Powered by Deep Web Technologies
Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building America Whole-House Solutions for Existing Homes: Conway Street Apartments- Greenfield, Massachusetts  

Energy.gov (U.S. Department of Energy (DOE))

Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

2

Impact evaluation of the energy retrofits installed in the Margolis high-rise apartment building, Chelsea housing authority  

SciTech Connect

As part of a joint demonstration effort involving HUD, DOE, a local public housing authority and Boston Edison, an evaluation of energy and demand saving retrofits was conducted for a tall, residential, low-income building located in Boston. The thirteen story building underwent window, lighting, and heating system control renovations in December, 1992. The success of these retrofits was determined using monthly and hourly whole-building consumption data along with a calibrated DOE-2.1D energy simulation model. According to the model developed, post-retrofit conditions showed reductions in annual energy consumption of 325 MWh and in peak demand of 100 kW. These savings resulted in an annual energy cost savings of $28,000. Over 90% of energy and cost savings were attributed to the window retrofit. Interaction of the reduction in lighting capacity with the building`s electric resistance heating system reduced the potential for energy and demand savings associated with the lighting retrofit. Results from the hourly simulation model also indicate that night setbacks controlled by the energy management system were not implemented. An additional 32 MWh in energy savings could be obtained by bringing this system on-line, however peak demand would be increased by 40 kW as the morning demand for space heat is increased, with a net loss in cost savings of $2,500.

Abraham, M.M.; McLain, H.A.; MacDonald, J.M.

1995-03-01T23:59:59.000Z

3

Better Buildings Challenge Expands to Multifamily Housing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Departments of Energy and Housing and Urban Development expanded the Better Buildings Challenge to multifamily housing such as apartments and condominiums.

4

Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

5

Building America Whole-House Solutions for Existing Homes: Cascade...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing...

6

Indoor-outdoor air leakage of apartments and commercial buildings.  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor-outdoor air leakage of apartments and commercial buildings. Indoor-outdoor air leakage of apartments and commercial buildings. Title Indoor-outdoor air leakage of apartments and commercial buildings. Publication Type Report Year of Publication 2006 Authors Price, Phillip N., Arman Shehabi, Wanyu R. Chan, and Ashok J. Gadgil Publisher Lawrence Berkeley National Laboratory Abstract We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

7

Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2  

U.S. Energy Information Administration (EIA) Indexed Site

4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" 4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441 "Census Region and Division" "Northeast",20.6,6.7,1247,1032,"Q",811,788,147 "New England",5.5,1.9,1365,1127,"Q",814,748,107 "Middle Atlantic",15.1,4.8,1182,978,"Q",810,800,159 "Midwest",25.6,4.6,1349,1133,506,895,810,346

8

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

SciTech Connect

We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

2006-06-01T23:59:59.000Z

9

Reference Buildings by Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

10

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network (OSTI)

Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

Price, P.N.

2011-01-01T23:59:59.000Z

11

ITP Industrial Distributed Energy: Boa Vista Apartments: New Bedford Housing Authority/ New Bedford, MA  

Energy.gov (U.S. Department of Energy (DOE))

Overview of Boa Vista Apartments housing development, with CHP system to provide electricity and hot water.

12

Archived Reference Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

13

Archived Reference Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zonesis available for reference.Current versionsare also available.

14

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

15

West Village Student Housing Phase I: Apartment Monitoring and Evaluation  

SciTech Connect

Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

2014-06-01T23:59:59.000Z

16

Commercial Reference Building: Midrise Apartment | OpenEI  

Open Energy Info (EERE)

Midrise Apartment Midrise Apartment Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Midrise Apartment, for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

17

The case for micro-apartment housing in growing urban centers  

E-Print Network (OSTI)

Taking an analytical approach, this thesis will address how the unmet housing need of urban single-person households can be rectified by the introduction of micro-apartments. The existing housing stock has been built largely ...

Shore, Zachary, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

18

90.1 Prototype Building Models Mid-rise Apartment | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mid-rise Apartment Mid-rise Apartment The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

19

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

20

Building Technologies Office: Housing Innovation Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Innovation Housing Innovation Awards to someone by E-mail Share Building Technologies Office: Housing Innovation Awards on Facebook Tweet about Building Technologies Office: Housing Innovation Awards on Twitter Bookmark Building Technologies Office: Housing Innovation Awards on Google Bookmark Building Technologies Office: Housing Innovation Awards on Delicious Rank Building Technologies Office: Housing Innovation Awards on Digg Find More places to share Building Technologies Office: Housing Innovation Awards on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kelly House Apartment Community (236 Students, Co-ed by Apt. / Tier 3 Single or Double Occupancy Fee)  

E-Print Network (OSTI)

Kelly House Apartment Community (236 Students, Co-ed by Apt. / Tier 3 Single or Double Occupancy Fee) Kelly House is a four story an apartment complex for upperclassmen at the corner of St. Philip and Vanderhorst Streets. Constructed in 1995, Kelly house features a central courtyard and central laundry room

Kunkle, Tom

22

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network (OSTI)

the existing multi-family building stock in California, inand (2) multi-family residences. Commercial buildings (as we

Price, P.N.

2011-01-01T23:59:59.000Z

23

An analysis model for wind resistance performance of automated exterior wall painting robots in apartment buildings  

Science Journals Connector (OSTI)

The painting of exterior walls on apartment buildings involves ... to fatalities. Although the market for domestic painting is expanding, painters tend to avoid the risk of painting exterior walls. Accordingly, m...

Ji-Won Cho; Jeong-Ho Lee; Young-Suk Kim

2014-05-01T23:59:59.000Z

24

Impact of passive solar energy utilization on multi-story apartment houses in hot dry climates  

SciTech Connect

Objectives were to study the thermal behavior of a multi-story, prismatic building and to analyze the impact of various building parameters on this behavior. The building used is representative of residential buildings encountered in hot, dry parts of the world and conforms to the design and construction practices that prevail in such areas. A computer simulation model (BLAST) is employed to describe the building's thermal behavior on an hour-by-hour basis. The model is used to assess the impact of various passive building parameters on the temperature of each interior zone. The simulation is divided into three phases. The first entails simulating the housing prototype as it exists. The second is a parametric evaluation of individual building features; it includes studying the contribution of each of the building parameters/strategies under consideration. The third phase of the investigation involves combinations of features instead of individual features for the study of their thermal interaction. Data analysis indicates that natural ventilation and thermal mass are most critical in determining the interior thermal environment of a building in the hot, dry zone. Included in the study is a historical review of passive solar applications in buildings and a thorough discussion of the comfort requirements in hot, dry region. Findings of the study are outlined, and recommendations for future research are presented.

Abdou, O.A.

1987-01-01T23:59:59.000Z

25

Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Building on $2 billion in financing commitments from the private sector for energy efficiency updates to commercial buildings under the President's Better Buildings Challenge, the U.S. Departments of Energy and Housing and Urban Development today expanded the Challenge to multifamily housing such as apartments and condominiums.

26

House Simulation Protocols (Building America Benchmark)- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes the DOE-sponsored House Simulation Protocols, which have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building America program.

27

Building America Whole-House Solutions for New Homes: Affordable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with...

28

Building America Whole-House Solutions for Existing Homes: Islip...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency...

29

Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates  

Science Journals Connector (OSTI)

Identifying the building parameters that significantly impact energy performance is an important step for enabling the reduction of the heating and cooling energy loads of apartment buildings in the design stage. Implementing passive design techniques for these buildings is not a simple task in most dense cities; their energy performance usually depends on uncertainties in the local climate and many building parameters, such as window size, zone height, and features of materials. For this paper, a sensitivity analysis was performed to determine the most significant parameters for buildings in hot-humid climates by considering the design of an existing apartment building in Izmir, Turkey. The Monte Carlo method is selected for sensitivity and uncertainty analyses with the Latin hypercube sampling (LHC) technique. The results show that the sensitivity of parameters in apartment buildings varies based on the purpose of the energy loads and locations in the building, such as the ground, intermediate, and top floors. In addition, the total window area, the heat transfer coefficient (U) and the solar heat gain coefficient (SHGC) of the glazing based on the orientation have the most considerable influence on the energy performance of apartment buildings in hot-humid climates.

Yusuf Y?ld?z; Zeynep Durmu? Arsan

2011-01-01T23:59:59.000Z

30

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers (EERE)

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

31

Building America Whole-House Solutions for New Homes: Hydronic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Whole-House Solutions for New Homes: Hydronic Heating Coil Versus Propane Furnace (Fact Sheet) Building America Whole-House Solutions for New Homes: Hydronic...

32

Building America Whole-House Solutions for New Homes: Insight...  

Energy Savers (EERE)

Building America Whole-House Solutions for New Homes: Hydronic Heating Coil Versus Propane Furnace (Fact Sheet) Building America Whole-House Solutions for New Homes: S & A...

33

Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations  

Science Journals Connector (OSTI)

......16 apartments (8 AAT, 2 FF, 2 SAT and 4 HF) in 8 buildings. For these continuous measurements, the metre (EMDEX II, Enertech Consultants, Campbell, CA, USA) was employed, using the broadband mode (40-800 Hz), with a dynamic range of 0.01-300......

Nir-Mordechay Yitzhak; Ronen Hareuveny; Shaiela Kandel; Raphael Ruppin

2012-04-01T23:59:59.000Z

34

Building America 2014 House Simulation Protocols  

Energy.gov (U.S. Department of Energy (DOE))

The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

35

Building America Case Study: Conway Street Apartments, Greenfield, Massachusetts (Fact Sheet)  

SciTech Connect

While single-family, detached homes account for 63% of households (EIA 2009); multi-family homes account for a very large portion of that remaining housing stock, and this fraction is growing. Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multi-family buildings

Not Available

2014-12-01T23:59:59.000Z

36

2014 Building America House Simulation Protocols  

SciTech Connect

As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

2014-03-01T23:59:59.000Z

37

Building America Whole-House Solutions for Existing Homes: Applying...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America...

38

Building America Whole-House Solutions for New Homes: Quadrant...  

Energy Savers (EERE)

Quadrant Homes, Kent, Washington Building America Whole-House Solutions for New Homes: Quadrant Homes, Kent, Washington Case study of Quadrant Homes, who worked with Building...

39

Building America Whole-House Solutions for New Homes: Tindall...  

Energy Savers (EERE)

Tindall Homes, Columbus, New Jersey Building America Whole-House Solutions for New Homes: Tindall Homes, Columbus, New Jersey Case study of Tindall Homes who worked with Building...

40

Building America Whole-House Solutions for New Homes: Schneider...  

Energy Savers (EERE)

Schneider Homes, Burien, Washington Building America Whole-House Solutions for New Homes: Schneider Homes, Burien, Washington Case study of Schneider Homes who worked with Building...

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building America House Simulation Protocols (Revised)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House House Simulation Protocols Robert Hendron and Cheryn Engebrecht National Renewable Energy Laboratory Revised October 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

42

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

43

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Household Demographics of U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

44

Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings  

E-Print Network (OSTI)

, Samsung C&T, South Korea 2 Introduction ? Today?s high-rise apartment buildings exhibit high degree of air-tightness. ? They are also subjected to stack effect and seasonal, unpredictable, wind pressure variations. ? Therefore, it is questionable... characteristics for alt0 16 32CMH 0Pa 42CMH 0Pa 74CMH 16Pa 477CMH 984CMH 355CMH 815CMH 173CMH 26Pa 0CMH 0CMH 0CMH 54CMH 0Pa 158CMH 1Pa 35CMH 0Pa 74CMH 18Pa (a)?On?3rd?floor?at?12:00,?Jan?1st 1.5m/s North 50CMH 1Pa 23CMH 0Pa 75CMH 18Pa...

Park, M.

2011-01-01T23:59:59.000Z

45

Building America Industrialized Housing Partnership (BAIHP)  

SciTech Connect

This final report summarizes the work conducted by the Building America Industrialized Housing Partnership (www.baihp.org) for the period 9/1/99-6/30/06. BAIHP is led by the Florida Solar Energy Center of the University of Central Florida and focuses on factory built housing. In partnership with over 50 factory and site builders, work was performed in two main areas--research and technical assistance. In the research area--through site visits in over 75 problem homes, we discovered the prime causes of moisture problems in some manufactured homes and our industry partners adopted our solutions to nearly eliminate this vexing problem. Through testing conducted in over two dozen housing factories of six factory builders we documented the value of leak free duct design and construction which was embraced by our industry partners and implemented in all the thousands of homes they built. Through laboratory test facilities and measurements in real homes we documented the merits of 'cool roof' technologies and developed an innovative night sky radiative cooling concept currently being tested. We patented an energy efficient condenser fan design, documented energy efficient home retrofit strategies after hurricane damage, developed improved specifications for federal procurement for future temporary housing, compared the Building America benchmark to HERS Index and IECC 2006, developed a toolkit for improving the accuracy and speed of benchmark calculations, monitored the field performance of over a dozen prototype homes and initiated research on the effectiveness of occupancy feedback in reducing household energy use. In the technical assistance area we provided systems engineering analysis, conducted training, testing and commissioning that have resulted in over 128,000 factory built and over 5,000 site built homes which are saving their owners over $17,000,000 annually in energy bills. These include homes built by Palm Harbor Homes, Fleetwood, Southern Energy Homes, Cavalier and the manufacturers participating in the Northwest Energy Efficient Manufactured Home program. We worked with over two dozen Habitat for Humanity affiliates and helped them build over 700 Energy Star or near Energy Star homes. We have provided technical assistance to several show homes constructed for the International builders show in Orlando, FL and assisted with other prototype homes in cold climates that save 40% over the benchmark reference. In the Gainesville Fl area we have several builders that are consistently producing 15 to 30 homes per month in several subdivisions that meet the 30% benchmark savings goal. We have contributed to the 2006 DOE Joule goals by providing two community case studies meeting the 30% benchmark goal in marine climates.

McIlvaine, Janet; Chandra, Subrato; Barkaszi, Stephen; Beal, David; Chasar, David; Colon, Carlos; Fonorow, Ken; Gordon, Andrew; Hoak, David; Hutchinson, Stephanie; Lubliner, Mike; Martin, Eric; McCluney, Ross; McGinley, Mark; McSorley, Mike; Moyer, Neil; Mullens, Mike; Parker, Danny; Sherwin, John; Vieira, Rob; Wichers, Susan

2006-06-30T23:59:59.000Z

46

Building America Whole-House Solutions for New Homes: Challenges...  

Energy Savers (EERE)

of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC...

47

Building America Whole-House Solutions for Existing Homes: National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building America Whole-House Solutions for Existing Homes: National Grid Deep...

48

Building America Whole-House Solutions for Existing Homes: Multifamily...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The...

49

Building America Whole-House Solutions for New Homes: Transformations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformations, Inc. Net Zero Energy Communities (Fact Sheet) Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)...

50

Building America Whole-House Solutions for New Homes: Nelson...  

Energy Savers (EERE)

Nelson Construction, Farmington, Connecticut Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut Case study of Nelson Construction,...

51

Building America Whole-House Solutions for New Homes: Artistic...  

Energy Savers (EERE)

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut...

52

Building America Whole-House Solutions for New Homes: Lancaster...  

Energy Savers (EERE)

Lancaster County Career and Technology Center Green Home 3 - Mount Joy, Pennsylvania Building America Whole-House Solutions for New Homes: Lancaster County Career and Technology...

53

Building America Whole-House Solutions for New Homes: Transformations...  

Energy Savers (EERE)

New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet) Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities...

54

Building America Whole-House Solutions for Existing Homes: Performance...  

Energy Savers (EERE)

of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) The Alliance for Residential Building Innovation (ARBI) team conducted a deep retrofit project...

55

Building America Whole-House Solutions for New Homes: Imagine...  

Energy Savers (EERE)

Imagine Homes, San Antonio, Texas Building America Whole-House Solutions for New Homes: Imagine Homes, San Antonio, Texas Case study of Imagine Homes, who worked with the Building...

56

Measurement of the acoustic pressure distribution occurring around an aerial substation adjacent to apartment buildings  

Science Journals Connector (OSTI)

The subject matter of the research work presented in this paper refers to the measurements of the values of the acoustic pressure levels (noise) occurring around a main feeding?point aerial substation adjacent to apartment buildings. The paper presents the values of the noise accompanying the particular power devices mainly transformers during their regular operation. The main aim of this research work was the comparison and assessment of the acoustic pressure values measured with the permissible values defined by environmental standards binding in Poland. The research analysis carried out proved that during a long?term operation of power appliances installed in substations the acoustic pressure level that they emit into the environment is not constant but is subject to changes. Thus the increase of the noise level above the permissible values can be the cause of violation of environmental standards. Due to a significant increase of people's awareness and readiness to claim their rights the main consequence of violating the standards is a growing number of claims. Therefore it is imperative that the level of the acoustic pressure be monitored during routine tests especially around high?power transformers.

Sebastian Borucki; Tomasz Boczar; Andrzej Cichon

2008-01-01T23:59:59.000Z

57

Research of Economic Sustainability of Different Energy Refurbishment Strategies for an Apartment Block Building  

Science Journals Connector (OSTI)

Abstract May energy saving derived from the retrofit of a building be able to pay its costs? The paper wants to answer to this simple question, reporting a research started with a simple case study (an Italian social housing quarter, served by a district heating system, which needs as many others in many other countries a reasonable refurbishment). The economic sustainability of different retrofitting strategies has been studied: a method to evaluate the costs of refurbishment interventions has been developed through a detailed design of interventions, identifying construction costs thanks to the contribution of a group of selected contractors which gave us reasonable prices representative of a real services offers and assessing the cost-optimal energy levels leading the building towards the energy labels B and A. Both envelope and systems refurbishment works have been investigated. The adopted method allows to chose among different refurbishment options, evaluating them as elementary cases and whole interventions, considering their efficiency by means of the Cost of Conserved Energy (CCE) method and the pay-back of the investments (ROI) by the cash-flow method, analysing different funding systems and incentives.

