Powered by Deep Web Technologies
Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Broader source: Energy.gov (indexed) [DOE]

6 Fed. Reg. 75798 (Dec. 5, 2011) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011) The Edison Electric Institute (EEI) is submitting...

2

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Broader source: Energy.gov (indexed) [DOE]

7 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting...

3

Edison Electric Institute State Generation and Transmission Siting...  

Open Energy Info (EERE)

LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting DirectoryPermittingRegulatory...

4

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed.  

Broader source: Energy.gov (indexed) [DOE]

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE). In the RFI, DOE is again asking for information on ways to streamline and to reduce the burden imposed by its regulations. Reg review - DOE RFI - EEI cmts 5-29-12.pdf More Documents & Publications Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 EEI Comments in response to DOE regulatory review RFI, 76 Fed. Reg. 75798

5

Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Burden RFI, 77 Fed. Reg. Regulatory Burden RFI, 77 Fed. Reg. 47328 Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI). In the RFI, the Department of Energy (DOE) is asking for comments on ways to streamline its regulations and to eliminate unnecessary ones, so as to make the regulations less burdensome and more effective. Reg review - DOE RFI - EEI cmts 9-7-12.pdf More Documents & Publications Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011)

6

Beyond Tesla and Edison: Other Luminaries from the Age of Electricity |  

Broader source: Energy.gov (indexed) [DOE]

Tesla and Edison: Other Luminaries from the Age of Tesla and Edison: Other Luminaries from the Age of Electricity Beyond Tesla and Edison: Other Luminaries from the Age of Electricity November 25, 2013 - 1:30pm Addthis Electricity pioneer Charles Proteus Steinmetz (center in light-colored suit) poses with Albert Einstein (immediate left) and other inventors at the RCA Brunswick, New Jersey, wireless station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Electricity pioneer Charles Proteus Steinmetz (center in light-colored suit) poses with Albert Einstein (immediate left) and other inventors at the RCA Brunswick, New Jersey, wireless station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Rob Roberts Rob Roberts Director of Digital Strategy More Tesla vs. Edison:

7

Beyond Tesla and Edison: Other Luminaries from the Age of Electricity |  

Broader source: Energy.gov (indexed) [DOE]

Beyond Tesla and Edison: Other Luminaries from the Age of Beyond Tesla and Edison: Other Luminaries from the Age of Electricity Beyond Tesla and Edison: Other Luminaries from the Age of Electricity November 25, 2013 - 1:30pm Addthis Electricity pioneer Charles Proteus Steinmetz (center in light-colored suit) poses with Albert Einstein (immediate left) and other inventors at the RCA Brunswick, New Jersey, wireless station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Electricity pioneer Charles Proteus Steinmetz (center in light-colored suit) poses with Albert Einstein (immediate left) and other inventors at the RCA Brunswick, New Jersey, wireless station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Rob Roberts Rob Roberts Director of Digital Strategy More Tesla vs. Edison:

8

APPA Engineering and Operations Technical Conference  

Office of Energy Efficiency and Renewable Energy (EERE)

The 2014 APPA Engineering and Operations Technical Conference is designed for public power professionals charged with designing, developing, and maintaining the nation's electric system.

9

APPA Customer Connections Conference  

Office of Energy Efficiency and Renewable Energy (EERE)

The Customer Connections Conference is APPA's annual meeting for utility professionals in the areas of:

10

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Electric Power Industry Climate Initiative (EPICI) Members Electric Power Industry Climate Initiative (EPICI) Members American Public Power Association American Public Power Association Logo The American Public Power Association (APPA) is the service organization for the nation's public power utilities. Edison Electric Institute Edison Electric Institute Logo Edison Electric Institute (EEI) is the premier trade association for U.S. shareholder-owned electric companies, and serves international affiliates and industry associates worldwide. Electric Power Supply Association Electric Power Supply Association Logo The Electric Power Supply Association (EPSA) is the national trade association representing competitive power suppliers, including independent power producers, merchant generators, and power marketers. Large Public Power Council

11

EA-178-B Edison Mission Marketing & Trading, Inc | Department...  

Broader source: Energy.gov (indexed) [DOE]

-B Edison Mission Marketing & Trading, Inc EA-178-B Edison Mission Marketing & Trading, Inc Order authorizing Edison Mission Marketing & Trading, Inc to export electric energy to...

12

Edison vs. Tesla  

ScienceCinema (OSTI)

As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

2014-01-07T23:59:59.000Z

13

Edison FAQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison FAQ Edison FAQ Edison FAQ Q. What are the Major Differences Between Edison and Hopper? A. The new Edison Phase-I system has 16 cores per node; Hopper has 24. The default programming environment on Edison is based on the Intel compiler. Hopper's is based on the Portland Group (PGI) compilers. PGI compilers are not available on Edison. Q. What else is different? A. There is more memory per core. Edison has 4 GB per core rather than 1.3 GB per core on Hopper. On Edison you also have the option of enabling Intel's Hypterthreading technology on a node (see below). Q. Will my existing Hopper code run on Edison? A. If your code runs on Hopper, it should run easily on Edison. However, if it relies on the PGI compilers, you may have to make changes to accomodate the Intel, Cray, or GNU programmming environments. PGI is not

14

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

SciTech Connect (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

15

The impact of electric vehicles on the Southern California Edison System. Final report  

SciTech Connect (OSTI)

This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the ``Air Quality Impacts of Energy Efficiency`` Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers` view has been studied with special emphasis on the role of marketable permit systems. The utilities` view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility`s average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

Ford, A.

1992-07-01T23:59:59.000Z

16

The impact of electric vehicles on the Southern California Edison System  

SciTech Connect (OSTI)

This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the Air Quality Impacts of Energy Efficiency'' Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers' view has been studied with special emphasis on the role of marketable permit systems. The utilities' view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility's average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

Ford, A.

1992-07-01T23:59:59.000Z

17

EA-157 Consolidated Edison Company of New York, Inc | Department...  

Broader source: Energy.gov (indexed) [DOE]

7 Consolidated Edison Company of New York, Inc EA-157 Consolidated Edison Company of New York, Inc Order authorizing Consolidated Edison Company of New York, Inc to export electric...

18

Edison Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Configuration Configuration Configuration NERSC's newest supercomputer, named Edison after U.S. inventor and businessman Thomas Alva Edison, will have a peak performance of more than 2 petaflops (PF, or 1015 floating point operations per second) when fully installed in 2013. The integrated storage system will have more than 6 petabytes (PB) of storage with a peak I/O bandwidth of 140 gigabytes (GB) per second. The product is known as a Cray XC30 (internal name "Cascade"), and the NERSC acquistion project is known as "NERSC 7." Edison will be installed in two phases. Phase I Installation: 4Q 2012 Early User Access: Started in February 2013. All users were enabled March 2, 2013. System Overview Cray Cascade supercomputer 664 computes nodes with 64 GB memory per node

19

Edison Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Configuration Configuration Configuration NERSC's newest supercomputer, named Edison after U.S. inventor and businessman Thomas Alva Edison, has a peak performance of 2.39 petaflops/sec, 124,608 compute cores for running scientific applications, 332 Terabytes of memory, and 7.5 Petabytes of online disk storage with a peak I/O bandwidth of 168 gigabytes (GB) per second. The product is known as a Cray XC30 (internal name "Cascade"), and the NERSC acquistion project is known as "NERSC 7." System Overview Cray XC30 supercomputer Peak performance 2.39 petaflops/sec Sustained application performance on NERSC SSP codes: 258 Tflop/s (vs. 144 Tflop/s for Hopper) 5,192 computes nodes, 124,608 cores in total Cray Aries high-speed interconnect with Dragon Flay topoplogy (0.25 μs to 3.7 μs MPI latency, ~8GB/sec MPI bandwidth)

20

NERSC Edison Hours Used Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hours Used Edison Hours Used 2014 Edison Usage Chart Edison Usage Chart 2013 Edison Usage Chart Edison Usage Chart 2014 Date Hours Used (in millions) Percent of Maximum Possible...

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Running Jobs on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jobs Running jobs Quick Instructions for Hopper users Edison has the same number of cores per node, 24, but has a larger per core memory, 2.67 GB vs. 1.3 GB. On Edison the Intel...

22

Southern California Edison 32MWh Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

23

Intel Compiler Peformance on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Peformance on Edison Intel Compiler Peformance on Edison These are the Intel optimization options we compared. The quotations are from the Intel compiler on-line man pages....

24

Cray Compiler Peformance on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Edison Cray Compiler Peformance on Edison Cray recommends using the default optimization (-O2) which is equivalent to the higher levels of optimization with other...

25

Edison, NERSC's Cray Cascade System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison Edison Edison Edison-XBD201311-04294-07.jpg Current Status: Up Edison is NERSC's newest peta-flop machine, a Cray XC30, with a peak performance of 2.39 petaflops/sec, 124,608 compute cores, 332 terabytes of memory, and 7.5 petabytes of disk. Updates and Status Find information on timeline, recent announcements and known issues Read More » Getting Started on Edison How to get running on Edison for first-time users. Read More » Configuration Details on the Edison hardware and software. Read More » Programming Edison provides the Intel (default), Cray and GNU compilers. Read More » Running jobs Information about how to run various jobs on Edison Read More » File Storage and I/O Edison has 5 different file systems which provide different levels of disk storage, file I/O performance. You can find information on I/O

26

EDISON INTERNATIONAL DESIGN & ENGINEERING SERVICES  

E-Print Network [OSTI]

EDISON INTERNATIONAL® SM 1 DESIGN & ENGINEERING SERVICES SCE's Emerging Technologies Program - HVAC Southern California Edison (SCE) #12;EDISON INTERNATIONAL® SM 2 DESIGN & ENGINEERING SERVICES #12;EDISON INTERNATIONAL® SM 3 DESIGN & ENGINEERING SERVICES ET 2013-2014 Program Design ­ Three-Pronged Approach

California at Davis, University of

27

Southern California Edison Company SCE | Open Energy Information  

Open Energy Info (EERE)

Company SCE Company SCE Jump to: navigation, search Name Southern California Edison Company (SCE) Place Rosemead, California Zip 91770 Sector Renewable Energy Product California-based electrical utility and subsidiary of Edison International. SCE is a purchaser and developer of renewable energy. References Southern California Edison Company (SCE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Southern California Edison Company (SCE) is a company located in Rosemead, California . References ↑ "Southern California Edison Company (SCE)" Retrieved from "http://en.openei.org/w/index.php?title=Southern_California_Edison_Company_SCE&oldid=351571" Categories:

28

Sustainable Energy Fund (Metropolitan Edison) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Fund (Metropolitan Edison) Sustainable Energy Fund (Metropolitan Edison) Sustainable Energy Fund (Metropolitan Edison) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Varies; $25,000 for some types of projects Program Info State Pennsylvania Program Type Local Grant Program Rebate Amount Varies according to project Provider Community Foundation of the Alleghenies FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund and the Penelec Sustainable Energy Fund in 2000. The Community Foundation for the Alleghenies in Johnstown, Pennsylvania

29

Running Jobs on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jobs jobs Running jobs Quick Instructions for Hopper users Major differences between running jobs on Hopper and Edison are: the number of cores per node are different, and the Intel Hyper-threading option is available on Edison. Read More » Overview A brief overview of how to run jobs on Edison. Read More » Interactive Jobs Interactive jobs may be run on Edison by requesting resources from the batch system. "qsub -I -V -q interactive -lmppwidth=[num_cores]" is the basic command to request interactive resources. Read More » Batch Jobs Batch script options. Read More » Example Batch Scripts Sample batch scripts for MPI, OpenMP, hybrid applications and various workflows. Read More » Job Launch Command: aprun Aprun is the job launcher for Cray XC30. There are many options that are

30

Asociacion de Productores de Energias Renovables APPA | Open Energy  

Open Energy Info (EERE)

Asociacion de Productores de Energias Renovables APPA Asociacion de Productores de Energias Renovables APPA Jump to: navigation, search Name Asociacion de Productores de Energias Renovables (APPA) Place Spain Sector Renewable Energy Product Spanish renewable energy industry association. References Asociacion de Productores de Energias Renovables (APPA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asociacion de Productores de Energias Renovables (APPA) is a company located in Spain . References ↑ "Asociacion de Productores de Energias Renovables (APPA)" Retrieved from "http://en.openei.org/w/index.php?title=Asociacion_de_Productores_de_Energias_Renovables_APPA&oldid=342368" Categories:

31

Edison Batch Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batch Jobs Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Edison. The batch system on Edison is known as "Torque." Bare-Bones Batch Script The simplest Edison batch script will look something like this. #PBS -q regular #PBS -l mppwidth=32 #PBS -l walltime=00:10:00 cd $PBS_O_WORKDIR aprun -n 32 ./my_executable This example illustrates the basic parts of a script: Job directive lines begin with #PBS. These "Torque Directives" tell the batch system how many nodes to reserve for your job and how long to

32

Edison Batch Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batch Jobs Batch Jobs Batch Jobs Overview Batch jobs are jobs that run non-interactively under the control of a "batch script," which is a text file containing a number of job directives and LINUX commands or utilities. Batch scripts are submitted to the "batch system," where they are queued awaiting free resources on Edison. The batch system on Edison is known as "Torque." Bare-Bones Batch Script The simplest Edison batch script will look something like this. #PBS -q regular #PBS -l mppwidth=48 #PBS -l walltime=00:10:00 cd $PBS_O_WORKDIR aprun -n 48 ./my_executable This example illustrates the basic parts of a script: Job directive lines begin with #PBS. These "Torque Directives" tell the batch system how many nodes to reserve for your job and how long to

33

Thomas Edison | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thomas Edison Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical incandescent light bulb. A savvy businessman, he invented a number of other technologies that are still in use today -- including the an early stock ticker, a sound-recording phonograph and a two-way telegraph -- and holds the record for the most patents, ever. Learn more interesting facts about Edison in our Top 8 Things You Didn't Know About Thomas Alva Edison. Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating (Low to High) Nikola Tesla Inventor 435 likes Nikola Tesla was born in the Austrian Empire (now Croatia) but moved to the United States to work for Thomas Edison

34

Example Edison Batch Scripts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Example Batch Scripts Example Batch Scripts Example Batch Scripts The default number of cores per node on Edison is 16, and the default "mppnppn" setting is 16. However, if you run with hyperthreading (HT), Edison compute nodes have 32 cores per node, and the mppnppn value needs to be set to 32. In addition, the "-j 2" option needs to be added to the "aprun" command. In most of the following example batch scripts, the default number of 16 cores per node is used. Basic Scripts Sample Job script This script uses the default 16 cores per node. This job will run on 64 nodes, with 1024 cores. #PBS -q debug #PBS -l mppwidth=1024 #PBS -l walltime=00:10:00 #PBS -N my_job #PBS -j oe #PBS -V cd $PBS_O_WORKDIR aprun -n 1024 ./my_executable Sample job script to run with Hyperthreading (HT)

35

Example Edison Batch Scripts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Example Batch Scripts Example Batch Scripts Example Batch Scripts Edison has 24 cores (physical cores) per node, so the default "mppnppn" value is set to 24 for all queues. If you run with hyperthreading (HT), Edison has 48 logical cores per node, and the mppnppn value can be set to 48. However, this is not required. The "-j 2" option of the "aprun" command allows you to use all 48 logical cores on the nodes. In most of the following example batch scripts, we assume that jobs are run without Hyperthreading unless explicitly mentioned, therefore the default mppnppn value, 24, is used. Basic Scripts Sample Job script This script uses the default 24 cores per node. This job will run on 64 nodes, with 1536 cores. #PBS -q debug #PBS -l mppwidth=1536 #PBS -l walltime=00:10:00

36

Gnu Compiler Peformance on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gnu Compiler Peformance on Edison By default, the Gnu compilers do not provide any optimization. These are the Gnu optimization options we compared. The quotations are from the...

