

334

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

335

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.  

SciTech Connect

Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

John Jackson; Katherine Jackson

2008-09-30T23:59:59.000Z

336

PP-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Basin Electric Power Cooperative PP-64 Basin Electric Power Cooperative Presidential Permit Authorizing Basin Electric Power Cooperative to construct, operate, and maintain...

337

Delaware Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

78-2005 78-2005 Citygate 7.58 8.32 6.54 5.67 9.03 7.19 1984-2012 Residential 16.21 16.07 17.79 15.12 15.38 15.24 1967-2012 Commercial 14.48 14.24 15.87 13.26 13.58 13.31 1967-2012 Industrial 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 Vehicle Fuel 21.90 26.48 14.12 24.55 28.76 30.97 1995-2012 Electric Power W W W W W -- 1997-2012 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 215 122 121 73 64 117 1980-2012 Withdrawals 220 104 118 76 96 66 1980-2012 Net Withdrawals -6 17 3 -2 -31 51 1980-2012 Consumption (Million Cubic Feet) Total Consumption 48,155 48,162 50,148 54,825 79,715 101,676 1997-2012 Lease and Plant Fuel

338

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

6.56 8.19 1989-2013 Residential Price 12.80 12.32 12.19 12.38 13.12 16.23 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0...

339

Department of Energy - Delaware  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

509 en Wind Access and Permitting Law http:energy.govsavingswind-access-and-permitting-law Wind...

340

Delaware.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

lets you compare window performance options by calculating performance based on utility rates for your climate, house design options, and window design options. 5. Ensure...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The public utilities tax rate is 4.25 percent. The utility tax on...

342

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron...

343

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation...

344

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-001577: Categorical Exclusion Determination Wind Turbine Model and Pilot Project for Alternative Energy: Infrastructure for Research, Policy, Education and Outreach on Wind...

345

Retail Unbundling - Delaware  

U.S. Energy Information Administration (EIA)

Status: The State's one pilot choice program was discontinued as of October 31, 2001. Overview: In November 2000, Connectiv Power Delivery Company ...

346

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

347

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

19.64 22.31 24.12 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2013 Commercial Price 11.25 11.64 12.74 13.72...

348

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

15.12 15.38 15.24 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 14.48 14.24 15.87 13.26...

349

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Thermally Driven Circulations in Small Oceanic Basins  

Science Conference Proceedings (OSTI)

A linear, steady model of the circulation of a small (f plane) oceanic basin driven by heating or cooling at the surface is considered in order to examine the partition of upwelling (heating) or downwelling (cooling) between the basin's interior ...

Joseph Pedlosky

2003-11-01T23:59:59.000Z

351

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: comparison with the Barnett Shale...

352

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

Gasoline and Diesel Fuel Update (EIA)

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

353

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

DOE Green Energy (OSTI)

4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

354

A Numerical Study of the Thermally Driven Plain-to-Basin Wind over Idealized Basin Topographies  

Science Conference Proceedings (OSTI)

Numerical experiments have been carried out with a two-dimensional nonhydrostatic mesoscale model to investigate the diurnal temperature range in a basin and the thermally driven plain-to-basin winds. Under clear-sky conditions, the diurnal ...

Stephan F. J. de Wekker; Shiyuan Zhong; Jerome D. Fast; C. David Whiteman

1998-06-01T23:59:59.000Z

355

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

Science Conference Proceedings (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is mined. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

356

The Black Shale Basin of West Texas.  

E-Print Network (OSTI)

??The Black Shale Basin of West Texas covers an area in excess of 21,000 square miles and includes the region from Terrell and Pecos Counties (more)

Cole, Charles Taylor, 1913-

2012-01-01T23:59:59.000Z

357

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

358

California - San Joaquin Basin Onshore Nonassociated Natural...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

359

,"California - San Joaquin Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

360

,"California - Los Angeles Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

362

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network (OSTI)

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut18 O values near 0% (Vienna Standard Mean OceanWater). Uranium-rich apatite cement (P1) also formed during diagenetic stage1indicating that oxygenated, uranium- bearing pore water was present in the basin

Hiatt, Eric E.

