Sample records for appa edison electric

  1. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  2. APPA Engineering and Operations Technical Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2014 APPA Engineering and Operations Technical Conference is designed for public power professionals charged with designing, developing, and maintaining the nation's electric system.

  3. Beyond Tesla and Edison: Other Luminaries from the Age of Electricity

    Broader source: Energy.gov [DOE]

    From electric chairs to machine guns to Gila monsters, learn more about the great minds and eccentric characters who were contemporaries of Edison and Tesla in the early days of electricity.

  4. Comments of the Edison Electric Institute Quadrennial Energy Review

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs the Department of EnergyComments of the Edison

  5. Edison vs. Tesla

    SciTech Connect (OSTI)

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2013-11-20T23:59:59.000Z

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  6. Edison vs. Tesla

    ScienceCinema (OSTI)

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2014-01-07T23:59:59.000Z

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  7. Energy Department and Edison Electric Institute Sign Agreement...

    Office of Environmental Management (EM)

    Grand Challenge to develop plug-in electric vehicles by 2022 as affordable as a 2012 gasoline-powered vehicle, this partnership advances mutual interests to increase the...

  8. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

    2005-12-01T23:59:59.000Z

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

  9. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect (OSTI)

    Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

    2008-08-01T23:59:59.000Z

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

  10. The impact of electric vehicles on the Southern California Edison System. Final report

    SciTech Connect (OSTI)

    Ford, A.

    1992-07-01T23:59:59.000Z

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the ``Air Quality Impacts of Energy Efficiency`` Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers` view has been studied with special emphasis on the role of marketable permit systems. The utilities` view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility`s average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  11. The impact of electric vehicles on the Southern California Edison System

    SciTech Connect (OSTI)

    Ford, A.

    1992-07-01T23:59:59.000Z

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the Air Quality Impacts of Energy Efficiency'' Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers' view has been studied with special emphasis on the role of marketable permit systems. The utilities' view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility's average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  12. Outages of electric power supply resulting from cable failures Boston Edison Company system

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    Factual data are provided regarding 5 electric power supply interruptions that occurred in the Boston Metropolitan area during April to June, 1979. Common to all of these outages was the failure of an underground cable as the initiating event, followed by multiple equipment failures. There was significant variation in the voltage ratings and types of cables which failed. The investigation was unable to delineate a single specific Boston Edison design operating or maintenance practice that could be cited as the cause of the outages. After reviewing the investigative report the following actions were recommended: the development and implementation of a plan to eliminate the direct current cable network; develop a network outage restoration plan; regroup primary feeder cables wherever possible to minimize the number of circuits in manholes, and to separate feeders to high load density areas; develop a program to detect incipient cable faults; evaluate the separation of the north and south sections of Back Bay network into separate networks; and, as a minimum, install the necessary facilities to make it possible to re-energize one section without interfering with the other; and re-evaluate the cathodic protection scheme where necessary. (LCL)

  13. Edison FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdisonEdison FAQ

  14. Edison memory upgrade

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison memory upgraded during the maintenance in Jan 13-16, 2015 Edison memory upgraded during the maintenance in Jan 13-16, 2015 January 16, 2015 (0 Comments) Edison compute node...

  15. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be...

  16. Edison Dedication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdison Dedication

  17. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job...

  18. Long Fuse, Big Bang: Thomas Edison, Electricity, and the Locus of Innovation

    SciTech Connect (OSTI)

    Hargadon, Andrew [University of California, Davis

    2012-10-22T23:59:59.000Z

    Calls for breakthroughs in science and technology have never been louder, and yet the demand for innovation is made more challenging by public and political misconceptions surrounding where, when, and how it happens. Professor Andrew Hargadon uses historical research to advance our current understanding of the innovation process. He discussed the social and technical context in which electric light, and the modern electric power infrastructure, were born and considers its implications for managing innovation in science and technology today.

  19. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4 Includes small electric devices, heating elements, and motors not listed above. Electric vehicles are included in the transportation sector. 5 Includes such appliances as...

  20. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and...

  1. ELECTRICAL AND COMPUTER ENGINEERING

    E-Print Network [OSTI]

    Haykin, Simon

    Edison (prolific inventor), Nikola Tesla (inventor of the electric motor, transformer), Dilbert (comic

  2. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    medical imaging and other medical equipment, elevators, escalators, off-road electric vehicles, laboratory fume hoods, laundry equipment, coffee brewers, and water...

  3. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    8 Includes coal, coal coke (net), and electricity (net). Excludes imports of fuel used in nuclear power plants. 9 Includes crude oil, petroleum products, ethanol, and biodiesel. 10...

  4. Microsoft Word - appa.docx

    Gasoline and Diesel Fuel Update (EIA)

    consumption for geothermal heat pumps, buildings photovoltaic systems, and solar thermal water heaters. 14 Includes consumption of energy by electricity-only and combined heat and...

  5. Boston Edison ventures into unregulated subsidiaries

    SciTech Connect (OSTI)

    Connolly, B.

    1993-10-01T23:59:59.000Z

    Last June 18, Boston Edison won Massachusetts regulatory approval to take advantage to internal expertise, proven business successes, and external opportunities with an unregulated subsidiary, Boston Energy Technology Group Inc. (BETG). The group is in place to help assure the financial strength and competitiveness of Boston Edison for its customers, shareholders, and employees. Just as important will be BETG's role in promoting economic development in the state. Boston Energy Technology will function as the tap root for branch companies that will develop services related to the electric utility business - demand-side management (DSM), electric transportation, and generation services. Two other subsidiary companies under the BETG umbrella already have been established. One, TravElectric Services Corp., will explore opportunities in the electric transportation field. The other, ENER-G-VISION Inc., will be devoted to DSM activities. These efforts have been endorsed by the company's partnership constituencies. In 1992, for example, the state's Department of Public Utilities allowed Boston Edison to recover a good portion of its DSM expenses and even granted the company a bonus for its program performance. Boston Edison will dedicate about 5 percent of its business efforts to subsidiary operations, up to a $45-million commitment over the next three years.

  6. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdisonEdisonJob Size

  7. Edison Programming Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdisonEdisonJob

  8. Con Edison Commercial and Industrial Energy Efficiency Program 

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    ? Con Edison C&I Energy Efficiency Team ? Program Management and Account Executives ? Lockheed Martin Team ? Marketing, Operations, Engineering and Administration ? Market Partner Network ? Con Edison Customers 6 C&I Program: Three Major... Components ? Rebates for Equipment Upgrades ? Performance-based Custom Incentives ? Energy Efficiency Technical Studies 7 8 ? Equipment Rebate Program ? Electric: High Efficiency Lighting, HVAC, Heat Pumps, De-lamping, Controls, Motors, VFD...

  9. Con Edison Commercial and Industrial Energy Efficiency Program

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    1 Con Edison Commercial and Industrial Energy Efficiency Program Discussion Overview ? Benefits, Eligibility & Team Members ? Program Components ? Project Incentives & Energy Studies ? Additional Program Attributes, Tools & Resources... and Sub-metering ? PlaNYC - Green House Gas Emissions 4 5 Customer Eligibility ? Con Edison directly metered Commercial or Industrial customer in an existing building who pays the applicable gas or electric System Benefits Charge The Program Team...

  10. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI)...

  11. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association...

  12. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdison

  13. Energy Star program benefits Con Edison

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Impressed with savings in energy costs achieved after upgrading the lighting and air conditioning systems at its Manhattan headquarters, Home Box Office (HBO) wanted to do more, James Flock, vice president for computer and office systems, contacted Con Edison Co. of New York in March 1991 to determine what the company could do to save money by reducing energy consumed by personal computers. Arthur Kressner, Con Edison Research and Development manager contacted industry organizations and manufacturers for advice, but was told only to shut off computers at night and on weekends. Kressner arranged a series of meetings with IBM and the Electric Power Research Institute (EPRI) to discuss the issue, then approached the U.S. Environmental Protection Agency (EPA), which was designing a program to promote the introduction and use of energy-efficient office equipment. In 1992, the EPA announced the Energy Star program for PCs, enabling manufacturers to display the Energy Star logo on machines meeting program criteria, including the ability to enter a sleep mode in which neither the computer nor monitor consume more than 30 W or electricity. Industry experts estimate national energy consumption by office equipment could double by the year 2000, but Energy Star equipment is expected to improve efficiency and help maintain electric loads.

  14. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: Legacy inEdisonEdison

  15. Edison Job Launch Command: aprun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdisonEdison

  16. Southern California Edison January 2007

    E-Print Network [OSTI]

    EFFICIENCY Arnold Schwarzenegger APPENDIX D: PRELIMINARY MARKET ASSESSMENT OF AN OFF-GAS ANALYZER FOR OXYGEN 2007 #12;Southern California Edison January 2007 Appendix D Preliminary Market Assessment of an Off-Gas ENERGY RESEARCH & DEVELOPMENT DIVISION Melissa Jones Executive Director DISCLAIMER This report

  17. New Features of the Edison XC30 - Differences from Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Features of the Edison XC30 New Features of the Edison XC30 While the Edison and Hopper systems have similar programming environments and software, there are some key...

  18. Thomas Edison vs. Nikola Tesla | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thomas Edison vs. Nikola Tesla Thomas Edison vs. Nikola Tesla Addthis Duration 46:00 Topic Alternative Fuel Vehicles Renewables Smart Grid Transmission Innovation...

  19. VIDEO: Who Was the Better Inventor, Tesla or Edison?

    Broader source: Energy.gov [DOE]

    “Who was the better inventor, Edison or Tesla, and why?” In our new video, we explore the famous rivalry between Thomas Edison and Nikola Tesla.

  20. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective,...