37

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

0. Electricity trade 0. Electricity trade (billion kilowatthours, unless otherwise noted) Electricity trade Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Interregional electricity trade Gross domestic sales Firm power .......................................................... 237.5 173.8 104.4 47.1 24.2 24.2 24.2 -6.6% Economy ............................................................. 150.1 158.1 162.7 167.5 189.9 186.3 220.2 1.1% Total ................................................................ 387.6 332.0 267.1 214.6 214.1 210.5 244.4 -1.1% Gross domestic sales (million 2011 dollars) Firm power .......................................................... 14,548.9 10,648.8 6,393.5 2,884.8 1,481.3 1,481.3 1,481.3

38

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A8. Electricity supply, disposition, prices, and emissions A8. Electricity supply, disposition, prices, and emissions (billion kilowatthours, unless otherwise noted) Supply, disposition, prices, and emissions Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Generation by fuel type Electric power sector 1 Power only 2 Coal .................................................................. 1,797 1,688 1,613 1,680 1,718 1,756 1,776 0.2% Petroleum ......................................................... 32 24 15 15 15 15 16 -1.5% Natural gas 3 ...................................................... 779 809 948 996 1,093 1,193 1,224 1.4% Nuclear power ................................................... 807 790 885 912 908 875 903 0.5%

39

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) | Department  

Broader source: Energy.gov (indexed) [DOE]

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate $500,000 (generally) Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

40

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) | Department  

Broader source: Energy.gov (indexed) [DOE]

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Varies; $25,000 for some types of projects Program Info State Pennsylvania Program Type Local Grant Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A9. Electricity generating capacity A9. Electricity generating capacity (gigawatts) Net summer capacity 1 Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Electric power sector 2 Power only 3 Coal ..................................................................... 308.0 309.5 268.7 267.9 267.9 267.9 269.0 -0.5% Oil and natural gas steam 4 .................................. 105.6 101.9 86.4 78.3 69.1 66.6 64.0 -1.6% Combined cycle ................................................... 171.8 179.5 193.2 207.6 238.3 265.8 288.4 1.6% Combustion turbine/diesel ................................... 134.5 136.1 149.9 162.1 177.2 190.2 208.9 1.5% Nuclear power 5 .................................................... 101.2 101.1 110.6 114.1 113.6 109.3 113.1 0.4%

42

Edison Programming Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chapel Chapel Shared and Dynamic Libraries Cluster Compatibility Mode Cray XC30 Documentation Hopper Carver PDSF Genepool Testbeds Retired Systems Data & File Systems Network Connections Queues and Scheduling Job Logs & Analytics Training & Tutorials Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Computational Systems » Edison » Programming Programming

43

Edison Programming Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Documentation Technology Documentation Cray XC30 Documentation Known issues News and Updates Cray XC30 Press Release Euclid - Retired 01/31/2013 Franklin - Retired 04/30/12 Data & File Systems Network Connections Queues and Scheduling Job Logs & Analytics Training & Tutorials Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Computational Systems » Retired Systems » Edison

44

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A3. Energy prices by sector and source A3. Energy prices by sector and source (2011 dollars per million Btu, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Residential Propane ................................................................ 27.61 25.06 23.41 24.77 25.73 26.70 27.99 0.4% Distillate fuel oil ..................................................... 21.77 26.38 26.91 29.08 31.26 33.71 36.54 1.1% Natural gas ........................................................... 11.36 10.80 11.78 12.67 13.37 14.60 16.36 1.4% Electricity .............................................................. 34.52 34.34 33.62 33.96 34.56 35.42 37.10 0.3% Commercial Propane ................................................................ 24.10 22.10 20.04 21.74 22.97 24.23 25.94 0.6%

45

Consolidated Edison Company of New York (Con Edison) | Open Energy  

Open Energy Info (EERE)

York (Con Edison) York (Con Edison) Jump to: navigation, search Name Consolidated Edison Company of New York (Con Edison) Address 4 Irving Place Place New York, New York Zip 10003 Sector Services Product Green Power Marketer Website http://www.coned.com/ Coordinates 40.7341329°, -73.9886455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7341329,"lon":-73.9886455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Edison vs. Tesla | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Edison vs. Tesla Edison vs. Tesla Edison vs. Tesla Edison vs. Tesla Meet the Inventors Top 8 Things You Didn't Know About Thomas Alva Edison Thomas A. Edison in his "Invention Factory," 1901. | Photo courtesy of the Prints and Photographs Division, Library of Congress. Some surprising facts about one of the most prolific inventors in U.S. history -- Thomas Edison. Top 11 Things You Didn't Know About Nikola Tesla Nikola Tesla in or around 1890, when the inventor was in his mid-30s. | Photo is in the public domain. Image courtesy of the Library of Congress. Learn facts about Nikola Tesla, one of history's most important energy-related inventors and engineers. Videos VIDEO: Who Was the Better Inventor, Tesla or Edison? "Who was the better inventor, Edison or Tesla, and why?" In our new

47

Edison International | Open Energy Information  

Open Energy Info (EERE)

Edison International Edison International Place Rosemead, California Zip 91770 Product Utility company and parent of SCE and Edison Mission Energy. Coordinates 34.08072°, -118.076539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.08072,"lon":-118.076539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Running Interactive Jobs on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs To run an interactive job on Edison's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the debug queue. edison% qsub -I -V -q debug -l mppwidth=48 The -I flag specifies an interactive job. The -V flag passes your current environment variable settings to the compute environment. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The number of nodes given to your job (remember, the system allocates nodes, not cores), is the value of mppwidth divided by the number of cores per node. On Edison, with 24 cores per node, the number of nodes is mppwidth/24 plus one

49

Running Interactive Jobs on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs To run an interactive job on Edison's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the debug queue. edison% qsub -I -V -q debug -l mppwidth=32 The -I flag specifies an interactive job. The -V flag passes your current environment variable settings to the compute environment. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The number of nodes given to your job (remember, the system allocates nodes, not cores), is the value of mppwidth divided by the number of cores per node. On Edison, with 16 cores per node, the number of nodes is mppwidth/16 plus one

50

Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Construction Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Maximum Rebate Total (grants and loans): $3.3 million Grants: $300,000 Loans: $3 million Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) Start Date 05/23/2011 State New Jersey Program Type Industry Recruitment/Support Rebate Amount Varies Provider New Jersey Economic Development Authority

51

Edison Innovation Green Growth Fund (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Edison Innovation Green Growth Fund (New Jersey) Edison Innovation Green Growth Fund (New Jersey) Edison Innovation Green Growth Fund (New Jersey) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Wind Program Info Funding Source Public Benefit Fund State New Jersey Program Type Loan Program Provider New Jersey Economic Development Authority The EIGGF offers loans up to $2 million with a performance grant component to support technology companies with Class I renewable energy or energy efficiency products or systems that have achieved "proof of concept" and successful independent beta results, have begun generating commercial revenues, and will receive 1:1 match funding by time of loan closing. Photovoltaic, solar, wind energy, renewably fueled fuel cells, wave, tidal,

52

Edison Innovation Green Growth Fund Loans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Edison Innovation Green Growth Fund Loans Edison Innovation Green Growth Fund Loans Edison Innovation Green Growth Fund Loans < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Construction Heating Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Wind Maximum Rebate Maximum Loan: $2 million (1:1 cash match required from non-state grants, deeply subordinated debt or equity) Performance Grant Conversion (end of loan term): up to 50% of loan amount Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) Start Date 05/23/2011 State New Jersey Program Type Industry Recruitment/Support Rebate Amount Varies; loans from $250,000 - $2 million available

53

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

54

Review of consolidated Edison`s integrated resource bidding program  

SciTech Connect (OSTI)

Competitive bidding has emerged as the dominant method for procuring new resources by US utilities. In New York, the Public Service Commission (NYPSC) ordered the state`s seven investor-owned utilities to develop bidding programs to acquire supply and DSM resource options. Utilities were allowed significant discretion in program design in order to encourage experimentation. Competitive bidding programs pose formidable policy, design, and management challenges for utilities and their regulators. Yet, there have been few detailed case studies of bidding programs, particularly of those utilities that take on the additional challenge of having supply and DSM resources compete head-to-head for a designated block of capacity. To address that need, the New York State Energy Research and Development Authority (NYSERDA), the New York Department of Public Service, and the Department of Energy`s Integrated Resource Planning program asked Lawrence Berkeley Laboratory (LBL) to review the bidding programs of two utilities that tested the integrated ``all-sources`` approach. This study focuses primarily on Consolidated Edison Company of New York`s (Con Edison) bidding program; an earlier report discusses our review of Niagara Mohawk`s program (Goldman et al 1992). We reviewed relevant Commission decisions, utility filings and signed contracts, interviewed utility and regulatory staff, surveyed DSM bidders and a selected sample of DSM non-bidders, and analyzed the bid evaluation system used in ranking bids based on detailed scoring information on individual bids provided by Con Edison.

Goldman, C.A.; Busch, J.F.; Kahn, E.P.; Baldick, R.; Milne, A.

1993-07-01T23:59:59.000Z

55

Your First Program on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your First Program Your First Program Your First Program on Edison From Logging in to Submitting a Job In order to follow this page, you will need a NERSC username and password, and to be a member of an allocated project account ("repo"). If you do not have all of these things please visit the Accounts Page. Logging in % ssh -l username edison.nersc.gov When you successfully log in you will land in your $HOME directory. First Program Code: Parallel Hello World Open a new file called helloWorld.f90 with a text editor such as emacs or vi. Paste the contents of the below code into the file. program helloWorld implicit none include "mpif.h" integer :: myPE, numProcs, ierr call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, numProcs, ierr)

56

Your First Program on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your First Program Your First Program Your First Program on Edison From Logging in to Submitting a Job In order to follow this page, you will need a NERSC username and password, and to be a member of an allocated project account ("repo"). If you do not have all of these things please visit the Accounts Page. Logging in % ssh -l username edison.nersc.gov When you successfully log in you will land in your $HOME directory. First Program Code: Parallel Hello World Open a new file called helloWorld.f90 with a text editor such as emacs or vi. Paste the contents of the below code into the file. program helloWorld implicit none include "mpif.h" integer :: myPE, numProcs, ierr call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, numProcs, ierr)

57

Vertical Integration in Restructured Electricity Markets: Measuring Market Efficiency and Firm Conduct  

E-Print Network [OSTI]

Power, Easton Utilities, UGI Development, Allegheny ElectricPower, Easton Utilities, UGI Development, Edison ( Homer

Mansur, Erin T.

2003-01-01T23:59:59.000Z

58

Edison Phase II Compute Cabinets Arrive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC June 27, 2013 by Zhengji Zhao (1 Comments) The compute cabinets were shiped to NERSC between June 24 and 25, 2013.They have been installed on the machine room floor in Oakland. The 28 canbinets that comprise the Phase II system were powered up on June 27, 2013. Post your comment You cannot post comments until you have logged in. Login Here. Comments I re-compiled my program on Edison with Intel compiler. Once submitted the job, the waiting time in the regular queue was very short compared to Hopper. The run on Edison was smooth and with no problems. Comparing the CPU time for the run, I found that the job run almost twice as faster as in Hopper (using PGI compilers). (In Edison it took 111 seconds and in Hopper/PGI 203

59

Detroit Edison Co | Open Energy Information  

Open Energy Info (EERE)

Company) Jump to: navigation, search Name: Detroit Edison Co Place: Detroit, Michigan References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information...

60

SunEdison | Open Energy Information  

Open Energy Info (EERE)

with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Science & Technology Partnership Year 2008 SunEdison is a company located in Beltsville, MD....

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Tesla vs. Edison | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Edison was an American inventor who developed the first commercially practical incandescent light bulb. Learn More Nikola Tesla Inventor 435 likes Nikola Tesla was born in the...

62

Thomas Edison vs. Nikola Tesla | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thomas Edison vs. Nikola Tesla Thomas Edison vs. Nikola Tesla Addthis Duration 46:00 Topic Alternative Fuel Vehicles Renewables Smart Grid Transmission...

63

Tesla vs. Edison | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tesla vs. Edison Tesla vs. Edison Tesla vs. Edison This week on Energy.gov, we're revisiting the storied rivalry between two of history's most important energy-related inventors and engineers: Thomas Edison and Nikola Tesla. Check back each day to learn more about their lives, their inventions and how their contributions are still impacting the way we use energy today. Support your favorite with the hashtags #teamedision and #teamtesla on social media, or cast your vote below! Join us on Thursday, Nov. 21, at 12:30 p.m. ET for a live discussion on Thomas Edison and Nikola Tesla. The event will be streamed on energy.gov/live and the Energy Department's Google+ page. Whether you want to know more about how we're realizing Tesla's idea of wireless transmission of energy today or who really invented the light bulb or what

64

Tesla vs. Edison | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tesla vs. Edison Tesla vs. Edison Tesla vs. Edison This week on Energy.gov, we're revisiting the storied rivalry between two of history's most important energy-related inventors and engineers: Thomas Edison and Nikola Tesla. Check back each day to learn more about their lives, their inventions and how their contributions are still impacting the way we use energy today. Support your favorite with the hashtags #teamedision and #teamtesla on social media, or cast your vote below! Join us on Thursday, Nov. 21, at 12:30 p.m. ET for a live discussion on Thomas Edison and Nikola Tesla. The event will be streamed on energy.gov/live and the Energy Department's Google+ page. Whether you want to know more about how we're realizing Tesla's idea of wireless transmission of energy today or who really invented the light bulb or what

65

Tesla vs. Edison | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tesla vs. Edison Tesla vs. Edison Tesla vs. Edison This week on Energy.gov, we're revisiting the storied rivalry between two of history's most important energy-related inventors and engineers: Thomas Edison and Nikola Tesla. Check back each day to learn more about their lives, their inventions and how their contributions are still impacting the way we use energy today. Support your favorite with the hashtags #teamedision and #teamtesla on social media, or cast your vote below! Join us on Thursday, Nov. 21, at 12:30 p.m. ET for a live discussion on Thomas Edison and Nikola Tesla. The event will be streamed on energy.gov/live and the Energy Department's Google+ page. Whether you want to know more about how we're realizing Tesla's idea of wireless transmission of energy today or who really invented the light bulb or what

66

Running Jobs Overview for Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview Overview and Basic Description Jobs on Edison execute on one or more "compute" nodes dedicated to that job. These nodes are distinct from the shared "login" nodes that host interactive sessions and the shared "MOM" nodes that execute commands from a "batch script" that controls how the job runs. Typically, users write the batch script with a text editor and submit it to the system using the "qsub" command. The batch script contains a number of job control directives and also the "aprun" command that actually runs the program in parallel on the compute nodes. It is possible to run small, short parallel jobs interactively as described in the pages in this section. Pages in this section explain the process in more detail.

67

Running Jobs Overview for Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview Overview and Basic Description Jobs on Edison execute on one or more "compute" nodes dedicated to that job. These nodes are distinct from the shared "login" nodes that host interactive sessions and the shared "MOM" nodes that execute commands from a "batch script" that controls how the job runs. Typically, users write the batch script with a text editor and submit it to the system using the "qsub" command. The batch script contains a number of job control directives and also the "aprun" command that actually launches the program on to the compute nodes. It is possible to run small, short parallel jobs interactively as described in the pages in this section. Pages in this section explain the process in more detail.

68

Environmental Protection Agency - Edison, New Jersey | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Protection Agency (EPA) has a laboratory in Edison, New Jersey that is the site of an alternative energy project. It uses a super ambient solar thermal collector or solar hot...

69

New Features of the Edison XC30 - Differences from Hopper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Features of the Edison XC30 New Features of the Edison XC30 New Features of the Edison XC30 - Differences from Hopper While the Edison and Hopper systems have similar programming environments and software, there are some key architectural differences between the two systems. This page describes those differences. Compute nodes Edison and Hopper both have a total of 24 cores on each compute node. Edison, like Hopper, has two sockets on each compute node, but instead of four "NUMA" memory domains, Edison has only two. Edison uses Intel processors, unlike Hopper which has processors from AMD. Edison's processors have Intel Hyper-Threading (HT) enabled, which means you can run with 48 logical cores per node. At run time you can decide to run with 24 cores per node (the default setting) or 48 logical cores per node.

70

WHO SAID IT: Tesla or Edison? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WHO SAID IT: Tesla or Edison? WHO SAID IT: Tesla or Edison? WHO SAID IT: Tesla or Edison? Who said it, Nikola Tesla or Thomas Edison? Test your knowledge of these two important energy inventors with our downloadable quote quiz cards. Four cards feature a quote only; the corresponding cards reveal the answer. Want to learn more about Tesla and Edison? Check out our top things you didn't know about Nikola Tesla and Thomas Edison. Learn the history of the light bulb -- from incandescent to LED -- in our interactive timeline. Watch a recap of our live Q&A with Tesla and Edison experts. Watch our video that asks experts and regular people, "Who was the better inventor, Tesla or Edison, and why?" Who Said It: Tesla or Edison? More Documents & Publications Industry and Bipartisan Support for Fisker and Tesla Loans

71

WHO SAID IT: Tesla or Edison? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WHO SAID IT: Tesla or Edison? WHO SAID IT: Tesla or Edison? WHO SAID IT: Tesla or Edison? Who said it, Nikola Tesla or Thomas Edison? Test your knowledge of these two important energy inventors with our downloadable quote quiz cards. Four cards feature a quote only; the corresponding cards reveal the answer. Want to learn more about Tesla and Edison? Check out our top things you didn't know about Nikola Tesla and Thomas Edison. Learn the history of the light bulb -- from incandescent to LED -- in our interactive timeline. Watch a recap of our live Q&A with Tesla and Edison experts. Watch our video that asks experts and regular people, "Who was the better inventor, Tesla or Edison, and why?" Who Said It: Tesla or Edison? More Documents & Publications Industry and Bipartisan Support for Fisker and Tesla Loans

72

Detroit Edison Co | Open Energy Information  

Open Energy Info (EERE)

Detroit Edison Co Detroit Edison Co Place Detroit, Michigan Utility Id 5109 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Detroit Edison Company Smart Grid Project was awarded $83,828,878 Recovery Act Funding with a total project value of $167,657,756.