Enrico De Angelis; Giorgio Pansa; Ermanno Serra

2014-01-01T23:59:59.000Z

58

Air Conditioner User Behavior in a Master-Metered Apartment Building  

E-Print Network (OSTI)

instrumented in eight apartments, and interviews were conducted with the residents about their operation of the units. The predominant mode of operation was to switch the unit on and off manually; only one resident consistently let it operate thermostatically...

Kempton, W.; Feuermann, D.; McGarity, A. E.

1987-01-01T23:59:59.000Z

59

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

Single-Family Units Apartments in Buildings With-- Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

60

Million U.S. Housing Units Total...............................  

Annual Energy Outlook 2012 (EIA)

Single-Family Units Apartments in Buildings With-- Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building America Whole-House Solutions for New Homes: David Weekely...  

Office of Environmental Management (EM)

TX More Documents & Publications Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House...

62

Building America Whole-House Solutions for New Homes: Exterior...  

Energy Savers (EERE)

Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge...

63

Building America Whole-House Solutions for Existing Homes: Passive...  

Energy Savers (EERE)

Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

64

Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach  

Energy.gov (U.S. Department of Energy (DOE))

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

65

Designing for apartment access  

E-Print Network (OSTI)

Although social conflicts in corridor housing have long been acknowledged, few useful alternatives have been developed. The corridor remains a standard of apartment design. As a catalyst to the development of new alternatives, ...

Graham, John David Trevor

1980-01-01T23:59:59.000Z

66

Wind resistance performance analysis of automated exterior wall painting robot for apartment buildings  

Science Journals Connector (OSTI)

Painters who have to work on the exterior walls of high-rise buildings are constantly exposed to the risk of falling, which can be fatal. Korea and other countries are endeavoring to develop technology that autom...

Ji-Won Cho; Hyun-Seok Yoo; Seung-Ho Choi

2014-10-01T23:59:59.000Z

67

Building America Whole-House Solutions for New Homes: The Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Old Greenwich, Connecticut (Fact Sheet) Building America Whole-House Solutions for New Homes: The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut...

68

Taipei apartment  

E-Print Network (OSTI)

To accommodate the rapid modernization and urbanization between 1960s and 1980s, a large number of mid-rise apartments has been built in Taipei. Today, these poorly designed apartments represent about 40 percent of the ...

Hsu, Andy Chien-Che

2013-01-01T23:59:59.000Z

69

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil fverholm

2014-01-01T23:59:59.000Z

70

Building America Whole-House Solutions for New Homes: Nexus EnergyHome...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick,...

71

Building America Whole-House Solutions for New Homes: New Town...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Whole-House Solutions for New Homes: New Town Builders' Power of Zero Energy Center Building America Whole-House Solutions for New Homes: New Town Builders' Power...

72

Building America Whole-House Solutions for Existing Homes: 56th...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development Building America Whole-House Solutions for Existing Homes: 56th and...

73

Building America Whole-House Solutions for New Homes: Shaw Constructio...  

Energy Savers (EERE)

Shaw Construction, Aspen, Colorado Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado Case study of Shaw Construction who worked with Building...

74

Low-Cost Ventilation in Production Housing- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

75

Building America Best Practices Series Volume 15: 40% Whole-House...  

Energy Savers (EERE)

More Documents & Publications Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder Building America Technology...

76

Building Energy Software Tools Directory: EASY: Whole House Energy Audit  

NLE Websites -- All DOE Office Websites (Extended Search)

EASY: Whole House Energy Audit EASY: Whole House Energy Audit EASY: Whole House Energy Audit logo. Allows auditors to visually draw plans for dwellings that are being audited. Users can place objects such as doors, windows, and other openings, and specify their attributes for calculations. EASY allows users to identify approved measures for specific objects that are included on the drawings. Once generated, the reports may be printed out or viewed on the screen. EASY has been developed to incorporate the latest in Windows technology and software design methodology in order to increase the ability for a lay person without extensive technical training to complete a complex audit with relative ease and with minimal training. EASY accounts for the varied climates, construction styles and building

77

Energy retrofitting of a typical old Danish multi-family building to a nearly-zero energy building based on experiences from a test apartment  

Science Journals Connector (OSTI)

The purpose of the research described in this paper was to demonstrate that an old Danish multi-family building built in 1896 could be retrofitted to a nearly-zero energy building. Three types of retrofit measures were implemented in a test apartment to obtain practical experiences. The first measure was the installation of two different types of interior insulation, specifically, an insulation component consisting of an aerogelstone wool mixture or vacuum insulation panels. The second measure related to the retrofit of windows in which five measures were completed that consisted of applying a secondary frame, a sash mounted on the frame or to coupled frames. The third measure consisted of installing a decentralised mechanical ventilation system with heat recovery. The results showed that following the retrofit the building's theoretical energy use diminished from 162.5kWh/(m2year) to 51.5kWh/(m2year), corresponding to a reduction in energy use of 68%. The theoretical energy use after retrofitting fulfilled the requirements for new buildings in Denmark. The practical experiences that were retained following the retrofit were that the ventilation system ought to be installed with low noise components, insulation materials must be sized and cut to fit on site, and that new windows were selected.

Martin Morelli; Leif Rnby; Svend Erik Mikkelsen; Maja G. Minzari; Troels Kildemoes; Henrik M. Tommerup

2012-01-01T23:59:59.000Z

78

Building America Industrialized Housing Partnership II Expert Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTI PROJECT NUMBER 20970 GTI PROJECT NUMBER 20970 Building America Industrialized Housing Partnership II Subtask 1.8: Building America Expert Meeting Report Issued: December 20, 2010 Prepared For: Philip Fairey Deputy Director Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922-5703 (321) 638-1434 pfairey@fsec.ucf.edu GTI Technical Contacts: Ryan Kerr Douglas Kosar R&D Market Analyst Institute Engineer 847-768-0941 847-768-0725 ryan.kerr@gastechnology.org douglas.kosar@gastechnology.org Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines, Illinois 60018 www.gastechnology.org FINAL EXPERT MEETING REPORT Building America Expert Meeting Final Report Page i Legal Notice This information was prepared by Gas Technology Institute ("GTI") for the Florida Solar

79

Addendum to the Building America House Simulation Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

Addendum to the Building Addendum to the Building America House Simulation Protocols C. Engebrecht Metzger, E. Wilson, and S. Horowitz National Renewable Energy Laboratory December 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

80

Addendum to the Building America House Simulation Protocols  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addendum to the Building Addendum to the Building America House Simulation Protocols C. Engebrecht Metzger, E. Wilson, and S. Horowitz National Renewable Energy Laboratory December 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building America Whole-House Solutions for New Homes: Rural Developmen...  

Energy Savers (EERE)

triple-pane windows, solar water heating, and PV. Rural Development Inc.: Wisdom Way Solar Village - Greenfield, MA More Documents & Publications Building America Whole-House...

82

Funding Opportunity Webinar Building America Industry Partnerships for High Performance Housing Innovations  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the Building America Industry Partnerships for High Performance Housing Innovations Funding Opportunity Announcement, DE-FOA-0001117.

83

Funding Opportunity Webinar Building America Industry Partnerships for High Performance Housing Innovations (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

84

Building America Whole-House Solutions for New Homes: John Wesley...  

Energy Savers (EERE)

John Wesley Miller, Tucson, Arizona Building America Whole-House Solutions for New Homes: John Wesley Miller, Tucson, Arizona Case study of John Wesley Miller Companies, who worked...

85

Category:MidriseApartment | Open Energy Information  

Open Energy Info (EERE)

MidriseApartment MidriseApartment Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "MidriseApartment" The following 77 files are in this category, out of 77 total. SVMidriseApartment Atlantic City NJ Public Service Elec & Gas Co.png SVMidriseApartment Atl... 62 KB SVMidriseApartment Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVMidriseApartment Bis... 74 KB SVMidriseApartment Burlington VT Central Vermont Pub Serv Corp.png SVMidriseApartment Bur... 68 KB SVMidriseApartment Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVMidriseApartment Ced... 60 KB SVMidriseApartment Charleston SC South Carolina Electric&Gas Co.png SVMidriseApartment Cha... 66 KB SVMidriseApartment Cheyenne WY Powder River Energy Corporation.png

86

Building America Whole-House Solutions for New Homes: CDC Realty...  

Energy Savers (EERE)

CDC Realty Inc., Tucson, Arizona Building America Whole-House Solutions for New Homes: CDC Realty Inc., Tucson, Arizona Case study of CDC Realty Inc. who worked with Building...

87

Dose assessment from domestic building materials used in housing sector in Serbia  

Science Journals Connector (OSTI)

......domestic building materials used in housing sector in Serbia M. Petrovic 1 D...domestic building materials used in a housing sector are presented. Natural radionuclides...is the efficiency, from the curve of energy efficiency. The activity concentration of mentioned......

M. Petrovi?; D. Vu?i?; J. Karamarkovi?

2014-11-01T23:59:59.000Z

88

White House Blog Post on the President's "Better Buildings Initiative" |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Blog Post on the President's "Better Buildings White House Blog Post on the President's "Better Buildings Initiative" White House Blog Post on the President's "Better Buildings Initiative" February 4, 2011 - 12:00am Addthis In case you missed it, below is a summary on the White House blog of President Obama's major announcement yesterday on building efficiency. The "Better Buildings" initiative aims to achieve a 20 percent improvement in commercial energy efficiency by 2020, reduce companies' and business owners' energy bills by about $40 billion per year, and save energy by reforming outdated incentives and challenging the private sector to act. WASHINGTON - Today, the Deputy Director of the Office of Public Engagement Greg Nelson posted the following statement to the White House blog. View

89

White House Blog Post on the President's "Better Buildings Initiative" |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Blog Post on the President's "Better Buildings White House Blog Post on the President's "Better Buildings Initiative" White House Blog Post on the President's "Better Buildings Initiative" February 4, 2011 - 12:00am Addthis In case you missed it, below is a summary on the White House blog of President Obama's major announcement yesterday on building efficiency. The "Better Buildings" initiative aims to achieve a 20 percent improvement in commercial energy efficiency by 2020, reduce companies' and business owners' energy bills by about $40 billion per year, and save energy by reforming outdated incentives and challenging the private sector to act. WASHINGTON - Today, the Deputy Director of the Office of Public Engagement Greg Nelson posted the following statement to the White House blog. View

90

Building America Top Innovations Hall of Fame Profile … House Simulation Protocols (the Building America Benchmark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insight Homes of Delaware worked Insight Homes of Delaware worked with Building America research partner IBACOS to design and analyze multiple iterations of prototype homes until an optimum combination of efficiency measures was derived. Building America has proven to be a world-class research program that has delivered transformative innovations to the housing industry. A solid technical underpinning has been critical to this success, and that has been provided by simulation protocols that ensure a consistent framework for technical analysis. The U.S. Department of Energy's Building America program sponsors projects conducted by its research teams working in the field with home builders and contractors. These teams use a systems engineering process to perform cost and performance assessments relative to each builder or retrofit

91

Occupants are in italics to distinguish them from building names; they are shown against the building housing their main reception. Highlighted buildings are those pictured overleaf.  

E-Print Network (OSTI)

Occupants are in italics to distinguish them from building names; they are shown against the building housing their main reception. Highlighted buildings are those pictured overleaf. If you have a question or comment about the accessibility of the buildings or grounds at the University of Leeds, email

Haase, Markus

92

Designing and Building Houses that are Solar Ready  

Energy.gov (U.S. Department of Energy (DOE))

Builders considering adding photovoltaic (PV) systems to new houses after initial construction is completed can save time and money by following new house Solar Ready design guidelines. Solar Ready houses are designed and built with integrated electrical and mechanical features that streamline the integration of PV systems.

93

Apply: Funding Opportunity- Building America Industry Partnerships for High Performance Housing Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Application Deadline: February 4, 2015 The Building Technologies Office (BTO)s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry Partnerships for High Performance Housing Innovation Funding Opportunity Announcement (FOA) DE-FOA-0001117.

94

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Status of PC When Not in Use Left On..............................................................

95

Housing services Zinfandel Hall  

E-Print Network (OSTI)

resources, the library, and the Internet. The Community has its own dining hall, swimming pools, study roomsHousing services Zinfandel Hall (707) 664-2541 Fax: (707) 664-4158 e-mail: ssu hall suites and campus apartments, all located just seconds from the main campus classroom buildings

Ravikumar, B.

96

Newporter Apartments: Deep Energy Retrofit Short-Term Results  

SciTech Connect

This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

2012-12-01T23:59:59.000Z

97

Native American Housing Stakeholder Meeting - Tribal Data: Building...  

Energy Savers (EERE)

American Housing Stakeholder Meeting will discuss effective strategies for tribally led data collection, ways to access and leverage new capital with improved data, and models...

98

Building America Whole-House Solutions for New Homes: Evluating...  

Energy Savers (EERE)

the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature...

99

Building America Whole-House Solutions for New Homes: Grupe,...  

Energy Savers (EERE)

Production Builders - Building America Top Innovation High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series...

100

Building America Whole-House Solutions for New Homes: HVAC Design...  

Energy Savers (EERE)

HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this...

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Addendum to the Building America House Simulation Protocols  

Energy.gov (U.S. Department of Energy (DOE))

The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

102

AN OVERVIEW OF BUILDING AMERICA INDUSTRIALIZED HOUSING PARTNERSHIP (BAIHP) ACTIVITIES IN HOT-HUMID CLIMATES  

E-Print Network (OSTI)

assistance resulting in the construction of extremely energy efficient homes. One BA research team is led by the Florida Solar Energy Center (FSEC). This team, called the Building America Industrialized Housing Partnership (BAIHP) is staffed by FSEC... assistance resulting in the construction of extremely energy efficient homes. One BA research team is led by the Florida Solar Energy Center (FSEC). This team, called the Building America Industrialized Housing Partnership (BAIHP) is staffed by FSEC...

Chandra, S.; Parker, D.; Sherwin, J.; Colon, C.; Fonorow, K.; Stroer, D.; Martin, E.; McIlvaine, J.; Chasar, D.; Moyer, N.; Thomas-Rees, S.; Hoak, D.; Beal, D.; Gil, C.

103

Building America Whole-House Solutions for Existing Homes: Evaluation...  

Energy Savers (EERE)

Ordinance. Evaluation of a Multifamily Retrofit in Climate Zone 5 - Boulder, Colorado More Documents & Publications Building America Expert Meeting: Retrofit...

104

SFU Rental Suites Managed by AWM-Alliance Real Estate Group Ltd. Verdant Rental Housing -state of the art Eco-Designed apartments for rent on campus to  

E-Print Network (OSTI)

6/7/2010 SFU Rental Suites Managed by AWM-Alliance Real Estate Group Ltd. Verdant Rental Housing are interested in renting a unit at Verdant, please contact: AWM-Alliance's CONTACT INFORMATION AWM-Alliance Real

105

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

106

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

2 2 2007 Top Five Manufacturers of Modular/3D Housing Units (1) Company Champion Enterprises, Inc. 27% CMH Manufacturing 14% All American Homes, LLC 10% Palm Harbor Homes, Inc. 10% Excel Homes LLC 7% Note(s): Source(s): 1,200 110.6 1) Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of the Modular/3D home producers included in the list of the top 25 factory-built producers responding to the survey. In 2007, surveyed Modular/3D home sales were estimated at $1.6 billion and 20,601 units. HousingZone.com, 2007 Factory Built Housing Results, http://www.housingzone.com/factory.html. 3,200 228.8 1,689 165.4 1,614 162.9 Gross Sales Market Share of Top Units Produced Volume ($million) 25 Company Sales (2)

107

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

1 1 2007 Top Five Manufacturers of Factory-Built Housing Units (1) Company CMH Manufacturing 20% Champion Enterprises, Inc. 19% Palm Harbor Homes, Inc. 10% Fleetwood Enterprises, Inc. 9% Skyline Corporation 6% Note(s): Source(s): 8,207 376.4 1) Data based on mail-in surveys from manufacturers which may not be entirely complete. 2) Market shares based on total gross sales volume of the factory-built home producers included in the list of the top 25 factory-built producers responding to the survey. In 2007, surveyed factory-built home sales were estimated at $6.6 billion and 133,361 units. HousingZone.com, 2007 Factory Built Housing Results. 21,126 1,286.6 8,911 679.1 15,137 600.0 Gross Sales Market Share of Top Units Produced Volume ($million) 25 Company Sales (2) 31,100 1,327.8

108

Effect of Climates and Building Materials on House Wall Thermal Performance  

Science Journals Connector (OSTI)

The residential housing sectors consume a large amount of fossil fuel energy. Hence the sector is responsible for huge amount of greenhouse gas emission to the atmosphere. Most energy used in the residential housing sector is mainly for space heating and cooling. In order to reduce the energy consumption in the housing sector, energy smart house wall system is required to develop. It is difficult to achieve higher thermal efficiency by using current building wall systems with their construction materials and methods. Although some studies on different aspects of residential housing were reported in the open literature, scant information is available on energy smart house wall systems for the main stream housing. Therefore, the primary objective of this study is to investigate several new house wall systems using various construction materials in order achieve higher thermal efficiency for ongoing heating and cooling. Thermal energy performance modeling was undertaken for two current and four new house wall systems for varied climate conditions across Australia. The findings revealed that at new house wall systems can provide higher energy efficiency and the reduction of greenhouse gas emission for major locations in Australia.