  1. Getting Started on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) Getting More ElectricityStarted Getting

  2. Con Edison Energy Storage Activities

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A OCompanyCon Edison

  3. Edison is Back and Faster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTrouble Shooting andEdison is

  4. Environmental Protection Agency - Edison, New Jersey | Department...

    Energy Savers [EERE]

    Agency (EPA) has a laboratory in Edison, New Jersey that is the site of an alternative energy project. It uses a super ambient solar thermal collector or solar hot water...

  5. Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: Legacy in

  6. Edison's Desk Blog | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: LegacyEdisonEdison's

  7. Edison File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamosEdisonEdison FAQ

  8. DTE Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

  9. Performance of the Southern California Edison Company Stirling dish

    SciTech Connect (OSTI)

    Lopez, C.W. [Southern California Edison Co., Rosemead, CA (United States); Stone, K.W. [Mako Enterprises, Huntington Beach, CA (United States)

    1993-10-01T23:59:59.000Z

    McDonnell Douglas Astronautics Company (MDAC) and United Stirling AB of Sweden (USAB) formed a joint venture in 1982 to develop and produce a Stirling dish solar generating system. In this report, the six year development and testing program continued by the Southern California Edison Company (SCE) is described. Each Stirling dish module consists of a sun tracking dish concentrator developed by the MDAC and a Stirling engine driven power conversion unit (PCU) developed by USAB. The Stirling dish system demonstrated twice the peak and daily solar-to-electric conversion efficiency of any other system then under development. This system continues to set the performance standard for solar to electric systems being developed in the early 1990`s. Test data are presented and used to estimate the performance of a commercial system.

  10. Environmental Protection Agency- Edison, New Jersey

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency (EPA) has a laboratory in Edison, New Jersey that is the site of an alternative energy project. It uses a super ambient solar thermal collector or solar hot water pre-heater for shower facilities in the lab.

  11. SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302

    SciTech Connect (OSTI)

    Kroposki, B.

    2012-09-01T23:59:59.000Z

    Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

  12. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    8 Includes coal, coal coke (net), and electricity (net). Excludes imports of fuel used in nuclear power plants. 9 Includes crude oil, petroleum products, ethanol, and biodiesel. 10...

  13. Advanced Communication and Control of Distributed Energy Resources at Detroit Edison

    SciTech Connect (OSTI)

    Haukur Asgeirsson; Richard Seguin

    2004-01-31T23:59:59.000Z

    The project objective was to create the communication and control system, the process and the economic procedures that will allow owners (e.g., residential, commercial, industrial, manufacturing, etc.) of Distributed Energy Resources (DER) connected in parallel to the electric distribution to have their resources operated in a manner that protects the electric utility distribution network and personnel that may be working on the network. The Distribution Engineering Workstation (DEW) (a power flow and short circuit modeling tool) was modified to calculate the real-time characteristics of the distribution network based on the real-time electric distribution network information and provide DER operating suggestions to the Detroit Edison system operators so that regional electric stability is maintained. Part of the suggestion algorithm takes into account the operational availability of DER’s, which is known by the Energy Aggregator, DTE Energy Technologies. The availability information will be exchanged from DTE Energy Technologies to Detroit Edison. For the calculated suggestions to be used by the Detroit Edison operators, procedures were developed to allow an operator to operate a DER by requesting operation of the DER through DTE Energy Technologies. Prior to issuing control of a DER, the safety of the distribution network and personnel needs to be taken into account. This information will be exchanged from Detroit Edison to DTE Energy Technologies. Once it is safe to control the DER, DTE Energy Technologies will issue the control signal. The real-time monitoring of the DECo system will reflect the DER control. Multi-vendor DER technologies’ representing approximately 4 MW of capacity was monitored and controlled using a web-based communication path. The DER technologies included are a photovoltaic system, energy storage, fuel cells and natural gas/diesel internal combustion engine generators. This report documents Phase I result for the Detroit Edison (Utility) led team, which also includes: DTE Energy Technology (DER provider & Aggregator), Electrical Distribution Design (Virginia Tech company supporting DEW); Systems Integration Specialists Company (real-time protocol integrator); and OSIsoft (software system for managing real-time information). This work was performed in anticipation of being selected for Phase II of the Advanced Communication and Control of Distributed Energy Resources project.

  14. Edison vs. Tesla | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: LegacyEdison vs. Tesla

  15. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC Jump to:Pty Ltd Jump to:Edison

  16. Consolidated Edison Sol Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison

  17. NuEdison | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLCShores,Activity onNovusNuEdison Jump to:

  18. ConEdison Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006)airConEdison

  19. Edison's Desk Blog | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTrouble Shooting andEdison

  20. Metropolitan Edison Company SEF Loans (FirstEnergy Territory)

    Broader source: Energy.gov [DOE]

    FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional...

  1. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    such as the Consolidated Edison Company of New York (conEdison) employ time-of-day pricing policy [2], with higher unitDesigning a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering companies generally raise electrical energy price during periods of high load demand. A grid

  2. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    ScienceCinema (OSTI)

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

    2014-06-06T23:59:59.000Z

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  3. Edison - A New Cray Supercomputer Advances Discovery at NERSC

    SciTech Connect (OSTI)

    Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

    2014-02-06T23:59:59.000Z

    When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

  4. Edison Innovation Green Growth Fund Loans

    Broader source: Energy.gov [DOE]

    Note: The energy efficiency technologies indicated as "eligible" above are examples of possible eligible technologies listed on the program web site. Other products that conserve electricity or...

  5. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  6. Rotational Programs General Electric Operations Management Leadership Program, Edison Engineering

    E-Print Network [OSTI]

    ://nestlepurinacareers.com/CollegeStudents/ManagementTraineeOpportunities.aspx Praxair Commercial Leadership Development Program http://www.praxair.com/praxair.nsf/0/0AC4813647AD

  7. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-Year 1 WinnersRise Projections |EdReg.

  8. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-Year 1 WinnersRise Projections

  9. Energy Department and Edison Electric Institute Sign Agreement to Advance

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| Department of EnergyClean Energy

  10. Energy Department and Edison Electric Institute Sign Agreement to Advance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005 | Department

  11. Remarks of President Barack Obama at Southern California Edison Electric

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto the NRCAffairs,

  12. PP-228 Edison Sault Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicyDepartment14168

  13. PP-228 Edison Sault Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment56703PP-22 BritishPP-22-4PP-226PP-228

  14. Edison Electric Institute State Generation and Transmission Siting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group Jump

  15. Remarks of President Barack Obama at Southern California Edison Electric

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small TeamNOTDelivery andConference |Fiscal Year U.S. DepartmentVehicle

  16. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A N A

  17. UESC Success Story: GSA and Consolidated Edison's Strong Partnership Has Many Rewards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Case study outlining energy management projecs implemented at the General Services Administration's Ted Weiss Federal Building through utility partnerships with Con Edison.

  18. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  19. ConEd (Electric)- Multifamily Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Multifamily electric customers a rebate program for energy efficient cooling and lighting equipment in 5-75 unit buildings in the eligible service area. All equipment...

  20. The cce/8.3.0 C++ compiler may run into an linking error on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using cce8.3.0, the default Cray compiler, on Edison. zz217@edison02:testscodes> CC phello.C optcraycce8.3.0CCx86-64libx86-64libcray-c++-rts.a(rtti.o): In function...

  1. Steam Men, Edisons, Connecticut Yankees: Technocracy and Imperial Identity in Nineteenth-Century American Fiction

    E-Print Network [OSTI]

    Williams, Nathaniel Langdon

    2010-12-31T23:59:59.000Z

    STEAM MEN, EDISONS, CONNECTICUT YANKEES: TECHNOCRACY AND IMPERIAL IDENTITY IN NINETEENTH-CENTURY AMERICAN FICTION By Copyright 2010 Nathaniel Williams Ph.D., University of Kansas, 2010 Submitted to the Department of English... version of the following dissertation: STEAM MEN, EDISONS, CONNECTICUT YANKEES: TECHNOCRACY AND IMPERIAL IDENTITY IN NINETEENTH-CENTURY AMERICAN FICTION Committee: ______________________ Chairperson, Philip Barnard...

  2. Optimization of Surveys for Detection of Energized Structures to Eliminate Electrical hazards to the Public in New York City

    E-Print Network [OSTI]

    Wells, Elizabeth

    2011-08-04T23:59:59.000Z

    There have been many reports of individuals and animals in New York City coming in contact with electrically energized structures caused by “stray voltage”. The electric utility, Consolidated Edison (Con Ed), has been working hard to drive down...

  3. Distributed Energy Alternatives to Electrical

    E-Print Network [OSTI]

    Pennycook, Steve

    Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated Edison.www.gastechnology.org 2 #12;Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated-Battelle for the Department of Energy Subcontract Number: 4000052360 GTI Project Number: 20441 New York State Energy Research

  4. SCE announces shift to exotics. sort of. [Southern California Edison

    SciTech Connect (OSTI)

    Smock, R.