363

K Basins Field Verification Program  

SciTech Connect

The Field Verification Program establishes a uniform and systematic process to ensure that technical information depicted on selected engineering drawings accurately reflects the actual existing physical configuration. This document defines the Field Verification Program necessary to perform the field walkdown and inspection process that identifies the physical configuration of the systems required to support the mission objectives of K Basins. This program is intended to provide an accurate accounting of the actual field configuration by documenting the as-found information on a controlled drawing.

Booth, H.W.

1994-12-02T23:59:59.000Z

364

Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins  

E-Print Network (OSTI)

To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins, will play an important role in fulfilling future world energy needs. We must identify and quantify potential unconventional gas resources in basins around the world to plan for their development. Basin analog assessment is one technique that can be used to identify and quantify unconventional gas resources that is less expensive and less time consuming. We have developed a basin analog methodology that is useful for rapidly and consistently evaluating the unconventional hydrocarbon resource potential in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America basins that contain well characterized conventional and unconventional hydrocarbon resources. We have selected 25 basins in North America that have a history of producing unconventional gas resources. These are â??referenceâ? basins that are used to predict resources in frontier or exploratory basins. The software assists us in ranking reference basins that are most analogous to the target basin for the primary purpose of evaluating the potential unconventional resources in the target basin. The methodology allows us to numerically rank all the reference basins relative to the target basin. The accuracy of the results depends on the descriptions of geologic and petroleum systems. We validated the software to make sure it is functioning correctly and to test the validity of the process and the database. Finding a reference basin that is analogous to a frontier basin can provide insights into potential unconventional gas resources of the frontier basin. Our method will help industry predict the unconventional hydrocarbon resource potential of frontier basins, guide exploration strategy, infer reservoir characteristics, and make preliminary decisions concerning the best engineering practices as wells are drilled, completed, stimulated and produced.

Singh, Kalwant

2006-12-01T23:59:59.000Z

365

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

366

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

367

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

368

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

369

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

370

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

371

African sedimentary basins - Tectonic controls on prospectivity  

Science Conference Proceedings (OSTI)

An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. (Robertson Group plc, Gwynedd (England))

1991-03-01T23:59:59.000Z

372

Thermal regimes of Malaysian sedimentary basins  

Science Conference Proceedings (OSTI)

Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

Abdul Halim, M.F. (Petronas Research and Scientific Services, Selangor (Malaysia))

1994-07-01T23:59:59.000Z

373

California - San Joaquin Basin Onshore Crude Oil Estimated ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Estimated Production from Reserves (Million Barrels)

374

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

375

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

376

Western Gas Sands Project Quarterly Basin Activities Report  

SciTech Connect

This quarterly basin activities report is a summation of three months drilling and testing activities in the Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. Detailed information is given for each study area for the first quarter of 1979.

Atkinson, C H

1979-04-30T23:59:59.000Z

377

Thermal state of the Arkoma Basin and the Anadarko Basin, Oklahoma.  

E-Print Network (OSTI)

??Chapter three addresses heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform. We found no evidence for heat flow to (more)

Lee, Youngmin.

378

K Basins Sludge Treatment Project Phase 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report Herb G. Sutter Michael Poirier Art W. Etchells Gary Smith Kris Thomas Jim J. Davis Paul Macbeth November 16, 2009 Prepared by the U.S. Department of Energy Washington, D.C. K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009 ii Herbert G. Sutter, Team Lead Date Michael Poirier, Team Member Date Arthur W. Etchells, Team Member Date Gary Smith, Team Member Date Kris Thomas, Team Member Date Jim J. Davis, Team Member Date Paul Macbeth, Team Member Date Signatures 11/09/2009 11/09/2009 11/09/2009 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009

379

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

380

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

382

Further FGGE Forecasts for Amazon Basin Rainfall  

Science Conference Proceedings (OSTI)

A series of experiments using real-data general circulation model integrations is performed to study the impact of remote tropical Pacific heating modifications upon the rainfall over the Amazon Basin. In one set of experiments, a heating term is ...