Fayez Aldawi; Firoz Alam; Iftekhar Khan; Mohamed Alghamdi

2013-01-01T23:59:59.000Z

109

Building America Whole-House Solutions for New Homes: Meeting...  

Energy Savers (EERE)

America team Building Science Corporation to evaluate the certification of five test homes to the new DOE Challenge Home program performance standard (now DOE Zero Energy...

110

Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bay Ridge Gardens-Mixed Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use (normalized): 16.3 kWh/ft 2 Percent energy savings: 43% Incremental cost of energy efficiency measures: $85,996 Monetized annual energy savings: $6,900 Savings to Investment Ratio: 1.1 Significant energy savings-43% in this case-are possible in older multifamily

111

SFU Rental Suites Managed by AWM-Alliance Real Estate Group Ltd. Verdant Rental Housing -state of the art Eco-Designed apartments for rent on campus to  

E-Print Network (OSTI)

3/4/2014 SFU Rental Suites Managed by AWM-Alliance Real Estate Group Ltd. Verdant Rental Housing-Alliance's CONTACT INFORMATION AWM-Alliance Real Estate Group Ltd. #401 ­ 958 West 8th Avenue Vancouver, BC V5Z 1E5-time faculty and senior administrative staff. A model of sustainable environmental living with modern

112

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

3 3 2007 Top Five Manufacturers of HUD-Code (Mobile) Homes (1) Company CMH Manufacturing 23% Champion Enterprises, Inc. 18% Fleetwood Enterprises, Inc. 12% Palm Harbor Homes 11% Skyline Corporation 8% Note(s): Source(s): 8,207 376 1) Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of the HUD-Code home producers included in the list of the top 25 factory-built producers responding to the survey. In 2007, surveyed HUD-Code home sales were estimated at $4.83 billion and 109,320 units. HousingZone.com, 2007 Factory Built Housing Results, http://www.housingzone.com/factory.html. 16,473 848 15,137 600 7,297 516 Gross Sales Market Share of Top Units Produced Volume ($million) 25 Company Sales (2)

113

LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL  

SciTech Connect

5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-10-22T23:59:59.000Z

114

Development of a housing performance evaluation model for multi-family residential buildings in Korea  

Science Journals Connector (OSTI)

This paper presents the development and application of a housing performance evaluation model for multi-family residential buildings in Korea. This model is intended to encourage initiatives toward achieving better housing performance and to support a homebuyer's decision-making on housing comparison and selection. Forty-one objective and feasible housing performance indicators, which were selected from the review of existing evaluation models and interviews with experts, are classified into a series of categories. The weights of each category and indicator are calculated by using the analytic hierarchy process (AHP) analysis, and a weight is converted into credit. Next, the performance grades are divided into four levels, and evaluation criteria are suggested based on statutory performance value or the one frequently met in practice. Finally, the evaluation program and the application procedure are established through the field case study. This model can be used for objective and practical evaluation and comparison of residential housing alternatives.

Sun-Sook Kim; In-Ho Yang; Myoung-Souk Yeo; Kwang-Woo Kim

2005-01-01T23:59:59.000Z

115

Building America Whole-House Solutions for New Homes: Treasure...  

Office of Environmental Management (EM)

who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. Treasure Homes:...

116

Department of Energy's Passive and Hybrid Solar Manufactured Housing and Building Program: Phase I. Final report  

SciTech Connect

The performance of three preliminary designs of passive solar heating systems for two basic house models is first briefly discussed. Two final designs are treated in detail - an attached greenhouse design and a superinsulated/microload house. The report deals with a description of the designs, their thermal performance and cost, and a critical comparison of the two designs. It is concluded that under mild climate and low mass construction conditions, a superinsulated microload building may be thermally and cost effectively more efficient than other forms of passive building techniques.

Not Available

1981-04-28T23:59:59.000Z

117

Table HC1.2.4 Living Space Characteristics by Average Floorspace--Apartments, 2  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" 2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Living Space Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441 "Total Floorspace (Square Feet)" "Fewer than 500",3.1,2.3,403,360,165,366,348,93 "500 to 999",22.2,14.4,763,660,277,730,646,303 "1,000 to 1,499",19.1,5.8,1223,1130,496,1187,1086,696 "1,500 to 1,999",14.4,1,1700,1422,412,1698,1544,1348

118

Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% reduction in energy use compared to 2009 International Residential Code.

119

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and Division Northeast 11.7 7.4 21.2 139 49 88.5 34 898 0.31 571 221 New England 1.7 1.0 3.0 155 49 86.8 33 1,044 0.33 586 223 Middle Atlantic 10.0 6.5 18.2 137 49 88.8 35 877 0.31 568 221

120

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region and Division Northeast 12.2 7.7 23.3 145 48 90.9 35 1,122 0.37 703 272 New England 2.2 1.2 4.2 154 45 85.7 34 1,298 0.38 722 290 Middle Atlantic 10.0 6.4 19.1 143 48 92.0 35 1,089 0.37 699 269

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division Northeast 18.3 13.0 35.0 31 12 22.3 8 938 0.35 665 245 New England 4.3 3.1 9.0 31 11 22.6 8 869 0.30 635 227 Middle Atlantic 14.0 9.9 26.0 32 12 22.2 8 959 0.36 674 251

122

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

123

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region and Division Northeast 11.9 7.7 23.6 134 44 86.8 33 952 0.31 615 232 New England 2.0 1.1 3.5 146 45 76.0 29 1,135 0.35 592 227 Middle Atlantic 9.9 6.6 20.1 133 44 89.1 34 923 0.30 620 234

124

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and Division Northeast 11.7 7.5 21.1 125 44 79.2 30 925 0.33 588 221 New England 2.0 1.3 4.2 122 39 80.3 29 955 0.30 626 224 Middle Atlantic 9.7 6.1 16.9 125 45 78.9 30 919 0.33 580 220

125

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division Northeast 1.2 1.1 2.7 29 11 26.2 9 318 0.13 288 94 New England 0.5 0.4 1.0 25 11 22.5 8 282 0.12 250 91 Middle Atlantic 0.7 0.7 1.7 31 12 28.6 9 341 0.13 312 96

126

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

127

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division Northeast 19.0 13.2 36.8 34 12 23.3 9 934 0.34 648 251 New England 4.3 3.0 8.4 33 12 22.9 9 864 0.30 600 234 Middle Atlantic 14.8 10.2 28.4 34 12 23.4 9 954 0.34 661 256

128

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division Northeast 20.3 14.1 43.7 37 12 26.0 11 1,268 0.41 883 362 New England 5.4 4.1 13.2 32 10 24.0 10 1,121 0.35 852 358 Middle Atlantic 14.8 10.0 30.5 40 13 27.0 11 1,328 0.44 894 364

129

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division Northeast 1.4 1.2 2.7 23 10 20.1 7 295 0.13 264 91 New England 0.5 0.4 1.0 31 14 27.6 9 370 0.17 330 114 Middle Atlantic 0.9 0.8 1.8 18 8 15.9 6 253 0.11 226 79

130

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

131

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

97 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and Division Northeast 19.7 15.1 34.6 32 14 25.0 10 1,130 0.49 863 345 New England 5.3 4.2 9.3 31 14 24.0 9 1,081 0.49 854 336 Middle Atlantic 14.4 10.9 25.3 33 14 25.0 10 1,149 0.49 867 349

132

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

133

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

134

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division Northeast 17.9 12.1 35.1 33 11 22.1 8 830 0.29 561 195 New England 4.3 2.9 8.3 31 11 21.3 8 776 0.27 531 189 Middle Atlantic 13.7 9.2 26.7 33 11 22.4 8 847 0.29 571 197

135

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1997 Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34 579 218 Census Region and Division Northeast 11.8 8.3 19.9 123 52 86.9 35 1,097 0.46 772 310 New England 1.9 1.4 3.3 123 50 87.0 32 1,158 0.48 819 301 Middle Atlantic 9.9 6.9 16.6 124 52 86.9 36 1,085 0.45 763 312

136

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region and Division Northeast 19.5 13.8 40.1 34 12 24.1 9 1,144 0.39 809 309 New England 5.1 3.7 10.6 33 11 24.1 9 1,089 0.38 797 311 Middle Atlantic 14.4 10.1 29.4 35 12 24.2 9 1,165 0.40 814 309

137

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

138

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

139

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division Northeast 17.7 12.2 34.8 33 12 23.0 8 742 0.26 514 181 New England 4.3 2.9 8.9 34 11 23.1 8 747 0.25 508 177 Middle Atlantic 13.4 9.3 26.0 33 12 22.9 8 740 0.27 516 183

140

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region and Division Northeast 12.5 7.8 25.4 126 39 78.3 33 1,434 0.44 889 372 New England 2.3 1.5 5.5 128 34 82.5 35 1,567 0.42 1,014 428 Middle Atlantic 10.3 6.3 19.9 126 40 77.4 32 1,403 0.45 861 360

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

142

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1980 Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 51.6 39.7 88.5 125 56 96.2 34 497 0.22 383 137 Census Region and Division Northeast 10.9 6.5 18.8 144 50 86.6 31 771 0.27 463 168 New England 1.9 0.9 3.1 162 47 78.9 28 971 0.28 472 169 Middle Atlantic 9.0 5.6 15.7 141 51 88.1 32 739 0.27 461 168

143

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and Division Northeast 1.7 1.7 4.5 31 11 29.8 11 538 0.20 519 186 New England 0.7 0.7 2.2 34 11 33.1 12 580 0.19 569 209 Middle Atlantic 1.0 0.9 2.4 29 11 27.4 10 506 0.20 482 169

144

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and Division Northeast 11.6 7.3 21.1 132 46 82.6 31 951 0.33 598 221 New England 2.0 1.3 4.5 126 35 77.9 28 1,062 0.30 658 235 Middle Atlantic 9.6 6.0 16.5 133 49 83.6 31 928 0.34 585 217

145

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

146

Housing  

Science Journals Connector (OSTI)

A large part of the worlds energy consumption is used in the housing and transport sectors. Any reduction in their energy consumption, for the same quality of product or service, is highly worthwhile. Housing...

Christian Ng; Marcel H. Van de Voorde

2014-01-01T23:59:59.000Z

147

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

4 4 2004 Top Five Manufacturers of Factory-Fabricated Components (1) Company Carpenter Contractors 175.0 1,130 Automated Building Company 102.5 702 Landmark Truss 45.0 425 Southern Building Products 25.9 180 Dolan Lumber & Truss 25.1 260 Note(s): Source(s): Automated Builder Magazine, Sept. 2005, p. 40-41. 26% 15% 7% 4% 4% 1) Factory-fabricated components include trusses, wall panels, and doors. Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of producers of only components included in the list of the top 26 IH producers responding to the survey. In 2004, surveyed component sales was estimated at $665.1 million. 3) The top 26 companies employ over 4,970 people at their plants. Gross Sales

148

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average Square Feet of Floor Area in New Single-Family Houses Completed by Location", "Presence of Air-Conditioning in New Single Family Houses", "Number of Multifamily Units Completed by Number of Units Per Building", "Median and Average Square Feet of Floor Area in Units in New Multifamily Buildings Completed", "Placements of New Manufactured Homes by Region and Size of Home, 1980-

149

House-as-a-System Business Case- Building America Top Innovations  

Energy.gov (U.S. Department of Energy (DOE))

Top Innovations in this category include profiles of Building America field research projects with production builders who have used a whole-house approach to achieve exceptional energy efficiency, comfort, and durability. These examples demonstrate that constructing high-performance homes make economic sensefor the builder, the consumer, the real estate professional, and the environment.

150

Building America Expert Meeting: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors  

Energy.gov (U.S. Department of Energy (DOE))

This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting held on March 29, 2011 by IBACOS to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

151

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493 583 Census Region and Division Northeast 20.3 14.1 43.7 153 49 106.6 44 2,501 0.81 1,741 715 New England 5.4 4.1 13.2 152 47 115.3 48 2,403 0.75 1,825 768 Middle Atlantic 14.8 10.0 30.5 154 50 103.4 42 2,541 0.83 1,710 696

152

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491 Census Region and Division Northeast 19.5 13.8 40.1 173 60 122.4 47 2,157 0.74 1,526 583 New England 5.1 3.7 10.6 168 59 123.1 48 2,094 0.73 1,532 598 Middle Atlantic 14.4 10.1 29.4 175 60 122.1 46 2,180 0.75 1,523 578

153

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417 Census Region and Division Northeast 18.3 13.0 35.0 176 65 125.2 46 2,033 0.75 1,443 533 New England 4.3 3.1 9.0 174 61 127.6 46 2,010 0.70 1,471 527 Middle Atlantic 14.0 9.9 26.0 177 67 124.5 46 2,040 0.77 1,435 535

154

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416 Census Region and Division Northeast 19.0 13.2 36.8 179 64 124.4 48 1,836 0.66 1,276 494 New England 4.3 3.0 8.4 174 61 121.0 47 1,753 0.62 1,222 475 Middle Atlantic 14.8 10.3 28.4 181 65 125.4 48 1,860 0.67 1,292 499

155

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356 Census Region and Division Northeast 17.9 12.1 35.1 194 67 131.6 46 2,016 0.70 1,365 475 New England 4.3 2.9 8.3 181 63 123.9 44 2,018 0.71 1,384 492 Middle Atlantic 13.7 9.2 26.7 199 68 134.0 46 2,016 0.69 1,359 470

156

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330 Census Region and Division Northeast 17.7 12.3 34.8 199 70 138.3 49 1,874 0.66 1,301 459 New England 4.3 2.9 8.9 197 65 134.4 47 1,964 0.65 1,341 466 Middle Atlantic 13.4 9.3 26.0 200 72 139.5 49 1,846 0.66 1,288 456

157

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,034 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,023 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,037 0.70 1,491 555

158

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377 Census Region and Division Northeast 18.0 12.5 34.4 175 64 121.7 44 1,942 0.71 1,353 490 New England 4.2 3.0 9.1 173 56 121.9 43 1,991 0.65 1,402 498 Middle Atlantic 13.7 9.5 25.2 175 66 121.7 44 1,926 0.73 1,338 487

159

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,038 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,028 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,041 0.70 1,491 555

160

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80 1,338 517 Census Region and Division Northeast 19.7 15.1 34.6 158 69 121.0 48 2,153 0.94 1,644 658 New England 5.3 4.2 9.3 156 70 123.0 48 2,085 0.94 1,647 648 Middle Atlantic 14.4 10.9 25.3 159 68 120.0 48 2,179 0.94 1,643 662

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility studies on net zero energy building for climate considering: A case of All Green House for Datong, Shanxi, China  

Science Journals Connector (OSTI)

Abstract This paper will discuss the feasibility of a net zero energy house design targeting for energy balance, financial and environmental sustainability from the initial planning to the final construction for Northern China. A residential house as an experimental objective, which could satisfy an average family's daily needs are in Datong, Shanxi Province in China. Dynamic thermal simulation of the indoor environment, house geometries, solar electric and hot-water collectors, appliances are set in the house. After analysis of the integrated performance of the house, a net zero energy building with the best system configuration predicted by hardware and software simulation are validated. Furthermore, the house is precisely energy monitored and energy controlled after construction. The case study shows that the innovation of a net zero building should be considered as a technological improvement and with a social approval by the occupants of the house.

Y. Jin; L. Wang; Y. Xiong; H. Cai; Y.H. Li; W.J. Zhang

2014-01-01T23:59:59.000Z

162

Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE))

In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate HVAC distribution systems during heating, cooling, and midseason conditions.

163

On-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing On-site Housing Note: All guests wishing to stay on-site must be registered and approved in the BNL Guest Information System (GIS). Welcome to Brookhaven National Laboratory. BNL attracts more than 4,500 visiting scientists from all over the world each year to perform scientific research and work with our staff. To support our guests, there are 333 on-site housing units. These units are comprised of 66 family-style apartments, 39 efficiency apartments, 213 dormitory rooms, 13 Guest House rooms, and 2 year round private houses. Location: Hours of Operation: Research Support Building (400A), 20 Brookhaven Avenue Monday - Friday: 8:00 am to Midnight Reservations: (631) 344-2541 or 344-2551 Saturday: Closed* Fax: (631) 344-3098 Sunday: 4:00 pm to Midnight

164

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

165

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

166

Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate  

Energy.gov (U.S. Department of Energy (DOE))

This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

167

Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate  

Energy.gov (U.S. Department of Energy (DOE))

This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

168

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Asked (Apartments in Buildings" "With 5 or More Units)",19.1,5.8,6.2,2.8,2.8,1.5 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

169

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Not Asked (Apartments in Buildings" "With 5 or More Units)",19.1,4.4,3.7,6.2,4.7 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

170

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Not Asked (Apartments in Buildings" "With 5 or More Units)",19.1,9.6,5,2.2,1.5,0.8 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

171

apartment | OpenEI  

Open Energy Info (EERE)

apartment apartment Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

172

Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

173

"Table HC3.1 Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" " Million Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Census Region and Division" "Northeast",20.6,13.4,10.4,1.4,1,0.3,0.4 "New England",5.5,3.8,3.1,"Q",0.3,"Q","Q" "Middle Atlantic",15.1,9.6,7.3,1.3,0.6,"Q","Q"

174

"Table HC4.1 Housing Unit Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Renter-Occupied Housing Unit, 2005" Housing Unit Characteristics by Renter-Occupied Housing Unit, 2005" " Million Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Census Region and Division" "Northeast",20.6,7.2,0.8,0.9,1.6,3.8,"Q" "New England",5.5,1.7,0.2,"Q",0.6,0.9,"Q" "Middle Atlantic",15.1,5.5,0.7,0.9,1,2.9,"Q"

175

Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York  

Energy.gov (U.S. Department of Energy (DOE))

In this project, ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies. T

176

Building America Whole-House Solutions for New Homes: Low-Cost...  