73

EDISON (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

EDISON (Smart Grid Project) EDISON (Smart Grid Project) Jump to: navigation, search Project Name EDISON Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Metropolitan Edison Co | Open Energy Information  

Open Energy Info (EERE)

Metropolitan Edison Co Metropolitan Edison Co Jump to: navigation, search Name Metropolitan Edison Co Place Ohio Utility Id 12390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential RT (Time-Of-Day) Residential Average Rates No Rates Available The following table contains monthly sales and revenue data for

75

The Toledo Edison Co | Open Energy Information  

Open Energy Info (EERE)

The Toledo Edison Co The Toledo Edison Co Place Ohio Utility Id 18997 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential Average Rates Residential: $0.0526/kWh Commercial: $0.1010/kWh Industrial: $0.0021/kWh The following table contains monthly sales and revenue data for The Toledo Edison Co (Ohio).

76

Commonwealth Edison Co | Open Energy Information  

Open Energy Info (EERE)

Commonwealth Edison Co Commonwealth Edison Co (Redirected from ComED) Jump to: navigation, search Name Commonwealth Edison Co Place Illinois Service Territory Illinois Website www.comed.com/Pages/defau Green Button Landing Page www.comed.com/Pages/defau Green Button Reference Page www.whitehouse.gov/admini Green Button Implemented Yes Utility Id 4110 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

77

ConEdison Solutions | Open Energy Information  

Open Energy Info (EERE)

ConEdison Solutions ConEdison Solutions Jump to: navigation, search Name ConEdison Solutions Address 701 Westchester Avenue, Suite 300 East Place White Plains, New York Zip 10604 Sector Services Product Green Power Marketer Website http://conedisonsolutions.com/ Coordinates 41.026762°, -73.737896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.026762,"lon":-73.737896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

SunEdison Solar | Open Energy Information  

Open Energy Info (EERE)

SunEdison Solar SunEdison Solar Name SunEdison Solar Address 12500 Baltimore Avenue Place Beltsville, Maryland Zip 20705 Sector Solar Year founded 2003 Number of employees 201-500 Phone number +(34) 932-705-500 Website http://www.sunedison.com/ Coordinates 39.040141°, -76.9047421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.040141,"lon":-76.9047421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Ohio Edison Co | Open Energy Information  

Open Energy Info (EERE)

Edison Co Edison Co Jump to: navigation, search Name Ohio Edison Co Place Ohio Utility Id 13998 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS General Service Secondary SL3) Industrial General service primary rate Industrial General service primary rate- demand charge Industrial General service subtransmission rate Industrial

80

New Features of the Edison XC30 - Differences from Hopper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Features of the New Features of the Edison XC30 New Features of the Edison XC30 - Differences from Hopper While the Edison and Hopper systems have similar programming environments and software, there are some key architectural differences between the two systems. This page describes those differences. Compute nodes Edison Phase I has a total of 16 cores on each compute node, compared to Hopper's 24. Edison, like Hopper, has two sockets on each compute node, but instead of four "NUMA" memory domains, Edison has only two. Edison uses Intel processors, unlike Hopper which has processors from AMD. Edison's processors have Intel Hyper-Threading (HT) enabled, which means you can run with 32 virtual cores per node. At run time you can decide to run with 16 cores per node (the default setting) or 32 virtual cores per

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - acid phosphatase cyx-appa Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: acid phosphatase cyx-appa Page: << < 1 2 3 4 5 > >> 1 G-Biosciences, St Louis, MO. USA 1-800-628-7730 1-314-991-6034 technical@genotech.com think proteins think...

82

Edison_Overview-NUG2013.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Deputy Group Lead Services Deputy Group Lead Edison Overview --- 1 --- February 1 4, 2 013 Edison Phase I is Here! --- 2 --- From a U ser P erspec0ve E dison i s v ery s imilar t o H opper! Edison Addresses the NERSC Workload Needs 3 Characteris5c Descrip5on Comment Processor Intel I vy B ridge (Phase 1 : S andy B ridge) Fast, c uFng---edge, c ommodity processor Node Dual---socket, 6 4 G B 1 866 M Hz m emory Large m emory p er n ode Excellent m emory b andwidth Interconnect Cray A ries, d ragonfly t opology Excellent l atency & b andwidth Excellent s caling Adap0ve r ou0ng e ases c onges0on Storage 6.48 PB 140 G B/sec I /O b andwidth, 3 file s ystems Large, d edicated s cratch s torage High b andwidth; b e^er m etadata Edison - Cray XC30 Phase 1 [Phase 2] * 4 [TBA] GB memory per core for applica0ons * 1.6 / 6 .4 P

83

NERSC Edison Phase I Hours Used Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison Phase I Hours Used Edison Phase I Hours Used Edison Phase I Hours Used Edison Usage Chart Edison Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 06/23/2013 0.226 88.6 06/22/2013 0.239 93.9 06/21/2013 0.248 97.1 06/20/2013 0.240 94.0 06/19/2013 0.233 91.3 06/18/2013 0.245 96.0 06/17/2013 0.251 98.4 06/16/2013 0.243 95.3 06/15/2013 0.245 95.9 06/14/2013 0.246 96.5 06/13/2013 0.240 94.1 06/12/2013 0.128 50.4 06/11/2013 0.215 84.5 06/10/2013 0.225 88.4 06/09/2013 0.228 89.6 06/08/2013 0.225 88.3 06/07/2013 0.121 47.5 06/06/2013 0.223 87.4 06/05/2013 0.250 98.0 06/04/2013 0.234 91.6 06/03/2013 0.218 85.5 06/02/2013 0.246 96.4 06/01/2013 0.230 90.0 05/31/2013 0.215 84.5 05/30/2013 0.212 83.1 05/29/2013 0.223 87.3 05/28/2013 0.237 93.0 05/27/2013 0.226 88.5 05/26/2013 0.229 89.9

84

Con Edison Commercial and Industrial Energy Efficiency Program  

E-Print Network [OSTI]

? Con Edison C&I Energy Efficiency Team ? Program Management and Account Executives ? Lockheed Martin Team ? Marketing, Operations, Engineering and Administration ? Market Partner Network ? Con Edison Customers 6 C&I Program: Three Major..., energy consultants, and other suppliers of energy efficient equipment and services ? Market Partners assist Con Edison customers with applying for incentives, supporting their application process and providing solutions to energy problems...

Pospisil, D.

2011-01-01T23:59:59.000Z

85

EA-157-A Consolidated Edison Company of New York, Inc | Department...  

Broader source: Energy.gov (indexed) [DOE]

7-A Consolidated Edison Company of New York, Inc EA-157-A Consolidated Edison Company of New York, Inc Order authorizing Consolidated Edison Company of New York, Inc to export...

86

SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

Kroposki, B.

2012-09-01T23:59:59.000Z

87

Edison Revisited: Should we use DC Circuits for Lighting in Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison Revisited: Should we use DC Circuits for Lighting in Commercial Edison Revisited: Should we use DC Circuits for Lighting in Commercial Buildings? Speaker(s): Brinda Thomas Date: March 7, 2012 - 12:30pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar summarizes work from a forthcoming Energy Policy paper and thoughts on future work to understand the economics of DC building circuits. We examined the economic feasibility of a general application of DC building circuits to operate commercial lighting systems. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. We find that there are limited life-cycle ownership cost and capital cost benefits of DC

88

Edison SpA | Open Energy Information  

Open Energy Info (EERE)

SpA SpA Jump to: navigation, search Name Edison SpA Place Milan, Italy Zip 20121 Sector Hydro, Wind energy Product Independent power producer with approximately 9,300MW of hydro, fossil fuel and wind generation assets. Coordinates 45.468945°, 9.18103° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.468945,"lon":9.18103,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Commonwealth Edison Co | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Commonwealth Edison Co Place Illinois Service Territory Illinois Website www.comed.com/Pages/defau Green Button Reference Page www.whitehouse.gov/admini Green Button Committed Yes Utility Id 4110 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 Residential

90

Southern California Edison Co | Open Energy Information  

Open Energy Info (EERE)

Co Co (Redirected from SCE) Jump to: navigation, search Name Southern California Edison Co Place California Service Territory California Website www.sce.com Green Button Landing Page www.sce.com/wps/portal/ho Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 17609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2]

91

FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Potomac Edison) - Residential Energy Efficiency Rebate Potomac Edison) - Residential Energy Efficiency Rebate Program FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Room AC/Room AC Recycling: Limit 3 All Other Appliances: Limit 1 per household Home Performance Programs: 15% of cost for insulation Program Info Expiration Date 12/31/2014 State Maryland Program Type Utility Rebate Program Rebate Amount Refrigerator-Freezers: Up to $150 Freezers: $75 Room AC: $25 Clothes Washer: Up to $100

92

Phase-1 of NERSC's Cray Edison System Has Arrived  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase-1 of NERSC's Cray Edison System Has Arrived Phase-1 of NERSC's Cray Edison System Has Arrived November 28, 2012 by Francesca Verdier (0 Comments) Phase-1 of the new Edison system, a Cray XC30 (Cascade), arrived at NERSC on November 27. The system will be available to users in 2013; early user access is targeted for February. See Edison Overview. Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet. RSS feed for comments on this page | RSS feed for all comments User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013

93

FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Potomac Edison) - Municipal and Street Lighting FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Maryland Program Type Utility Rebate Program Rebate Amount '''Street Lighting'''br/> High Pressure Sodium Fixtures: $10 - $50/unit LED/Induction Fixtures: $50 '''Traffic/Pedestrian Signals''' Lamp/Signal/Arrows: $35/unit Provider FirstEnergy (Potomac Edison) FirstEnergy offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient fixtures. The Municipal Lighting Incentive Program offers

94

Consolidated Edison Co-NY Inc | Open Energy Information  

Open Energy Info (EERE)

Consolidated Edison Co-NY Inc Consolidated Edison Co-NY Inc (Redirected from ConEdison) Jump to: navigation, search Name Consolidated Edison Co-NY Inc Place New York, New York Service Territory New York Website www.coned.com Green Button Landing Page www.coned.com/customercen Green Button Reference Page www.whitehouse.gov/blog/2 Green Button Implemented Yes Utility Id 4226 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

95

Consolidated Edison Sol Inc (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Consolidated Edison Sol Inc Place: Connecticut References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 4191 This article is a stub. You...

96

SunEdison First Reserve JV | Open Energy Information  

Open Energy Info (EERE)

JV Sector: Solar Product: US-based joint venture that plans to acquire and develop solar projects in the US, Italy, Spain and Canada. References: SunEdison & First Reserve...

97

The Potomac Edison Co | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania Pennsylvania Utility Id 15263 Utility Location Yes Ownership I NERC Location RFC NERC NPCC Yes NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-8 (Residential Service) Residential R Residential S-4 (Seasonal Residential) Residential Average Rates No Rates Available The following table contains monthly sales and revenue data for The Potomac Edison Co (Maryland). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

98

The Potomac Edison Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

Potomac Edison Co Potomac Edison Co Place West Virginia Utility Id 15263 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E (General Service) Commercial G (General Service) Commercial PP (Large Primary) Commercial R (Residential) Residential Average Rates Residential: $0.0923/kWh Commercial: $0.0807/kWh Industrial: $0.0659/kWh The following table contains monthly sales and revenue data for The Potomac Edison Co (West Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

99

Edison, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edison, New Jersey: Energy Resources Edison, New Jersey: Energy Resources (Redirected from Edison, NJ) Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 40.5187154°, -74.4120953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5187154,"lon":-74.4120953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Detroit Edison Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Detroit Edison Company Detroit Edison Company Country United States Headquarters Location Detroit, Michigan Recovery Act Funding $83,828,878.00 Total Project Value $167,657,756.00 Coverage Area Coverage Map: Detroit Edison Company Smart Grid Project Coordinates 42.331427°, -83.0457538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Edison Material Technology Center EMTEC | Open Energy Information  

Open Energy Info (EERE)

Edison Material Technology Center EMTEC Edison Material Technology Center EMTEC Jump to: navigation, search Name Edison Material Technology Center (EMTEC) Place Dayton, Ohio Zip 45420 Product String representation "A not-for-profi ... oratory (AFRL)." is too long. Coordinates 44.87672°, -107.262744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.87672,"lon":-107.262744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

VIDEO: Who Was the Better Inventor, Tesla or Edison? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

VIDEO: Who Was the Better Inventor, Tesla or Edison? VIDEO: Who Was the Better Inventor, Tesla or Edison? VIDEO: Who Was the Better Inventor, Tesla or Edison? November 20, 2013 - 1:36pm Addthis "Who was the better inventor, Edison or Tesla, and why?" In this video, we explore the famous rivalry between Thomas Edison and Nikola Tesla. | Video by Matty Greene, Energy Department. Matty Greene Matty Greene Videographer As Edison vs. Tesla week heats up at the Energy Department, we're exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. For our latest video, we asked everyday Americans the question: "Who was the better inventor, Edison or Tesla, and why?" We also interviewed Energy Department experts, including Kathleen Hogan, Deputy Assistant

103

Calico Energy Services and Commonwealth Edison: SPP Success Story | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calico Energy Services and Commonwealth Edison: SPP Success Story Calico Energy Services and Commonwealth Edison: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

104

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

18 18 Table A8. Electricity supply, disposition, prices, and emissions (billion kilowatthours, unless otherwise noted) Supply, disposition, prices, and emissions Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Generation by fuel type Electric power sector 1 Power only 2 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 1799 1560 1674 1779 1815 1857 0.1% Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 32 26 27 28 28 29 -0.3% Natural gas 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 723 776 906 876 854 970 1068 1.3% Nuclear power . . . . . . . . . . . . . . . . . . . . . . . . 799 807 830 887 917 913 894 0.4% Pumped storage/other 4 . . . . . . . . . . . . . . . . . . 2 2 2 2 2 2 2 -1.2% Renewable sources 5 . . . . . . . . . . . . . . . . . . . . 384 390 494 544 586 605 652 2.1% Distributed generation (natural gas) . . . . .

105

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Electricity trade Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Interregional electricity trade Gross domestic sales Firm power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.1 237.5 139.1 104.4 47.1 24.2 24.2 -8.7% Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.9 138.0 202.7 208.7 246.8 251.5 220.3 1.9% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.0 375.5 341.8 313.1 293.9 275.7 244.5 -1.7% Gross domestic sales (million 2010 dollars) Firm power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13923.7 14244.9 8341.5 6259.9 2824.5 1450.4 1450.4 -8.7% Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9065.6 6653.5 8081.5 11012.9 14763.2 14164.9 13329.6 2.8% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22989.2

106

Workplace Charging Challenge Partner: Southern California Edison...  

Broader source: Energy.gov (indexed) [DOE]

of determining the need for PEV charging at the workplace and the prospect for demand response application. Grey plug-in electric vehicle at charging station. Additional...

107

MagLab - Electricity Meter Tutorial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

years later, Thomas Edison developed a model using electrolysis to measure electricity usage; a set-up similar to the one demonstrated in our tutorial on the simple electrical...

108

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table A9. Electricity generating capacity (gigawatts) Net summer capacity 1 Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Electric power sector 2 Power only 3 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305.9 308.1 288.9 286.2 285.6 285.6 285.8 -0.3% Oil and natural gas steam 4 . . . . . . . . . . . . . . . 109.1 107.4 97.2 89.9 89.0 87.9 86.7 -0.9% Combined cycle . . . . . . . . . . . . . . . . . . . . . . . . 167.7 171.7 186.5 187.2 194.5 214.1 241.5 1.4% Combustion turbine/diesel . . . . . . . . . . . . . . . . 133.1 134.8 141.7 145.3 154.9 162.6 167.4 0.9% Nuclear power 5 . . . . . . . . . . . . . . . . . . . . . . . . 101.1 101.2 103.6 111.2 114.7 114.2 112.0 0.4% Pumped storage . . . . . . . . . . . . . . . . . . . . . . . 22.2 22.2 22.2 22.2 22.2 22.2 22.2 0.0% Fuel cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7% Renewable sources

109

Edison - A New Cray Supercomputer Advances Discovery at NERSC  

ScienceCinema (OSTI)

When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.

Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie

2014-06-06T23:59:59.000Z

110

Comments of the Edison Electric Institute Quadrennial Energy...  

Broader source: Energy.gov (indexed) [DOE]

for implementing the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act amongst and within federal agencies add to the difficulty in building new...