Julio Buchmann; Jan Paegle; Lawrence Buja; R. E. Dickinson

1989-05-01T23:59:59.000Z

383

The Uinta Basin Case Robert J. Bayer  

E-Print Network (OSTI)

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

384

Probabilistic Quantitative Precipitation Forecasts for River Basins  

Science Conference Proceedings (OSTI)

A methodology has been formulated to aid a field forecaster in preparing probabilistic quantitative precipitation forecasts (QPFs) for river basins. The format of probabilistic QPF is designed to meet three requirements: (i) it is compatible with ...

Roman Krzysztofowicz; William J. Drzal; Theresa Rossi Drake; James C. Weyman; Louis A. Giordano

1993-12-01T23:59:59.000Z

385

What Controls Evapotranspiration in the Amazon Basin?  

Science Conference Proceedings (OSTI)

Global climate models (GCMs) and regional climate models (RCMs) generally show a decrease in the dry season evapotranspiration (ET) rate over the entire Amazon basin. Based on anecdotal observations, it has been suggested that they probably ...

Natalia Hasler; Roni Avissar

2007-06-01T23:59:59.000Z

386

Prediction of August Atlantic Basin Hurricane Activity  

Science Conference Proceedings (OSTI)

Although skillful seasonal hurricane forecasts for the Atlantic basin are now a reality, large gaps remain in our understanding of observed variations in the distribution of activity within the hurricane season. The month of August roughly spans ...

Eric S. Blake; William M. Gray

2004-12-01T23:59:59.000Z

387

Flathead Basin Commission Act of 1983 (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

388

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

389

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

390

The basins on the Argentine continental margin  

Science Conference Proceedings (OSTI)

After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

Urien, C.M. [Buenos Aires Technological Institute Petroleum School, Buenos Aires (Argentina)

1996-08-01T23:59:59.000Z

391

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network (OSTI)

Unconventional resources will play an important role in filling the gap between supply and demand for future world energy. In North America, the impact of unconventional resources on energy supplies is growing continuously. However, around the world they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly and consistently identify analogous reference basins for a target basin. My research focused on continuing that work, comprehensively improving the basin analog system in four areas: the basin analog method; the database; the software functionality; and the validation methods. The updated system compares basins in terms of probability distributions of geological parameters. It compensates for data that are sparse or that do not represent basin-level geological parameters, and it expands the system's ability to compare widely varying quantitative parameters. Because the updated BASIN database contains more geologic and petroleum systems information on reference (existing) basins, it identifies analog basins more accurately and efficiently. The updated BASIN software was developed by using component-based design and data visualization techniques that help users better manage large volumes of information to understand various data objects and their complicated relationships among various data objects. Validation of the improved BASIN software confirms its accuracy: if a basin selected as the target basin appears in the reference basin list with other basins, the target basin is 100% analogous only to itself. Furthermore, when a target basin is analyzed by both BASIN and PRISE (Petroleum Resources Investigation and Summary Evaluation) software, results of the improved BASIN closely matched the PRISE results, which provides important support for using BASIN and PRISE together to quantitatively estimate the resource potential in frontier basins.

Wu, Wenyan 1983-

2012-12-01T23:59:59.000Z

392

Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns  

Science Conference Proceedings (OSTI)

The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two baseline models are developed for single and multiple caverns, respectively. Different parameters that affect damage propagation and deformation of salt cavern, such as cavern pressure, operating conditions, cavern height/diameter ratio, overburden stiffness and roof thickness are analyzed and the respective results summarized. For multiple horizontal caverns numerical models are developed to determine the cavern interaction and the minimum safe center to center distance. A step by step methodology for operators to assess critical cavern design parameters for thin bedded salt formations is also presented.