Energy Savers (EERE)

of a whole-house systems integrated measures package and the actual utility usage in the houses at the community scale of production. Five occupants participated in...

177

Native American Housing Stakeholder Meeting- Tribal Data: Building the Bridge to New Capital  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by the Housing Assistance Council, the Native American Housing Stakeholder Meeting will discuss effective strategies for tribally led data collection, ways to access and leverage new capital...

178

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

8 8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof Shingles 4% Siding 6% Gutters & Downspouts 0% Plumbing 5% Electrical Wiring 4% Lighting Fixtures 1% HVAC 4% Insulation 2% Drywall 5% Painting 3% Cabinets, Countertops 6% Appliances 2% Tiles & Carpet 5% Trim Material 3% Landscaping & Sodding 3% Wood Deck/Patio 1% Asphalt Driveway 1% Other 9% Total 100% Note(s): Source(s): NAHB, Breaking Down House Price and Construction Costs, 2010, Table 1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

179

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Type of Housing Unit, 2005" Housing Unit Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Census Region and Division" "Northeast",20.6,11.2,2.3,2.5,4.2,0.4 "New England",5.5,3.2,0.2,0.9,1,0.2 "Middle Atlantic",15.1,7.9,2.1,1.6,3.2,0.3 "Midwest",25.6,18.7,1.5,1.5,3.1,0.8 "East North Central",17.7,12.9,1.2,1.2,2.1,0.4

180

Building America Top Innovations Hall of Fame Profile … High-Performance Affordable Housing with Habitat for Humanity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provide compelling benefits provide compelling benefits for all homeowners, but no sector is better served than affordable housing. These are the homeowners that most need the reduced costs of ownership, maintenance, and health associated with these homes. Building America research projects have paved the way for affordable housing providers such as Habitat for Humanity to effectively address this need. Habitat for Humanity (Habitat) has a clear goal: Enable low-income people to become owners of affordable, durable homes. Building America shares this goal, so a partnership was natural. Since the first days of the Building America program, the U.S. Department of Energy and its research partners have provided technical assistance to Habitat. Researchers have helped local Habitat affiliates

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EcoHouse Program Overview  

Energy.gov (U.S. Department of Energy (DOE))

Provides an overview of the Indianapolis Better Buildings program, the EcoHouse program, and Indianapolis Neighborhood Housing partnership (INHP).

182

Evolving building system for expandable housing by means of corrugated metal sheets  

E-Print Network (OSTI)

Large housing programs in developing countries built out of permanent materials are likely to be too costly for low-income people. Such housing would have to be subsidized or allocated to middle-income groups. For this ...

Solana, Maria Begoa

1986-01-01T23:59:59.000Z

183

The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Performance House: The Performance House: A Cold Climate Challenge Home Old Greenwich, Connecticut PROJECT INFORMATION Project Name: Performance House Location: Old Greenwich, CT Partners: Preferred Builders Inc. www.preferredbuilders.biz Consortium for Advanced Residential Buildings www.carb-swa.com Size: 2,700 ft 2 plus basement Year Completed: 2012 Climate Zone: Cold PERFORMANCE DATA Source Energy Savings: 30.9% HERS Index: 43 (20 with PV) Projected Annual Utility Costs: $2,508; $795 with PV Incremental Cost of Energy Efficiency Measures: $47,337 (excluding PV) Savings-to-Investment Ratio (over 15 years): * Solution Package (SP) = 0.29 * SP with Incentives = 0.34 * SP with Solar = 0.52 * SP with Solar & Incentives = 0.82 By working with builder partners on test homes, researchers from the U.S.

184

NREL: Housing Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Information Housing Information Suggestions for where to start looking for short-term housing or apartments in the Golden, Colorado area are provided below. Short-term Housing Biz-Stay: Lakewood, Golden, Evergreen Housing Features: Short term furnished apartments to extended stay hotels Locations throughout the Lakewood-Golden-Evergreen area. Candlewood Suites 895 Tabor Street Golden, CO 80401 303-232-7171, ask for NREL rates or email Lisa.kennedy@ihg.com Housing Features: Pet friendly Free on-site laundry facilities All suites have kitchens Free high speed internet connections in all suites. University Housing Campus Village Apartments at the Auraria Campus University of Colorado Denver, Metro State College campus (May, June, July only) 318 Walnut St. Denver, CO 80204 303-573-5272

185

Obama Administration Expands Better Buildings Challenge to Multifamily  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Expands Better Buildings Challenge to Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency December 3, 2013 - 9:45am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on $2 billion in financing commitments from the private sector for energy efficiency updates to commercial buildings under the President's Better Buildings Challenge, the U.S. Departments of Energy and Housing and Urban Development today expanded the Challenge to multifamily housing such as apartments and condominiums and launched the Better Buildings Accelerators to support state- and local government-led

186

On-site Housing Unit Types | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing Unit Types On-site Housing Unit Types Registration is required for all computers, wireless notebooks or other network devices used on the BNL Network. Devices that are not registered will be disconnected from the network. Apartments Apartments are available in 1, 2, 3 and 4 bedrooms. They are fully furnished and supplied with linens, kitchen utensils and cookware. Utilities are included in the rental price. *Note: These units do NOT have air conditioning. Each unit is equipped with DSL connection, satellite television and a microwave. Cisco Wireless Access Points (WAPs) connections are also available in Buildings 2-10. More Photos (PDF) Cavendish House The Cavendish house is a male dormitory consisting of 83 private single occupancy rooms equipped with air conditioning, Ethernet connection and

187

Leveraging Limited Scope for Maximum Benefit in Occupied Renovation of Uninsulated Cold Climate Multifamily Housing  

SciTech Connect

This project examines a large-scale renovation project within a 500 unit, 1960's era subsidized urban housing community. This research focuses on the airflow control and window replacement measures implemented as part of the renovations to the low-rise apartment buildings. The window replacement reduced the nominal conductive loss of the apartment enclosure by approximately 15%; air sealing measures reduced measured air leakage by approximately 40% on average.

Neuhauser, K.; Bergey, D.; Osser, R.

2012-03-01T23:59:59.000Z

188

Identifying apartment buildings with potential heating issues.  

E-Print Network (OSTI)

??The residential sector in Sweden uses a large amount of energy for heating and hot water. Sweden as well as all other European countries need (more)

Rooij, Joris van

2011-01-01T23:59:59.000Z

189

Building America Whole-House Solutions for Existing Homes: Evaluation of a Multifamily Retrofit  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

190

Building America Whole-House Solutions for New Homes: Artistic Homes, Albuquerque, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Artistic Homes who worked with Building America research partners Building Science Corporation and BIRA to design homes that achieve HERS

191

Key to University of Bristol building numbers Academic Registry, Senate House .................................................................. 43  

E-Print Network (OSTI)

Engineering, Queen's Building ...................................................... 20 ALSPAC - Children ................................................................ 23 Audio Visual Aids (AVA), entry via 3-5 Woodland Road .................................. 58 Avon Civil Engineering, Queen's Building ................................................................ 20

192

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" 2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Household Demographics",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Number of Household Members"

193

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" 2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Televisions" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Televisions" "Number of Televisions"

194

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" 2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air Conditioning",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Air Conditioning Equipment"

195

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" 2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Space Heating" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Space Heating Equipment"

196

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" 2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Appliances",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Cooking Appliances" "Stoves (Units With Both"

197

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

199

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Type of Housing Unit, 2005" 5 Space Heating Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Heating Equipment",1.2,0.4,"Q","Q",0.4,"Q" "Have Space Heating Equipment",109.8,71.7,7.5,7.6,16.3,6.8 "Use Space Heating Equipment",109.1,71.5,7.4,7.4,16,6.7 "Have But Do Not Use Equipment",0.8,"Q","Q","Q","Q","Q"

200

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Renter-Occupied Housing Unit, 2005" 3 Household Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Household Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Household Size" "1 Person",30,11.4,1.6,1,1.9,6.6,0.3 "2 Persons",34.8,8,1.9,0.8,1.5,3.5,0.3 "3 Persons",18.4,5.6,1.5,0.7,1.2,1.9,0.2 "4 Persons",15.9,4.3,1.3,0.6,0.7,1.6,"Q"

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Type of Housing Unit, 2005" 8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Number of Water Heaters" "1.",106.3,68.7,7.4,7.6,15.9,6.7 "2 or More",3.7,3.2,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,"Q","Q","Q",0.6,"Q" "Housing Units Served by Main Water Heater"

202

Low-income housing : alternative strategies for building construction and project control  

E-Print Network (OSTI)

Housing low-income groups, who cannot afford even the most minimal shelter, remains a dominant issue in most developing countries. However, all the solutions advanced so far depend on large investments, either by the ...

Sultan, Javed

1982-01-01T23:59:59.000Z

203

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment" "Use Air Conditioning Equipment",94,61.1,5.6,6.3,15.2,5.8 "Have Air Conditioning Equipment But" "Do Not Use It",4.9,2.6,0.2,0.7,0.9,0.4 "Do Not Have Air Conditioning Equipment",14.7,8.1,0.9,2.1,3,0.7 "Type of Air Conditioning Equipment "

204

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Household Demographics of U.S. Homes, by Housing Unit Type, 2009" Household Demographics of U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Household Demographics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Household Members" "1 Person",31.3,14.4,2.1,3.4,9.6,1.9 "2 Persons",35.8,24.2,1.9,2.5,5,2.1 "3 Persons",18.1,12.1,1.2,1.3,2.2,1.2 "4 Persons",15.7,11.5,1,1,1.5,0.8 "5 Persons",7.7,5.8,0.3,0.5,0.6,0.5

205

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any Use" "Electricity",113.6,71.8,6.7,9,19.1,6.9 "Natural Gas",69.2,45.6,4.7,6.1,11,1.8 "Propane/LPG",48.9,39.6,2.4,1.7,2,3.2 "Wood",13.1,11.4,0.3,0.2,0.5,0.7 "Fuel Oil",7.7,5.1,0.4,0.7,1.3,0.1

206

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Appliances in U.S. Homes, by Housing Unit Type, 2009" Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,62.3,6.4,8.7,18.3,6.5 "1.",100.8,61,6.4,8.6,18.3,6.5 "2 or More",1.5,1.3,0.1,"Q","Q","Q" "Do Not Use a Stove",11.3,9.5,0.3,0.3,0.8,0.4

207

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Water Heating in U.S. Homes, by Housing Unit Type, 2009" Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters" 0,2.9,1.8,0.1,0.2,0.6,0.1 1,108.1,67.5,6.5,8.8,18.5,6.8 "2 or More",2.7,2.5,0.1,"Q","Q","Q" "Number of Tankless Water Heaters2" 0,110.4,69.5,6.5,8.9,18.6,6.8 1,3.1,2.2,0.2,0.2,0.5,"Q"

208

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Space Heating in U.S. Homes, by Housing Unit Type, 2009" Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Space Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Space Heating Equipment" "Use Space Heating Equipment",110.1,70.5,6.5,8.7,17.7,6.7 "Have Space Heating Equipment But Do " "Not Use It",2.4,0.8,0.2,0.2,1,0.1 "Do Not Have Space Heating Equipment",1.2,0.6,"Q",0.1,0.4,"Q"

209

Building America Whole-House Solutions for New Homes: David Weekely Homes, Houston, Texas  

Energy.gov (U.S. Department of Energy (DOE))

Case study of David Weekley Homes, who worked with Building America research partner Building Science Corporation to design HERS-59 homes with advanced framed walls, airtight drywall, and rigid foam wall sheathing.

210

High-Performance Affordable Housing with Habitat for Humanity- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

211

Building America Whole-House Solutions for New Homes: Imagine Homes, San Antonio, Texas  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Imagine Homes, who worked with the Building America research partner IBACOS to build HERS-52 homes with spray foam-insulated attics and central fan-integrated supply ventilation.

212

Building America Whole-House Solutions for New Homes: CDC Realty Inc., Tucson, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

Case study of CDC Realty Inc. who worked with Building America research partner Building Science Corporation to design HERS-54 homes with ducts in insulated attics, solar water heating, tight air sealing, and rigid foam exterior sheathing.

213

Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space.

214

Building America Whole-House Solutions for New Homes: Green Coast Enterprises, New Orleans, Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Green Coast Enterprises, who worked with Building America research partner Building Science Corporation to build moisture- and flood-resistant HERS- 65 affordable homes on pier foundations, with borate pressure-treated lumber, wind-resistant OSB sheathing, hurricane strapping, roofing membrane, and closed-cell spray foam in attic, walls, and under floor.

215

Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

216

Heating Facilities, Virginia Lake Townhouses and Apartments, Reno, Nevada.  

SciTech Connect

The Virginia Lake Townhouses and Apartments are located in a 12 acre parcel in the geographic center of Reno, Nevada. There are 148 apartments, consisting of 70 single story garden apartments in 10 buildings, 40 two story townhouses in six buildings, and 38 two story apartments in five buildings. All apartments are presently heated with individual natural gas fired forced air furnaces. Hot water is provided by gas fired water heaters, except for the 40 older townhouses which are using water directly from a geothermal source. This water has now been found to be unsuitable for potable use. Located on the property are two geothermal wells, complete with pumps. The larger well can deliver 500 gallons per min., and the smaller well 65 gallons per min., of the 135/sup 0/F geothermal water. The Geo-Heat Utilization Center has been asked to determine a scheme for using the geothermal water from these wells to provide the needed space and hot water heating for the 148 apartments. An outdoor swimming pool also requires heating. Space heating in all three types of apartments will be accomplished through the installation of finned water coils in existing ductwork or furnaces. Geothermal water will be pumped from Well No. 2 through a main distribution system and used directly in the coils. Piping system specifics are available in the Appendix.

Not Available

1980-03-01T23:59:59.000Z

217

Building America Whole-House Solutions for New Homes: Nexus EnergyHome...  

Energy Savers (EERE)

indoor environmental quality, achieving the highest rating possible under the National Green Building Standard Nexus EnergyHomes - Frederick, Maryland More Documents &...

218

Building America Best Practices Series Volume 16: 40% Whole-House...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this...

219

Building America Whole-House Solutions for New Homes: Tindall Homes, Columbus, New Jersey  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Tindall Homes who worked with Building America research team IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed walls, precast concrete basement walls with rigid foam, tight airsealing, and HRVs

220

Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Nelson Construction, who worked with the Building America research partner Building Science Corporation to design ten HERS 53 homes with ICF foundations, foam-sheathed above-grade walls, and high-effciency furnaces with fresh air intake and jump ducts.

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Tommy Williams Homes who partnered with Building America to build HERS-58 homes with foam gaskets at sill and top plates, fresh air intakes, SEER 16/HSPF 9.5 heat pumps, and tight air sealing of 2.7 ACH50.

222

Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Shaw Construction who worked with Building America research partner Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating, PV, R-28 closed-cell spray foam under slab and R-26 in advanced framed walls, and rigid polyiso on inside of basement walls.

223

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

2 2 2010 Five Largest Residential Homebuilders Homebuilder PulteGroup 5.3% D.R. Horton 5.9% NVR 3.1% Lennar Corporation 3.4% KB Home 2.3% Top Five Total 19.9% Habitat for Humanity (3) 0.1% Note(s): Source(s): 6,032 402 1) 2010 total U.S. new home closings were 323,000 (only single-family). 2) Total share of closings of top 20 builders was 35%. Total share of the top 100 builders was 54%. 3) Habitat for Humanity built more than 400 homes during the week of May 31, 2007; Habitat for Humanity has built over 1,000 homes in the New Orleans area since Hurricane Katrina. Habitat for Humanity's 2,100 worldwide affiliates have completed more than 200,000 homes since 1976, providing more than 1,000,000 with housing. Housing Giants Magazine, May 2011, Professional Builder's 2011 Housing Giants Rankings.