111

Rotational Programs General Electric Operations Management Leadership Program, Edison Engineering  

E-Print Network [OSTI]

://nestlepurinacareers.com/CollegeStudents/ManagementTraineeOpportunities.aspx Praxair Commercial Leadership Development Program http://www.praxair.com/praxair.nsf/0/0AC4813647AD

112

Edison vs. Tesla: The Battle of the Energy Inventors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Edison vs. Tesla: The Battle of the Energy Inventors Edison vs. Tesla: The Battle of the Energy Inventors Edison vs. Tesla: The Battle of the Energy Inventors November 21, 2013 - 2:36pm Addthis Our panel of experts answers your questions about two of the greatest energy inventors, Thomas Edison and Nikola Tesla. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Who was the better inventor: Thomas Edison or Nikola Tesla? Vote now for your favorite energy inventor. Join the conversation on Twitter using #EdisonvsTesla. Editor's Note: Thanks to everyone who participated in our lively discussion about Thomas Edison and Nikola Tesla! Our panel of experts answered your questions on everything from alternating vs. direct current and how we are wirelessly transmitting energy today to Tesla's heroes and whether Edison

113

Edison vs. Tesla: The Battle of the Energy Inventors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Edison vs. Tesla: The Battle of the Energy Inventors Edison vs. Tesla: The Battle of the Energy Inventors Edison vs. Tesla: The Battle of the Energy Inventors November 21, 2013 - 2:36pm Addthis Our panel of experts answers your questions about two of the greatest energy inventors, Thomas Edison and Nikola Tesla. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Who was the better inventor: Thomas Edison or Nikola Tesla? Vote now for your favorite energy inventor. Join the conversation on Twitter using #EdisonvsTesla. Editor's Note: Thanks to everyone who participated in our lively discussion about Thomas Edison and Nikola Tesla! Our panel of experts answered your questions on everything from alternating vs. direct current and how we are wirelessly transmitting energy today to Tesla's heroes and whether Edison

114

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise noted) Sector and source Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Residential Liquefied petroleum gases . . . . . . . . . . . . . . . 24.84 27.02 30.64 31.19 32.33 33.25 34.55 1.0% Distillate fuel oil . . . . . . . . . . . . . . . . . . . . . . . . 18.35 21.21 27.17 28.78 30.17 31.53 33.11 1.8% Natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.95 11.08 10.28 11.06 12.11 12.66 13.86 0.9% Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.01 33.69 33.22 32.46 32.31 31.76 32.47 -0.1% Commercial Liquefied petroleum gases . . . . . . . . . . . . . . . 21.76 23.52 27.36 27.90 29.02 29.93 31.21 1.1% Distillate fuel oil . . . . . . . . . . . . . . . . . . . . . . . . 16.16 20.77 23.87 25.39 26.87 28.31 29.52 1.4% Residual fuel oil . . . . . . . . . . . . . . . . . . . . . . . . 13.66

115

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

1 1 Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual Growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Key indicators Total floorspace (billion square feet) Surviving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78.0 79.3 82.4 87.1 91.9 96.2 100.7 1.0% New additions . . . . . . . . . . . . . . . . . . . . . . . . 2.3 1.8 1.7 2.1 2.0 2.0 2.3 1.0% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80.3 81.1 84.1 89.1 93.9 98.2 103.0 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption . . . . . . . . . . . 106.0 107.3 105.0 103.2 101.3 101.2 100.3 -0.3% Electricity related losses . . . . . . . . . . . . . . . . 117.0 117.3 111.2 111.7 112.3 111.9 111.1 -0.2% Total energy consumption . . . .

116

A RAM (Reliability Availability Maintainability) analysis of Consolidated Edison's Gowanus and Narrows gas turbine power plants  

SciTech Connect (OSTI)

A methodology is presented which accurately assesses the ability of gas turbine generating stations to perform their intended function (reliability) while operating in a peaking duty mode. The developed methodology alloys the RAM modeler to calculate the probability that a peaking unit will produce the energy demanded and in turn calculate the total energy lost during a given time period due to unavailability of individual components. The methodology was applied to Consolidated Edison's Narrows site which has 16 barge-mounted General Electric Frame 5 gas turbines operating under a peaking duty mode. The resulting RAM model was quantified using the Narrows site power demand and failure rate data. The model was also quantified using generic failure data from the Operational Reliability Analysis Program (ORAP) for General Electric Frame 5 peaking gas turbines. A problem description list and counter measures are offered for components contributing more than one percent to gas turbine energy loss. 3 refs., 18 figs., 12 tabs.

Johnson, B.W.; Whitehead, T.J.; Derenthal, P.J. (Science Applications International Corp., Los Altos, CA (USA))

1990-12-01T23:59:59.000Z

117

Consolidated Edison Co-NY Inc | Open Energy Information  

Open Energy Info (EERE)

NY Inc NY Inc Jump to: navigation, search Name Consolidated Edison Co-NY Inc Place New York, New York Service Territory New York Website www.coned.com Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 4226 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration

118

The Detroit Edison Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

The Detroit Edison Company The Detroit Edison Company Country United States Headquarters Location Detroit, Michigan Recovery Act Funding $4,995,271.00 Total Project Value $10,877,258.00 Coordinates 42.331427°, -83.0457538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration Project - Ardalan Kemiab, Southern California Edison  

Broader source: Energy.gov (indexed) [DOE]

Peer Peer Review Meeting Peer Review Meeting Irvine Smart Grid Demonstration (ISGD) ( ) Ed Kamiab Southern California Edison (SCE) 6/8/2012 ISGD Objective SCE' I i S t G id D t ti (ISGD) ill (Insert graphic here) SCE's Irvine Smart Grid Demonstration (ISGD) will demonstrate an integrated, scalable Smart Grid system that includes many of the interlocking pieces of an end- to-end Smart Grid system, from the transmission and distrib tion s stems to cons mer applications s ch as distribution systems to consumer applications such as smart appliances and plug-in electric vehicles. Life-cycle Funding ($K) FY2010 FY2015 1. Energy Smart Customer Devices 2 Year 2020 Distribution System Technical Scope FY2010 - FY2015 $39,612 2. Year 2020 Distribution System 3. Interoperability & Cyber Security 4. Workforce of the Future

120

UESC Success Story: GSA and Consolidated Edison's Strong Partnership Has Many Rewards (Fact Sheet)  

SciTech Connect (OSTI)

Case study outlining energy management projecs implemented at the General Services Administration's Ted Weiss Federal Building through utility partnerships with Con Edison.

Not Available

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and engineers -- pioneered improvements to a variety of inventions, including the incandescent light bulb. 6. Edison left a profound impact on the nation's energy sector. Beyond...

122

Steam Men, Edisons, Connecticut Yankees: Technocracy and Imperial Identity in Nineteenth-Century American Fiction  

E-Print Network [OSTI]

STEAM MEN, EDISONS, CONNECTICUT YANKEES: TECHNOCRACY AND IMPERIAL IDENTITY IN NINETEENTH-CENTURY AMERICAN FICTION By Copyright 2010 Nathaniel Williams Ph.D., University of Kansas, 2010 Submitted to the Department of English... version of the following dissertation: STEAM MEN, EDISONS, CONNECTICUT YANKEES: TECHNOCRACY AND IMPERIAL IDENTITY IN NINETEENTH-CENTURY AMERICAN FICTION Committee: ______________________ Chairperson, Philip Barnard...

Williams, Nathaniel Langdon

2010-12-31T23:59:59.000Z

123

Joint comments of consumers energy company and the detriot edison company  

Broader source: Energy.gov (indexed) [DOE]

comments of consumers energy company and the detriot edison comments of consumers energy company and the detriot edison company on notice of proposed amendment. FE Docket No. 99-1 Joint comments of consumers energy company and the detriot edison company on notice of proposed amendment. FE Docket No. 99-1 Pursuant to the department of energy's notice of proposed amendment to presidential permits and export authorizations and delegation and assignment to the federal energy regulatory commission, announced in the federal register on July 27, 1999, Consumers Energy Company and The Detriot Edison Company hereby submit the following comments. Joint comments of consumers energy company and the detriot edison company on notice of proposed amendment. FE Docket No. 99-1 More Documents & Publications Motion to intervene of Consumers Energy Company. FE Docket No. 99-1

124

Consolidated Edison Company of New York, Inc. Smart Grid Demonstration  

Open Energy Info (EERE)

Demonstration Demonstration Project Jump to: navigation, search Project Lead Consolidated Edison Company of New York, Inc. Country United States Headquarters Location New York, New York Recovery Act Funding $45,388,291.00 Total Project Value $92,388,217.00 Coordinates 40.7142691°, -74.0059729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

Southern California Edison Company Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Company Smart Grid Demonstration Project (2) Company Smart Grid Demonstration Project (2) Jump to: navigation, search Project Lead Southern California Edison Company Country United States Headquarters Location Rosemead, California Recovery Act Funding $24,978,264.00 Total Project Value $53,510,209.00 Coordinates 34.0805651°, -118.072846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Southern California Edison High Penetration Photovoltaic Project - Year 1  

SciTech Connect (OSTI)

This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

2011-06-01T23:59:59.000Z

127

Electric Utility Industry Update  

Broader source: Energy.gov (indexed) [DOE]

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

128

FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Mon Power and Potomac Edison) - Business Lighting FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive Program (West Virginia) FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive Program (West Virginia) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Tribal Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State West Virginia Program Type Utility Rebate Program Rebate Amount Lighting Incentive: $0.05/kWh first year savings FirstEnergy's West Virginia's utilities (Mon Power and Potomac Edison) offer the Business Lighting Incentive Program in accordance with the December 30, 2011, order issued by the Public Service Commission (PSC). This program is designed to help meet the state's goals to reduce both

129

DOE - Office of Legacy Management -- Dow-Detroit Edison Project - MI 0-02  

Office of Legacy Management (LM)

Dow-Detroit Edison Project - MI Dow-Detroit Edison Project - MI 0-02 FUSRAP Considered Sites Site: Dow-Detroit Edison Project (MI.0-02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Detroit , Michigan MI.0-02-1 Evaluation Year: 1987 MI.0-02-1 Site Operations: Performed reference design work for a special fast breeder type reactor. MI.0-02-1 Site Disposition: Eliminated - No radioactive material handled at the site MI.0-02-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None MI.0-02-1 Radiological Survey(s): no Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Dow-Detroit Edison Project MI.0-02-1 - DOE Memorandum/Checklist; S.Jones to the File; Subject:

130

FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial Energy Efficiency Program FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Program Info Funding Source MetEdison, Penelec, and Penn Power State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Lighting Incentive: 0.05/kWh saved annually Screw-In CFL Lamp: $1 Hard-Wired CFL Lamp: $15 Lighting Controls: $35/sensor Street Lights (w/ Photocell Sensor): $140 - $800 Outdoor Area Lights (w/ Photocell Sensor): $65 - $100 LED Traffic/Pedestrian Signals: $20 - 30.67/unit

131

Using Hybrid MPI and OpenMP on Hopper and Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aprun -n 16 -N 2 -S 1 -d 12 a.out Please refer to sample batch scripts for running hybrid MPIOpenMP jobs on the Edison Example Batch Scripts webpage. Notice the different...

132

Distributed Energy Alternatives to Electrical  

E-Print Network [OSTI]

Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated Edison.www.gastechnology.org 2 #12;Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated-Battelle for the Department of Energy Subcontract Number: 4000052360 GTI Project Number: 20441 New York State Energy Research

Pennycook, Steve

133

Optimization of Surveys for Detection of Energized Structures to Eliminate Electrical hazards to the Public in New York City  

E-Print Network [OSTI]

There have been many reports of individuals and animals in New York City coming in contact with electrically energized structures caused by stray voltage. The electric utility, Consolidated Edison (Con Ed), has been working hard to drive down...

Wells, Elizabeth

2011-08-04T23:59:59.000Z

134

The Potomac Edison Co (Virginia) | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Utility Id 15263 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0928/kWh Commercial: $0.0857/kWh Industrial: $0.0743/kWh The following table contains monthly sales and revenue data for The Potomac Edison Co (Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 10,588.358 119,183.556 85,989 5,161.598 58,295.964 14,802 5,294.126 70,712.17 1,555 21,044.082 248,191.69 102,346

135

Edison Solar & Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

& Wind Ltd & Wind Ltd Jump to: navigation, search Name Edison Solar & Wind Ltd Address 11 E. Church St, #57 Place Milan, Ohio Zip 44846 Sector Geothermal energy, Solar, Wind energy Product Agriculture; Consulting; Energy provider: power production; Engineering/architectural/design;Installation; Retail product sales and distribution Phone number 419-499-0000 Website http://edisonsolar.net Coordinates 41.297721°, -82.6055097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.297721,"lon":-82.6055097,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Southern California Edison Company (SCEŽ) appreciates this opportunity to provide comments on the DOEs efforts to comply wit  

Broader source: Energy.gov (indexed) [DOE]

8 8 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (OE-20) 1000 Independence Avenue, SW. Washington, DC 20585 Submitted electronically via email to: SEC216h@hg.doe.gov Re: RIN 1901-AB18/Interim Final Rule Comments RIN 1901-AB18/Proposed Rulemaking Comments Comments of Southern California Edison Company Section 216(h) of the Federal Power Act,("FPA") added by the Energy Policy Act of 2005 ("EPAct 2005"), requires that the Department of Energy ("DOE") serve as the lead

137

Edison vs. Tesla: Toasting a Rivalry That Drove Innovation | Department of  

Broader source: Energy.gov (indexed) [DOE]

Edison vs. Tesla: Toasting a Rivalry That Drove Innovation Edison vs. Tesla: Toasting a Rivalry That Drove Innovation Edison vs. Tesla: Toasting a Rivalry That Drove Innovation November 22, 2013 - 2:16pm Addthis 1 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 2 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 3 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 4 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 5 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 6 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 7 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. 8 of 8 Image: Photo illustration by Sarah Gerrity, Energy Department. Marissa Newhall Marissa Newhall Managing Editor, Energy.gov

138

FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland)  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Potomac Edison) - LEED for New Construction Program FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland) FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Design/Construction Review: $5,000 General Incentive: $15,000 Program Info Start Date 05/01/2012 State Maryland Program Type Utility Rebate Program Rebate Amount Design/Construction Review: 50% of total LEED certification fees General Incentive: $0.05/kWh of projected savings FirstEnergy offers incentives for non-residential customers who construct

139

Consolidated Edison Company of New York, Inc. Smart Grid Project | Open  

Open Energy Info (EERE)

Consolidated Edison Company of New York, Inc. Consolidated Edison Company of New York, Inc. Country United States Headquarters Location New York, New York Additional Benefit Places New Jersey Recovery Act Funding $136,170,899.00 Total Project Value $272,341,798.00 Coverage Area Coverage Map: Consolidated Edison Company of New York, Inc. Smart Grid Project Coordinates 40.7142691°, -74.0059729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...  

Open Energy Info (EERE)

is based in New York, New York. Overview Demonstrate a scalable, cost-effective smart grid prototype that promotes cyber security, reduces electricity demand and peak energy...

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

December 20, 2012 December 20, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate (Ret.) VICE CHAIR William Ball Southern Company Linda Blair ITC Holdings Corporation Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council Paul Centolella Analysis Group The Honorable Robert Curry New York State Public Service Commission Clark Gellings Electric Power Research Institute Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power Paul Hudson Stratus Energy Group Val Jensen Commonwealth Edison Susan Kelly American Public Power Association Barry Lawson

142

DOE Solar Decathlon: Schneider Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Photos Videos Product Directory Village Energy Balance Education Sponsors Sustaining - Bosch - Cisco - Edison International - Schneider Electric - Wells Fargo Supporting Contributing Resource Association History FAQs Contacts Schneider Electric Logo of Schneider Electric As a global specialist in energy management with operations in more than 100 countries, Schneider Electric offers integrated solutions across multiple market segments, including leadership positions in utilities and infrastructure, industries and machines manufacturers, nonresidential buildings, data centers and networks, and in residential buildings. Focused on making energy safe, reliable, efficient, productive, and green, the group's 140,000-plus employees achieved sales of $30.8 billion (24 billion

143

Energy Bill Literature Sources  

Broader source: Energy.gov (indexed) [DOE]

Of the "PURPA Standards" in the Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Karl Meeusen Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Karl Meeusen, Graduate Research Associate at The Ohio State University. This manual was sponsored by the American Public Power Association (APPA), the Edison Electric Institute (EEI), the National Association of Regulatory Utility Commissioners (NARUC), and the National

144

Energy Bill Literature Sources  

Broader source: Energy.gov (indexed) [DOE]

of the "PURPA Standards" in the of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Mike Murphy iii Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Mike Murphy, Graduate Research Associate at The Ohio State University. This manual was sponsored by the American Public Power Association (APPA), the Edison Electric Institute (EEI), the National Association of Regulatory Utility Commissioners (NARUC), and the National

145

Using Hybrid MPI and OpenMP on Hopper and Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using OpenMP with MPI Using OpenMP with MPI Using OpenMP with MPI Overview Adding OpenMP threading to an MPI code is an efficient way to run on multicore processors. Since OpenMP uses a global shared address space within each node, using OpenMP may reduce memory usage while adding parallelism. It can also reduce time spent in MPI communications. More details on OpenMP, including the standard itself and tutorials) can be found at the OpenMP Web Site. An interesting advantage of OpenMP is that you can add it incrementally to an existing code. Codes typically use one OpenMP thread per physical compute core. Therefore, the maximum number of threads per node on Edison is 16. However, OpenMP performance can be very dependent on the underlying architecture and on the "mapping" of OpenMP threads to the architecture. On Edison, most likely the

146

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City?  

Broader source: Energy.gov [DOE]

The goal of this study is to evaluate the validity of the following statement: the coincidence of high electric energy prices and peak solar electric photovoltaic (PV) output can improve the economics of PV installations, and can also facilitate the wider use of hourly pricing. The study is focused on Con Edison electric service territory in New York City.