Michael S. Bruno

2005-06-15T23:59:59.000Z

393

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network (OSTI)

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units, (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

394

Basinfill of The Permian Tanqua depocentre, SW Karoo basin, South Africa.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Basin subsidence analysis, employing the backstripping method, indicates that fundamentally two different basin-generating mechanisms controlled Tanqua depocentre development in SW Karoo Basin. The (more)

Alao, Abosede Olubukunola

2012-01-01T23:59:59.000Z

395

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

396

AppalachianSpring 2007 Appalachian State University's Magazine  

E-Print Network (OSTI)

projects. REI is also looking at the feasibility of installing a wind turbine near the Broyhill Inn of Trivette hall, is the first person to install a residential wind turbine in Watauga County. The project the potential for utilizing small- scale wind turbine technology, and educates the public about this renewable

Rose, Annkatrin

397

Photo courtesy of Appalachian State University Appalachian State University  

E-Print Network (OSTI)

additional composting initiatives and renewable energy projects. Currently only pre-consumer food waste, will level out. Currently we have several renewable energy installations and a forest preserve creating 2009 the Physical Plant began implementing energy saving measures. Emissions in FY 2009 dropped 6% from

Rose, Annkatrin

398

The Thermally Driven Cross-Basin Circulation in Idealized Basins under Varying Wind Conditions  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting model is used to perform large-eddy simulations of thermally driven cross-basin winds in idealized, closed basins. A spatially and temporally varying heat flux is prescribed at the surface as a function of ...

Manuela Lehner; C. David Whiteman

2012-06-01T23:59:59.000Z

399

Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan  

E-Print Network (OSTI)

are commonly found within intramontane basins that separate its constituent ranges. In order to explore of the Tien Shan, central Asia's largest mountain range, is driven by the distant collision between India found within basin interiors, 10­20 km distant from bedrock cored ranges [Avouac et al., 1993; Bullen et

Bookhagen, Bodo

400

FELDA W SUNOCO F ELDA SEMINOLE SUNNILAND BEAR ISLAND CORKSCREW  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class No 2001 gas reserves 1 - 10 MMCF 10 - 100 MMCF Appalachian Basin Boundary South Florida Peninsula Oil and Gas Fields By 2001 Gas...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: News Release - NETL Recognized for Management Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain 4000 water...

402

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

403

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

404

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

capacity in the Southeast, the Appalachian basin has been mined extensively, and production costs have been increasing more rapidly than in other regions. The Eastern...

405

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced coalbed methane recovery. http:energy.govfe...

406

Rig count in Utica Shale doubles from year ago - Today in ...  

U.S. Energy Information Administration (EIA)

The number of active oil and natural gas rigs in the Appalachian Basin's Utica Shale formation for the last week of October 2012 (ending October 26) ...

407

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

408

Petroleum geochemistry of the Zala basin, Hungary  

Science Conference Proceedings (OSTI)

The Zala basin is a subbasin within the Pannonian basis on Hungary. Oil and smaller amounts of gas are produced from Upper Triassic through Miocene reservoirs. Our geochemical study of oils and rocks in the basin indicate that two, and possibly three, genetic oil types are present in the basin. Miocene source rocks, previously believed by explorationists to be the predominant source rock, have expelled minor amounts of hydrocarbons. The main source rock is the Upper Triassic (Rhaetian) Koessen Marl Formation or its stratigraphic equivalent. Oils derived from the Triassic source rock are recognizable by their isotopic and biological marker composition, and high content of metals. In other areas of Europe, Upper Triassic source rocks have been correlated with large oil accumulations (e.g., Molassa and Villafortuna fields, Po basin, and other fields in Italy) or are postulated to be good potential source rocks (e.g., Bristol channel Trough). Knowledge of the geochemical characteristics of oils derived from these Upper Triassic source rocks and understanding of the source rock distribution and maturation history are important for recognizing Triassic oil-source bed relationships and for further exploration in other basins in Hungary and other parts of Europe where Triassic source rocks are present.