    1980-12-01T23:59:59.000Z

    Southern California Edison recently announced its plans to accelerate the development and commercialization of renewable energy sources with a goal of providing one third of the utility's new expansion from exotic sources. The anticipated increase of 1555 megawatts by renewable or alternate sources will be matched with a similar decline in fossil fuel capacity. This policy does not threaten conventional utilities because the impact will not be felt until the next century, while coal and nuclear will be the primary fuels used during a transition period. While not a major change in policy, the announcement will stimulate outside investment by notifying energy entrepreneurs that the utility is receptive to joint projects. (DCK)

  5. Case Study - Con Edison Smart Grid Investment Grant

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshua DeLung What doesCon Edison

  6. Edison Mission Marktg & Trdg Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, search ToolEcoware Spa JumpEdinburgEdison

  7. Edison Down for About One Month Starting June 24

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: Legacy inEdison Down

  8. Edison Summit Brings GE Leaders Together | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: Legacy inEdison

  9. Consolidated Edison Sol Inc (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison Sol Inc (Illinois)

  10. Consolidated Edison Sol Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison Sol Inc

  11. Consolidated Edison Sol Inc (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison Sol IncConsolidated

  12. Consolidated Edison Sol Inc (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison Sol

  13. Consolidated Edison Sol Inc (Texas) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison SolConsolidated

  14. Detroit Edison Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria de Alcool Libra JumpEdison

  15. Edison Solar & Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power GroupMaterialEdison

  16. Consolidated Edison Sol Inc (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)Conservation CapitalConsolidated Edison

  17. Consolidated Edison Sol Inc (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated Edison Sol Inc (Delaware)

  18. Consolidated Edison Sol Inc (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated Edison Sol Inc

  19. Consolidated Edison Sol Inc (New Hampshire) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated Edison Sol IncNew Hampshire)

  20. Five megawatt pilot-scale demonstration of the NOXSO Process at Ohio Edison`s Toronto Power Plant

    SciTech Connect (OSTI)

    Haslbeck, J.L.; Woods, M.C.; Ma, W.T.; Harkins, S.M.; Black, J.B.; Browning, J.P.; Leonard, C.A.; Friedrich, J.J. [NOXSO Corp., Bethel Park, PA (United States)

    1995-12-31T23:59:59.000Z

    The NOXSO Process is a dry, regenerable flue gas treatment system that simultaneously removes sulfur oxides (SO{sub 2}, SO{sub 3}) and nitrogen oxides (NO{sub x}) from flue gas. Removal efficiencies of 95+% SO{sub 2}, 99% SO{sub 3}, and 80--90% NO{sub x} have been achieved. The process generates no waste. Sulfur oxides are converted to a marketable byproduct, either sulfuric acid, liquid SO{sub 2}, or elemental sulfur. Nitrogen oxides are converted to nitrogen and oxygen which are released to the atmosphere. The process is easily retrofit and is particularly applicable to high sulfur coals. Most importantly, the NOXSO Process capital and operating costs are less than conventional technology, i.e., a selective catalytic reduction unit followed by a wet scrubber. This paper covers the results of a 5 MW pilot test of the NOXSO Process at Ohio Edison`s Toronto Power Plant. The paper focuses on process design improvements that were verified in pilot plant testing. These improvements are in the area of increased pollutant removal efficiency and decreased capital and operating costs. The paper concludes with an analysis of the cost and performance of a NOXSO plant treating all of the flue gas from a 500 MW power plant burning 2.8% sulfur coal.

  1. FirstEnergy (Mon Power and Potomac Edison)- Business Lighting Incentive Program (West Virginia)

    Broader source: Energy.gov [DOE]

    FirstEnergy's West Virginia’s utilities (Mon Power and Potomac Edison) offer the Business Lighting Incentive Program in accordance with the December 30, 2011, order issued by the Public Service...

  2. FirstEnergy (MetEdison, Penelec, Penn Power)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, and Penn Power) are providing energy efficiency incentives for a...

  3. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect (OSTI)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01T23:59:59.000Z

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  4. Detroit Edison's Fermi 1 - Preparation for Reactor Removal

    SciTech Connect (OSTI)

    Swindle, Danny [Sargent and Lundy Engineers, LLC, 55 E. Monroe Street, Chicago, IL 60603 (United States)

    2008-01-15T23:59:59.000Z

    This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel accountability, back up or fill in work, work packages, condensation control, radiological contamination control, and organization of the waste stream.

  5. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    Edison (SCE) have time-of-use tariffs with stiff demandthe absence of a time of use tariff for electrical energy.the power of the time-of-use tariff. The xix The Effects of

  6. 2007 SCE Business Briefing Challenges Integrating Electric

    E-Print Network [OSTI]

    Scott, Christopher

    Southern California Edison #12;2 2007 SCE Business Briefing Outline · Context: Energy Needs vs. Water;16 2007 SCE Business Briefing Hauling and Disposal Estimates Disposal Facility Mileage R/T Costs2007 SCE Business Briefing Challenges Integrating Electric Generation and Potable Aquifer Usage

  7. Company: American Pool Management Work Location: Edison, NJ Local Pools throughout Central and North Jersey

    E-Print Network [OSTI]

    Hanson, Stephen José

    Company: American Pool Management Work Location: Edison, NJ ­ Local Pools throughout Central and North Jersey Pay Rate: $9-$12/hour Type of Business: Swimming Pool Management Job Title: Seasonal Staffing Assistant, Seasonal Area Supervisors, Seasonal Pool Managers, Seasonal Lifeguards Start Date: May

  8. Retrofit precipitators mounted on $28-million deck structure constructed over highway. [Ohio Edison Co. , Sammis station

    SciTech Connect (OSTI)

    Kudich, R.L.; Kirchner, P.N.

    1983-04-01T23:59:59.000Z

    Space problems resulted in a 900-foot concrete deck to hold retrofitted precipitators that collect particulates from the Ohio Edison's largest power station. Because the deck spans a state highway, a tight construction schedule was met using a bonus/penalty agreement. Design considerations included an open construction and riverbank work. 5 figures. (DCK)

  9. Modeling of Electric Power Supply Chain Networks with Fuel Suppliers Variational Inequalities

    E-Print Network [OSTI]

    Nagurney, Anna

    primary energy (coal, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (British Thermal, and more than six billion Mcfs (thousand cubic feet) of natural gas were used in producing electric power Edison Electric Institute (2000), US Energy Information Administration (2002, 2005)). The US electric

  10. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...

    Open Energy Info (EERE)

    The system will include renewable energy generation, grid monitoring, electric vehicle charging stations, transmission automation, and consumer systems that will help...

  11. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  12. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 2, Appendices

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States); Hill, L.J. [Oak Ridge National Lab., TN (United States)

    1995-11-01T23:59:59.000Z

    This document contains summaries of the electric utilities performance-based rate plans for the following companies: Alabama Power Company; Central Maine Power Company; Consolidated Edison of New York; Mississippi Power Company; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation; PacifiCorp; Pacific Gas and Electric; Southern California Edison; San Diego Gas & Electric; and Tucson Electric Power. In addition, this document also contains information about LBNL`s Power Index and Incentive Properties of a Hybrid Cap and Long-Run Demand Elasticity.

  13. app_a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg AmesAerosolapmA

  14. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on

    E-Print Network [OSTI]

    LBNL-45272 Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on The Federal Role in Electric System R&D During a Time of Industry Transition: An Application of Scenario Berkeley National Laboratory CERTS Grid of the Future Project Team Carlos Martinez, Edison Technology

  15. Edison vs. Tesla: The Battle of the Energy Inventors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: LegacyEdison vs.

  16. EA-178-B Edison Mission Marketing & Trading, Inc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide Constellation Power Source,andtoEdison

  17. Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-Year 1 WinnersRise

  18. QER - Comment of Edison Electric Institute (EEI) 2 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de SanPutting ItQA20 1

  19. QER - Comment of Edison Electric Institute (EEI) 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: ThomasDepartment ofThisHiTek logo HiTekLoans | Department

  20. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  1. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01T23:59:59.000Z

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  2. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    SciTech Connect (OSTI)

    Kelley, Nathan; Corsaro, Pietro

    2004-12-01T23:59:59.000Z

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

  3. Edison Configuration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamos

  4. Edison cabinets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTrouble Shooting and

  5. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    industrial sectors used primarily for own-use generation, but which may also sell some power to the grid. 8 Includes refinery gas and still gas. 9 Includes conventional...

  6. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    A7. Transportation sector key indicators and delivered energy consumption (continued) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020...

  7. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    ... 171.8 179.5 193.2 207.6 238.3 265.8 288.4 1.6% Combustion turbinediesel ... 134.5 136.1 149.9 162.1 177.2 190.2 208.9...

  8. Microsoft Word - appa.docx

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    A3. Energy prices by sector and source (2011 dollars per million Btu, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025...

  9. Consolidated Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated EdisonConsolidated Electric

  10. The role of regional power pools in support of a competitive electric power market

    SciTech Connect (OSTI)

    Budhraja, V. [Southern California Edison, Rosemead, CA (United States)

    1995-12-31T23:59:59.000Z

    The regulated, vertically integrated electric utility industry is transitioning to a competitive market structure. Change is driven by new technologies, competition, markets and customers. Electric industry restructuring must focus on bringing the benefits of competition to all consumers; a market system producing lower costs through competitive efficiencies, not zero-sum games of cost shifting and cost avoidance; and a transparent, open market that provides opportunity for all to compete to serve all customers. Customers want choice, flexibility and reliability. To this end, Edison has developed a pool-based proposal. All electric systems that have transitioned from a regulated to a competitive market model, such as UK, Norway, New Zealand and Alberta have relied on a pool-based structure. Edison`s proposal has become known as POOLCO, and it separates financial transactions from physical operation of the system, giving customers the choice of service through bilateral commercial contracts, yet assuring coordinated, reliable system operation. Independent and unaffiliated with any utility, it would make a real-time, voluntary spot power market; dispatch supply; provide open, comparable transmission access and perform the balancing or settlement function, based on visible, competitive future requires resolution of some important policy issues--recovery of costs prudently incurred under the current regulatory structure; jurisdictional clarity between federal and state regulatory authority; and size, scope and recovery of costs associated with energy policy programs.

  11. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    SciTech Connect (OSTI)

    MJ Lambert

    2005-11-18T23:59:59.000Z

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of {approx}99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed.