147

app_a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

148

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

149

Transmission access: The new factor in electric utility mergers  

SciTech Connect (OSTI)

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

150

Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison  

SciTech Connect (OSTI)

Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

Kelley, Nathan; Corsaro, Pietro

2004-12-01T23:59:59.000Z

151

Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1  

SciTech Connect (OSTI)

Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

1996-04-01T23:59:59.000Z

152

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

153

Review of radiological surveys of the General Services Administration's Raritan Depot in Edison, New Jersey  

SciTech Connect (OSTI)

This report reviews two recent radiological surveys of the General Services Administration (GSA) Raritan Depot in Edison, New Jersey, that were conducted after somewhat elevated levels of radiation were detected within a depot building. The first survey indicated gamma radiation levels were higher than natural background levels in some buildings and identified the probable source of the radiation as gypsum-like building tiles that contained natural uranium-chain radionuclides at a level 20 times higher than other materials. Elevated levels of radon and radon decay products also were detected in some buildings. A follow-on survey was conducted to confirm the January measurements and to measure radiation levels at other locations: additional buildings at the depot, buildings on the Middlesex County College campus, and a possible outdoor disposal site. EPA measurements established that ceiling material is the primary source of the radiation. Radioisotope analysis of the ceiling tile material from buildings with elevated radiation levels showed the presence of radium-226 at levels of approximately 25 picocuries per gram (pCi/g); this material would thus have to be treated as hazardous waste, should it be removed. This report critiques the methodology and results of the two surveys and recommends further action.

Herzenberg, C.L.; Winter, R.C.

1986-10-01T23:59:59.000Z

154

Determining chemical cleaning requirements for Detroit Edison Belle River Unit No. 1  

SciTech Connect (OSTI)

Detroit Edison's Belle river Power Plant is a two unit coal-fired installation. The drum type boilers are Carolina type and burn pulverized low sulfur western coal. Both units have a normal boiler operating pressure of 2700 psi, are rated at 650 MW net, with a boiler operating volume of 125,000 gallons. The boilers were pre-operationally chemically cleaned during start up in 1984 (Unit 1) and 1985 (Unit 2), to remove millscale and the preservative coatings. Following the vendor recommendation to chemically clean when the tube deposit weight reaches 25 g/ft{sup 2} (as determined by the solvent removal method). However, a review of tube deposit test results form Belle River Unit 1 indicated that the type of deposit found was markedly different in appearance and physical nature than deposits typically found in other Company boilers. This paper reports that based on this difference, and the conservatism of the published limit, a comprehensive evaluation of the need to chemically clean the Belle River boilers was undertaken.

Sonntag, D.J.; Palmer, R.E. (Technical and Engineering Services, Detroit Edison Co. (US))

1992-01-01T23:59:59.000Z

155

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Broader source: Energy.gov (indexed) [DOE]

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

156

NSTAR Electric Company | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Boston Edison Company) (Redirected from Boston Edison Company) Jump to: navigation, search Name NSTAR Electric Company Place Norfolk, Massachusetts Service Territory Massachusetts Website www.nstar.com/residential Green Button Landing Page www.nstar.com/residential Green Button Reference Page www.nstar.com/ss3/nstar_n Green Button Implemented Yes Utility Id 54913 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile.

157

"1. Monroe","Coal","Detroit Edison Co",2944 "2. Donald C Cook","Nuclear","Indiana Michigan Power Co",2069  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "1. Monroe","Coal","Detroit Edison Co",2944 "2. Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 "3. Ludington","Pumped Storage","Consumers Energy Co",1872 "4. Midland Cogeneration Venture","Gas","Midland Cogeneration Venture",1849 "5. Dan E Karn","Coal","Consumers Energy Co",1791 "6. Belle River","Coal","Detroit Edison Co",1518 "7. J H Campbell","Coal","Consumers Energy Co",1451 "8. St Clair","Coal","Detroit Edison Co",1397 "9. Fermi","Nuclear","Detroit Edison Co",1133

158

Zebra Mussel control experiences at Detroit Edison Harbor Beach Power Plant  

SciTech Connect (OSTI)

The Detroit Edison Co. Harbor Beach Power Plant on Lake Huron in Michigan`s thumb and is comprised of one 100 MW coal-fired unit. Zebra mussels first were discovered during a routine inspection of the plant screen house in August 1991. The initial population of 5 mussels/m{sup 2} increased to 650 mussels/m{sup 2} by March 1992. During this eight-month period the plant began to experience problems with zebra mussels clogging small coolers, check valves, and miscellaneous service water connections. Although the mussels had not affected the unit`s availability, it was evident that they soon might if left uncontrolled. A treatment program was devised in 1992 to eliminate the mussels living in the screen house and inside the plant. Targeted in-plant systems included the condenser cooling supply lines, plant service water system, and plant fire fighting system. An oxygen scavenger (sodium sulfate) was used in conjunction with thermal treatment (saturated steam) to asphyxiate and heat the mussels over a several day period. Inspection dives in the screen house before and after treatment as well as subsequent in-plant equipment inspections have revealed the treatment to be successful. Complete mortality was achieved in the screen house and in-plant systems. By April, 1993, the zebra mussel colony had re-established itself in the plant screen house to a level of 400 mussels/m{sup 2}. In October 1993, the colony had grown to 2,600 mussels/m{sup 2}. A second treatment was scheduled and completed on October 18--21, 1993. Thermal treatment was used alone during this treatment episode in which 100% mortality again wax achieved. Test bags, an in-line viewport, and post treatment dive inspections confirmed that the treatment was completely successful. Population monitoring and treatments continue on a regular basis.

Harwood, D.B.; Buda, D.J. [Detroit Edison Co., Harbor Beach, MI (United States)

1994-12-31T23:59:59.000Z

159

Pacific Gas and Electric Company Presentation by Steve Metague  

Broader source: Energy.gov (indexed) [DOE]

Metague Metague Sr. Director, Project Development Pacific Gas & Electric Co. 2012 National Electric Transmission Congestion Study Western Regional Workshop December 13, 2011 - Portland, Oregon California Transmission Planning Group (CTPG) * CTPG is a voluntary organization comprised of all the entities within California responsible for transmission planning: - California Independent System Operator (ISO) - Imperial Irrigation District (IID) - Los Angeles Department of Water and Power (LADWP) - Pacific Gas and Electric (PG&E) - Southern California Edison (SCE) - Southern California Public Power Authority (SCPPA) - San Diego Gas and Electric (SDG&E) - Sacramento Municipal Utility District (SMUD) - Transmission Agency of Northern California (TANC) - Turlock Irrigation District (TID)

160

Top 8 Things You Didn't Know About Thomas Alva Edison | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

served as the catalyst for cost-competitive incandescent lighting. 4. Back when the automobile was first introduced, electric cars outsold their internal combustion counterparts....

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "1. Massachusetts Electric Co","Investor-Owned",12522051,8884116,3167592,470343,"-" "2. NSTAR Electric Company","Investor-Owned",8946038,5484797,2382635,1078606,"-" "3. Constellation NewEnergy, Inc","Other Provider",4767773,"-",3478609,1289164,"-" "4. Strategic Energy LLC","Other Provider",3708146,"-",3708146,"-","-" "5. Consolidated Edison Sol Inc","Other Provider",2891778,1290581,1601197,"-","-" "Total Sales, Top Five Providers",,32835786,15659494,14338179,2838113,"-" "Percent of Total State Sales",,57,73,79,17

162

Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute  

SciTech Connect (OSTI)

Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of {approx}99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed.

MJ Lambert

2005-11-18T23:59:59.000Z

163

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

164

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

Table A7.Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds .... 2,654 2,629 2,870 3,089 3,323 3,532 3,719 1.2% Commercial light trucks 1 ................................. 65 65 80 87 94 102 110 1.8% Freight trucks greater than 10,000 pounds ..... 235 240 323 350 371 401 438 2.1% (billion seat miles available) Air ................................................................... 999 982 1,082 1,131 1,177 1,222 1,274 0.9%

165

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

0. Macroeconomic indicators 0. Macroeconomic indicators (billion 2005 chain-weighted dollars, unless otherwise noted) Indicators Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Real gross domestic product ................................ 13,063 13,299 16,859 18,985 21,355 24,095 27,277 2.5% Components of real gross domestic product Real consumption .................................................. 9,196 9,429 11,528 12,792 14,243 15,941 17,917 2.2% Real investment ..................................................... 1,658 1,744 2,909 3,363 3,914 4,582 5,409 4.0% Real government spending .................................... 2,606 2,524 2,446 2,529 2,659 2,803 2,980 0.6% Real exports........................................................... 1,666

166

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

4. Oil and gas supply 4. Oil and gas supply Production and supply Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Crude oil Lower 48 average wellhead price 1 (2011 dollars per barrel) ...................................... 76.78 96.55 103.49 115.61 129.26 143.31 160.38 1.8% Production (million barrels per day) 2 United States total ............................................... 5.47 5.67 7.47 6.79 6.30 6.26 6.13 0.3% Lower 48 onshore ............................................. 3.21 3.67 5.29 4.99 4.48 4.19 3.97 0.3% Tight oil 3 ......................................................... 0.82 1.22 2.81 2.63 2.19 2.06 2.02 1.7% Carbon dioxide enhanced oil recovery ........... 0.28 0.24 0.29 0.43 0.56 0.65 0.66 3.5%

167

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1% Liquid fuels and other petroleum subtotal ......... 1.14 1.14 1.05 0.98 0.93 0.89 0.86 -1.0%

168

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A5. Commercial sector key indicators and consumption A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Total floorspace (billion square feet) Surviving ............................................................. 79.3 80.2 87.0 91.9 96.2 100.7 106.4 1.0% New additions ..................................................... 1.8 1.5 2.1 2.0 2.0 2.3 2.4 1.6% Total ................................................................. 81.1 81.7 89.1 93.9 98.1 103.0 108.8 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption ........................... 105.6 105.2 100.4 98.1 97.2 95.8 93.8 -0.4%

169

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A2. Energy consumption by sector and source A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1% Liquid fuels and other petroleum subtotal ......... 1.14 1.14 1.05 0.98 0.93 0.89 0.86 -1.0% Natural gas ......................................................... 4.89 4.83 4.62 4.54 4.46 4.34 4.23 -0.5%

170

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

2. Petroleum product prices 2. Petroleum product prices (2011 dollars per gallon, unless otherwise noted) Sector and fuel Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Crude oil spot prices (2011 dollars per barrel) Brent 1 ..................................................................... 81.31 111.26 105.57 117.36 130.47 145.41 162.68 1.3% West Texas Intermediate ....................................... 81.08 94.86 103.57 115.36 128.47 143.41 160.68 1.8% Delivered sector product prices Residential Propane .............................................................. 2.34 2.13 1.98 2.09 2.17 2.25 2.35 0.3% Distillate fuel oil ................................................... 3.02 3.66 3.73 4.03 4.34 4.67 5.07 1.1%

171

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

9. Energy-related carbon dioxide emissions by end use 9. Energy-related carbon dioxide emissions by end use (million metric tons) Sector and end use Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Residential Space heating ........................................................ 285.69 274.74 255.95 247.75 241.43 234.50 224.88 -0.7% Space cooling ........................................................ 162.29 158.49 146.49 159.05 173.02 187.28 194.44 0.7% Water heating ........................................................ 159.50 156.30 155.23 157.27 156.47 154.26 153.31 -0.1% Refrigeration .......................................................... 66.67 63.92 58.33 59.80 62.44 65.23 66.18 0.1% Cooking ................................................................. 32.50 31.97 32.51 33.82 35.31 36.76 37.50 0.6%

172

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A4. Residential sector key indicators and consumption A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4% Mobile homes ..................................................... 6.60 6.54 6.45 6.60 6.75 6.88 7.02 0.2% Total ................................................................. 115.23 116.17 127.52 134.02 140.63 146.96 153.32

173

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

5. Coal supply, disposition, and prices 5. Coal supply, disposition, and prices (million short tons per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Production 1 Appalachia ............................................................. 336 337 288 295 295 289 283 -0.6% Interior ................................................................... 156 171 198 203 212 217 226 1.0% West ...................................................................... 592 588 585 616 646 664 658 0.4% East of the Mississippi ........................................... 446 456 438 447 456 455 453 -0.0% West of the Mississippi .......................................... 638 639 633 666 697 716 714 0.4%

174

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

7. Renewable energy consumption by sector and source 7. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Marketed renewable energy 1 Residential (wood) ............................................... 0.44 0.45 0.44 0.44 0.45 0.45 0.45 0.1% Commercial (biomass) ........................................ 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.0% Industrial 2 ............................................................. 2.32 2.18 2.53 2.67 2.82 3.08 3.65 1.8% Conventional hydroelectric ................................. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0% Municipal waste 3 ................................................. 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.1%

175

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

1. Liquid fuels supply and disposition 1. Liquid fuels supply and disposition (million barrels per day, unless otherwise noted) Supply and disposition Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Crude oil Domestic crude production 1 ................................... 5.47 5.67 7.47 6.79 6.30 6.26 6.13 0.3% Alaska ................................................................. 0.60 0.57 0.49 0.35 0.38 0.35 0.41 -1.1% Lower 48 states .................................................. 4.88 5.10 6.98 6.44 5.92 5.91 5.72 0.4% Net imports ............................................................ 9.17 8.89 6.82 7.05 7.36 7.37 7.57 -0.6% Gross imports ..................................................... 9.21 8.94 6.82 7.05 7.36 7.37 7.57 -0.6%

176

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

3. Natural gas supply, disposition, and prices 3. Natural gas supply, disposition, and prices (trillion cubic feet per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Supply Dry gas production 1 .............................................. 21.33 23.00 26.61 28.59 29.79 31.35 33.14 1.3% Supplemental natural gas 2 .................................... 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.2% Net imports ........................................................... 2.60 1.95 -0.14 -1.58 -2.10 -2.55 -3.55 - - Pipeline 3 ............................................................. 2.24 1.67 0.13 -0.52 -0.67 -1.09 -2.09 - - Liquefied natural gas ......................................... 0.37 0.28 -0.26 -1.06 -1.43 -1.46 -1.46 - -

177

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

waste coal. 2 These values represent the energy obtained from uranium when it is used in light water reactors. The total energy content of uranium is much larger, but alternative...

178

ESS 2012 Peer Review - Advanced Implementation of Community ESS for Grid Support - Haukur Asgeirsson, Detroit Edison  

Broader source: Energy.gov (indexed) [DOE]

Two CES units will be powered using Two CES units will be powered using recycled Electric Vehicle batteries * Benefits: Volt/Var Support, Circuit Load Leveling, Regulation Services (AGC), Renewable Integration * Distributed CES Units serving homes and interconnecting with the larger circuit * Integration of Large Solar and Storage at Monroe County Community College CES Communication Architecture CES Installation Overhead View: Monroe Electric Vehicle integration First DTE Energy Installed CES Unit Overview of DTE Energy CES Project Distributed Resources-SOC Circuit Model (DEW) Distribution Substation Internet (VPN) Internet (SSL) Internet (SSL) CES ICCP SCADA ICCP, Web Services Internet (SSL) Distribution Circuit A123 Systems Energy Storage & PV Internet (SSL) Internet

179

Mr. Lamont Jackson Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

8, 2012 8, 2012 Mr. Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Submitted via email to: Lamont.Jackson@hq.doe.gov Re: Department of Energy - Rapid Response Team for Transmission Request for Information, RRTT-IR-01, 77 Fed. Reg. 11517 (Feb. 27, 2012) Dear Mr. Jackson: Southern California Edison Company submits these comments in response to the Department of Energy's Request for Information concerning the efforts to resolve the issue of "incongruent development timelines" for the siting and permitting of electricity

180

U.S. Department of Energy Electricity Advisory Committee Meeting  

Broader source: Energy.gov (indexed) [DOE]

1, 2012 1, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate William Ball Southern Company Rick Bowen Alcoa Merwin Brown Alcoa Clarke Bruno (Representing Edward Krapels) Anbaric Holdings Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York Public Service Commission José Delgado Clark Gellings Electric Power Research Institute (EPRI) Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Val Jensen Commonwealth Edison Joseph Kelliher NextEra Energy, Inc. Susan Kelly American Public Power Association

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Department of Energy Electricity Advisory Committee Meeting  

Broader source: Energy.gov (indexed) [DOE]

2, 2012 2, 2012 Minutes EAC Members in Attendance Richard Cowart, Chair Regulatory Assistance Project Irwin Popowsky, Vice-Chair Pennsylvania Consumer Advocate William Ball Southern Company Merwin Brown Alcoa Clarke Bruno (Representing Edward Krapels) Anbaric Holdings Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York Public Service Commission José Delgado Robert Gramlich American Wind Energy Association Michael Heyeck American Electric Power Val Jensen Commonwealth Edison Joseph Kelliher NextEra Energy, Inc. Susan Kelly American Public Power Association Barry Lawson National Rural Electric Cooperative

182

Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective  

SciTech Connect (OSTI)

DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

Kelly, J.