224

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Type of Housing Unit, 2005" 6 Air Conditioning Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Cooling Equipment",17.8,10.9,1.5,1.5,2.8,1.2 "Have Cooling Equipment",93.3,61.2,6.1,6.3,13.9,5.8 "Use Cooling Equipment",91.4,60.3,6,6.1,13.5,5.5 "Have Equipment But Do Not Use it",1.9,1,"Q",0.2,0.4,"Q"

225

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Type of Housing Unit, 2005" 2 Home Electronics Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Personal Computers" "Do Not Use a Personal Computer",35.5,17.8,3.1,3.7,7.3,3.6 "Use a Personal Computer",75.6,54.2,4.5,4,9.4,3.4 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,42.9,3.3,3,6.6,2.9

226

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" 0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,4.8,0.5,0.7,1.4,0.8 "2 Times A Day",24.6,15.6,1.8,2,3.6,1.6 "Once a Day",42.3,28.8,2.7,2.8,5.4,2.6 "A Few Times Each Week",27.2,17.8,2,1.7,4.1,1.5

227

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Type of Housing Unit, 2005" 3 Household Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Household Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Household Size" "1 Person",30,14.8,2.4,2.6,7.9,2.4 "2 Persons",34.8,24.8,2.1,2,4.2,1.7 "3 Persons",18.4,12.3,1.2,1.6,2.2,1.2 "4 Persons",15.9,11.1,1.2,0.9,1.6,1 "5 Persons",7.9,6.2,0.5,0.4,0.4,0.4 "6 or More Persons",4.1,2.9,0.2,0.3,0.4,0.3

228

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Type of Housing Unit, 2005" 4 Space Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Space Heating Equipment",1.2,0.4,"Q","Q",0.4,"Q" "Have Main Space Heating Equipment",109.8,71.7,7.5,7.6,16.3,6.8 "Use Main Space Heating Equipment",109.1,71.5,7.4,7.4,16,6.7 "Have Equipment But Do Not Use It",0.8,"Q","Q","Q","Q","Q"

229

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Type of Housing Unit, 2005" 2 Living Space Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,0.4,"Q",0.6,1.7,0.4 "500 to 999",23.8,4.8,1.4,4.2,10.2,3.2 "1,000 to 1,499",20.8,10.6,1.8,1.8,4,2.6 "1,500 to 1,999",15.4,12.4,1.5,0.5,0.5,0.4

230

ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA  

E-Print Network (OSTI)

apartments to energy use changes of control apartments, total measured savings of gas energy plus site.S. is implementing many energy retrofits in homes with the goal of reducing building energy consumption and carbon1 ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA

231

Building America Whole-House Solutions for New Homes: Nexus EnergyHomes- Frederick, Maryland  

Energy.gov (U.S. Department of Energy (DOE))

This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard

232

Panel assemblage for housing : some form and construction explorations for small buildings  

E-Print Network (OSTI)

This thesis examines the consequences of building homes in a factory and explores viable construction alternatives using factory-made panels. The exploration considers panelized systems of dwelling construction and its ...

Borenstein, David Reed

1984-01-01T23:59:59.000Z

233

Building America Whole-House Solutions for New Homes: Quadrant Homes, Kent, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Quadrant Homes, who worked with Building America partner WSU Energy Extension to design HERS-65 homes with ducts in conditioned space; 2x6 factory-built walls; and systems-engineered streamlined construction.

234

Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Insight Homes, who worked with the Building America research partner IBACOS to design HERS-49 homes with high-efficiency HVAC, ducts in insulated crawl spaces, raised heel trusses, dehumidifiers, and central manifold plumbing.

235

Building America Whole-House Solutions for New Homes: New Traditions, Vancouver, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Case study of New Tradition Homes who worked with Building America partner WSU Energy Extension to design HERS-65 homes with ducts in conditioned space, site grading and drain piping, and high-efficiency HVAC.

236

Building America Whole-House Solutions for New Homes: Grupe, Rocklin, California  

Energy.gov (U.S. Department of Energy (DOE))

Case Study of Grupe who worked with Building America research partner Davis Energy Group to design HERS-54 homes that included PV roof tiles, SmartVent night ventilation cooling; and FreshVent continuous ventilation.

237

Building America Whole-House Solutions for New Homes: Tom Walsh & Co., Portland, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Tom Walsh & Co., who worked with Building America research partner BIRA to design HERS 59 homes with ducts in conditioned space in dropped ceiling soffits, extensive air sealing, and extensve site water management.

238

Building America Whole-House Solutions for New Homes: Treasure Homes, Sacramento, California  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV.

239

Building America Whole-House Solutions for New Homes: Pulte Homes...  

Office of Environmental Management (EM)

America team Building Science Corporation to design HERS-54 homes with high-efficiency HVAC with ducts in conditioned space, jump ducts, and a fresh air intake; advanced framed...

240

Transformation of a building type : a study of Back Bay houses in Boston  

E-Print Network (OSTI)

The objective of this thesis is to explore the transformation of an existing building type and the application of the support/infill concept in a new context. For this purpose, a traditional Back Bay residential form in ...

Liu, Ricky Pei-Shen

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building America Whole-House Solutions for New Homes: Meeting DOE Challenge Homes Program Certification  

Energy.gov (U.S. Department of Energy (DOE))

Three production home buildersK. Hovnanian Homes, David Weekley Homes, and Transformations, Inc.partnered with Building America team Building Science Corporation to evaluate the certification of five test homes to the new DOE Challenge Home program performance standard (now DOE Zero Energy Ready Home program). The builders identified key benefits and barriers that impacted the certification of the test homes, and the likelihood of whether DOE Challenge Home certification would be pursued in future homes.

242

Indoor environmental quality benefits of apartment energy retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environmental quality benefits of apartment energy retrofits Indoor environmental quality benefits of apartment energy retrofits Title Indoor environmental quality benefits of apartment energy retrofits Publication Type Journal Article LBNL Report Number LBNL-6373E Year of Publication 2013 Authors Noris, Federico, Gary Adamkiewicz, William W. Delp, Toshifumi Hotchi, Marion L. Russell, Brett C. Singer, Michael Spears, Kimberly Vermeer, and William J. Fisk Journal Building Environment Volume 68 Pagination 170-178 Date Published 10/2013 Keywords Apartments; Energy; Indoor environmental quality; Retrofit; Selection Abstract Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

243

Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transitioning Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

244

Building America Whole-House Solutions for New and Existing Homes: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This project analyzes the cost effectiveness of energy-saving measures installed by a large public housing authority in Salishan, a community in Tacoma Washington.

245

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

1 1 Yearly Average Historic Mortgage Rates 30-Year Fixed 15-Year Fixed 1-Year ARM (1) 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Note(s): Source(s): 1) To calculate adjustable-rate mortgage (ARM) rates, Freddie Mac indexes the products to US Treasury yields and asks lenders for both the initial coupon rate as well as the margin on the ARM products. US Department of Housing and Urban Development, US Housing Market Conditions: 3rd Quarter 2011, November 2011, Exhibit 14. Mortgage Interest Rates, Average Commitment Rates, and Points: 1973-Present. 5.04 4.57 4.70 4.69 4.10 3.78 6.34 6.03 5.56 6.03 5.62 5.17 5.87 5.42 4.49 6.41 6.07 5.54 5.83 5.17 3.76 5.84 5.21 3.90 6.97 6.50

246

Building America Whole-House Solutions for New Homes: Schneider Homes, Burien, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Schneider Homes who worked with Building America research partner WSU Extension Energy Office to design HERS 65 homes with high-efficiency furnaces in an air- sealed garage closet with ducts in conditioned space, 80% CFL lighting, ENERGY STAR appliances, air-tight drywall, and air sealing of attic hatches.

247

Building America Whole-House Solutions for New Homes: S & A Homes, Pittsburgh, Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE))

Case study of S&A Homes who worked with Building America research partner IBACOS to design urban infill HERS-51 homes with compact duct layout in conditioned space, foam insulated precast concrete foundations, high-efficiency HVAC, and tankless water heaters.

248

Building America Whole-House Solutions for New Homes: John Wesley Miller, Tucson, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

Case study of John Wesley Miller Companies, who worked with the NAHBRC to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating.

249

Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV.

250

Building America Whole-House Solutions for New Homes: Devoted Builders, LLC, Pasco, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Devoted Builders who worked with Building America research partner WSU Extension Energy Office to design HERS-54 duplexes with ICF walls, high-efficiency mini-split heat pumps, ERVs, and a spray-foam plus blown cellulose covered ceiling deck.

251

Thermal Integrity Assessment of Building Envelopes of Experimental Houses Using Infrared Thermography  

SciTech Connect

Zero Energy Building Research Alliance, or ZEBRAlliance, is a joint DOE-ORNL-construction industry initiative to develop and demonstrate new energy efficiency technologies for residential buildings, as well as fine-tune and integrate existing technologies, to lower energy costs. Construction of residential envelopes, the diaphragms that separate the inside from outdoors, can have enormous impact on whole-building energy usage. Consequently, post-construction thermal integrity assessment of the building envelopes in the experimental ZEBRAlliance homes is an integral part of the research and development cycle. Nondestructive infrared (IR) thermography provides a relatively easy and quick means of inspecting the experimental homes for thermal bridging, insulation imperfections, moisture penetration, air leakage, etc. Two experimental homes located in Oak Ridge, TN were inspected using IR thermography. The homes are designed with two different envelope systems: (i) Structural Insulated Panels (SIP home) consisting of an insulating foam core sandwiched between oriented strand boards, and (ii) Optimal Value Framing (OVF home) using innovatively spaced wood studs, which are designed to minimize the amount of wood framing, reduce thermal bridging, and lower material costs. IR thermal imaging was performed from both outside and inside of the homes. In this paper, IR images of roof and wall sections of the homes are presented and discussed with respect to identification of areas of thermal bridging and any insulation deficiencies.

Biswas, Kaushik [ORNL; Kosny, Jan [ORNL; Miller, William A [ORNL

2010-01-01T23:59:59.000Z

252

Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Pine Mountain Builders who worked with Building America research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight 1.0-1.8 ACH50 construction, spray-foamed walls and attics, and high-efficiency heat pumps with fresh-air intake.

253

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

254

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

2 2 Annual Home Improvement Loan Origination Volumes and Values, by Housing Vintage of Loan Applicant Housing Vintage 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1990-2000 N/A N/A N/A N/A 49 74 93 95 74 36 23 20 1980-1989 105 103 95 86 117 190 224 235 196 113 75 65 1970-1979 242 231 214 186 144 270 306 320 277 173 123 107 1960-1969 178 165 153 134 97 172 191 200 168 102 70 62 1950-1959 135 123 113 96 147 249 268 279 234 139 93 81 1949 or earlier 126 113 100 84 (1) Total Volume 786 735 675 586 553 955 1,083 1,128 949 563 383 335 Housing Vintage 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1990-2000 N/A N/A N/A N/A 2.5 7.6 11.8 10.6 7.3 3.1 2.4 1.8 1980-1989 3.5 3.7 3.7 4.0 5.5 16.2 23.2 22.1 16.9 8.1 6.5 4.9 1970-1979 7.0 7.2 7.5 7.7 6.7 21.4 28.9 27.9 21.9 11.3 9.3 7.3 1960-1969 5.3 5.4 5.7 5.9 4.7 15.4 20.3 19.6 15.0 7.3 6.0 4.9 1950-1959 4.0 4.0 4.3 4.3 6.9 22.3 28.0 27.2 21.4 10.2

255

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

5 5 Weatherization Program Facts - PY 2010 weatherization funding breakdown: DOE 18.3%, LIHEAP 59.6%, others 22.1%.(1) - The Federal Government's outlay for fuel subsidies runs from $4.0 to 4.4 billion per year. The major two agencies dispensing fuel subsidies are HUD and HHS (through LIHEAP). - In 2006, HUD spent over $1.43 billion annually to pay all or part of the total utility bills (including water/sewer) for 1.2 million low-income units. Utilities (including water) made up approximately 23% of public housing authorities' expenditures. In addition, HUD estimates tenant expenditures on utilities (excluding water) at about $421 million in 2007. - LIHEAP spends 85% of its funding on direct fuel subsidies and weatherization. Up to 15% can be spent for weatherization

256

Building America Expert Meeting: Simplified Space Conditioning Strategies for Energy Efficient Houses  

Energy.gov (U.S. Department of Energy (DOE))

The Building America research team IBACOS conducted an expert meeting on March 11, 2011, at the Seaport Hotel in Boston, Massachusetts on the topic of simplified space conditioning systems in low load homes. This meeting provided a forum for presentations and discussions on the interrelationship between advanced thermal enclosures, space conditioning systems, and comfort; and an outside peer review of IBACOS research plan for the topic.

257

Building America Whole-House Solutions for New Homes: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California  

Energy.gov (U.S. Department of Energy (DOE))

In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes in Fresno, California, to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.

258

Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)  

SciTech Connect

The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

ARBI

2014-09-01T23:59:59.000Z

259

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

260

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

"Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" 3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,65,54.3,3.3,1.5,1.6,4.4 "1.",28.6,17.9,14,0.9,0.6,0.7,1.7

262

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

9 9 Annual Sales of Existing Homes, by Region (thousands) North- Mid- east west South West 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Source(s): HUD, US Housing Market Conditions: 3rd Quarter 2011, Nov. 2011, Exhibit 7: Existing Home Sales 1969-Present, p. 73. 868 1,163 1,914 1,211 5,156 817 1,076 1,860 1,154 4,907 1,006 1,327 2,235 1,084 5,652 849 1,129 1,865 1,070 4,913 1,169 1,588 2,702 1,617 7,076 1,086 1,483 2,563 1,346 6,478 1,019 1,468 2,283 1,405 6,175 1,113 1,550 2,540 1,575 6,778 912 1,271 1,967 1,184 5,334 952 1,346 2,064 1,269 5,631 910 1,246 1,850 1,177 5,183 911 1,222 1,866 1,174 5,173 812 1,088 1,474 997 4,371 898 1,228 1,724 1,115 4,965 717 1,010 1,315 810 3,852 772 1,060 1,394 941 4,167 709 1,027 1,262

263

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers (EERE)

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

264

U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys  

E-Print Network (OSTI)

dormitory multi-family apartment building mobile orfamily house multi-family apartment building mobile or

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

265

EIS-0050-S: Commercial and Apartment Conservation Service Program, Supplemental  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Buildings Energy Research and Development prepared this SEIS to analyze the potential environmental impacts resulting from national implementation of the Commercial and Apartment Conservation Service Program. This SEIS is a supplement to DOE/EIS-0050, Residential Conservation Service Program.

267

Towards Zero Emissions CO2-Reduction in Mediterranean Social Housing  

E-Print Network (OSTI)

ESL-IC-08-10-47 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 ABSTRACT An in-depth study of the construction, use and deconstruction of a 60 apartment social housing..., and associated emissions. The necessary data were ESL-IC-08-10-47 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 mainly extracted from the data bases of the Catalan Technology Institute...

Sabate, J.; Peters, C.; Cuchi, A.; Lopez, F.; Sagrera, A.; Wadel, G.; Vidal, J.; Cantos, S.

268

Indian Housing Training Conference  

Energy.gov (U.S. Department of Energy (DOE))

This four-day conference will provide housing professionals with the tools to maintain good homes, build affordable homes, improve public safety, and provide essential building blocks to a healthy...

269

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" 2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Water Heating" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Number of Storage Tank Water Heaters"

270

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" 2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4

271

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" 2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Computers and Other Electronics" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4

272

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuels Used and End Uses in U.S. Homes, by Owner/Renter Status, 2009" 2 Fuels Used and End Uses in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Fuels Used and End Uses",,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Fuels Used for Any Use"

273

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

274

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

275

"Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,33,8,3.4,5.9,14.4,1.2 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,32.3,7.9,3.3,5.9,14.1,1.1 "1.",103.3,31.4,7.6,3.3,5.7,13.7,1.1 "2 or More",6.2,0.9,0.3,"Q","Q",0.4,"Q"

276

"Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" 7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

277

"Table HC3.11 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" 1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Personal Computers" "Do Not Use a Personal Computer ",35.5,20.3,14.8,1.2,0.6,0.9,2.8 "Use a Personal Computer",75.6,57.8,49.2,2.9,1.2,1.4,3 "Number of Desktop PCs"

278

"Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,77.3,63.4,4.1,1.8,2.3,5.6 "1.",103.3,71.9,58.6,3.9,1.6,2.2,5.5 "2 or More",6.2,5.4,4.8,"Q","Q","Q","Q"

279

"Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" 6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

280

"Table HC4.11 Home Electronics Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Home Electronics Characteristics by Renter-Occupied Housing Unit, 2005" 1 Home Electronics Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Personal Computers" "Do Not Use a Personal Computer ",35.5,15.3,3,1.9,3.1,6.4,0.8 "Use a Personal Computer",75.6,17.7,5,1.6,2.8,8,0.4 "Number of Desktop PCs"

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" 2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions) " ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,1.1,"Q","Q","Q","Q",0.4 "500 to 999",23.8,7.2,3.5,0.3,0.3,0.9,2.2

282

"Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" 0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.4,1,0.4,0.6,1.2,"Q" "2 Times A Day",24.6,8.6,2.3,1,1.6,3.5,0.2

283

"Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Renter-Occupied Housing Units, 2005" 2 Living Space Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,1.1,"Q","Q","Q","Q",0.4 "500 to 999",23.8,7.2,3.5,0.3,0.3,0.9,2.2

284

"Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Number of Water Heaters" "1.",106.3,31.9,7.9,3.4,5.8,13.7,1.1 "2 or More",3.7,0.4,"Q","Q","Q","Q","N" "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q",0.6,"Q"

285

Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development  

Energy.gov (U.S. Department of Energy (DOE))

In this project, CPM partnered with the Consortium for Advanced Residential Buildings team to renovate 32 units in 11 three-story, historic, brick masonry urban buildings.

286

Designing density : building form and site design for contextually appropriate multi-family housing in Boston's inner-ring suburbs ; Building form and site design for contextually appropriate multi-family housing in Boston's inner-ring suburbs .  

E-Print Network (OSTI)

??This research focuses on multi-family residential development in the inner-ring suburbs around Boston in order to understand how dense housing can be designed in ways (more)

Kanson-Benanav, Jesse

2009-01-01T23:59:59.000Z

287

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

288

Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder  

Energy.gov (U.S. Department of Energy (DOE))

In this project, BSC worked with the builder to develop a cost-effective design for moving the HVAC system into conditioned space and increase the energy performance of future production houses in anticipation of 2015 IECC codes.