  12. SCE perspective Syed Ahmed is a Consulting Engineer for Advanced Technology at Southern California Edison.

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    power swing caused several transmission lines and SONGS to trip. #12;4 © Copyright 2011, Southern is in high voltage transmission engineering, power flow, and utility power transfer. His present primary job and transmission projects, including superconductor research with the U.S. Department of Energy and the Electric

  13. EPRI Electric GSE Market Penetration Issues Round Table Proceedings: March 2001

    SciTech Connect (OSTI)

    None

    2001-08-01T23:59:59.000Z

    In March 2001, EPRI sponsored a meeting to discuss the electric ground support equipment (GSE) industry. Participants included vehicle and component manufacturers, electric GSE users, and electric utilities. The main objective of this meeting was to identify and address key issues surrounding the development and deployment of electric GSEs. An action plan was formulated to address the key issues identified. Papers included in these proceedings cover the following topics: (1) John Wayne Airport GSE Experience; (2) SAE AGE-2C: Ramp Electrification for GSE; (3) Southern California Edison: A Clean Air Partnership [with John Wayne Airport]; (4) Portable Data Acquisition Unit for GSE; (5) Georgia Power: Fast Charging at Hartsfield Airport; (6) Commonwealth Edison: O'Hare's Federal Aviation Administration (FAA) Inherently Low Emission Airport Vehicle (ILEAV) Program Update; (7) Southwest Airlines' Electric GSE Activities; (8) AeroVironment's Fast Charging System; (9) Electric Transportation Engineering Corporation's ( ETEC's) Fast Charging System; (10) Battery Maintenance Issues; (11) GSE Connector Standardization and Underwriters Laboratories, Inc. (UL) Standards; (12) GSE Interoperability; and (13) California Air Resources Board (CARB): Regulatory Issues

  14. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  15. Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective

    SciTech Connect (OSTI)

    Kelly, J.

    2003-10-10T23:59:59.000Z

    DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

  16. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect (OSTI)

    AZARM,M.A.BARI,R.A.MUSICKI,Z.

    2004-01-15T23:59:59.000Z

    The objective of this study is to develop a methodology for a probabilistic assessment of the reliability and security of electrical energy distribution networks. This includes consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Another important objective of this study is to provide information and insights from this research to Consolidated Edison Company (Con Edison) that could be useful in the design of the new network segment to be installed in the area of the World Trade Center in lower Manhattan. Our method is microscopic in nature and relies heavily on the specific design of the portion of the grid being analyzed. It extensively models the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrate that the existing technology can be extended and applied to the electrical grid and to the supporting communication network. A small subsection of a hypothetical grid based on the existing New York City electrical grid system of Con Edison is used to demonstrate the methods. Sensitivity studies show that in the current design the frequency for the loss of the main station is sensitive to the communication network reliability. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation. The identification of potential failure modes and their likelihood can support decisions on potential modifications to the network including hardware, monitoring instrumentation, and protection systems.

  17. Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.

    2011-07-01T23:59:59.000Z

    Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

  18. 2015 APPA National Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery

  19. 2012 IEEE. Reprinted, with permission, from B.J. Williamson, M.A. Redfern and R.K. Aggarwal, Project Edison: SMART-DC, IEEE PES Innovative Smart Grid Technologies (ISGT-EUROPE 2011) December 2011. This material is posted here with permission of the IEEE.

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    of a DC network. Demand offsetting using the flexibility of energy storage has been demonstrated with real Tesla and Thomas Edison came head-to-head in `The War of the Currents'. Tesla is generally considered

  20. From Edison to Enron

    SciTech Connect (OSTI)

    Munson, Richard

    2005-11-01T23:59:59.000Z

    Kenneth Lay's secret partnerships and deceitful accounting certainly hurt Enron's investors, customers, and employees and tarnished his reputation, even if he's not found guilty of any crime when he goes to trial in January. Yet like Samuel Insull a century before him, Lay's trial probably won't stop the revolution he advanced within the power industry.

  1. NUG 2013: Training -- Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting Started

  2. Edison memory upgrade

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott: Legacy

  3. Logging in to Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter

  4. Running Jobs on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions for Hopper

  5. Edison Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamos NationalEd

  6. Edison Software and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth

  7. Example Edison Batch Scripts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25Sequedex:

  8. Monitoring Jobs on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscript

  9. Photo of the Week: Bright Ideas | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and distribution made...

  10. Photo of the Week: The Sixth Zero Power Reactor | Department...

    Broader source: Energy.gov (indexed) [DOE]

    two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and distribution made...

  11. Summary of Second AEO 2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    (Union of Concerned Scientists) Gates, Kyler (Westinghouse) Goggin, Michael (American Wind Energy Association) Hodge, Tyler (EIA OEA) WEBEX (con'd) Holdsworth, Eric (Edison...

  12. association of companies and the Edison Electric Institute (1953). Their final report cites investigations from 1945 through 1953 and includes correlated information on coil data, heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    . The house has passive solar features consisting of south-facing glass with manually operable insulated shutters and overhang shading. The design heating load of the house is 30,000 Btu/h (8.8 kw) while that "even with this considerable amount of information, there is still no apparently workable design

  13. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  14. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  15. Consolidated Edison Company of New York (Con Edison) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)Conservation Capital LLCInformation

  16. EDISON INTERNATIONAL DESIGN & ENGINEERING SERVICES

    E-Print Network [OSTI]

    California at Davis, University of

    provides support across the lifecycle of technologies from the Innovators stage to Early Adopters and Early

  17. Early Edison Users Deliver Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion using new engine designs and fuels such as biodiesel, hydrogen-rich "syngas" from coal gasification and alcohols like ethanol. Her group models the behavior of...

  18. Gnu Compiler Peformance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this performs optimizations at the expense of an exact implementation of IEEE or ISO rulesspecifications for math functions. -O3 This is the highest numerical level of...

  19. Choosing a Compiler on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and FigureChoose the

  20. Cray Compiler Peformance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCourse Clusters CourseN N O V A TCray

  1. Intel Compiler Peformance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear Security AdministrationIntegrating

  2. Thomas Edison | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheet summarizes what is known about62 likes

  3. Your First Program on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupportsEnergy

  4. Training Event: Performance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » TopTours SignTrackingTraining Remote

  5. Training Event: Performance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » TopTours SignTrackingTraining

  6. Running Interactive Jobs on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust,RomanRoy

  7. Running Jobs Overview for Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust,RomanRoyInteractiveOverview

  8. Edison International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group

  9. HopperToEdison.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmax

  10. Memory Usage Considerations on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDispositionMechanicalAboutMembers

  11. Gnu Compiler Peformance on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGit GitGlobal Warming andGlobusGnu

  12. Early Edison Users Deliver Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet Update WinterEXPLANATION OFEarl

  13. NERSC Edison Hours Used Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1Allocations NERSCCybersecurity Tutorial Show All | 1

  14. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  15. ConEd (Electric)- Residential Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Additionally, rebates are provided for certain appliances. View the program web site for eligibility and instructions on how to have a secondary, working unit picked up. Contact Con Edison for...

  16. Electrical Engineer

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...

  17. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  18. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  19. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  20. Electrical stator

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01T23:59:59.000Z

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  1. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    E-Print Network [OSTI]

    Eto, Joseph; Stovall, John P.

    2003-01-01T23:59:59.000Z

    transformers, cables, generators, motors, and fault currentfault current limiter has been built and briefly tested at Southern California Edison. A transformer

  2. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  3. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  4. Electrical and Computer Engineering

    E-Print Network [OSTI]

    Weber, Rodney

    COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena

  5. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    3 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2010-2035 (percent) 2009 2010...

  6. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    industrial sectors used primarily for own-use generation, but which may also sell some power to the grid. 8 Includes refinery gas and still gas. 9 Includes conventional...

  7. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . 232.1 237.5 139.1 104.4 47.1 24.2 24.2 -8.7% Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.9 138.0 202.7 208.7...

  8. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Gasoline and Diesel Fuel Update (EIA)

    Annual Energy Outlook 2012 Early Release 17 Table A7. Transportation sector key indicators and delivered energy consumption (continued) Key indicators and consumption...

  9. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Includes Federal and State taxes while excluding county and local taxes. 8 Compressed natural gas used as a vehicle fuel. Includes estimated motor vehicle fuel taxes and...

  10. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Gasoline and Diesel Fuel Update (EIA)

    . . . . . . . . . . . . . . 167.7 171.7 186.5 187.2 194.5 214.1 241.5 1.4% Combustion turbinediesel . . . . . . . . . . . . . . . . 133.1 134.8 141.7 145.3 154.9 162.6 167.4 0.9%...

  11. L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd

    Gasoline and Diesel Fuel Update (EIA)

    televisions and set-top boxes . . . . . . . . 1.00 1.02 0.99 1.05 1.12 1.20 1.29 1.0% Personal computers and related equipment . 0.53 0.53 0.57 0.66 0.72 0.76 0.79 1.6% Furnace...

  12. Microsoft Word - S08266_App_A-2.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No. S068154 Amphibian Index

  13. Microsoft Word - S08266_App_A-3.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No. S068154 Amphibian Index3

  14. Asociacion de Productores de Energias Renovables APPA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftwareAsian Age EnterpriseAsin Carbono

  15. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21T23:59:59.000Z

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  16. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  17. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. ELECTRICAL & INFORMATION

    E-Print Network [OSTI]

    Wagner, Stephan

    focuses on. · Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. · Bioinformatics

  20. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  1. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

  2. Retail Electricity Competition

    E-Print Network [OSTI]

    Joskow, Paul; Tirole, Jean

    2004-01-01T23:59:59.000Z

    Reliability and Competitive Electricity Markets” mimeo, MITCSEM WP 130 Retail Electricity Competition * Paul Joskow andwww.ucei.org Retail Electricity Competition ? Paul Joskow †

  3. Designing Electricity Auctions

    E-Print Network [OSTI]

    Fabra, Natalia; von der Fehr, Nils-Henrik; Harbord, David

    2004-01-01T23:59:59.000Z

    market performance in electricity auctions, it appears thatMcSorely (2001) “Regulating Electricity Markets: Experiencethe United Kingdom,” The Electricity Journal, December, 81-

  4. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  5. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  6. ELECTRICAL ENGINEERING EECS Department

    E-Print Network [OSTI]

    ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

  7. Electric car Gasoline car

    E-Print Network [OSTI]

    ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

  8. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22T23:59:59.000Z

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  9. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Beyond Tesla and Edison: Other Luminaries from the Age of Electricity From electric chairs to...