2003-10-10T23:59:59.000Z

183

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

184

Electrical and Electronics Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33This 33This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). Electrical and Electronics Technical Team Roadmap June 2013 HV Battery 120/220 V AC On-Board Battery Charger Bi-directional DC/DC Converter Electric Motor Inverter DC-DC

185

Edison Revisited: Should we use DC circuits for lighting in commercial buildings?  

Science Journals Connector (OSTI)

We examine the economic feasibility of using dedicated DC circuits to operate lighting in commercial buildings. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. Using DOE performance targets for \\{LEDs\\} and solar PV, we find that by 2012 \\{LEDs\\} have the lowest levelized annualized cost (LAC). If a DC voltage standard were developed, so that each LED fixture's driver could be eliminated, \\{LACs\\} could decrease, on average, by 5% compared to AC \\{LEDs\\} with a driver in each fixture. DC circuits in grid-connected PV-powered LED lighting systems can lower the total unsubsidized capital costs by 421% and \\{LACs\\} by 221% compared to AC grid-connected PV LEDs. Grid-connected PV \\{LEDs\\} may match the LAC of grid-powered fluorescents by 2013. This outcome depends more on manufacturers' ability to produce \\{LEDs\\} that follow DOE's lamp production cost and efficacy targets, than on reducing power electronics costs for DC building circuits and voltage standardization. Further work is needed to better understand potential safety risks with DC distribution and to remove design, installation, permitting, and regulatory barriers.

Brinda A. Thomas; Ins L. Azevedo; Granger Morgan

2012-01-01T23:59:59.000Z

186

ConEd (Electric) - Residential Energy Efficiency Incentives Program |  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Central A/C: $400 or $600 Central Air Source Heat Pump: $400 or $600 Electric Heat Pump Water Heater: $400 Energy Star Thermostats: up to $25 Duct Sealing: $100/hr Air Sealing: $75/hr Refrigerator/Freezer Recycling: $50 Con Edison is offering the Residential HVAC Electric Rebate Program.

187

Electric industry restructuring in Michigan  

SciTech Connect (OSTI)

This Staff Report suggests a modified approach designed to significantly increase the ability of all customer classes to participate and share in the benefits of competition. The concepts discussed in this Report are designed to ensure that rates are not increased for any customers as a result of restructuring and, where possible, rates are reduced through the use of rate reduction bonds. The program outlined in this Report is designed to fulfill five objectives. First, it protects the interests of smaller customers, including low-income residential customers and senior citizens. Second, the program provides opportunities to strengthen Michigan`s business community. Third, the program includes funding for employee retraining to assure that utility employees are not negatively impacted by restructuring. Fourth, the phase-in program provides the utilities with the opportunity to prepare for competition so that they remain Michigan-based companies. Fifth, the program is designed to foster competition upon a level playing field. The Commission has jurisdiction over all investor electric utilities and rural electric cooperatives in Michigan. Municipal electric utilities are not subject to Commission jurisdiction. Although this Report discusses details regarding Consumers Power and Detroit Edison, its concepts and principles are intended to apply to all jurisdictional electric utilities.

NONE

1997-12-31T23:59:59.000Z

188

UNITED STATES DEPARTMENT OF ENERGY ELECTRICITY ADVISORY COMMITTEE MEETING  

Broader source: Energy.gov (indexed) [DOE]

Monday, June 11, 2012 Monday, June 11, 2012 PARTICIPANTS: RICHARD COWART, Chair Regulatory Assistance Project IRWIN POPOWSKY, Vice Chair Pennsylvania Consumer Advocate WILLIAM BALL Southern Company MERWIN BROWN California Institute for Energy and Environment RALPH CAVANAGH Natural Resources Defense Council PAUL CENTOLELLA Public Utilities Commission of Ohio DAVID CRANE NRG Energy, Inc. ROBERT CURRY New York State Public Service Commission JOSE DELGADO American Transmission Company ROBERT GRAMLICH American Wind Energy Association MICHAEL HEYECK American Electric Power VAL JENSEN Commonwealth Edison JOSEPH KELLIHER NextEra Energy, Inc. PARTICIPANTS (CONT'D): SUSAN KELLY

189

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

190

association of companies and the Edison Electric Institute (1953). Their final report cites investigations from 1945 through 1953 and includes correlated information on coil data, heat  

E-Print Network [OSTI]

. The house has passive solar features consisting of south-facing glass with manually operable insulated to determine the heat pump capacity. The heating capacity of the heat pump in use is 34,100 Btu/hr (10 kw) at TEVAP = 35.6 F (2'C) and TCOND = 86.0 F (30°C). The cooling capacity of the heat pump was determined

Oak Ridge National Laboratory

191

Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates  

SciTech Connect (OSTI)

Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

Ong, S.; Denholm, P.

2011-07-01T23:59:59.000Z

192

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect (OSTI)

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

193

Electric vehicles: The case for (and against) incentives  

SciTech Connect (OSTI)

This article, a review of the pros and cons regarding incentives for electric vehicles and utility involvement in EV programs, is based upon research supported by the California Institute for Energy Efficiency. It centers on various regulatory actions in the state and examines the impact on and efforts by Southern Califrnia Edison and their involvement in EV programs. Load impacts and the associated costs are examined, as are rate impacts. One possibility for funding utility-based EV programs would be to impose a tax on `dirty vehicles` and use the revenues to fund a rebate for EVs and other cleaner vehicles. Utility managers and regulators who are reluctant to see higher electric rates from other utility incentives would do well to support this approach as a means to support the sale of cleaner vehicles.

Ford, A.

1996-04-15T23:59:59.000Z

194

CERTS Microgrid Laboratory Test Bed - PIER Final Project Report  

E-Print Network [OSTI]

and Ecological Services, San Ramon, California; 2. Southern California Edison (SCE) Electric Vehicleand Ecological Services, San Ramon, California; 2. Southern California Edison (SCE) Electric Vehicle

Eto, Joseph H.

2008-01-01T23:59:59.000Z

195

Critical Issues Facing Federal Customers and the Electric Industry: A Call to Partnering  

Broader source: Energy.gov (indexed) [DOE]

Issues Facing Federal Issues Facing Federal Critical Issues Facing Federal Customers and the Electric Industry: Customers and the Electric Industry: A Call to Partnering A Call to Partnering Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG November 28, 2007 Overview  State of the industry  Review recent Energy Infrastructure Picture State of the Industry State of the Industry The Challenge of Balancing Core Drivers The Challenge of Balancing Core Drivers Rising Costs Rising Costs and Prices and Prices Climate Climate Change Change Energy Energy Efficiency Efficiency Enormous Enormous CapEx CapEx No longer a declining cost industry Fuel, infrastructure components, global industrialization and competition $ 750 Billion  $ 1.2 Trillion Exceeds current capitalization

196

Microsoft Word - EIA - Electricity 2014 - EEI comments 5-6-13.doc  

Gasoline and Diesel Fuel Update (EIA)

May 6, 2013 May 6, 2013 Ms. Rebecca Peterson U. S. Energy Information Administration U. S. Department of Energy Forrestal Building, Mail Stop EI-23 1000 Independence Avenue SW Washington, DC 20585 Submitted by e-mail to ERS2014@eia.gov Re: EIA electricity survey forms - 2014 triennial review - Comments requested at 78 Fed. Reg. 14521 (Mar. 6, 2013) Dear Ms. Peterson: The Edison Electric Institute (EEI) is filing these comments in response to the above- referenced Federal Register notice. In the notice, the Energy Information Administration (EIA) has proposed to renew its existing electricity survey forms EIA- 63B, 411, 826, 860, 860M, 861, and 923 with changes, and EIA has proposed the three- year authorization of a new form EIA-930. EEI Has a Direct Interest in This Proceeding

197

ConEd (Gas and Electric) - Small Business Direct Install Program (New York)  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Gas and Electric) - Small Business Direct Install Program ConEd (Gas and Electric) - Small Business Direct Install Program (New York) ConEd (Gas and Electric) - Small Business Direct Install Program (New York) < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Program Info State New York Program Type Utility Rebate Program Rebate Amount Energy Survey: Free Programmable Thermostat: Free Equipment Upgrades Identified in Energy Survey: Con Edison will pay up to 70% of the remaining cost directly to the contractor ConEd is providing free energy surveys to its small business customers. The survey will take 30 to 90 minutes and efficiency opportunities and associated costs will be presented on the spot. If the customer agrees to

198

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

199

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

200

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Early Edison Users Deliver Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to interpreting the data from many upcoming observational missions, including the Dark Energy Spectroscopic Instrument (DESI). The work supports the Dark Universe project, part of...

202

Training Event: Performance on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BerkeleyGW2014 Performance Tuning and Functional Debugging for Xeon Phi New User Training: 10302014 OpenMP and Vectorization Cray Reveal Tool New User Training User Forum on...

203

Early Edison Users Deliver Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trebotich is also working on extending his simulations to shale gas extraction using hydraulic fracturing. The code framework could also be used for other energy applications,...

204

Training Event: Performance on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Hadoop for HPC Applications Using Hadoop for HPC Applications Getting Started at NERSC NERSC Intro for Environmental Energy Technologies Getting Started at NERSC Navigating NERSC File Systems Chemistry and Material Sciences Applications JGI Intro to NERSC Data Transfer and Archiving Using the Cray XE6 Joint NERSC/OLCF/NICS Cray XT5 Workshop NERSC User Group Training Remote Setup Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2

205

Electricity Markets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

206

Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

207

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

208

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

209

Electrical hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

210

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network [OSTI]

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

211

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

heat rate estimated by the Edison Electric Institue for 1975). In addition, 9% electrical transmission-distribution losses

Cairns, E.L.

2011-01-01T23:59:59.000Z

212

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

heat rate estimated by the Edison Electric Institue for 1975). In addition, 9% electrical transmission-distribution losses

Cairns, Elton J.

2011-01-01T23:59:59.000Z

213

Electric machine  

DOE Patents [OSTI]

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

214

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

1,"Commonwealth Edison Co","Investor-Owned",31650966,21724278,9244133,682555,0 2,"Constellation NewEnergy, Inc","Investor-Owned",23069067,628346,18074330,3584569,781822...

215

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

216

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

217

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydroelectric Power Station After Thomas Edison introduced the incandescent light bulb in the United States, he needed a way to provide power to a growing customer base. He built...

218

Electricity 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity > Soliciting comments on EIA-111 Electricity > Soliciting comments on EIA-111 EIA announces the proposal of Form EIA-111, Quarterly Electricity Imports and Exports Report Released: August 15, 2011 Background On August 11, 2011, a Federal Register Notice was published soliciting comments for the new EIA-111 survey form. The EIA-111, Quarterly Electricity Imports and Exports Report will replace the OE-781R, Monthly Electricity Imports and Exports Report. The OE-781R has been suspended and will be terminated upon the approval of the EIA-111. The OE-781R administered from July 2010 through May 2011, proved complex and confusing for the repondents. As a result, the EIA-111 was developed to more effectively and efficiently collect more accurate and meaningful data. The Paperwork Reduction Act (PRA) of 1995 requires that each Federal agency obtains approval from the Office of Management and Budget (OMB) before undertaking to collect information from ten or more persons, or continuing a collection for which the OMB approval and the OMB control number are about to expire. The approval process, which is popularly known as the "OMB clearance process," is extensive. It requires two Federal Register notices and a detailed application ("supporting statement") to OMB. The first Federal Register Notice was published on August 11, 2011. EIA is prepared to address the comments submitted by each individual.

219

ELECTRIC RAILWAYS  

Science Journals Connector (OSTI)

...candidate. It is safe to say that the...education in the fundamental facts and methods...Steam-engine, boilers and dynamos...road in successful operation upon or-dinary...been in successful operation for several years...now in successful operation electric rail-ways...

W. D. Marks

1886-04-09T23:59:59.000Z

220

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

222

electrical, engineering  

E-Print Network [OSTI]

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

223

LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS  

E-Print Network [OSTI]

Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue to investigate the abstract concept of electric field. If you know the electric field at a point in space, you). With this simulation you can construct a complicated charge configuration and read out the resulting electric field

Minnesota, University of

224

Electrical and Computer Engineering Electrical Engineering  

E-Print Network [OSTI]

Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

Heller, Barbara

225

Demonstration and Evaluation of U.S.P.S. ECRVs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration and Evaluation of U.S. Postal Service Electric Carrier Route Vehicles AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR06 Final Report, December 2001 Electric Vehicle Technical Center An ISO 9001 Certified Facility Prepared by: Michel Wehrey Juan C. Argueta Fabian Sanchez Julie M. Phung Final Report Southern California Edison December 2001 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any

226

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

227

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Key indicators Households (millions) Single-family . . . . . . . . . . . . . . . . . . . . . . . . . 81.73 82.11 85.51 89.96 94.22 98.49 102.53 0.9% Multifamily . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.41 25.52 27.00 29.38 31.47 33.61 35.76 1.4% Mobile homes . . . . . . . . . . . . . . . . . . . . . . . . 6.65 6.56 6.28 6.66 6.99 7.20 7.31 0.4% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.78 114.19 118.79 126.00 132.69 139.30 145.60 1.0% Average house square footage . . . . . . . . . . 1646 1653 1683 1704 1724 1743 1760 0.3% Energy intensity (million Btu per household) Delivered energy consumption . . . . . . . . . . . 97.8 102.1 95.1

228

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Energy consumption Residential Liquefied petroleum gases . . . . . . . . . . . . . . 0.51 0.56 0.51 0.50 0.50 0.51 0.51 -0.4% Kerosene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03 0.03 0.02 0.02 0.02 0.02 0.02 -1.7% Distillate fuel oil . . . . . . . . . . . . . . . . . . . . . . . 0.60 0.63 0.55 0.48 0.43 0.38 0.35 -2.3% Liquid fuels and other petroleum subtotal . . 1.14 1.22 1.08 1.01 0.95 0.91 0.87 -1.3% Natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . 4.90 5.06 4.99 4.95 4.88 4.84 4.76 -0.2% Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -1.1% Renewable energy 1 . . . . . . . . . . . . . . . . . . . . 0.43 0.42 0.43 0.43 0.43 0.44 0.44

229

Microsoft Word - S08266_App_A-3.doc  

Office of Legacy Management (LM)

3 3 2011 Amphibian Index of Biotic Integrity Data Summaries This page intentionally left blank U.S. Department of Energy Fernald Preserve, Ohio, Wetland Mitigation Monitoring Report Appendix A-3, 2011 Amphibian Index of Biotic Integrity Data Summaries Doc. No. S08266 May 2012 Page A-3-1 Wetland Mitigation Monitoring 2011 Dates of Sampling Events 15-Mar-11 12-May-11 Amphibian Funnel Trap Data Summary 17-Jun-11 BAPW2 Species Common Name CofC Count Total # x CofC Lithobates catesbeiana American Bull Frog 2 3 6 Unknown tadpoles Unknown 1 2 2 5 8 A= Total # of Individual Amphibians 5 B= Total # of Individuals of Sensitive Species (CofC = 6-10) 0 C= Total # of Individuals of Tolerant Species (CofC = 1-3) 5 D= Σ Total # of Individuals x CofC 8

230

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table A7. Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds 2589 2654 2716 2933 3156 3384 3601 1.2% Commercial light trucks 1 . . . . . . . . . . . . . . 61 64 71 79 83 88 93 1.5% Freight trucks greater than 10,000 pounds 229 236 279 307 319 330 344 1.5% (billion seat miles available) Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 999 1028 1075 1120 1164 1208 0.8% (billion ton miles traveled) Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532 1578 1539 1738 1828 1871 1921 0.8% Domestic shipping . . . . . . . . . . . . . . . . . . . 477 526 557 597

231

L:\main\pkc\aeotabs\aeo2008\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Growth 2006-2030 (percent) 2005 2006 2010 2015 2020 2025 2030 Production Crude Oil and Lease Condensate . . . . . . . . . . . . 10.99 10.80 12.71 13.05 13.76 12.89 12.12 0.5% Natural Gas Plant Liquids . . . . . . . . . . . . . . . . . . 2.33 2.36 2.21 2.22 2.27 2.24 2.18 -0.3% Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 18.60 19.04 19.61 19.91 20.28 20.24 20.41 0.3% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.19 23.79 23.31 24.33 25.61 28.43 31.16 1.1% Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.16 8.21 8.31 8.41 9.15 9.68 9.89 0.8% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.70 2.89 2.92 3.00 3.00 3.00 3.00 0.2% Biomass 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.83 2.97 4.11 4.44

232

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Production Crude oil and lease condensate . . . . . . . . . . . . . 11.35 11.59 13.46 14.46 13.80 13.69 13.15 0.5% Natural gas plant liquids . . . . . . . . . . . . . . . . . . . 2.57 2.78 3.30 3.63 3.68 3.71 3.65 1.1% Dry natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . 21.09 22.10 24.23 25.81 26.63 27.43 28.51 1.0% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.63 22.08 20.50 21.18 22.51 22.78 23.51 0.3% Nuclear / uranium 2 . . . . . . . . . . . . . . . . . . . . . . . . 8.36 8.44 8.68 9.28 9.60 9.55 9.35 0.4% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.67 2.51 2.90 2.94 2.97 3.01 3.06 0.8% Biomass 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.72 4.05

233

Microsoft Word - S08266_App_A-2.doc  

Office of Legacy Management (LM)

2 2 2011 Vegetation Index of Biotic Integrity Results This page intentionally left blank U.S. Department of Energy Fernald Preserve, Ohio, Wetland Mitigation Monitoring Report Appendix A-2, 2011 Vegetation Index of Biotic Integrity Results Doc. No. S08266 May 2012 Page A-2-1 Table A-2-1. BAPW2 Wetland Vegetation Monitoring Data Summary Total Species 34 Native Species 30 Non-Native (Adventive) Species 4 Average CC b 2.78 Species Common Name Type CC b Nativity Wetland Indicator c Relative Cover Alisma subcordatum SOUTHERN WATER- PLANTAIN forb 2 native OBL 0.296% Ambrosia artemisiifolia COMMON RAGWEED forb 0 native FACU 0.075% Ammannia robusta SESSILE TOOTH-CUP forb 7 native OBL 0.296% Andropogon gerardii BIG BLUESTEM grass 5 native FAC 1.035% Asclepias incarnata SWAMP MILKWEED forb 4 native OBL 0.739%

234

Illinois Municipal Electric Agency- Electric Efficiency Program  

Broader source: Energy.gov [DOE]

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

235

Electrical receptacle  

DOE Patents [OSTI]

The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

Leong, R.