Clayton, J.L. (Geological Survey, Denver, CO (United States)); Koncz, I. (Hungarian Oil and Gas Corp., Nagykanizsa (Hungary))

1994-01-01T23:59:59.000Z

409

Sediment Basin Flume | Open Energy Information  

Open Energy Info (EERE)

Sediment Basin Flume Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume Length(m) 22.7 Beam(m) 5.1 Depth(m) 1.2 Cost(per day) Contact POC Special Physical Features Two pumps provide up to 18 cfs of flow capacity Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Flow, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

410

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

411

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

412

SWP.SanJuanBasin.factsheet0919  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigator Reid Grigg/Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu Field Test Information: Field Test Name San Juan Basin, New Mexico: Enhanced Coalbed Methane-Sequestration Test Test Location Near Navajo City, New Mexico Amount and Source of CO 2 Tons Source 20,000 - 35,000 tons; CO2 sourced from McElmo Dome, CO ConocoPhillips KinderMorgan CO 2 Company, L.P. Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations General Geology and Target Reservoirs: The San Juan basin (SJB) is one of the top ranked basins in the world for CO 2 coalbed sequestration because it has: 1) advantageous geology and high methane content; 2) abundant anthropogenic CO

413

Configuration Management Plan for K Basins  

SciTech Connect

This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

Weir, W.R.; Laney, T.

1995-01-27T23:59:59.000Z

414

Southern Colombia's Putumayo basin deserves renewed attention  

Science Conference Proceedings (OSTI)

The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

Matthews, A.J. (Intera Information Technologies Ltd., Henley (United Kingdom)); Portilla, O. (Ecopetrol, Bogota (Colombia))

1994-05-23T23:59:59.000Z

415

University of Delaware Library Associates  

E-Print Network (OSTI)

Project with responsibility for development of the atomic bomb. "The value of Conant's anecdotal approach as a business reporter at Newsweek magazine, and after seven years at the newsweekly moved to long-form profiles

Gao, Guang R.

416

Microsoft Word - delaware.doc  

Annual Energy Outlook 2012 (EIA)

... 55 48 Independent Power Producers & Combined Heat and Power ... 3,334 29 Net Generation (megawatthours)...

417

Microsoft Word - delaware.doc  

U.S. Energy Information Administration (EIA) Indexed Site

landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. 3 Other includes non-biogenic municipal solid...

418

Delaware Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

419

The Transmission of Rossby Waves through Basin Barriers  

Science Conference Proceedings (OSTI)

The response of a basin with a topographic barrier to spatially localized and time periodic forcing is considered. The barrier, which almost completely divides the full basin into two adjacent subbasins, is offered as a model of either a ...

Joseph Pedlosky

2000-03-01T23:59:59.000Z

420

Climatic Aspects of the 1993 Upper Mississippi River Basin Flood  

Science Conference Proceedings (OSTI)

The 1993 record-breaking summer flood in the Upper Mississippi River Basin resulted from an unprecedentedly persistent heavy rain pattern. Rainfall totals for the Upper Mississippi River Basin were, by a large margin, the largest of this century ...

Kenneth E. Kunkel; Stanley A. Changnon; James R. Angel

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Southern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Basin and Range Geothermal Region Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Basin and Range Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} North-south-striking and west-dipping Basin and Range province normal faults form the western edge of the Sierra Madre Occidental plateau in northeastern Sonora. These faults and associated half-grabens extend over a distance of more than 300 km between the San Bernardino basin in the north and the Sahuaripa basin in the south. Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake [1] References ↑ "Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake"

422

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting  

E-Print Network (OSTI)

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting the Multiple Uses of the Yakima for the opportunity to comment. Sincerely, Jim Trull, President Yakima Basin Joint Board #12;

423

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

424

Criticality safety evaluation for K Area Disassembly Basin cleanup  

SciTech Connect

Preparations are currently being made to remove sludge from the Disassembly Basin in all reactor areas. Because this sludge contains fissile isotopes, it is necessary to perform a criticality safety evaluation for the planned activities. A previous evaluation examined the criticality safety aspects of the sludge removal process for L Area. This document addresses the criticality safety aspects of the K Area Disassembly Basin cleanup work. The K Area Disassembly Basin cleanup will involve, as a first step, pumping the basin sludge into the Monitor Basin portion of the Disassembly Basin. From the Monitor Basin, the sludge will be pumped into tanks or containers for permanent disposition. The criticality safety evaluation discussed in this document covers the transfer of the sludge to the Monitor Basin.