289

Insulation as a Part of the Building System If you are designing and constructing a house, a  

E-Print Network (OSTI)

-house approach can help you develop a successful strategy for incorporating energy efficiency into your home Fiberglass Mineral (rock or slag) Plastic fibers Natural Fibers - wool Unfinished walls, including foundation

290

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

in Buildings" "With 5 or More Units)",19.1,4.4,1,0.5,0.5,3.4,2.4,0.6,0.5 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

291

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

in Buildings" "With 5 or More Units)",19.1,2,0.7,1.3,2.6,4.1,3.5,2.5,2.4 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

292

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings" "With 5 or More Units)",19.1,4.7,0.9,0.4,0.3,"Q",0.6,0.4,"Q",3.8,2.9,0.9 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

293

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

in Buildings" "With 5 or More Units)",19.1,3.7,2.7,0.9,0.6,0.3,0.9,1,0.2,0.6,0.2 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

294

Sod Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

Houses Houses Nature Bulletin No. 620 December 3, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SOD HOUSES In the 1860's and 70's, when pioneer settlers came to homestead free land on the vast lonely prairies of Kansas and Nebraska, they found a country that, except for fringes of cottonwoods and willows along the streams, was treeless. There was no rock and mighty little timber for building houses and barns. Lumber was very expensive and scarce. So was money. However, the prairies were thickly covered with short, drought- enduring buffalo and blue grama grasses. Some of the Indian tribes which not only hunted buffalo but also grew corn -- notably the Pawnee, Osage and Hidatsa -- had large earthlodges. They used sod in the walls and the conical or dome-like roofs had pole rafters covered with willow brush, slough hay, sod, and finally clay. So the homesteaders were inspired to build their homes with slabs of the remarkably thick and tough prairie sod: "Nebraska marble".

295

Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet)  

SciTech Connect

This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

Not Available

2014-11-01T23:59:59.000Z

296

Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes  

Energy.gov (U.S. Department of Energy (DOE))

Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

298

Building America Best Practices Series Volume 11. Guide to 40% Whole-House Energy Savings in the Marine Climate  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Best Practices guide outlines ways to achieve 40% energy savings in the U.S. marine climate.

299

Practical results of heat conservation in a housing estate scale-actions implemented by the Pradnik-Bialy-Zachod housing cooperative in Cracow  

SciTech Connect

There are 11,600,000 apartments occupied in Poland. More than 7,700,000 of these apartments are located in towns. Energy consumption for heating, ventilation and district hot water in residential housing reaches 40% of the national power balance. A portion of district heat distribution and relatively low energy efficiency is characteristic for Polish residential housing. Seventy five percent of apartments in towns are provided with central heating installations and 55% of the entire heat demand in Polish buildings is covered by district heating systems. The total installed heat power of these systems reaches 46,000 MW. The situation with regard to conservation in Polish residential housing is directly related to the legacy of central planning of the national economy and to the current phase of its re-organization to the market-oriented system. The standard value of the overall heat-transfer coefficient for external walls in Poland until 1980 was 1.16 W/m{sup 2}K; at present it is reduced to 0.55 W/m{sup 2}K. There are numerous reasons for the low energy efficiency in residential housing. These reasons are discussed.

Piotrowski, L. [Pradnik-Bialy-Zachod Housing Cooperative, Cracow (Poland)

1995-12-31T23:59:59.000Z

300

Conway Street Apartments: A Multifamily Deep Energy Retrofit  

SciTech Connect

While single-family, detached homes account for 63% of households (EIA 2009); multi-family homes account for a very large portion of that remaining housing stock, and this fraction is growing. Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multi-family buildings.

Aldrich, R.; Williamson, J.

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Televisions in U.S. Homes, by Housing Unit Type, 2009" Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of Televisions" 0,1.5,0.5,0.1,0.2,0.6,"Q" 1,24.2,11,1.2,3,7.3,1.7 2,37.5,21.4,2.4,3.3,7.7,2.7 3,26.6,18.4,2,1.8,2.8,1.6 4,14.2,11.6,0.7,0.6,0.5,0.7 "5 or More",9.7,8.8,0.4,0.2,"Q",0.2 "Most-Used Television" "Display Size"

302

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Computers and Other Electronics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Computers" "Number of Computers" 0,27.4,13.3,1.6,3.1,6.2,3.2 1,46.9,29,3,3.9,8.4,2.6 2,24.3,17.4,1.2,1.5,3.4,0.8 3,9.5,7.5,0.6,0.4,0.8,0.2 4,3.6,3,0.2,0.1,0.2,"Q" "5 or More",2,1.7,0.1,"Q",0.1,"Q"

303

House Simulation Protocols Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » House Simulation Residential Buildings » Building America » House Simulation Protocols Report House Simulation Protocols Report This image shows a cover of a report titled Building America House Simulation Protocols. The Building America logo is shown in the lower left corner of the report cover. Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and existing homes. These protocols are preloaded into BEopt and use a consistent approach for defining a reference building, so that all projects can be compared to each other. The steps involved in conducting performance analysis include: Defining the appropriate reference building Various climate regions, house sizes, and house ages require slightly

304

USER SATISFACTION WITH INNOVATIVE COOLING RETROFITS IN SACRAMENTO PUBLIC HOUSING  

E-Print Network (OSTI)

and a housing authority have been retrofitting their buildings with evaporative coolers, ground-source heatpumps

Diamond, Richard

305

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affordable Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Wyandotte, Michigan PROJECT INFORMATION Construction: New home Type: Single-family, affordable Builder: City of Wyandotte with various local homebuilders www.wyandotte.net Size: 1,150 to 1,500 ft 2 Price Range: $113,000-$138,000 Date completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS index: * 2009 IECC = 102 * Case study house 1,475 ft 2 * With renewables = NA * Without renewables = 75 Projected annual energy cost savings: $604 Incremental cost of energy efficiency measures: $30,947 (including GSHP and well) Incremental annual mortgage: $2,631/yr Annual cash flow: -$1,375 Billing data: Not available Even builders who are relatively new to energy-efficient construction can

306

Building America Whole-House Solutions for New Homes: Pulte Homes and Communities of Del Webb, Las Vegas, Nevada  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Pulte Homes-Las Vegas Division who teamed with Building America team Building Science Corporation to design HERS-54 homes with high-efficiency HVAC with ducts in conditioned space, jump ducts, and a fresh air intake; advanced framed walls; low-e windows; and PV roof tiles.

307

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

308

Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, 5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ...................................... 13.0 10.8 1.1 0.5 0.6 11.4 New England .............................. 3.5 3.1 0.2 Q 0.1 16.9 Middle Atlantic ............................ 9.5 7.7 0.9 0.4 0.4 13.4 Midwest ......................................... 17.5 16.0 0.3 Q 1.0 10.3 East North Central ......................

309

Off-Campus Housing Resource Guide for PSU Students Websites  

E-Print Network (OSTI)

://realestate.oregonlive.com/for-rent · Apartment search engine www.apartments.com · Local housing search www online bulletin board with a very active Portland community. You can search Housing at Portland State University has partnered with Places4Students.com, a company

Lafferriere, Gerardo

310

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

311

Plan Your Route to Success BUSINESS AND SOCIAL INNOVATION | BUILDING STRONG LEADERS | FROM THE CORNER OFFICE | HOUSE OF BRANDS  

E-Print Network (OSTI)

Plan Your Route to Success BUSINESS AND SOCIAL INNOVATION | BUILDING STRONG LEADERS | FROM for companies with a diverse brand portfolio? 14 Where Business and Social Innovation Meet How three companies

Huang, Jianyu

312

Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage  

Science Journals Connector (OSTI)

Building integrated photovoltaic-thermal systems (BIPV/T) that pre-heat ambient air may be used in combination with ventilated concrete slabs for thermal storage purposes. This is one of many feasible ways to ...

YuXiang Chen; A. K. Athienitis; K. E. Galal

2009-01-01T23:59:59.000Z

313

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

314

Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a buildings indoor thermal environment  

Science Journals Connector (OSTI)

Abstract Existing strategies for residential energy savings through physical renovation or motivating occupant energy conservation behavior can be costly and/or have transitory effects. Focusing on multi-family dwellings, an important subset of the urban residential sector, we propose an Energy Saving Alignment Strategy (ESAS) that has advantageous cost-effectiveness and a long-lasting influence. By aligning the distribution of residents thermostat preferences with the indoor temperature, ESAS aims to maximize thermal comfort and, accordingly, energy savings in multi-family buildings where indoor temperatures vary between apartments as a function of apartment orientation and floor level. Using a case study of a 1084-apartment public housing complex in New York, we classify both occupants thermostat preferences and apartments operative temperatures into five groups, and optimize energy efficiency by assigning each group of occupants to the group of apartments that best aligns with their thermostat preference. We test ESAS in eight cities representing all four U.S. census regions and six climate zones. Simulation results reveal 2.142.0% in energy savings compared to random apartment assignments depending on geographic location, with the highest energy reductions occurring in cities with mild climates, where the range of occupant thermostat preferences coincides with the natural indoor temperature range. We conclude by providing suggested guidelines on how ESAS might work in practice, and recommendations for extending ESAS research.

Xiaoqi Xu; Patricia J. Culligan; John E. Taylor

2014-01-01T23:59:59.000Z

315

Building America Case Study: Conway Street Apartments, Greenfield...  

Energy Savers (EERE)

Learned * Ductless heat pumps allow for much lower first costs than conventional heating and cooling systems. With an efficient envelope, operating costs are also very...

316

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"With 5 or More Units)",19.1,2.3,16.8,"N","N","N","N","N","N",2.3,16.8,"N","N" "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

317

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"With 5 or More Units)",19.1,6.2,3.5,0.5,0.5,1.1,0.6,"Q",0.7,0.4,0.2,2,1.4,0.6 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

318

Building America Whole-House Solutions for New Homes: New Town Builders' Power of Zero Energy Center  

Energy.gov (U.S. Department of Energy (DOE))

New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential home buyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community of Denver.

319

Warren Place Apartment Community (287 Students / Co-ed by Apartment / Tier 3 Single Occupancy Fee)  

E-Print Network (OSTI)

, 72"wide x 24"deep x 30"high. Desks are designed with three modular components to allow the resident, a dishwasher, a microwave, a full-size refrigerator and a stove to be shared by all residents in the apartment. Extra microwaves and/or refrigerators brought by students are not allowed. #12;Bathrooms: Apartments

Kunkle, Tom

320

Principles of Passive House  

NLE Websites -- All DOE Office Websites (Extended Search)

Principles of Passive House Principles of Passive House Speaker(s): Wolfgang Feist Date: November 1, 2010 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Alan Meier The Passive House ("Passivhaus") concept is a rigorous, voluntary energy performance standard for buildings that reduces heating requirements by up to 90% and overall energy use by up to 80% over standard construction. Developed in Germany in the early 1990s and drawing on Super-insulated and Passive Solar ideas from North America and "Low Energy" European building standards, the concept of a building that could be practically constructed to maintain a comfortable interior climate without conventional heating or cooling systems was devised, tested and proven. The Passive House remains comfortable without large "active"

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HUD CHP GUIDE #1- Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005  

Energy.gov (U.S. Department of Energy (DOE))

This guide explains the basics of Combined Heat and Power (CHP) for apartment building owners and managers

322

Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

one-and-a-half-story, two-bedroom home with a half-basement one-and-a-half-story, two-bedroom home with a half-basement is typical of 100-year-old homes in Portland, Oregon. The home had no insulation, an unfinished basement, old appliances and air leaks everywhere when purchased by its current owner in 2010. The owners performed a full deep energy retrofit, including air sealing and insulating exterior walls and attic and installing new, efficient appliances. Building America researchers from the Pacific Northwest National Laboratory audited the home after the retrofits had occurred and used Energy Gauge USA simulation software to predict energy savings. They also partnered with local home performance contractor Imagine Energy to meter the circuit-level electricity use and the natural gas use of the tankless hot water heater and 95% condensing gas furnace. Based on

323

House Spiders  

NLE Websites -- All DOE Office Websites (Extended Search)

Spiders Spiders Nature Bulletin No. 206-A November 13, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation HOUSE SPIDERS Nothing humiliates a housewife more than to spy a dusty streamer of cobwebs dangling from the ceiling when she has "company". With a cloth on the end of her broom, or a vacuum cleaner, she wages continual war on spiders. The spider itself frequently escapes by darting into a hide-away or dropping by a thread of silk to the floor where it may play "possum" until things have quieted down. But in basements, in unused rooms, in attics, between windows and screens, beneath porches, and in garages or other out buildings, many small spiders live their interesting lives.

324

Energy House  

Energy.gov (U.S. Department of Energy (DOE))

Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

325

"Table HC2.1 Structural and Geographic Characteristics of U.S. Homes, By Housing Unit Type, 2009"  

U.S. Energy Information Administration (EIA) Indexed Site

Structural and Geographic Characteristics of U.S. Homes, By Housing Unit Type, 2009" Structural and Geographic Characteristics of U.S. Homes, By Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,"2 to 4 Units","5 or More Units","Mobile Homes" ,,"Detached","Attached" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Census Region and Division" "Northeast",20.8,10.9,1.8,3.1,4.4,0.5 "New England",5.5,3.1,0.3,1,1,0.1 "Middle Atlantic",15.3,7.8,1.5,2.1,3.4,0.4 "Midwest",25.9,18,1.2,1.9,3.7,1.1

326

On Opposition in Spherical Buildings and Twin Buildings  

Science Journals Connector (OSTI)

...In this paper, we prove a combinatorial property of twin apartments and opposition of chambers in twin buildings. We then characterize adjacency of chambers in twin buildings by meansof opposition of chambers....

P. Abramenko; H. Van Maldeghem

2000-06-01T23:59:59.000Z

327

The European Passive House Concept  

NLE Websites -- All DOE Office Websites (Extended Search)

The European Passive House Concept The European Passive House Concept Speaker(s): Nabih Tahan Date: January 13, 2009 - 12:00pm Location: 90-3122 Nabih will describe the European Passive House concept and modern, home manufacturing methods in Austria. The Passive House is a European standard for a specific way to build a house that consumes very little energy, is comfortable and has a high indoor air quality. It is a cost effective method of building, where conventional heating systems are eliminated, and their cost is reinvested in super insulation, super air-tightness and heat recovery. Free heat generated from electrical and gas appliances and lighting is recycled through the heat recovery ventilator. This results in buildings that consume 80% to 90% less heating energy while constantly

328

Fayette Country, Pennsylvania, Housing Market Analysis  

Energy.gov (U.S. Department of Energy (DOE))

This is a document from the Fayette County Housing Consortium posted to the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

329

Building America Expert Meeting Report: Transitioning Traditional...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House...

330

Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents  

SciTech Connect

Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

McClelland, L.

1980-10-01T23:59:59.000Z

331

Argonne Open House 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Open Argonne Open House 2009 Welcome Organization Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Argonne Open House 2009 Bookmark and Share THANK YOU! The Nuclear Engineering Division thanks all participants which contributed to make a success of the Open House event. Argonne opened its gates to the community on Saturday, August 29, from 9am to 4:30pm. NE actively participated in this event with activities inside and outside Building 208, the home of the Nuclear Engineering Division. Inside building 208 KEYWORDS: Nuclear Engineering; National Security; Environment, Safety and Health

332

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

333

Performance Evaluations of Prototype Houses: Minimum 40% Residential Building Energy Savings Level Habitat for Humanity of Greater Newburgh Liberty Street Project: April 2003--September 2004  

SciTech Connect

Habitat for Humanity International (HfHI) is a nonprofit organization that engages volunteers and would-be homebuyers in programs that emphasize sweat-equity and self-help. Habitat is among the top-ten housing producers in the United States. In collaboration with the HfHI Department of Construction & Environmental Resources, Steven Winter Associates, Inc., (SWA) began working with the Habitat for Humanity of Greater Newburgh (HfHGN) affiliate in Newburgh, New York, in April 2003. Since October 1999, HfHGN has acquired and renovated abandoned houses for an average cost of $45,000 per home. The affiliate serves area families living in overcrowded, substandard housing and spending 50% to 80% of their income on housing. In August 2003, HfHGN began their first new construction project, six row houses located on Liberty Street in Newburgh.

Guilbert, R.; Magee, A.

2005-06-01T23:59:59.000Z

334

Cascade Apartments: Deep Energy Multifamily Retrofit  

SciTech Connect

In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

2014-02-01T23:59:59.000Z

335

Evergreen Sustainable Development Standard for Affordable Housing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing < Back Eligibility Low-Income Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Program Info State District of Columbia Program Type Green Building Incentive Provider Housing Trust Fund The Washington State Department of Commerce created the Evergreen Sustainable Development Standard, a set of green building criteria that is required for any affordable housing project applying for state funds

336

Analyzing policy, land use and zoning characteristics : understanding the potential to build housing near rail in the city of Los Angeles  

E-Print Network (OSTI)

Firstly, the author provides an overview and analysis of the City of Los Angeles political framework and implementation strategies to encourage the housing development near rail stations. Secondly, the author discusses the ...

Camarena, Erin M

2005-01-01T23:59:59.000Z

337

Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California  

Energy.gov (U.S. Department of Energy (DOE))

Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and maybe more appropriate for climates with higher heating loads.