1993-06-22T23:59:59.000Z

236

QER Public Meeting in Cheyenne, WY: Infrastructure Siting | Department...  

Office of Environmental Management (EM)

Edison Electric Institute - Statement Brian Jeffries, Executive Director, Wyoming Pipeline Authority - Statement Brian Jeffries, Executive Director, Wyoming Pipeline Authority...

237

ELECTRICAL ENGINEERING EECS Department  

E-Print Network [OSTI]

ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

238

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael Grninger; Dipl.-Ing. Felix Horch

2012-02-01T23:59:59.000Z

239

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network [OSTI]

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

240

Electrical Safety  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the Office of Health, Safety and Security and is available to all DOE components and their contractors. 2. Specific comments (recommendations, additions, deletions, and any pertinent data) to enhance this document should be sent to: Patrick Tran

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

242

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho  

E-Print Network [OSTI]

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho Alan G. Jones Dublin Institute version: 18 July, 2012 Revised version: 06 February 2013 Keywords: Moho, electrical Moho, electrical conductivity, electrical resistivity, crustmantle boundary #12;Jones Electric Moho Page 2 Abstract

Jones, Alan G.

243

Edison's Desk Blog | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bisio Vin Smentkowski Jigar Shah Bernardo Cinelli Oliver Astley Ricardo Hernandez Pereira Kristen Brosnan Impact Areas Building Connecting Curing Moving Powering Innovation...

244

Consolidated Edison Sol Inc | Open Energy Information  

Open Energy Info (EERE)

File1a1 EIA Form 861 Data Utility Id 4191 Utility Location Yes Ownership R Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

245

Batch Queues and Scheduling Policies on Edison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Queues and Policies Queues and Scheduling Policies Users submit jobs to a submit queue and wait in line until nodes become available to run a job. NERSC's queue structures are...

246

NREL: Transportation Research - Electric and Plug-In Hybrid Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV...

247

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern Lights Bonners Ferry East End Mutual Heyburn Burley United Electric Albion Raft River Rural Electric Coop. Declo...

248

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Figure 34. Regional electricity cost duration curves in 2010especially focus on electricity costs and grid compositionrelatively higher electricity costs. If electricity demand

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

249

Estimating the Value of Electricity Storage Resources in Electricity...  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

250

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

251

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

252

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

253

ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS  

E-Print Network [OSTI]

. In its Energy Policy, the Scottish Government stated that it is Scotland's ambition to become a worldMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy

Strathclyde, University of

254

Electrical safety guidelines  

SciTech Connect (OSTI)

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

255

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and...

256

Electricity Monthly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

257

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S....

258

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity...

259

User Electrical Equipment Inspections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria In order to be in compliance with NEC, OSHA, and DOE regulations all electronic and electrical equipment at the APS...

260

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for September 2014 | Release Date: Nov. 25, 2014 | Next Release Date: Dec. 23, 2014 Previous Issues Issue:...

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for October 2014 | Release Date: Dec. 23, 2014 | Next Release Date: Jan. 26, 2015 Previous Issues Issue:...

262

California's electricity crisis  

E-Print Network [OSTI]

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

263

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for August 2014 | Release Date: Oct. 24, 2014 | Next Release Date: Nov. 24, 2014 Previous Issues Issue: October...

264

Electrical Safety - Monthly Analyses of Electrical Safety Occurrences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Analysis Office of Analysis Operating Experience Committee Safety Alerts Safety Bulletins Annual Reports Special Operations Reports Safety Advisories Special Reports Causal Analysis Reviews Contact Us HSS Logo Electrical Safety Monthly Analyses of Electrical Safety Occurrences 2013 September 2013 Electrical Safety Occurrences August 2013 Electrical Safety Occurrences July 2013 Electrical Safety Occurrences June 2013 Electrical Safety Occurrences May 2013 Electrical Safety Occurrences April 2013 Electrical Safety Occurrences March Electrical Safety Occurrence February Electrical Safety Occurrence January Electrical Safety Occurrence 2012 December Electrical Safety Occurrence November Electrical Safety Occurrence October Electrical Safety Occurrence September Electrical Safety Occurrence

265

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

in the design of larger PV plants. Chapter 2 will discussEdison central station PV plant at Hesperia, California,PV components. When a PV plant or installation is proposed

Hill, Steven Craig

2013-01-01T23:59:59.000Z

266

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

267

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

268

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

269

Career Map: Electrical Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Electrical Engineer positions.

270

Electronics, Electrical Engineering  

E-Print Network [OSTI]

SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

271

Syracuse University Electrical Engineering  

E-Print Network [OSTI]

Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department

Mather, Patrick T.

272

Renewable Electricity Futures Study  

E-Print Network [OSTI]

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

273

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

274

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

275

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

276

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook for Electrical Contractors2 Table of Contents Introduction . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18

277

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios  

E-Print Network [OSTI]

Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

278

Green electricity: It`s in the eye of the beholder  

SciTech Connect (OSTI)

Some people want to know what {open_quotes}green power{close_quotes} means - and, by extension, {open_quotes}environmentally friendly{close_quotes}. Does that mean low emissions, including nuclear energy? Is renewable energy automatically green? Should the simple fact of compliance with all standards imposed by the Environmental Protection Agency afford the right to advertise power generation as green? Consumers, agencies and state and federal officials want truth in advertising. Proponents of alternative generation claim consumers are willing to pay more for cleaner, greener energy. Residential customers of Detroit Edison, for instance, pay more than $6.50 additional per month to support solar energy. In Colorado, the Governor`s Office of Energy Conservation is using special funds to help offset the additional cost it takes to power the governors` home with wind. Only clear industry guidelines can ensure that everyone is actually getting what they`re paying for. Green power certification is proceeding on several different fronts. Commissions and legislatures are mandating resource disclosure of generation sources. Legislation at both the state and federal level are investigating the use of renewable portfolio standards. The Federal Trade Commission is considering establishing voluntary guidelines for electricity advertising like those already established for other retail products in the FTCs 1992 {open_quotes}Guides for the Use of Environmental Marketing Claims{close_quotes} (16 CFR 260).

Rodgers, L.M.

1998-02-15T23:59:59.000Z

279

Impact of dispersed solar and wind systems on electric distribution planning and operation  

SciTech Connect (OSTI)

Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

Boardman, R.W.; Patton, R.; Curtice, D.H.

1981-02-01T23:59:59.000Z

280

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

282

Alvaro_Report.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Operations Program Field Operations Program Chevrolet S-10 Electric with NiMH Battery PERFORMANCE CHARACTERIZATION U.S DEPARTMENT OF ENERGY Agreement No. DE-FC07-96ID13474 ELECTRIC TRANSPORTATION DIVISION Report prepared by: Alvaro Mendoza, Jordan Smith, Juan Argueta, Michel Wehrey, Tom Knipe. September 1999 2 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED,

283

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

284

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Broader source: Energy.gov (indexed) [DOE]

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

285

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grove Tillamook PUD Columbia River PUD West Oregon Electric Coop. Clatskanie PUD Umpqua Indian Utility Coop. McNar y Foster Cougar John Day Lost Creek Bonneville Hills Creek...

286

Electric arc saw apparatus  

DOE Patents [OSTI]

A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

Deichelbohrer, Paul R [Richland, WA

1986-01-01T23:59:59.000Z

287

Monitoring of Electrical End-Use Loads in Commercial Buildings  

E-Print Network [OSTI]

Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

Martinez, M.; Alereza, T.; Mort, D.

1988-01-01T23:59:59.000Z

288

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

289

Electricity Distribution System Workshop  

Broader source: Energy.gov (indexed) [DOE]

Discussion Summary Discussion Summary Electricity Transmission System Workshop 1 Grid Tech Team Discussion Summary Electricity Transmission System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Synthesized Challenges ............................................................................................................................. 5

290

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network [OSTI]

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday requirements, computational complexity requirements, and robustness to time- varying physical environments

291

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Use: February 2014 Retail RatesPrices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

292

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: July 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

293

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

294

Recent Graduate Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

295

Electricity | Department of Energy  

Office of Environmental Management (EM)

Sources Electricity Electricity January 22, 2015 State of the Union Remarks on Energy in Four Charts We dive into the data behind President Obama's State of the Union statements...

296

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

297

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

298

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

299

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

300

Designing electricity transmission auctions  

E-Print Network [OSTI]

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Automobile Electrical Systems  

Science Journals Connector (OSTI)

The modern electrical system has been developed, over a period of some fifty years from the days of the early motor-car which usually had only one electrical system, namely, that of the ignition comp...

Arthur W. Judge

1970-01-01T23:59:59.000Z

302

2014 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for 2014 The U.S. Energy Information Administration (EIA) is proposing changes to its electricity data collection in 2014. These changes involve the following surveys: Form EIA-63B, "Annual Photovoltaic Cell/Module Shipments Report," Form EIA-411, "Coordinated Bulk Power Supply Program Report," Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions," Form EIA-860, "Annual Electric Generator Report," Form EIA-860M, "Monthly Update to the Annual Electric Generator Report," Form EIA-861, "Annual Electric Power Industry Report," Form EIA-861S, "Annual Electric Power Industry Report (Short Form)," and

303

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy The Edison Electric Institute ("EEI"), on behalf...

304

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

305

Electric vehicles: UK content  

Science Journals Connector (OSTI)

... overnight recharging are identified as the main obstacles to the early success of the all-electric car. Another problem is that most of the advantages accrue to society and the electricity ... in Britain. They offer the most promising prospects for private use by overcoming the pure electric car problem of short range, typically 50-70 miles. They also do not necessarily depend ...

Judy Redfearn

1980-09-11T23:59:59.000Z

306

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

307

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network [OSTI]

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Geometry as a Prior in Signal Processing" by Yuejie Chi Electrical Engineering Princeton University Monday, March 19, 2012, 11:00 a.m. Location LSC 210 Abstract processing. Biography: Yuejie Chi is a Ph.D. candidate in Electrical Engineering at Princeton University

308

Electricity in Horticulture  

Science Journals Connector (OSTI)

... ELECTRO-CULTURE has to take into account the effects of electric heating, electric lighting and the voltage stress on the life of plants. The first applica-tion of ... and increases up to forty per cent have been obtained. Electricity in the form of light was the next application in the aid of ...

1936-07-11T23:59:59.000Z

309

EFCOG / DOE Electrical Safety  

E-Print Network [OSTI]

of electrical hazards used in the DOE Electrical Safety Handbook and laboratory programs. Thus, portionsEFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement personnel. This tool is also intended to assist DOE organizations in determining and classifying ORPS

310

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

311

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

312

Toyota RAV 4 Inductive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PERFORMANCE CHARACTERIZATION PERFORMANCE CHARACTERIZATION 2000 NISSAN ALTRA EV Shin-Kobe Li-Ion Battery ELECTRIC TRANSPORTATION DIVISION Ricardo Solares Juan Argueta June 2000 2 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II)

313

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

314

Electric Turbo Compounding Technology Update  

Broader source: Energy.gov (indexed) [DOE]

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

315

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

316

Intelligent Power Assist Algorithms for Electric Bicycles  

E-Print Network [OSTI]

electric hub motor . . . . . . . . . . . . . . . . . . .Golden Motor electric bicycle model MT-Electric hub motor in the front

Fan, Xuan

2010-01-01T23:59:59.000Z

317

Random Walks and Electrical Networks Electrical Network ...  

E-Print Network [OSTI]

Feb 4, 2008 ... Much of this talk is based on the book Random Walks and Electric. Networks by Peter .... Rx,y resistance of the edge from x to y. Cx,y = 1. Rx,y.

Jonathon Peterson

2008-01-30T23:59:59.000Z

318

Electric Power Monthly  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November December 2006 January February March April May June July August September October November December 2005 January February March April May June July August September October November December

319

EIA Electric Power Forms  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Forms Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms EIA- 411 EIA- 826 EIA- 860 EIA- 860M EIA- 861 EIA- 923 Frame Information Utility identification and iocation -- -- -- -- X -- Plant identification and iocation -- -- -- X -- X Generation and fuel Latitude and longitude -- -- X -- -- --

320

Determination of Electric-Field, Magnetic-Field, and Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - Electric Power Data  

U.S. Energy Information Administration (EIA) Indexed Site

Survey-level Detail Data Files Survey-level Detail Data Files Electric power data are collected on survey instruments. Data collection is mandated by Congress to promote sound policymaking, efficient markets, and public understanding. The most widely used data are disseminated in reports, such as the Electric Power Monthly and the Electric Power Annual. Publicly available electric power data is available down to the plant level in the Electricity Data Browser and in detailed spreadsheets by survey below. Description Data availability State-level data (consolidated across forms) Contains electricity generation; fuel consumption; emissions; retail sales, revenue, number of customers, and retail prices; generating capacity; and financial data. 1990-2012 (monthly and annual) Electric power sales and revenue data - monthly (Form EIA-826)

322

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

323

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

324

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

325

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

326

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

327

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

328

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

329

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

330

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology and Documentation Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," fuel spot prices from Bloomberg Energy, electric power prices from SNL Energy, electric system demand data from Ventyx Energy Velocity Suite, and weather data and imagery from the National Oceanic and Atmospheric

331

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

APPA and Federal Hydropower APPA and Federal Hydropower Will Coffman Senior Government Relations Representative American Public Power Association Atlanta, Georgia Oct. 20, 2013 Overview * APPA, the American Public Power Association (APPA): trade association for the more than 2,000 community-owned, not-for- profit electric utilities providing service to 47 mil Americans in 49 states. Many of our members purchase power from Corps projects - Approx. 1,200 public power systems and rural electric cooperatives in 33 states. * We, along with NRECA, advocate for federal hydro customers in Congress and with the Administration Areas of Advocacy 1. Congress - Provide background on PMA customer issues to Committees of jurisdiction * Senate: Energy and Natural Resources * House: Natural Resources

332

Electric Charge and Electric Field Electrostatics: Charge at rest  

E-Print Network [OSTI]

Chapter 16 Electric Charge and Electric Field #12;Electrostatics: Charge at rest Electric Charges of conservation of Electric Charge: The net amount of electric charge produced in any process is zero. Model, neutral). #12;· All protons and electrons have same magnitude of electric charge but their masses

Yu, Jaehoon

333

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network [OSTI]

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

334

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

335

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: December 2011 End Use: December 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

336

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2011 End Use: August 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

337

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: November 2011 End Use: November 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

338

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: February 2012 End Use: February 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

339

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2011 End Use: October 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

340

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: March 2012 End Use: March 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: September 2011 End Use: September 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

342

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2013 End Use: October 2013 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

343

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: January 2012 End Use: January 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

344

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

345

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

346

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

347

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

Electricity Advisory Committee Meeting Electricity Advisory Committee Meeting Sheraton National Hotel May 20, 2008 Minutes Members Present: Linda Stuntz, Esquire, Stuntz, Davis, and Staffier, P.C. (Chair) Yakout Mansour, California ISO (Vice Chair) Paul J. Allen, Constellation Energy Guido Bartels, IBM Gerry Cauley, SERC Reliability Corporation Jose Delgado, American Transmission Company The Honorable Jeanne Fox, New Jersey Board of Public Utilities Rob Gramlich, American Wind Energy Association The Honorable Dian Grueneich, California Public Utilities Commission Michael Heyeck, American Electric Power Hunter Hunt, Sharyland Utilities Susan Kelly, American Public Power Association Irwin Kowenski, Occidental Energy Ventures Corporation Barry Lawson, National Rural Electric Cooperative Association

348

Physics: The mind electric  

Science Journals Connector (OSTI)

... When entrepreneur Elon Musk named his all-electric car company Tesla Motors, he was paying homage to a remarkable man. Serbian inventor and ...