  10. Re: DOE Request for Information - Implementing the National Broadband...

    Energy Savers [EERE]

    - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy The Edison Electric Institute...

  11. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  12. Impact of dispersed solar and wind systems on electric distribution planning and operation

    SciTech Connect (OSTI)

    Boardman, R.W.; Patton, R.; Curtice, D.H.

    1981-02-01T23:59:59.000Z

    Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

  13. Southeastern Electric- Electric Equipment Loan Program

    Broader source: Energy.gov [DOE]

    Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota. Southeastern offers a loan program for customers who want...

  14. Electrical/Electronic Engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical/Electronic Engineering Technology The Division of Engineering of Science in Electrical/Electronic Engineering Technology Get ready for a dynamic career in Electrical/Electronic Engineering Technology. Possible applications

  15. Electricity Restructuring: Deregulation or Reregulation?

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James

    2000-01-01T23:59:59.000Z

    Power in the British Electricity Spot Market. ” American805. Catherine Wolfram. “Electricity Markets: Should thePower in Wholesale Electricity Markets. ” The Electricity

  16. ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS

    E-Print Network [OSTI]

    Strathclyde, University of

    countries to install solar energy technologies into local schools and hospitals. In its Energy PolicyMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

  17. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  18. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  19. Monitoring of Electrical End-Use Loads in Commercial Buildings

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01T23:59:59.000Z

    Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

  20. Diagnosing Unilateral Market Power in Electricity Reserves Market

    E-Print Network [OSTI]

    Knittel, Christopher R; Metaxoglou, Konstantinos

    2008-01-01T23:59:59.000Z

    Coral Power, LLC DETM Duke Energy Trading and Marketing, LLCPower Services Company GLEN City of Glendale KET3 Entergy-Koch Energy Trading,Power Exchange (CALPX) SCE1 Southern California Edison SCEM Southern Company Energy Marketing, LP SETC Sempra Energy Trading

  1. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: December 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are...

  2. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01T23:59:59.000Z

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  3. Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios

    E-Print Network [OSTI]

    Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

  4. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  5. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  6. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  7. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  8. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday of Electrical and Computer Engineering at the University of Denver. He was with the School of Electrical

  9. ELECTRICAL ENGINEERING Curriculum Notes

    E-Print Network [OSTI]

    Mather, Patrick T.

    ELECTRICAL ENGINEERING Curriculum Notes 2013-2014 1. Electrical Engineering (EE) students must/programs/electrical_engineering) and minors are used to regulate technical electives. A student must complete four technical elective courses in Electrical Engineering or Computer Engineering. At a minimum

  10. Electronics, Electrical Engineering

    E-Print Network [OSTI]

    SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

  11. Syracuse University Electrical Engineering

    E-Print Network [OSTI]

    Mather, Patrick T.

    Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department

  12. Electrical Engineering UNDERGRADUATE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    447 Electrical Engineering UNDERGRADUATE PROGRAMS The bachelor of science program in electrical advising office. Requirements for BS Degree in Electrical Engineering To receive the BS degree in electrical engineer- ing, students must complete a minimum of 65 credit hours in the upper-division program

  13. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  14. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  15. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  16. Sandia National Laboratories: Southern California Edison Co.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, Solar, Solar Newsletter Jim Pacheco (now in the Active Response and Denial Dept.) received an Entrepreneurial Spirit Award for his participation in Sandia's...

  17. Batch Queues and Scheduling Policies on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Run Limit Eligible Limit Charge Factor* debug debug 1-512 1-12,288 30 mins 1 2 2 2 ccmint1 ccmint 1-512 1-12,288 30 mins 2 2 2 2 regular regsmall 1-682 1-16,368 48 hrs 3...

  18. Edison Innovation Green Growth Fund (New Jersey)

    Broader source: Energy.gov [DOE]

    The EIGGF offers loans up to $2 million with a performance grant component to support technology companies with Class I renewable energy or energy efficiency products or systems that have achieved ...

  19. Edison's Desk Blog | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hostedEconomicSavannah

  20. Edison SpA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, search ToolEcoware Spa

  1. Edison_Overview-NUG2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEd Westcott:1) , Doug Petesch

  2. Shared and Dynamic Libraries on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarships Employees'JuanSubmitting aShared

  3. Tesla vs. Edison | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon DOE-HDBK-1046-2008 AugustTerms April

  4. Commonwealth Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonialComancheCommittee

  5. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europeform View

  6. Performance comparison between Edison and Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer a Math LibraryPerformance comparison

  7. Phase-1 of Edison Arrives at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer aServices » PetroleumPlasmaFilms

  8. Tesla vs. Edison | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance April 7, 2014 Dr. Kathleen HoganThis week

  9. Quick Edison Instructions for Hopper users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and StorageandQuarterly CoalC219 For

  10. Southern California Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to:Southern Alliance

  11. SunEdison LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpenSumpter,SunSunDwelBeltsville,

  12. SunEdison Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,

  13. Edison Welding Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power

  14. Ohio Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State Lands andOguniOhio County, WestOhio

  15. SunEdison | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind

  16. Detroit Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:Detroit Beach, Michigan:

  17. Detroit Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:Detroit Beach, Michigan:Detroit

  18. The Toledo Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:The Toledo

  19. Metropolitan Edison Co (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier(Redirected fromMetlakatla

  20. Southern California Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to: navigation, searchCA Area

  1. Southern California Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to: navigation, searchCA

  2. Batch Queues and Scheduling Policies on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users Live Status My NERSC

  3. Workplace Charging Challenge Partner: Southern California Edison |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy LewisDepartment of Energy

  4. Consolidated Edison Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)Conservation Capital LLCInformationA

  5. Serial Queue Available on Hopper and Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 September 2009Energy, OfficeQueue Available on Hopper

  6. Edison Trouble Shooting and Error Messages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTrouble Shooting and Error

  7. Edison, NERSC's Cray XC30 System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarthTrouble Shooting

  8. Commonwealth Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:GovernorCommons Capital Jump to: navigation,

  9. Detroit Edison Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs ValleyWind PowerUsingDetroit

  10. NERSC Edison Phase I Hours Used Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1Allocations NERSCCybersecurity Tutorial Show All |

  11. ITP Industrial Distributed Energy: Cooling, Heating, and Power...

    Broader source: Energy.gov (indexed) [DOE]

    60. Southwestern Electric Pwr 61. Texas Utilities Electric Co 62. Toledo Edison Co 63. Tucson Electric Power Co 64. Union Electric Co 65. Virginia Electric & Pwr Co 66. West Penn...

  12. Electricity Today30 American Electric Power, working

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Electricity Today30 American Electric Power, working at the request of, and in partnership with by building transmis- sion infrastructure that will enable wind power to become a larger part of the nation that could provide a basis for discussion to expand industry infrastructure needs in the future. AEP believes

  13. Consolidated Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated EdisonConsolidated

  14. Estimating the Value of Electricity Storage Resources in Electricity...

    Broader source: Energy.gov (indexed) [DOE]

    for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a...

  15. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    in Figure 63. Average electricity costs are noticeably lowerprofile has lower average electricity costs, because fossiland generation, average electricity costs, and GHG emissions

  17. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    SciTech Connect (OSTI)

    Weller, G.H.

    2001-07-15T23:59:59.000Z

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  18. Designing electricity transmission auctions

    E-Print Network [OSTI]

    Greve, Thomas; Pollitt, Michael G.

    2012-10-26T23:59:59.000Z

    The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  20. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  4. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  5. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  6. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  7. Sandia Energy - Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilient Electric Infrastructures Home Stationary Power Grid Modernization Resilient Electric Infrastructures Resilient Electric Infrastructuresashoter2015-04-29T22:16:42+00:00...

  8. Electric Turbo Compounding Technology Update

    Broader source: Energy.gov (indexed) [DOE]

    Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

  9. Electrically charged pulsars

    E-Print Network [OSTI]

    M. D. Alloy; D. P. Menezes

    2007-04-24T23:59:59.000Z

    n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state.

  10. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  11. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  12. UNDERGRADUATE DEPARTMENT OF ELECTRICAL

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    UNDERGRADUATE HANDBOOK 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING #12;Undergraduate Handbook 2008-2009 DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING THE UNIVERSITY OF HONG KONG © Department of Electrical & Electronic Engineering, The University of Hong Kong #12;Head of Department Prof. Y

  13. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Restoration of Soft X-Ray Laser Images of Nanostructures of Electronic Systems and Information Processing, University of Zagreb, Faculty of Electrical Engineering and Computing. In 1999, he received his Ph.D. in Electrical Engineering from the University of Zagreb. His

  14. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "A Random Walk on Image Patches" by Prof. Francois Meyer Electrical, Computer, and Energy Engineering University of Colorado--Boulder Monday, April 2, 2012, 11:00 a a Ph.D. degree in electrical engineering from INRIA, France, in 1993. Meyer worked on the thermonuclear

  15. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

  16. Electrical and computer engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical and computer engineering COLLEGE of ENGINEERING DepartmentofElectricalandComputerEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electrical

  17. SEATTLE UNIVERSITY ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    Carter, John

    SEATTLE UNIVERSITY ELECTRICAL ENGINEERING STUDENT HANDBOOK Eighteenth Edition July 2011 Department of Electrical and Computer Engineering Seattle University 901 12th Avenue P.O. Box 222000 Seattle, WA 98122.seattleu.edu The electrical engineering program is accredited by the Engineering Accreditation Commission of ABET, http

  18. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  19. Undergraduate Electrical and

    E-Print Network [OSTI]

    Bristol, University of

    an excellent place to study electrical and electronic engineering. Renewable energies and smart grids are twoUndergraduate Electrical and Electronic Engineering Faculty of Engineering #12;bristol already understood the impact electrical and electronic engineering has on our lives. In fields as diverse

  20. Fact Sheet: Community Energy Storage for Grid Support (October...

    Broader source: Energy.gov (indexed) [DOE]

    Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to...