338

Housing Innovation Awards at the Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon Breakfast Presented by BASF Friday, October 4, 2013 8:30-10:30 a.m. Historic Hanger 244 Orange County Great Park in Irvine, CA Friday, October 4, 2013 8:30 AM-10:30 PM 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Housing Innovation Awards Christine Barbour Master of Ceremonies 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Housing Innovation Awards 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Thank you for making the Housing Innovation Awards breakfast possible! Housing Innovation Awards 5 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov

339

Massachusetts multi-family passive solar housing program  

SciTech Connect

A unique combination of Federal, State, and Local resources and initiative is producing energy-efficient/passive solar elderly housing in Massachusetts. The program, developed at and managed by the Massachusetts Executive Office of Energy Resources, is using $2.5 million of state energy bonding authority to finance incremental costs of energy conservation and passive solar features in state-financed local housing projects. The design and technical assistance, incremental cost estimating, and public outreach portions of the program have been made possible under a grant from the US Department of Energy (through NESEC) as part of the Solar Cities Program. The program includes both new projects and retrofits, with building types ranging from mid-rise, high density urban structures to two-story suburban townhouses. Seventeen project, including over 400 passive solar units, are in working drawings or out to bid and more are in concept development. It is anticipated that present funding will ultimately permit construction of as many as 800 passive solar heated apartments. On the average, these projects will use only 25% of the energy required to heat a similar building of conventional design.

Rouse, R.E.; Shannon, R.F.

1980-01-01T23:59:59.000Z

340

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On Opposition in Spherical Buildings and Twin Buildings  

E-Print Network (OSTI)

On Opposition in Spherical Buildings and Twin Buildings Peter Abramenko 1 \\Lambda Hendrik Van apartments in twin buildings by means of the opposition relation on chambers. We also characterize adjacency of chambers in twin buildings by means of opposition of chambers. As an application, we study maps which

Bielefeld, University of

342

Postdoc Housing  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Housing Postdoc Housing Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Email Housing in Los Alamos, nearby communities If you are interested in posting a housing opportunity, email the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for one month. If you wish for the listing to remain on the website longer, please contact the Postdoc Program Office by email. 12/18/2013 Available - Los Alamos, NM Rare top floor Iris Street Condo. Wake up & walk across the street to grab your morning bagel & latte. Stroll a bit further to enjoy the NM sunshine at the Ashley Pond! Spend your day in the heart of downtown, sweat it out

343

Student Housing  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Housing Student Housing Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. If you are interested in posting a housing opportunity, email the pertinent information to Student Housing. Housing listings will be posted for two months. If you wish for the listing to remain on the website longer, please contact the Student Program Office by email. 01/09/2014 Available 1/10/2014 - Los Alamos, NM 35th Street Duplex - 3 Bedroom/1 bath; Very clean and very nice; All storm windows, furnace and water boiler were replaced in FY 2012; Kitchen and bathroom equipment was all replaced in FY2012 as well; Large fenced back yard with a storage shed; Within walking distance of Aspen Elementary

344

Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

SciTech Connect

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Not Available

2014-09-01T23:59:59.000Z

345

Assessing the sustainability of the energy use of residential buildings in Belgrade through multi-criteria analysis  

Science Journals Connector (OSTI)

Abstract The paper presents a method for selecting and calculation indicators of sustainable development, needed for determining the level of sustainable development, expressed through sustainability index of residential buildings. It is important to verify procedure for determining economic, social and environmental sub-indicators based on consumption of final energy (used to meet space heating, hot water generation and household cooking needs, as well as for operation of various household electrical appliances, indoor temperature and humidity). It was done for representative sample of Belgrade buildings stock. Different dwelling types constructed in two different periods and heated by electricity, district heating and fossil fuels were analysed. Multi-criteria analysis was used to evaluate residential buildings sustainability. The results showed that the best building options, constructed in the period 19812006, are: the apartment buildings and single family houses (electricity for space heating) when economy indicator has priority; the apartments connected to the district heating system when environmental indicator has priority; and single family houses connected to the district heating system when social indicator has priority. Implementation of proposed methodology is beneficial when evaluating and comparing sustainability of different residential buildings, enabling decision makers to more easily reach decisions on the issues related to energy policy and environmental protection.

Biljana Vu?i?evi?; Marina Jovanovi?; Naim Afgan; Valentina Turanjanin

2014-01-01T23:59:59.000Z

346

Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

347

Meadowlark House  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

348

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

349

Illinois Institute of Technology Housing & Residential Services  

E-Print Network (OSTI)

Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 & assemble beds, etc); · Remove posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets

Heller, Barbara

350

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

351

Building America Webinar: High Performance Space Conditioning...  

Energy Savers (EERE)

Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable...

352

Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus  

Energy.gov (U.S. Department of Energy (DOE))

This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

353

" Million U.S. Housing Units,...  

U.S. Energy Information Administration (EIA) Indexed Site

in Buildings" "With 5 or More Units)",19.1,7,5.2,3.2,1.8,0.9,0.3,0.8,4.5 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

354

Building America Whole-House Solutions for New Homes: Lancaster County Career and Technology Center Green Home 3- Mount Joy, Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE))

This case study describes a unique vocational program at Lancaster County Career Technology Center in Mount Joy, PA, where high school students are gaining hands-on construction experience in building high performance homes with help from Building America team, Home Innovation Research Labs. This collaboration resulted in the Green Home 3, the third in a series of high performance homes for Apprentice Green.

355

Old mills, new condos; sound isolation in mill building conversion projects  

Science Journals Connector (OSTI)

Up and down the New England Coast century?old mill buildings are being converted into condominium and apartment buildings amidst one of the biggest housing booms in recent memory. While the inherent acoustical conflicts in multi?family dwelling are not new (oft?cited HUD guidelines are approaching their 40th birthday) the flood of mill conversions is bringing to light a number of new constructions that architects use to chop former factories into discrete living spaces. This paper will present field?collected data and case studies that illustrate some of the problems and common pitfalls associated with mill building conversion projects. Among the construction details discussed include exposed timber ceilings that run continuously across gypsum board partitions the creative reuse of existing brick walls and some acoustical properties of wood deck construction common to many mill buildings.

2006-01-01T23:59:59.000Z

356

White House Highlights Two Energy-Slashing, Open Data Initiatives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Highlights Two Energy-Slashing, Open Data Initiatives White House Highlights Two Energy-Slashing, Open Data Initiatives May 28, 2014 - 10:22am Addthis The Buildings...

357

Sustainable School Buildings: Some of the Latest Dutch Examples of Nearly zero Emissions Buildings  

E-Print Network (OSTI)

In the Netherlands with respect to sustainable educational building there is a continuous development going on from sustainable building, to Passive House schools, to nearly Zero Emission Buildings to even Energy positive buildings. The Dutch...

Zeiler, W.; Boxem, G.; Waard, M.

2012-01-01T23:59:59.000Z

358

BuildSmart NY Innovators Summit Offers Sneak Peek at Better Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

prisons, mental health hospitals, office buildings, and facilities that house its trains, buses, and equipment. The New York Power Authority's BuildSmart NY program is...

359

Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Buildings Solution Center Shares Proven Strategies for Energy Efficiency Programs The Energy Impact Illinois (EI2) "house party" initiative was one of several innovative models...

360

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

Building Science Corporation developed a package of high-efficiency measures for retrofit of 42 homes sponsored by National Grid, resulting in energy use of approximately 40% below the Northeast regional average

362

Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs- Central Florida (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best practices for renovating distressed homes to achieve annual energy savings of 15%-30% and higher

363

Home > Visit apartments online > Vacation Rental > Bailleul I own an Apartment  

E-Print Network (OSTI)

with baker, wine shop, pharmacy and small bars and bistrots with a FRANPRIX supermarket nearby and security description: - 1890 Building, 4 floor, with lift, entry code security system, with interphone, 2 Bedrooms Apt clean. - Dishwasher, Refrigerator, Freezer, Cooking rings, Oven, Microwave, Dinnerware and serving

Gray, Robert M.

364

Analyzing Ventilation Effects of Different Apartment Styles by CFD  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Renewable Energy Resources and a Greener Future Vol.VIII-3-5 Analyzing Ventilation Effects of Different Apartment Styles by CFD Xiaodong Li Lina Wang Zhixing Ye Associate Professor School...

Li, X.; Wang, L.; Ye, Z.

2006-01-01T23:59:59.000Z

365

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

366

House Snakes  

NLE Websites -- All DOE Office Websites (Extended Search)

House Snakes House Snakes Name: LOIS Location: N/A Country: N/A Date: N/A Question: How do you get rid of snakes in a house? Do mothballs work? Replies: The snake is the most misunderstood and most abused of all animals. If you cannot overcome your abhorrence or fear of them, leave them alone. Do not kill them. They are valuable destroyers of mice, rats, gophers and many insects. Perhaps the following links could be of some assistance in keeping people from indiscriminately killing snakes? Snake-A-Way is the same product used by the pest control industry and currently the only registered snake repellent. Snake-A-Way links: http://www.animalrepellents.com/snakeinfo.html http://www.animalrepellents.com/ustudies/saw.html http://www.animalrepellents.com/editorials/naturel.html

367

Housing Innovation Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing Innovation Awards Housing Innovation Awards Housing Innovation Awards Photo of a line of Housing Innovation Awards statues lined up on a table. The U.S. Department of Energy's Housing Innovation Awards recognize the very best in innovation on the path to zero net-energy ready homes. The awards, presented on October 4, 2013, at a breakfast ceremony during the U.S. Department of Energy (DOE) Solar Decathlon 2013 in Irvine, CA, showcase a number of the Building Technologies Office residential programs under one umbrella event. DOE Challenge Home Builder Awards Orange Arrow Presented to DOE Challenge Home builders who are leading a major housing industry transformation to zero net-energy ready homes. The DOE Challenge Home designation is the symbol of excellence in home building. Only a

368

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

369

U.S. Department of Housing and Urban Development | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of life; build inclusive and sustainable communities free from discrimination, and transform the way HUD does business. The Federal Housing Administration, generally known as...

370

Buffalo Pushes Energy-Efficient Affordable Housing in New York  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The...

371

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

372

Developing Alaskan Sustainable Housing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Association of Alaska Housing Authorities is holding a 3-day training event for housing developmentprofessionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

373

Building America Case Study: Boiler Control Replacement for Hydronical...  

Energy Savers (EERE)

and nighttime setback. In one building, the new controller included a feature to reduce heat when included apartment temperatures exceeded a set point. This Web-enabled system...

374

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

375

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

376

Apartment Hunting - Part II - Keeping those Energy Bills Down |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Part II - Keeping those Energy Bills Down - Part II - Keeping those Energy Bills Down Apartment Hunting - Part II - Keeping those Energy Bills Down August 23, 2010 - 5:17pm Addthis Kyle Rudzinski Special Assistant to the Director of Technology Advancement and Outreach, EERE I recently went looking for a new apartment. And though my parents may say I'm stingy, I like to think I'm economical. Or better yet, I'm a bargain hunter. I asked myself three main questions when looking for my new place: How far is it from public transit and community businesses? Can I keep my energy bills to a minimum? What's the rent? In the second of two entries on apartment hunting, I discuss things to look for that might help keep your energy bills low. When you think about it, energy bills can, in effect, increase your rent

377

Emergy-based life cycle assessment (Em-LCA) of multi-unit and single-family residential buildings in Canada  

Science Journals Connector (OSTI)

Abstract The construction and building process depends on substantial consumption of natural resources with far-reaching impacts beyond their development area. In general, a significant portion of annual resource consumption by the building and construction industry is a result of applying traditional building strategies and practices such as designing and selecting types of development (e.g. multi-unit condo and single-family house, etc.), building materials and structure, heating/cooling systems, and planning renovation and maintenance practices. On the other hand, apart from structural suitability, building developers mostly consider the basic requirements of public owners or private occupants of the buildings, where the main criteria for selecting building strategies are costs, and long-term environmental and socio-economic impacts are generally ignored. The main purpose of this paper is to develop an improved building sustainability assessment framework to measure and integrate different sustainability factors, i.e. long-term environmental upstream and downstream impacts and associated socio-economic costs, in a unified and quantitative basis. The application of the proposed framework has been explained through a case study of single-family houses and multi-unit residential buildings in Canada. A comprehensive framework based on the integration of emergy synthesis and life cycle assessment (LCA) has been developed and applied. The results of this research prove that the proposed emergy-based life cycle assessment (Em-LCA) framework offers a practical sustainability assessment tool by providing quantitative and transparent results for informed decision-making.

Bahareh Reza; Rehan Sadiq; Kasun Hewage

2014-01-01T23:59:59.000Z

378

Shoddy buildings cost lives in Turkish quake  

Science Journals Connector (OSTI)

... of the thousands of victims of the 17 August earthquake would have survived if new buildings had complied with local building standards. But the densely populated region was unprepared. Thousands ... building standards. But the densely populated region was unprepared. Thousands died in new apartment buildings built on unsuitable ground and made of low-quality concrete without appropriate reinforcement. ...

Quirin Schiermeier

1999-08-26T23:59:59.000Z

379

Table HC7-6a. Home Office Equipment by Type of Rented Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Home Office Equipment by Type of Rented Housing Unit, 6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.0 0.9 3.0 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Households Using Office Equipment .......................... 28.7 9.2 6.5 12.1 0.9 7.5 Personal Computers 1 ................... 14.3 5.3 2.9 5.9 0.3 10.7 Number of Desktop PCs 1 .................................................. 11.0 4.0 2.4 4.4 0.3 11.4 2 or more .................................... 1.7 0.7 0.2 0.7 Q 30.8 Number of Laptop PCs 1 ..................................................

380

Passive solar multi-family housing: design, development, finance and market strategies  

SciTech Connect

A basis is provided for problem definition of energy and multi-family housing. A comprehensive look at the costs of energy is taken, not just in the cost per Btu, but also in terms of the marginal or replacement cost of energy, the social and environmental costs of consuming imported energy, and at the projected future costs and availability of non-renewable energy supplies. Some reasons are identified why a developer should consider an energy efficient passive solar project, and the roles that each project team should play to achieve the successful project are described. The concepts necessary to understand the physics and design of passive solar systems are introduced. The unique characteristics of multiple housing are covered and basic ideas for the application of solar concepts are provided. Site selection and planning, design considerations for planning the building, design considerations for individual unit designs, and ways to integrate energy efficient and passive solar components in townhouses and apartments are covered. Techniques are covered for energy conscious and solar design and construction, with emphasis on supplying the tools for making decisions at the appropriate times in the design process. Also covered are: the profit motive to develop housing; state and federal programs, present or planned, the encourage passive solar and energy efficient construction; Solar and Conservation Banks; state and federal tax credits; and financial analysis and marketing strategies. The Massachusetts Passive Multi-Family Program is described. Twelve examples of passive solar multifamily projects from around the country are also described. (LEW)

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

9,0.5,0.5,0.5,"Q",0.2 "Stone",1,"Q",0.4,"Q","Q","Q" "Other",1.5,0.4,0.6,0.3,"Q","Q" "FoundationBasement of Single-" "Family Units and Apartments in" "2 to 4 Unit Buildings" "(more...

382

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

Shingle)",1.9,0.7,0.4,0.4,0.4 "Stone",1,0.3,"Q",0.3,0.3 "Other",1.5,0.5,"Q",0.2,0.6 "FoundationBasement of Single-" "Family Units and Apartments in" "2 to 4 Unit Buildings" "(more...

383

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

384

1997 Housing Characteristics Tables Housing Unit Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Million U.S. Households; 45 pages, 128 kb) Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 1997 3 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 1997 3 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 1997 4

385

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

386

New housing in old Chinatown : barriers and incentives to affordable housing development  

E-Print Network (OSTI)

In the 1970s and 80s, the rapid development of San Francisco's Financial District encroached upon Chinatown's intimately-scaled neighborhood. Developers took whole city blocks that housed low-income immigrants to build the ...

Tan, Bryant

2008-01-01T23:59:59.000Z

387

Bachelor Thesis Future sustainable terraced houses  

E-Print Network (OSTI)

Cardiff University August 4, 2014 #12;Colophon Title: Future sustainable residential buildings in Cardiff a first introduction about sustainability in the building sector. Collecting data about the future climateBachelor Thesis Future sustainable terraced houses in Cardiff Karin Ernst University of Twente

Vellekoop, Michel

388

All Electric Houses in Cold Climates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Houses Electric Houses in Cold Climates Duncan Prahl, RA IBACOS BA Tech Update, April 29, 2013 Denver CO All Electric Houses in Cold Climates Caveats About Me: * I'm an Architect * I love math and science, but I'm not going to marry it * My engineering skills are primarily based on osmosis and graphics * "Close enough is good enough" All Electric Houses in Cold Climates Utility Unbundling * True costs becoming "transparent" * Allows for next level of analysis * Cash flow, Total Cost of Ownership All Electric Houses in Cold Climates Martha's Vineyard Community Images courtesy South Mountain Company All Electric Houses in Cold Climates Specifications Building System Specification Below Slab R-20 extruded polystyrene (XPS) foam Foundation Walls R-20 poly iso foam

389

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

390

Earthquake-proof Buildings  

Science Journals Connector (OSTI)

... more, the recent Quetta earthquake has emphasised the importance of erecting none but earthquake-proof buildings in a district subject to destructive shocks. The few houses in Quetta that could ... flanks of hills composed of hard rocks. Areas in which brickwork was seriously cracked and buildings occasionally fell, lay on the flanks of the hills facing the Pacific and in ...