W. Patrick McCray

2013-05-29T23:59:59.000Z

349

2012 National Electricity Forum  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development, American Electric Power * John P. Buechler, Executive Regulatory Policy Advisor, New York Independent System Operator * Jim Busbin, Supervisor, Bulk Power, Southern...

350

ELECTRICAL & COMPUTER ENGINEERING  

E-Print Network [OSTI]

ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Considerations for Curriculum Planning and Computer Engineering Colorado State University Monday, Feb. 20, 2012, 11:00 a.m. Location: LSC 210 Abstract

351

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

the country last July, while temperatures in July 2014 were closer to average. This led to a decrease in demand for electricity generation in July 2014, with total...

352

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

353

Electric Power Annual 2011  

U.S. Energy Information Administration (EIA) Indexed Site

net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region" "1999 through 2011 actual, 2012-2016 projected"...

354

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

355

Office of Electricity Delivery  

Energy Savers [EERE]

Office of Electricity Delivery and Energy Reliability Use of the NIST Cybersecurity Framework & DOE C2M2 CategorySubcategory CategorySubcategory CategorySubcategory Category...

356

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

357

Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing...

358

Electrical Circuit Tester  

DOE Patents [OSTI]

An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

Love, Frank (Amarillo, TX)

2006-04-18T23:59:59.000Z

359

2014 Electricity Form Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity data collection in 2014 via the following survey forms: Form EIA-63B, "Annual Photovoltaic CellModule Shipments Report" Form EIA-411, "Coordinated Bulk Power Supply...

360

Perforation patterned electrical interconnects  

DOE Patents [OSTI]

This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

Frey, Jonathan

2014-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

electricity.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This...

362

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

363

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wholesale Markets: October 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

364

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

365

2012 National Electricity Forum  

Energy Savers [EERE]

of reliability, resource options, wholesale competition and market power, cost of electricity to consumers, environmental quality, or other? Are these consequences so...

366

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

367

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wholesale Markets: September 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

368

Electric power annual 1992  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

369

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wholesale Markets: August 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

370

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

371

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

372

IRRIGATION & ELECTRICAL DISTRICTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

373

IRRIGATION & ELECTRICAL DISTRICTS  

Broader source: Energy.gov (indexed) [DOE]

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

374

Texas Electric Lighting Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

375

Transport: No Electric Shocks  

Science Journals Connector (OSTI)

... Engineers chose the week of the Earls Court Motor Show to arrange a colloquium on electric cars, the second in what seems intended to be an annual series. In the event ... definitely the best way of propelling vehicles from one place to another; supporters of the electric car, for the most part, agreed with Mr L. Mart land of Ford, who ...

1968-10-26T23:59:59.000Z

376

Photo-Electric Cells  

Science Journals Connector (OSTI)

... be measured, and its variation studied with variation of the incident light. Again, the photo-electric current may be amplified by valve circuits used outside the cell, or may ... to the infra-red, in which the active substance is oxidised thallium sulphide), barium photo-electric cells, sodium, and selenium cells.

ALLAN FERGUSON

1930-06-21T23:59:59.000Z

377

Electrical shock accident investigation  

SciTech Connect (OSTI)

This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

Not Available

1994-09-30T23:59:59.000Z

378

Hawaii electric system reliability.  

SciTech Connect (OSTI)

This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

Silva Monroy, Cesar Augusto; Loose, Verne William

2012-09-01T23:59:59.000Z

379

Magnetism and Electricity  

Science Journals Connector (OSTI)

... WRITTEN in colloquial language, this book, which is a first-year course on magnetism and electricity, will appeal to many beginners besides the students in technical institutions, for ... have almost forgotten that their jargon is not that of the man in the street. Magnetism is first dealt with, and then the ideas of static and current electricity are ...

1922-11-11T23:59:59.000Z

380

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

382

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

383

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

384

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

385

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

386

Physics of Electric Contacts  

Science Journals Connector (OSTI)

... his subject in three distinct parts. Part 1, of 186 pages, deals with the elementary processes involved in the passage of electricity across stationary electrode surfaces. It Introduces the ... in the passage of electricity across stationary electrode surfaces. It Introduces the idea of constriction resistance, in which the lines of current-flow through clean electrodes are constricted through the ...

F. LLEWELLYN JONES

1947-09-27T23:59:59.000Z

387

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: September 2011 Resource Use: September 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, is most pronounced in the Central region and supplies close to half of the electricity in the

388

Canadian Electrical Association Petition  

Broader source: Energy.gov (indexed) [DOE]

BEFORE THE DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY TransAlta Energy Marketing (U.S.) Inc. ) Docket No. EA-216-C PROTEST OF THE CANADIAN ELECTRICITY ASSOCIATION AND THE ELECTRIC POWER SUPPLY ASSOCIATION TO SIERRA CLUB'S NOTICE OF INTERVENTION AND MOTION TO INTERVENE Pursuant to Section 202(e) of the Federal Power Act ("FPA"), 16 U.s.c. § 824(e) (2006) and § 385.211 of the Federal Energy Regulatory Commission's ("FERC") Rules of Practice and Procedure, the Canadian Electricity Association ("CEA") and the Electric Power Supply Association ("EPSA") hereby submit this filing in protest to Sierra Club's Notice ofIntervention and Motion to Intervene and in support of TransAlta Energy Marketing (U.S

389

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: August 2011 Resource Use: August 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By generator type By fuel type Region map map showing electricity regions Fossil steam generation, primarily coal-fired, predominants in the Central region and supplies close to half of the electricity in the Southeast and

390

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

October 3, 2011 Page 1 October 3, 2011 Page 1 Electricity Advisory Committee Meeting National Rural Electric Cooperative Association Headquarters 4301 Wilson Boulevard Arlington, VA Agenda October 19, 2011 2:00 - 5:00 pm EDT 1:30 - 2:00 pm Registration 2:00 - 2:15 pm WELCOME and Introductions Richard Cowart, Chair, Electricity Advisory Committee Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE) 2:15 - 3:15 pm Presentation on U.S. Department of Energy's Vision of a Future Grid Bill Parks, Senior Advisor, DOE Office Electricity Delivery and Energy Reliability 3:15 - 3:30 pm Break 3:30 - 4:15 pm Response to U.S. Department of Energy's Vision of a Future Grid Honorable Robert Curry, Commissioner, New York State Public Service

391

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

392

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: December 2011 Electric Power Sector Coal Stocks: December 2011 Stocks Temperate weather throughout the fall has allowed electric power sector coal stocks to replenish from the summer burn. All coal stockpile levels were essentially flat when compared to December 2010 and were a mostly up year-to-date. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was essentially flat compared to last month and remained below levels seen in December of 2010 or 2009. While stockpile levels have recovered from summer lows, the increasing

393

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

394

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: November 2011 Electric Power Sector Coal Stocks: November 2011 Stocks As discussed in this month's feature story, electric power sector coal stocks continued to replenish after the summer burn in November, though stockpile levels remain below 2010 and 2009 levels. All coal stockpile levels declined from November 2010, with bituminous coal stockpile levels 9 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants dropped slightly from last month and remained below levels seen in November of 2010 or 2009. While

395

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Reports Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

396

Definition: Electricity | Open Energy Information  

Open Energy Info (EERE)

Electricity Electricity Jump to: navigation, search Dictionary.png Electricity Energy resulting from the flow of charge particles[1][2] View on Wikipedia Wikipedia Definition Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electricity gives a wide variety of well-known effects, such as lightning, static electricity, electromagnetic induction and the flow of electrical current. In addition, electricity permits the creation and reception of electromagnetic radiation such as radio waves. In electricity, charges produce electromagnetic fields which act on other charges. Electricity occurs due to several types of physics: electric charge: a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is

397

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

398

electricAl engineering College of Engineering and Mines  

E-Print Network [OSTI]

encompasses telecommunica- tions, electrical power generation, transmission and distribution, control systems power engineers design and oversee the construction, installation and maintenance of electrical systems modern power electronic devices to control power generation and distribution and build electric drives

Hartman, Chris

399

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

400

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network [OSTI]

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

June 5, 2012 June 5, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR William Ball Southern Company Guido Bartels IBM Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York State Public Service Commission José Delgado American Transmission Company (Ret.) Clark Gellings Electric Power Research Institute Robert Gramlich American Wind Energy Association Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power

402

Electricity Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

08 Membership Roster 08 Membership Roster Linda Stuntz, Esquire Chair of the Electricity Advisory Committee Stuntz, Davis & Staffier, P.C. Paul J. Allen Constellation Energy Guido Bartels IBM Gerry Cauley SERC Reliability Corporation Ralph Cavanagh Natural Defense Resources Council Jose Delgado American Transmission Company The Honorable Jeanne Fox New Jersey Board of Public Utilities Joseph Garcia National Congress of American Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt Sharyland Utilities, LLP Susan Kelly American Public Power Association Yakout Mansour Vice-Chair of the Electricity Advisory Committee California Independent System Operator

403

Atoms to electricity. [Booklet  

SciTech Connect (OSTI)

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

Not Available

1987-11-01T23:59:59.000Z

404

Atoms to electricity  

SciTech Connect (OSTI)

This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

Not Available

1983-11-01T23:59:59.000Z

405

Central American electrical interconnection  

SciTech Connect (OSTI)

A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

Not Available

1988-12-01T23:59:59.000Z

406

Thermionic electric converter  

SciTech Connect (OSTI)

A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

Davis, E.D.

1981-12-01T23:59:59.000Z

407

Electricity Advisory Committee Meeting  

Broader source: Energy.gov (indexed) [DOE]

5, 2008 5, 2008 Minutes Members Present: Linda Stuntz, Esquire, Stuntz, Davis, and Staffier, P.C. (Chair) Yakout Mansour, California ISO (Vice Chair) Paul J. Allen, Constellation Energy Guido Bartels, IBM Gerry Cauley, SERC Reliability Corporation Jose Delgado, American Transmission Company Rob Gramlich, American Wind Energy Association The Honorable Dian Grueneich, California Public Utilities Commission Michael Heyeck, American Electric Power Hunter Hunt, Hunt Oil Susan Kelly, American Public Power Association Irwin Kowenski, Occidental Energy Ventures Corp. Barry Lawson, National Rural Electric Cooperative Association Ralph D. Masiello, KEMA John McDonald, GE Energy Steve Nadel, American Council for an Energy Efficient Economy David Nevius, North American Electric Reliability Corporation

408

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Broader source: Energy.gov (indexed) [DOE]

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

409

Electricity market clearing price forecasting under a deregulated electricity market.  

E-Print Network [OSTI]

??Under deregulated electric market, electricity price is no longer set by the monopoly utility company rather it responds to the market and operating conditions. Offering (more)

Yan, Xing

2010-01-01T23:59:59.000Z

410

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network [OSTI]

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

411

Electricity 101 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources » Electricity 101 Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? PEOPLE: Who owns the electric system? Who runs the grid? Who uses electricity? Where can I find out more about potential careers? How can I improve my energy use? POLICY: How is electricity regulated? Where can I find out about State incentives for renewables? What is a national corridor?

412

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

413

THE ELECTRIC PROGRAM INVESTMENT CHARGE  

E-Print Network [OSTI]

THE ELECTRIC PROGRAM INVESTMENT CHARGE: PROPOSED 201214 TRIENNIAL INVESTMENT PLAN The California Energy Commission has prepared this triennial investment plan (2012 ­ 2014) for the new Electric, 2012, Phase 2 Decision 1205037. This decision established the Electric Program Investment Charge

414

Electricity Restructuring: Deregulation or Reregulation?  

E-Print Network [OSTI]

PWP-074 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James;1 Electricity Restructuring: Deregulation or Reregulation? Severin Borenstein and James Bushnell1 Forthcoming from the experience with electricity restructuring to date. The gains from restructuring are most

California at Berkeley. University of

415

North American Electric Reliability Corporation Interconnections...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North American Electric Reliability Corporation Interconnections North American Electric Reliability Corporation Interconnections Map of the North American Electric Reliability...

416

National Electric Transmission Congestion Study Webinars | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Webinars National Electric Transmission Congestion Study Webinars The Department...

417

Electrical Contacts to Individual Colloidal Semiconductor Nanorods  

E-Print Network [OSTI]

stable nanostructured electrical devices with interestingElectrical Contacts to Individual Colloidal Semiconductorand its effect on electrical properties has important

Trudeau, Paul-Emile

2008-01-01T23:59:59.000Z

418

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

419

Electricity Advisory Committee - Federal Register Notices | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Register Notices Electricity Advisory Committee - Federal Register Notices Electricity Advisory Committee - Federal Register Notices September 3, 2014 Electricity Advisory...

420

Electricity Advisory Committee: 2008 Membership Roster | Department...  

Broader source: Energy.gov (indexed) [DOE]

Committee: 2008 Membership Roster Electricity Advisory Committee: 2008 Membership Roster Membership Roster of the 2008 Electricity Advisory Committee. Electricity Advisory...

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

with residential electric resistance water heater solar system backup electric resistance water heaters. Anheaters require electric resistance backup water heaters.

Levy, Roger

2014-01-01T23:59:59.000Z

422

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

423

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

424

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

425

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

426

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

427

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

428

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

429

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

430

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

431

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

432

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

433

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

434

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

435

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

436

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

437

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

438

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

439

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

440

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

442

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

443

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

444

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

445

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

446

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2011 Resource Use: October 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Consistent with the retail sales numbers, generation output rose in Texas, as well as the Central and Mid-Atlantic regions and declined or remained

447

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

448

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: October 2013 Resource Use: October 2013 Supply and Fuel Consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By fuel type By generator type Region map map showing electricity regions In October 2013, net generation in the United States increased 1.0 percent compared to the previous year. This increase in electricity generation occurred mainly in the Mid-Atlantic, Central, and Southeast regions, along

449

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: March 2012 Resource Use: March 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined across much of the country in March due to unseasonably warm temperatures. The two regions that observed small

450

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

451

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

452

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

453

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

454

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

455

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

456

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

457

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

458

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

459

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

460

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

462

Electric Power Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Annual Technical Notes This appendix describes how the U.S. Energy Information Administration collects, estimates, and reports electric power data in the Electric Power Annual. Data Quality and Submission The Electric Power Annual (EPA) is prepared by the Office of Electricity, Renewables, and Uranium Statistics (ERUS), U.S. Energy Information Administration (EIA), U.S. Department of Energy (DOE). ERUS performs routine reviews of the data collection respondent frames, survey forms, and reviews the quality of the data received. Data are entered directly by respondents into the ERUS Internet Data Collection (IDC) system. A small number of hard copy forms are keyed into the system by ERUS personnel. All data are subject to review via interactive edits built into the IDC system, internal quality assurance reports, and review by ERUS

463

NSLS Electrical Equipment Inspection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

464

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

465

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

466

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

467

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

468

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

469

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: March 2012 Electric Power Sector Coal Stocks: March 2012 Stocks The seasonal winter drawdown of coal stocks was totally negated during the winter months this year due to low natural gas prices and unseasonably warm temperatures throughout the continental United States. In fact, March 2012 was the seventh straight month that coal stockpiles at power plants increased from the previous month. The largest driver of increasing stockpiles has been declining consumption of coal due to unseasonably warm weather and declining natural gas prices. Because much of the coal supplied to electric generators is purchased through long-term contracts, increasing coal stockpiles have proven difficult for electric power plant operators to handle. Some operators have inventories so high that they are refusing

470

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

471

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

472

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: February 2012 Resource Use: February 2012 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in almost all regions in February due to unseasonably warm temperatures. Following the same pattern as January,

473

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

474

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

475

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

476

ELECTRICAL DISTRICT No.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

477

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

478

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

479

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

480

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

Note: This page contains sample records for the topic "appa edison electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

482

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

483

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

484

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

485

electric | OpenEI  

Open Energy Info (EERE)

electric electric Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

486

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

487

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

488

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: December 2011 Resource Use: December 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined in all regions, with the exception of the West and Texas, due to unseasonably warm temperatures in December. Fossil steam

489

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

490

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Resource Use: November 2011 Resource Use: November 2011 Supply and Fuel Consumption In this section, we look at what resources are used to produce electricity. Electricity supplied from the grid is consumed the moment it is produced. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below electricity generation output by generator type and fuel type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation Output by Region By generator type By fuel type Region map map showing electricity regions Generation output declined or remained relatively flat in all regions except for Texas and the Southeast. Both of these regions saw generation

491

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

492

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

493

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

494

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: February 2012 Electric Power Sector Coal Stocks: February 2012 Stocks The unseasonably warm temperatures that the continental United States experienced throughout the winter, coupled with low natural gas prices, caused coal stocks at power plants to increase throughout the winter of 2011 - 2012. During this period, coal stocks usually see a seasonal decline due to the added need for electricity generation from coal plants for spacing heating load. However, it was the sixth straight month that coal stocks increased from the previous month, with this trend likely to continue as the country enters into spring. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current

495

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

496

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

497

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

498

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

499

Electricity Distribution System Workshop  

Broader source: Energy.gov (indexed) [DOE]

Grid Tech Team Grid Tech Team Discussion Summary Electricity Distribution System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Common Themes ...................................................................................................................................... 5 Discussion Topic Tables ............................................................................................................................. 8

500

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37