  1. STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION

    E-Print Network [OSTI]

    ; Multi-faceted reflector (MR) lamps; Light-emitting diode (LED) lamps EISA exempt lamps; Lighting;3 Consumers Electronics Association; Pacific Gas and Electric Company, Southern California Edison

  2. DTE Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

  3. Newsroom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Edison Electric Institute (EEI) today. "The energy security of our nation requires sustainable innovation, development and deployment of secure and resilient communications...

  4. EEI Presentation: The Utility Challenge 2010-2020 - Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    before the Electricity Advisory Committee, October 29, 2010 on The Utility Challenge 2010-2020: Environmental and Climate Regulation, Legislation and Litigation by the Edison...

  5. Determination of Electric-Field, Magnetic-Field, and Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

  6. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

  7. Random Walks and Electrical Networks Electrical Network

    E-Print Network [OSTI]

    Jonathon Peterson

    2008-01-30T23:59:59.000Z

    Feb 4, 2008 ... Random Walks and Electrical Networks. Hitting Probabilities and Voltage. Voltage. Connect a 1V battery to nodes a and b. ix,y is the current ...

  8. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31T23:59:59.000Z

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  9. Electricity Restructuring: Deregulation or Reregulation?

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James

    2000-01-01T23:59:59.000Z

    14 Electricity Restructuring: Deregulation or Reregulation?be, synonymous with deregulation. Forthcoming in Regulation,Electricity Restructuring: Deregulation or Reregulation?

  10. Electric power monthly

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  11. Integrated electrical connector

    DOE Patents [OSTI]

    Benett, William J.; Ackler, Harold D.

    2005-05-24T23:59:59.000Z

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  12. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  13. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  14. Electrical system architecture

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2008-07-15T23:59:59.000Z

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  15. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  16. Electrically Deformable Liquid Marbles

    E-Print Network [OSTI]

    Edward Bormashenko; Roman Pogreb; Tamir Stein; Gene Whyman; Marcelo Schiffer; Doron Aurbach

    2011-02-17T23:59:59.000Z

    Liquid marbles, which are droplets coated with a hydrophobic powder, were exposed to a uniform electric field. It was established that a threshold value of the electric field, 15 cgse, should be surmounted for deformation of liquid marbles. The shape of the marbles was described as a prolate spheroid. The semi-quantitative theory describing deformation of liquid marbles in a uniform electric field is presented. The scaling law relating the radius of the contact area of the marble to the applied electric field shows a satisfactory agreement with the experimental data.

  17. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  18. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  19. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in your area, what are its consequences in terms of reliability, resource options, wholesale competition and market power, cost of electricity to consumers, environmental...

  20. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and...

  1. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  2. Integrating Electricity Subsector

    Broader source: Energy.gov (indexed) [DOE]

    2013 Electric Power Research Institute, Inc. All rights reserved. This publication is a corporate document that should be cited in the literature in the following manner:...

  3. Electric Transmission Lines (Nebraska)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway crossings. This section contains general regulations...

  4. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Electrical Circuit Tester

    DOE Patents [OSTI]

    Love, Frank (Amarillo, TX)

    2006-04-18T23:59:59.000Z

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  6. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  7. User Electrical Equipment Inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user electronics that are not tested by a Nationally Recognized Testing Laboratory (NRTL). This includes any type of non-commercial, home-built electronic and electrical...

  8. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  9. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    a whole. Regional Wholesale Markets The fourth section presents data on the market making systems in the electric power sector: wholesale markets. It is not possible to show...

  10. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28T23:59:59.000Z

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  11. On-grid PV implementation program. Phase I report, August 1994--January 1995

    SciTech Connect (OSTI)

    NONE

    1994-11-29T23:59:59.000Z

    Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

  12. Presented at the ACADIA 2002 Conference, October 24-27, 2002, in Pamona, California This work was funded in part by Southern California Edison, through the California Institute for Energy Efficiency

    E-Print Network [OSTI]

    , surface reflectance, sky conditions, time of the year, etc. The electric lighting module includes images decisions on the luminous performance of their designs. In the past, designers used mostly scale models) or luminance (light leaving from a surface) distributions. Some of these tools also produce photometrically

  13. electricAl engineering College of Engineering and Mines

    E-Print Network [OSTI]

    Hartman, Chris

    electricAl engineering College of Engineering and Mines Department of Electrical and Computer The mission of the UAF Electrical and Computer Engineering Department is to offer the highest quality to the technical needs of the state of Alaska, the nation and the world. Electrical and computing engineering

  14. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    of systems" that integrates an end-to-end, advanced com- munications infrastructure into the electric powerIntroduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity

  15. Electricity Case: Statistical Analysis of Electric Power Outages

    E-Print Network [OSTI]

    Wang, Hai

    Electricity Case: Statistical Analysis of Electric Power Outages CREATE Report Jeffrey S. Simonoff: Statistical Analysis of Electric Power Outages CREATE Report July 26, 2005 Jeffrey S. Simonoff (NYU of the United States Department of Homeland Security. #12;0 Electricity Case, Report 3 Electricity Case

  16. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  19. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Considerations for Curriculum Planning and Revitalization in Engineering" by Prof. Michael A. de Miranda School of Education and Department of Electrical and Computer Engineering Colorado State University Monday, Feb. 20, 2012, 11:00 a.m. Location: LSC 210 Abstract

  20. ELECTRICAL & COMPUTER ENGINEERING

    E-Print Network [OSTI]

    ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Towards Numerical Growth Model for Laser Damage is a senior member of IEEE (the Institute of Electrical and Electronics Engineers), member of SPIE is appointed as the Director of Graduate Institute of Engineering, that spearheads the development

  1. Electrical shock accident investigation

    SciTech Connect (OSTI)

    Not Available

    1994-09-30T23:59:59.000Z

    This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  4. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01T23:59:59.000Z

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  6. Electricity Real Options Valuation

    E-Print Network [OSTI]

    Ewa Broszkiewicz-Suwaj

    2006-08-16T23:59:59.000Z

    In this paper a real option approach for the valuation of real assets is presented. Two continuous time models used for valuation are described: geometric Brownian motion model and interest rate model. The valuation for electricity spread option under Vasicek interest model is placed and the formulas for parameter estimators are calculated. The theoretical part is confronted with real data from electricity market.

  7. Electricity Real Options Valuation

    E-Print Network [OSTI]

    Broszkiewicz-Suwaj, E

    2006-01-01T23:59:59.000Z

    In this paper a real option approach for the valuation of real assets is presented. Two continuous time models used for valuation are described: geometric Brownian motion model and interest rate model. The valuation for electricity spread option under Vasicek interest model is placed and the formulas for parameter estimators are calculated. The theoretical part is confronted with real data from electricity market.

  8. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

    2009-05-19T23:59:59.000Z

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  9. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    1 Superconductivity for Electric Systems Superconductivity Program Quarterly Progress Report For the Period October 1, 2006, to December 31, 2006 #12;2 Superconductivity Program Quarterly Progress Report Superconductivity Program Oak Ridge National Laboratory For U.S. Department of Energy Office of Electricity Delivery

  10. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Superconductivity Program Quarterly Progress Report For the Period January 1, 2007 to March 31, 2007 #12;2 Superconductivity Program Quarterly Progress Report Superconductivity Program Oak Ridge National Laboratory For: Department of Energy Office of Electricity Delivery

  11. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Superconductivity Program Quarterly Progress Report For the Period April 1, 2007, to June 30, 2007 #12;2 Superconductivity Program Quarterly Progress Report Superconductivity Program Oak Ridge National Laboratory For: Department of Energy Office of Electricity Delivery

  12. Electricity market module: Electricity capacity planning submodule

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The purpose of this report is to describe modifications to the Electricity Capacity Planning Submodule (ECP) for the Annual Energy Outlook 1996. It describes revisions to enhance the representation of planned maintenance, incorporate technological improvements in operating efficiencies, revise the algorithm for determining international firm power imports, and include risk premiums for new plant construction.

  13. Electric power monthly

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  14. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13T23:59:59.000Z

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  15. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

  16. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  17. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    1 ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS Instructor: Albert LozanoF) - Value of capacitors: -Printed on body of capacitor (physically large capacitors) -Code (useless) -If

  18. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ­ ELECTRICAL SYSTEMS LABORATORY EXPERIENCES will become familiar with solar cells as photovoltaic energy converters. Secondly, students will practice

  19. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  20. Electricity Advisory Committee - Federal Register Notices | Department...

    Energy Savers [EERE]

    Federal Register Notices Electricity Advisory Committee - Federal Register Notices Electricity Advisory Committee - Federal Register Notices February 17, 2015 Electricity Advisory...

  1. Electricity Restructuring: Deregulation or Reregulation?

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-074 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James;1 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James Bushnell1 Forthcoming from the experience with electricity restructuring to date. The gains from restructuring are most

  2. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01T23:59:59.000Z

    as this occurs. Through an Electric Power Research Institute initiative, an inter-industry organization, the Gas/Electric Partnership, has formed between the electric utilities and gas pipelines. The initial focus of this partnership is to explore issues...