Rosser, M.A.

1994-02-01T23:59:59.000Z

425

K West basin isolation barrier leak rate test  

SciTech Connect

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

426

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

427

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

428

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

429

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network (OSTI)

Hanford K-Basin Sludge Characterization Overview February 2005 1 Hanford K-Basin Sludge Characterization Overview February 2005 1. Summary The Hanford K-East and K-West Basins were used to store of the irradiated fuel reprocessing facility at Hanford (the PUREX facility) the N-Reactor irradiated fuel remained

430

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation is presented of the coring program site identification, and drilling and testing activity in the four primary study areas of the Western Gas Sands Project (WGSP). Pertinent information for January, February, and March, 1978 is included for each study area. The areas are the Northern Great Plains Province, the Greater Green River Basin, the Piceance Basin, and the Uinta Basin.

1978-04-01T23:59:59.000Z

431

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini; Donald A. Goddard

2005-08-01T23:59:59.000Z

432

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

433

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

434

Summary - K Basins Sludge Treatment Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin K Basin DOE is Proces the va at Han subsys oxidati objecti of-fact maturi Eleme Techn The as which seven * M * M * Pr * Pr * As The Ele Site: H roject: K P Report Date: A ited States Why DOE ns Sludge Treatme s constructing ss (STP) for re rious sludge st nford. The STP stems: sludge ion, assay, pac ive of the asse t" appraisal of t ty by first ident ents (CTEs) of t ology Readine What th ssessment team was further div CTEs and the Material Mobiliza Material Transfe rocess Chemis rocess Instrum ssay (TRL=2) To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP K Basins Slud Process/STP August 2007 Departmen K Bas E-EM Did This ent Process Flow D a K Basins Slu trieving, treatin treams stored i P is comprised containerizatio ckaging, and dr ssment was to the project's ov

435

KE Basin underwater visual fuel survey  

SciTech Connect

Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

Pitner, A.L.

1995-02-01T23:59:59.000Z

436

Rappahannock River Basin Commission (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Rappahannock River Basin Commission The Rappahannock River Basin Commission is an independent local entity

437

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

438

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

439

Why Sequencea Near-Shore Anoxic Basin?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Near-Shore Anoxic Basin? a Near-Shore Anoxic Basin? Oxygen minimum zones (OMZs; areas of low dissolved oxygen concentrations) play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the gases carbon dioxide and nitrous oxide. Microbially mediated biological activity associated with these systems affects the productivity of the deep blue sea and the balance of greenhouse gases in the atmosphere. Thus, studies aimed at evaluating the phylogenetic variation and metabolic capacity of microbial communities within these systems have great promise to enhance our understanding of the patterns and processes that drive global biogeochemical phenomena in both aquatic and atmospheric compartments of the biosphere. To this end, JGI and

440

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Ohio River Basin Trading Project Listening Workshops  

Science Conference Proceedings (OSTI)

In March 2010, American Farmland Trust held two listening workshops in the Wabash River Watershed to provide information and collect feedback on the Ohio River Basin Trading Project. Each session began with a basic primer on water quality trading given by Jim Klang of Kieser Associates. The presentations were followed by facilitated discussions. Participants were prompted with several questions, developed from earlier listening sessions, addressing issues that producers will likely face in water quality ...

2010-09-15T23:59:59.000Z

442

K Basin spent nuclear fuel characterization  

SciTech Connect

The results of the characterization efforts completed for the N Reactor fuel stored in the Hanford K Basins were Collected and summarized in this single referencable document. This summary provides a ''road map'' for what was done and the results obtained for the fuel characterization program initiated in 1994 and scheduled for completion in 1999 with the fuel oxidation rate measurement under moist inert atmospheres.

LAWRENCE, L.A.