  3. DIVISION 16 -ELECTRICAL 16000 GENERAL

    E-Print Network [OSTI]

    DIVISION 16 - ELECTRICAL _____________________________________________________________ 16000 GENERAL A. Design Considerations 1. All drawing, specifications and construction shall conform to the following: National Electrical Code National Electrical Safety Code National Fire Protection Association

  4. Gearing Up for Electric Cars

    E-Print Network [OSTI]

    Sperling, Daniel

    1994-01-01T23:59:59.000Z

    Gearing Up for Electric Cars Daniel Sperhng Reprint UCTC Noor Gearing Up for Electric Cars Daniel Sperling DepartmentSPERLING Gearing Up for Electric Cars The technology is at

  5. Who Will Buy Electric Cars?

    E-Print Network [OSTI]

    Turrentine, Thomas

    1995-01-01T23:59:59.000Z

    notes in his history of electric cars, what often attractsmost likely will he electric cars. By 2003, 10 percent mustbig manufacturers say electric cars cost too much to make

  6. Thermionic electric converter

    SciTech Connect (OSTI)

    Davis, E.D.

    1981-12-01T23:59:59.000Z

    A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  9. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  10. JOINT ELECTRICAL & COMPUTER ENGINEERING AND

    E-Print Network [OSTI]

    JOINT ELECTRICAL & COMPUTER ENGINEERING AND APPLIED MATH SEMINAR "Imaging Science Meets Compressed, and electrical engineering. It surprisingly predicts that high-dimensional signals, which allow a sparse

  11. Electric Metering | Department of Energy

    Energy Savers [EERE]

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 9,060 35 Electric Utilities 152 46...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,235 50 Electric Utilities 329 45...

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,849 16 Electric Utilities 20,626...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,083 18 Electric Utilities 21,280...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRORFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 45,146 5 Electric Utilities 5,274 34...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,924 22 Electric Utilities 517 43...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,323 44 Electric Utilities 1,121 41...

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most electric generating units are able to produce a certain amount of reactive power. As power travels over transmission lines the share of reactive power increases. The goal is...

  20. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31T23:59:59.000Z

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  1. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Pleasanton, CA); Northrup, M. Allen (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  2. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  3. Electric Transmission Lines (Iowa)

    Broader source: Energy.gov [DOE]

    Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

  4. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New England and New York City. In the electricity markets, 12-month lows were set at all pricing points except Louisiana and Northwest. Even more unique is that these low prices...

  5. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Declining coal stockpiles are a normal pattern most years from January to February as coal-fired generators meet winter electricity demand. The month-to-month stockpile change...

  6. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  7. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  8. Singing the Brain Electric

    E-Print Network [OSTI]

    Chua, Grace (Grace W. J.)

    2008-01-01T23:59:59.000Z

    Singing the Brain Electric Brain pacemakers, scientists have found, can treat depression by correcting neural circuitry gone haywire. This thesis examines how such technology - a technique known as deep-brain stimulation, ...

  9. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  10. Retail electricity competition

    E-Print Network [OSTI]

    Joskow, Paul L.

    2004-01-01T23:59:59.000Z

    We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, ...

  11. Electrical Engineer (Litigation)

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Administrative Litigation (OAL). As the Commissions trial staff, OAL seeks to assist entities such as electric utilities, natural gas pipelines and...

  12. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Drive Electric Week (September 15-21, 2014). As the home of Fiat Chrysler Automobiles, Auburn Hills, Michigan, was inspired to become a frontrunner for the use of PEVs....

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  14. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  15. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  16. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  17. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  18. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28T23:59:59.000Z

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  19. Technical Report NREL/TP-550-45061

    E-Print Network [OSTI]

    Renewable Energy Laboratory Kevin Lynn Sentech, Inc. Dan Sammon Consolidated Edison of New York, Inc Sentech, Inc. Dan Sammon Consolidated Edison of New York, Inc. Mohammad Vaziri Pacific Gas and Electric. Mohammad Vaziri Pacific Gas and Electric Company Tom Yohn Xcel Energy #12;National Renewable Energy

  20. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

    E-Print Network [OSTI]

    issues. Two are substation sites for Southern California Edison, and one substation site is for Pacific Pacific Gas and Electric Company's Midway Substation and Southern California Edison's substation sites type of electric energy storage plant that is the lowest cost and uses commercially available

  1. Growth, survival and salinity tolerances of penaeid shrimp in thermal effluents

    E-Print Network [OSTI]

    Berry, Robert Leon

    1982-01-01T23:59:59.000Z

    steam-electric plants is rapidly increasing to meet the energy demands of industrial nations. Production of electrical power in the United States has been predicted to increase 53 to 84% each year (Electrical Power Survey Committee of the Edison...

  2. Electrical and Computer Engineering Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Department of Electrical and Computer Engineering 103 Siegel of an undergraduate degree or its equivalent in electrical engineering, computer engineering, or other engineering organizations in the metropolitan Chicago area. Degrees Offered Master of Science in Electrical Engineering

  3. Chapter 20: Electric Potential and Electric Potential Energy

    E-Print Network [OSTI]

    Kioussis, Nicholas

    1 Chapter 20: Electric Potential and Electric Potential Energy 2. A 4.5 µC charge moves in a uniform electric field ( )5 ^4.1 10 N/C= ×E x . The change in electric potential energy of a charge that moves against an electric field is given by equation 20-1, 0U q Ed = . If the charge moves in the same

  4. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  5. Integrated Mechanical & Electrical Engineering (IMEE)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims

  6. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  7. Electrical Engineering for Autonomousfor Autonomous

    E-Print Network [OSTI]

    Electrical Engineering for Autonomousfor Autonomous Exploration Robots Minor EE-Mi-109-11 Electrical Engineering Do you want to know more about EE? is all around us Electrical Engineering enables an introduction to Electrical Engineering for (mainly) students in Physics and in the constructive sciences

  8. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  9. Electric sales and revenue 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  10. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  11. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  12. The Gas/Electric Partnership

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    The GaslElectric Partnership W. Richard Schmeal Dwight Royall K. Fred Wrenn, Jr. EPRI Chemical & Petroleum Center TU Electric Columbia Gas Transmission Corp. Houston, Texas Dallas, Texas Charleston, West Virginia The electric and gas industries... of information about emergmg technologies Cultural Issues A number of electric utilities formed an Electric Power For Compression Working Group with EPRI to address these issues openly and honestly to see if the issues were real and, if so to see...

  13. Electrical Engineering University of California, Riverside

    E-Print Network [OSTI]

    Electrical Engineering University of California, Riverside Bourns College of Engineering Electrical EngineeringElectrical Engineering Alexander A. Balandin Associate Professor Department of Electrical Engineering University of California - Riverside May 2005 Group Advising Meeting #12;Electrical Engineering

  14. Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Department of Electrical and Computer Engineering Thomas J. Watson School of Engineering & Applied. B. Graduate Degrees in Electrical Engineering The Department of Electrical and Computer Engineering in Electrical Engineering (MSEE). 2. The Master of Engineering (MEng) with Specialization in Electrical

  15. Electrically charged compact stars

    E-Print Network [OSTI]

    Subharthi Ray; Manuel Malheiro; Jose' P. S. Lemos; Vilson T. Zanchin

    2006-04-17T23:59:59.000Z

    We review here the classical argument used to justify the electrical neutrality of stars and show that if the pressure and density of the matter and gravitational field inside the star are large, then a charge and a strong electric field can be present. For a neutron star with high pressure (~ 10^{33} to 10^{35} dynes /cm^2) and strong gravitational field (~ 10^{14} cm/s^2), these conditions are satisfied. The hydrostatic equation which arises from general relativity, is modified considerably to meet the requirements of the inclusion of the charge. In order to see any appreciable effect on the phenomenology of the neutron stars, the charge and the electrical fields have to be huge (~ 10^{21} Volts/cm). These stars are not however stable from the viewpoint that each charged particle is unbound to the uncharged particles, and thus the system collapses one step further to a charged black hole

  16. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01T23:59:59.000Z

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  17. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  18. The most pervasive systematic joints hosted by Devonian black shale of the Appa-

    E-Print Network [OSTI]

    Engelder, Terry

    likely imparts a meaningful permeability anisot- ropy to these hydrocarbon source rocks. Keywords: joints driven exclusively by fluid pressure generated as a consequence of hydrocarbon-related maturation supple (Lawn, 1993). In a mechanically iso- tropic and homogeneous rock the stresses near the tip of a joint

  19. Preventing Electrical Shock

    E-Print Network [OSTI]

    Smith, David

    2004-09-16T23:59:59.000Z

    closer to un- guarded energized overhead lines than the following distances: 1) For voltages to ground 50 kV or less?10 feet; 2) For voltages to ground more than 50 kV ?10 feet plus 4 inches for every 10 kV over 50 kV. ? Make sure all electric motors... attempt to unplug the cord, move an energized line with any object, or grab the person to free him. Once the person is free, administer CPR immedi- ately, if necessary, to try to resuscitate the individual. In case of an electrical fi re, turn off...

  20. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  1. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  4. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  5. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  6. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  7. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  8. Electricity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectric FundElectricity Datareturn to

  9. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use GoalResources » ElectricityEndElectricity

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013Idaho Electricity

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.Kentucky Electricity

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 TableMichigan Electricity

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana Electricity Profile

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana Electricity

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana ElectricityNevada

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJersey Electricity

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJersey ElectricityMexico

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania Electricity Profile

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania Electricity

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania ElectricityCarolina

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennessee Electricity

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013 Table 1.

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013 Table

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013Wyoming

  6. EIA Electric Power Forms

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity ProfileEIAElectric

  7. Fact #874: May 25, 2015 Number of Electric Stations and Electric...

    Energy Savers [EERE]

    74: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact 874: May 25, 2015 Number of Electric Stations and Electric Charging Units...

  8. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  9. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  10. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  11. 7Name ________________________________ Solar Electricity.

    E-Print Network [OSTI]

    be attached directly to the outer surface of a satellite, or can be found on `solar panels' that the satellite. If the satellite is not big enough, additional solar panels may be needed to supply the electricity) The solar cells produce 0.03 watts per square cm, so the power available is 39819 x 0.03 = 1194 watts

  12. STUDY PROGRAMS ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    Wichmann, Felix

    Engineering Master of Science in Electrical Engineering Language of Instruction: German Duration of Program microprocessors to re- newable energy systems. The curriculum's scientific and methodological foundation ensures are taught in German, though some will be available in English. At the end of each semester, students

  13. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09T23:59:59.000Z

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  14. CCPPolicyBriefing Electricity

    E-Print Network [OSTI]

    Feigon, Brooke

    the pattern of consumer-related and consumption-related costs. · The research uses household level data from and plays an important role in the potential South East Europe regional energy market, and is emerging. · Electricity is mainly used for lighting, power and air conditioning Turkish households. Heating requirements

  15. Electric Load Forecasting

    E-Print Network [OSTI]

    -commitment, coordination, and interchange evaluation. In addition, the liberalization of electric energy markets worldwide has led to the development of energy exchanges where consumers, 1066-033X/07/$25.00©2007IEEE OCTOBER/GODDARD SPACE FLIGHT CENTER SCIENTIFIC VISUALIZATION STUDIO Authorized licensed use limited to: Katholieke

  16. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  17. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Handbook for Electrical Contractors 3 You've heard about the new generation of plug-in electric vehicles line improved the usabil- ity and affordability of ICE vehicles. Gasoline- and diesel-powered ICE

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    global warming potentials of 23 and 296, respectively. Marginal electricity GHG emissions rates for vehicle recharging and hydrogen production

  19. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  20. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18T23:59:59.000Z

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  1. Department of Electrical & Computer Engineering Electrical Engineering General Program

    E-Print Network [OSTI]

    Bertini, Robert L.

    05/09/2013 Department of Electrical & Computer Engineering Electrical Engineering General Program is meant as a guide only. For their junior and senior years, Electrical Engineering majors must select 254 STAT 451 CHEM PHYSICS I PH PH PH CH 211/221 212/222 213/223 221 214 215 216 CH 227 Engineering

  2. Electric Power Controller for Steering Wheel Management in Electric Cars

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electric Power Controller for Steering Wheel Management in Electric Cars Vicente Milanés, Joshué. An electric car has been equipped with the system designed and tests to prove the behavior of the system transportation systems. Among these topics, the automation of the actuators involved in the management of a car

  3. Department of Electrical & Computer Engineering Electrical Engineering General Program

    E-Print Network [OSTI]

    Latiolais, M. Paul

    05/27/2014 Department of Electrical & Computer Engineering Electrical Engineering General Program is meant as a guide only. For their junior and senior years, Electrical Engineering majors must select Elective Proc Dev. I ECE 331L ECE 332L ECE 411 ECE 412 General Education Requirements FRESHMAN INQUIRY

  4. MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements

    E-Print Network [OSTI]

    Plaisted, David A.

    " resistors Self-heating in any resistors Thermal EMF or other contact potential Contact resistance to Rx MTSC1 MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements Critical to all measurements Worry about: Disturbing the system you study Adding extra electrical signals Eliminating

  5. THE POTENTIAL OF SOLAR ELECTRIC

    E-Print Network [OSTI]

    Delaware, University of

    and Environmental Policy University of Delaware April 2005 #12;THE POTENTIAL FOR SOLAR ELECTRIC APPLICATIONSTHE POTENTIAL OF SOLAR ELECTRIC APPLICATIONS FOR DELAWARE'S POULTRY FARMS FINAL REPORT Delaware Energy Office University of Delaware Center for Energy and Environmental Policy University

  6. Bringing Electric Cars to Market

    E-Print Network [OSTI]

    Sperling, Daniel

    1995-01-01T23:59:59.000Z

    Up for Press, Electric 1 QQ5). Studies, Cars" in In responseelectric vehicles (EVs) have emerged as promising alterna- tives to carsElectric-propulsion technology requires a fundamental shift in many aspects of car

  7. Transdisciplinary electric power grid science

    E-Print Network [OSTI]

    Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

    2013-01-01T23:59:59.000Z

    The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

  8. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08T23:59:59.000Z

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  9. VT Electric Services VTES 601 Energy Dr.

    E-Print Network [OSTI]

    Buehrer, R. Michael

    units on campus · Designs, operates, and maintains 3 substations Virginia Tech Electric Services Electric Services is to provide adequate, reliable and economical electric service to the buildings

  10. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  11. Electricity Advisory Committee (EAC) - 2013 Meetings | Department...

    Energy Savers [EERE]

    Electricity Advisory Committee (EAC) - 2013 Meetings Electricity Advisory Committee (EAC) - 2013 Meetings MARCH 6 & 7, 2013 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE This...

  12. Electricity Subsector Cybersecurity Capability Maturity Model...

    Energy Savers [EERE]

    Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity...

  13. Electricity Advisory Committee - 2015 Meetings | Department of...

    Energy Savers [EERE]

    - 2015 Meetings Electricity Advisory Committee - 2015 Meetings Electricity Advisory Committee - 2015 Meetings MARCH 26 & 27, 2015 MEETING OF THE ELECTRICITY ADVISORY COMMITTEE...

  14. Electrical Equipment Inventory and Inspection Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

  15. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  16. Sandia Energy - Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Electric Infrastructure Home Stationary Power Grid Modernization Cyber Security for Electric Infrastructure Cyber Security for Electric Infrastructureashoter2015...

  17. Defining a Standard Metric for Electricity Savings

    E-Print Network [OSTI]

    Koomey, Jonathan

    2009-01-01T23:59:59.000Z

    1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

  18. Water Heaters (Tankless Electric) | Department of Energy

    Energy Savers [EERE]

    Tankless Electric) Water Heaters (Tankless Electric) Water Heater, Tankless Electric - v1.0.xlsx More Documents & Publications Tankless Gas Water Heaters Water Heaters (Storage...

  19. Electrical safety device

    DOE Patents [OSTI]

    White, David B. (Greenock, PA)

    1991-01-01T23:59:59.000Z

    An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

  20. Electric power monthly, March 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-20T23:59:59.000Z

    This report for March 1995, presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  1. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  2. Electrical & Computer Engineering Graduate Handbook

    E-Print Network [OSTI]

    New Mexico, University of

    Electrical & Computer Engineering Graduate Handbook Spring 2009 edition Companion with UNM Catalog of Electrical & Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA, Telephone: 1-505-277-2600, http://www.ece.unm.edu #12;Electrical & Computer Engineering Graduate Handbook The University of New

  3. DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    Haddadi, Hamed

    DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING MSc NANO STUDENT NAME: Adam Orchard PROJECT for the imaging of live biological cells and the study of their electrical properties on the nanometre scale techniques. The microscope has provided some exceptional imaging capabilities however some of the electrical

  4. Electricity Generation by Rhodopseudomonas palustris

    E-Print Network [OSTI]

    ,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

  5. Texas Electricity Update

    E-Print Network [OSTI]

    Lloyd, B.

    2012-01-01T23:59:59.000Z

    Texas Electricity Update CATEE 2012 Galveston, Texas Brian Lloyd Executive Director Public Utility Commission of Texas October 10, 2012 1 2 Drought Summary May Reserve Margin Report 3 Demand Growth by Region 4 105? Normal... 917 Firm Load Forecast, MW 65,649 68,403 71,692 73,957 75,360 76,483 CATEE 2012 Questions? Brian H. Lloyd Executive Director Public Utility Commission of Texas 512-936-7040 14 ...

  6. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30T23:59:59.000Z

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  7. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, Rick (Chesapeake, VA)

    1999-01-01T23:59:59.000Z

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  8. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, R.

    1999-10-12T23:59:59.000Z

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  9. Electric power monthly, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-25T23:59:59.000Z

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  10. Electric power monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-07T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  11. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  12. Updated June 2011 Page 1 of 2 Operational Excellence Initiative

    E-Print Network [OSTI]

    Rose, Michael R.

    : Pacific Gas and Electric Company, Southern California Edison, and two Sempra Energy companies: San Diego Gas & Electric, and Southern California Gas Co. o In 2010 The Student Center rooftops are home to an 85 kw solar system. Since the system

  13. Electric power monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-13T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  14. Electric power monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-17T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  15. Department of Electrical Engineering and Computer Science Electrical Engineering Catalog 2014

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Department of Electrical Engineering and Computer Science Electrical Engineering Catalog 2014 Fall *Acceptable Senior Electrical and Computer Engineering courses: Choose four (4) Electrical Engineering Senior requires at least a C in every computer engineering, computer science, electrical engineering

  16. Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science

    E-Print Network [OSTI]

    Khan, Javed I.

    Roadmap: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General) ­ Associate Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering

  17. Introduction to Electrical and Computer Engineering

    E-Print Network [OSTI]

    Batten, Christopher

    Introduction to Electrical and Computer Engineering Christopher Batten Computer Systems Laboratory School of Electrical and Computer Engineering Cornell University ENGRG 1060 Explorations in Engineering Computer Engineering Design Power Systems Computer Engineering Electrical Circuits Electrical Devices

  18. UNIVERSITY OF CALIFORNIA, SANTA CRUZ ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ ELECTRICAL ENGINEERING Ongoing Lecturer Pool #T07 for an ongoing pool of qualified instructors for the Electrical Engineering Department. Electrical Engineering includes: all areas of electrical engineering; communications, signal and image processing

  19. Faculty of Engineering Electrical and Computer

    E-Print Network [OSTI]

    Faculty of Engineering Electrical and Computer Engineering Electrical and Computer Engineering offers you a diverse range of exciting opportunities in high-tech industries. As an electrical engineer issues in the engineering disciplines #12;Electrical and Computer Engineering Experiential Learning

  20. Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Department of Electrical and Computer Engineering Thomas J. Watson School of Engineering & Applied. B. Graduate Degrees in Electrical and Computer Engineering The Department of Electrical and Computer in Electrical & Computer Engineering (MSECE). 2. The Master of Engineering (MEng) with Specialization