1999-02-10T23:59:59.000Z

443

Neptunium-239 in disassembly basin water  

SciTech Connect

Since the presence of neptunium-239 in disassembly basin water had been suggested, analysis of the water was undertaken. The occurrence of Np-239 was thought to be due to its diffusion through the slugs. Samples of water from the D and E Canals in K and R-Areas were analyzed to determine the presence of Np-239. Samples from and K and R Areas both showed Np-239 to be present in quantities greater than 50% of the initial total activity.

Carlton, W.H.; Boni, A.L.

1956-08-13T23:59:59.000Z

444

Geothermal fluid genesis in the Great Basin  

DOE Green Energy (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

445

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network (OSTI)

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected to spatially and temporally variable, complex inversion events during Miocene time. Fault orientations on inversion structures in the West Natuna Basin and the Western NCSB closely parallel the western side of the Natuna Arch, which may have served as a regional "buttress" where stress was concentrated and strain was deflected from Early to Late Miocene time. Early to Middle Miocene basin inversion across the Western NCSB was coincident with the most intense phase of basin inversion in the West Natuna and Malay basins. Contraction in the Western NCS, West Natuna, and Malay basins was accommodated through reactivation of major basin-bounding fault systems that resulted in asymmetric fault-bend folding of syn- and early post-rift strata. Inversion of western Sunda Shelf basins progressed from the West Natuna and Western Nam Con Son basins into the southern Malay Basin from Early to Middle Miocene time. The most intense inversion was recorded in the West Natuna Basin during Early Miocene time with regional uplift of the southern Malay and West Natuna basins during Middle Miocene time. Whereas both the Eastern and Western NCS sub-basins experienced fault reactivation during Miocene time, the timing and styles of inversion are different. Unlike the Western NCSB, the Eastern NCSB experienced only mild positive reactivation of pre-existing synthetic and antithetic hanging-wall faults, causing simple amplification of pre-existing rollover in the hanging-wall fill during Middle Miocene time. Basin inversion of the West Natuna, Western Nam Con Son, and Malay basins is attributed to collision-induced clockwise rotation of Borneo and the attached, rigid Natuna Arch and Natuna Basement Ridge, beginning during Early Miocene time. This accounts for: 1) the south to north progression of inversion from Early to Late Miocene time, 2) magnitudes of inversion documented within each basin, 3) the suggested NW-SE orientation of []?,4) the approximately N-S azimuth of compression that caused observed styles of inversion to form.

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

446

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithofacies, Depositional Environment and Burial History of the Barnett Shale in the Delaware Basin Lithofacies, Depositional Environment and Burial History of the Barnett Shale in...

447

Geological characterization report, Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico  

SciTech Connect

Geotechnical information is presented relevant to the WIPP site in the Delaware Basin in SE New Mexico. This volume covers regional geology, site geology, and seismology. (DLC)

Powers, D.W.; Lambert, S.J.; Shaffer, S.E.; Hill, L.R.; Weart, W.D. (eds.)

1978-08-01T23:59:59.000Z

448

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

449

CRAD, Emergency Management - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Engineering - Office of River Protection K Basin Sludge Waste System

450

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

451

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northwest Basin and Range Geothermal Region Northwest Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (48) Power Plants (8) Projects (15) Techniques (33) The Basin and Range Province in northwestern Nevada and northeastern California is characterized by late Cretaceous - early Cenozoic regional erosion, Oligocene - Miocene volcanism, and subsequent late Miocene extension. Extensional faulting in northwestern Nevada began everywhere at 12 Ma and has continued up to the present. Faulting in the Warner Range in northeastern California can only be constrained to have begun between 14 and 3 Ma, but may represent westward migration of Basin and Range extension during the Pliocene. Compared to the many parts of the Basin and Range in

452

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

453

River Basins Advisory Commissions (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider Catawba Wateree River Basin Advisory Commission

454

,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

455

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

456

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

457

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

458

,"California - San Joaquin Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

459

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

460

,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

Note: This page contains sample records for the topic "appalachian basin delaware" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

462

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

463

,"California - Los Angeles Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

464

,"California - Los Angeles Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

465

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

466

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

467

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

468

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

469

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

470