Charles Davison

1936-01-11T23:59:59.000Z

391

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

392

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... in an article under this heading (NATURE, vol. xxix. p. 290) to buildings in Caracas, which are low, slightly pyramidal, have flat roofs, and are bound ... architecture, and as such I must say that certainly the houses are generally one-story buildings, but all the remainder of the foregoing description is quite erroneous. However, I ...

A. ERNST

1884-04-24T23:59:59.000Z

393

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

394

A comparative study of single family and multifamily housing recovery following 1992 Hurricane Andrew in Miami-Dade County, Florida  

E-Print Network (OSTI)

examines the recovery of single family, duplex, and apartment complex housing in south Miami-Dade County, Florida, after 1992 Hurricane Andrew to determine if there is indeed a "multifamily home lag." This research also provides a better understanding...

Lu, Jing-Chein

2009-05-15T23:59:59.000Z

395

HVAC Improvements for Existing Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Improvements for Existing Houses HVAC Improvements for Existing Houses Speaker(s): Chryséis Bovagnet Date: September 5, 2002 - 12:00pm Location: Bldg. 90 Many older houses in the US are either not well designed from a thermal point of view or have HVAC (Heating Ventilation and Air Conditioning) systems in need of repairs or improvements. The building envelopes tend to have poor insulation and lots of leakage, and the HVAC systems are inefficient. The cooling/heating equipment is often located outside of the conditioned space (e.g. in attics or crawlspaces) with ducts that leak and have poor insulation, which cause energy loss and bad occupant comfort on peak days or in extreme climates. We developed a series of retrofits that will allow us to reduce the energy consumption of residential HVAC

396

Meadowlark House  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large windows and open floor Large windows and open floor plan in main living area provide natural daylight * LED light bulbs reduce energy consumption * East-west orientation optimizes natural lighting and passive heating * Energy recovery ventilator reduces energy requirements for interior heating and cooling * Air-tight building envelope prevents air leakage and moisture infiltration * Superinsulation in walls, ceilings, and floor slab with R-value for walls (R-40), foundation floor slab (R-50),

397

Better Buildings Neighborhood Program: Los Angeles County's Green Idea  

NLE Websites -- All DOE Office Websites (Extended Search)

County's Green Idea House Achieves Efficient Goals to someone by E-mail County's Green Idea House Achieves Efficient Goals to someone by E-mail Share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Facebook Tweet about Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Twitter Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Google Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Delicious Rank Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Digg Find More places to share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on

398

THE UNIVERSITY OF EDINBURGH. Hudson Beare Building.  

E-Print Network (OSTI)

. Accessible and standard toilets are also available. Introduction. The Hudson Beare Building housesTHE UNIVERSITY OF EDINBURGH. Hudson Beare Building. (King's Buildings). A GUIDE TO ACCESS AND FACILITIES. Address: Hudson Beare Building, King's Buildings, Edinburgh, E,H,9 3,J,F. Telephone number: 0131

Edinburgh, University of

399

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

400

Advanced Envelope Research for Factory-Built Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 14, 2011 December 14, 2011 Advanced Envelope Research for Factory-Built Housing Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction December 14. 2011 Mike Gestwick Michael.Gestwick@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov Introduction to Building America Building Technologies Program eere.energy.gov Building America Industry Consortia

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Need for Systematic Retrofit Analysis in Multifamily Buildings  

SciTech Connect

Multifamily housing offers high potential for energy savings through retrofits. A comprehensive energy audit with systematic evaluation of alternative energy measures is one of the key steps to realizing the full energy savings potential. However, this potential often remains unrealized when the selection of measures is (1) based on a one-size-fits-all approach originating from accustomed practices, (2) intended merely to meet code-compliance requirements, and/or (3) influenced by owner renter split incentive. In such cases, the benefits of comprehensive energy auditing are disregarded in view of the apparent difficulty in diagnosing multifamily buildings, evaluating alternative measures, and installing customized sets of measures. This paper highlights some of the barriers encountered in a multifamily housing retrofit project in Georgia and demonstrates the merits of systematic retrofit analysis by identifying opportunities for higher energy savings and improved comfort and indoor air quality that were missed in this project. The study uses a whole-building energy analysis conducted for a 10-unit, low-rise, multifamily building of a 110-unit apartment complex. The analysis projected a 24% energy savings from the measures installed in the building with a payback period of 10 years. Further analysis with a systematic evaluation of alternative measures showed that without compromising on the objectives of durability, livability, and appearance of the building, energy savings of up to 34% were achievable with a payback period of 7 years. The paper concludes by outlining recommendations that may benefit future retrofit projects by improving the audit process, streamlining tasks, and achieving higher energy savings.

Malhotra, Mini [ORNL; Im, Piljae [ORNL

2014-01-01T23:59:59.000Z

402

The Lovejoy Building  

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

403

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

404

Economic Comparison of Heating Facilities: 75 Unit Apartment, Stewart-Lennox Area, Klamath Falls, Oregon.  

SciTech Connect

The apartment building would consist of about 75 units of about 900 square feet each. Also included would be an outdoor swimming pool and an enclosed activity wing of about 11,000 square feet. Though no deep geothermal wells have been drilled in the immediate area, opinions were obtained that 150/sup 0/F water would be present at 2500 feet and 80/sup 0/F water at about 1000 feet. Based on this information the comparative economics of using geothermal as a heat source versus conventional electrical heating was developed. The purpose of this comparison is to determine if there is economic incentive for the expenditure necessary to define and prove the extent of the geothermal resource. Four systems were compared, each would provide space heating, supply domestic hot water, and heat the swimming pool. A brief description of each of the systems is given. (MHR)

Not Available

1980-12-31T23:59:59.000Z

405

The house of the future  

ScienceCinema (OSTI)

Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

None

2010-09-01T23:59:59.000Z

406

Retrofitting the Southeast: The Cool Energy House  

SciTech Connect

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

407

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

408

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

409

Energy Department Announces Winners of Housing Innovation Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Announces Winners of Housing Innovation Awards Department Announces Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 1:21pm Addthis The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the Energy Department's Office of Energy Efficiency and Renewable Energy, offered rigorous application criteria within four building categories: DOE Challenge Home Builders, Home Performance with ENERGY STAR® Participating Contractors, Excellence in Building Science Educator of the Year, and Building America Top Innovations. The Housing Innovation Awards recognize leading builders,

410

Introduction to Green Building & LEED  

E-Print Network (OSTI)

­ Green Building Standard · MLS Listing Service #12;#12;#12;#12;#12;#12;#12;#12Introduction to Green Building & LEED Alistair Jackson Principal O'Brien & Company alistair Housing · Whatcom County Courthouse - LEED for Existing Buildings · Art & Children's Museum · Waterfront

Zaferatos, Nicholas C.

411

Buildings go up at Y-12  

NLE Websites -- All DOE Office Websites (Extended Search)

was Building 9201-1 (Alpha 1). It was one of what would ultimately be nine major buildings intended to house calutrons. 1152 of them would eventually be installed. However, at...

412

The African-American house as a vehicle of discovery for an African-American architecture  

E-Print Network (OSTI)

The purpose of this research is three-fold: (1) This thesis seeks to uncover evidence of a distinctly African-American architectural form. The primary building type observed will be the house, or the housing of African-Americans ...

Clarke, Charles E. (Charles Edward)

1996-01-01T23:59:59.000Z

413

Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, 5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0 Personal Computers 1 ................... 45.7 41.1 1.3 0.9 2.4 8.6 Number of Desktop PCs 1 .................................................. 34.1 30.5 1.0 0.7 1.9 9.7 2 or more .................................... 7.4 7.0 Q Q 0.2 18.4 Number of Laptop PCs 1 ..................................................

414

1997 Housing Characteristics Tables Housing Unit Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of U.S. Households; 45 pages, 121 kb) Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 1997 3 HC1-6b. Housing Unit Characteristics by Type of Rented Housing Unit, Percent of U.S. Households, 1997 3 HC1-7b. Housing Unit Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 4

415

Non-Residential Solar Water Heating Site Assessment at Milwaukee Apartment Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Midwest Renewable Energy Association's certified site assessors conducted 25 site assessments under a subcontract with NREL in 2009. The attached is one of the SHW assessments.

416

The Building America Industrialized Housing Partnership (BAIHP)  

E-Print Network (OSTI)

in manufactured homes. Team members, Cavalier Homes, Fleetwood Homes, Palm Harbor Homes, Southern Energy Homes, and manufacturers in the Super Good Cents/Natural Choice program produce over 100,000 manufactured homes/yr currently. In addition, the BAIHP team...

Chandra, S.; McCloud, M.; Moyer, N.; Beal, D.; Chasar, D.; McIlvaine, J.; Parker, D.; Sherwin, J.; Martin, E.; Fonorow, K.; Mullens, M.; Lubliner, M.; McSorley, M.

2002-01-01T23:59:59.000Z

417

2014 Building America House Simulation Protocols  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory LED light-emitting diode MAT monthly average temperature MEL miscellaneous electric load NCTH New Construction Test Home NREL National Renewable Energy Laboratory NREMD...

418

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network (OSTI)

and a 10-floor high-rise multi-family building [10,13]. Theand a multi-family residential building in different climateU.S. DOE multi-family apartment prototype building, as well

Mendes, Goncalo

2014-01-01T23:59:59.000Z

419

House Retirement Timeline  

NLE Websites -- All DOE Office Websites (Extended Search)

House Retirement House Retirement Timeline House is retiring December 20,2013 Fix your pipelines, move data and get help now! /house is POWERED OFF. 12/20/2013 Questions? Contact Kjiersten & Doug; consult@nersc.gov Office hours: MWThF 10:00-12:00 400-413 The link to /house will be permanently changed; all pipelines that have not removed /house dependencies will break. 11/15/2013 Your actions: Find anything that is still broken and let the developers know. Check houseHunter Continue data migration. We DO NOT GUARANTEE that you will be able to get data off /house after this date. 12/1/2013 Your action: Contact your group lead if you still need data /jgi/tools will no longer be in the default path 10/1/2013 Timeline & Important Dates The link to /house will be temporarily

420

Whole-House Systems Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Approach Systems Approach Whole-House Systems Approach April 26, 2012 - 10:17am Addthis The whole-house systems approach used to design this ultra-efficient home at Lone Star Ranch in Frisco, Texas, resulted in a home that consumes no more energy that its renewable energy systems produce. Photo from Building Science Corporation. The whole-house systems approach used to design this ultra-efficient home at Lone Star Ranch in Frisco, Texas, resulted in a home that consumes no more energy that its renewable energy systems produce. Photo from Building Science Corporation. What does this mean for me? Reduced utility and maintenance costs Increased comfort How does it work? Using a whole-house systems approach, it is possible to design and build or renovate a house that produces as much energy as it uses over the course of

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - armed services house Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

98 Catalina Graduate Housing...20,100-103,105-120 Central Engineering Services... Plant 6 Keith Spalding Building (Business Services & SIRTF) 7 Hill...

422

Radon in Syrian houses  

Science Journals Connector (OSTI)

A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991 - 1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling.

I Othman; M Hushari; G Raja; A Alsawaf

1996-01-01T23:59:59.000Z

423

U.S. Department of Housing and Urban Development  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the U.S. Department of Housing and Urban Development (HUD) is to create strong, sustainable, inclusive communities and quality affordable homes for all. HUD is working to strengthen the housing market to bolster the economy and protect consumers; meet the need for quality affordable rental homes; utilize housing as a platform for improving quality of life; build inclusive and sustainable communities free from discrimination, and transform the way HUD does business.

424

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

425

Building America Technology Solutions for New and Existing Homes: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This research effort, conducted by the Consortium for Advanced Residential Buildings, included several weeks of building pressure monitoring to validate system performance of four different strategies for providing make-up air to multifamily apartments.

426

Table HC1-7a. Housing Unit Characteristics by Four Most Populated...  

Gasoline and Diesel Fuel Update (EIA)

0.4 Q Q Q 15.6 More than 20 Floors ... Q Q Q Q Q NF FoundationBasement of Single-Family Homes and Apartments in Buildings With 2 to 4 Units (More...

427

Analysis of Energy Efficiency Measures in Rehabilitation of Multifamily Housing Units  

E-Print Network (OSTI)

An apartment building in Austin, Texas, and one in Boston, Massachusetts, were analyzed to determine the cost-effectiveness of energy efficiency measures. To determine expected energy and cost savings resulting from a set of proposed retrofit...

Hunn, B. D.; Silver, S. C.

1988-01-01T23:59:59.000Z

428

How Do You Save Energy in Your Apartment or Rental? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Apartment or Rental? Your Apartment or Rental? How Do You Save Energy in Your Apartment or Rental? October 22, 2009 - 7:00am Addthis On Monday, Eric discussed how he plans to save energy in his apartment this winter. It's not always easy to find ways to save when you don't own your home, but there are simple things you can do to make your apartment or rental more comfortable and efficient. How do you save energy in your apartment or rental? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles Easy Energy Tips for Apartments or Rental Homes How Do You Encourage Your Family to Use Less Water? Energy Tax Credits: Stay Warm and Save MORE Money!

429

Pacific Housing | Open Energy Information  

Open Energy Info (EERE)

Housing Jump to: navigation, search Name: Pacific Housing Place: Sacramento, CA Website: http:www.pacifichousing.com References: Pacific Housing1 Information About Partnership...

430

Energy Department Announces Winners of Housing Innovation Awards  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money.

431

CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE | Department of Energy  

Energy Savers (EERE)

created Energy Impact Illinois (EI2) to promote home energy upgrades in single-family homes, multifamily housing units, and commercial buildings to help the region meet its 2008...

432

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

433

RSETHZ 214.200 General House Rules of ETH Zurich  

E-Print Network (OSTI)

RSETHZ 214.200 2 General House Rules of ETH Zurich 20 August 2013 Under Article 4(1)(b) of the ETH Zurich Organizational Regulations of 16 December 2003,(1 the Executive Board of ETH Zurich hereby de the restrictions under 1.3, the General House Rules apply to all buildings and sites used by ETH Zurich, regardless

Fischlin, Andreas

434

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

435

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

436

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

437

100% petroleum house  

E-Print Network (OSTI)

I am designing a Case Study House to be sponsored by Royal Dutch Shell which utilizes the by-product of oil extraction, petroleum gas, to produce a zero waste, 100% petroleum based house. The motivation of the Case Study ...

Costanza, David (David Nicholas)

2013-01-01T23:59:59.000Z

438

Houses undergoing psychoanalysis :  

E-Print Network (OSTI)

The objective of this thesis is to explore the relationship between the self and the house. In approaching the subject, my assumptions were that the basic condition of the house-self relationship is of tension and animosity ...

Palmon, Ruth, 1970-

2002-01-01T23:59:59.000Z

439

Passive Housing for an Aggressive Region | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Housing for an Aggressive Region Passive Housing for an Aggressive Region Passive Housing for an Aggressive Region July 17, 2012 - 1:59pm Addthis Lynn Meyer Presidential Management Fellow, Office of Energy Efficiency and Renewable Energy Passive is not how I would characterize the D.C. area. Ambitious, passionate, and up for a challenge -- now, that more aptly describes the Capital region and the mission of bringing passive houses to the area. A passive house meets rigorous, voluntary energy efficiency standards and requires little energy for heating or cooling. The construction of passive housing is typically more expensive upfront, but owners can recoup their investment through energy savings. Brothers Eric Lin, an interior designer, and Roger Lin, a former real estate attorney, teamed up to build a high end passive house, which just

440

Passive Housing for an Aggressive Region | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Housing for an Aggressive Region Passive Housing for an Aggressive Region Passive Housing for an Aggressive Region July 17, 2012 - 1:59pm Addthis Lynn Meyer Presidential Management Fellow, Office of Energy Efficiency and Renewable Energy Passive is not how I would characterize the D.C. area. Ambitious, passionate, and up for a challenge -- now, that more aptly describes the Capital region and the mission of bringing passive houses to the area. A passive house meets rigorous, voluntary energy efficiency standards and requires little energy for heating or cooling. The construction of passive housing is typically more expensive upfront, but owners can recoup their investment through energy savings. Brothers Eric Lin, an interior designer, and Roger Lin, a former real estate attorney, teamed up to build a high end passive house, which just

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy budgets and masonry houses: a preliminary analysis of the comparative energy performance of masonry and wood-frame houses  

SciTech Connect

Energy Performance Standards require the establishment of energy budgets - maximum values of predicted building energy consumption assuming standard building operating conditions. Energy budgets based on minimizing life-cycle-costs to consumers have been computed in earlier reports. The prototype buildings for those studies used wood-frame construction. The energy performance of masonry houses is explored. Theoretical aspects of the modelling of masonry buildings on the DOE-2 program are discussed. Results of DOE-2 simulations are presented. Energy budgets which correspond to cost-minimizing masonry houses are found to be approximately equal to those for frame houses. The same energy performance requires only slightly less insulation in masonry walls than in frame walls for the climates studied. It is concluded that separate energy budgets for frame and masonry houses do not appear to be warranted.

Goldstein, D.B.; Levine, M.D.; Mass, J.

1980-09-01T23:59:59.000Z

442

House Rejects Southern Idaho Power Line  

Science Journals Connector (OSTI)

The House of Representatives has refused to go along with the Bonneville Power Administration's plans to build a power transmission line into southern Idaho, where Monsanto hopes to use part of the power in a planned expansion of its elemental phosphorus ...

1964-06-22T23:59:59.000Z

443

The House of the Future at MIT  

NLE Websites -- All DOE Office Websites (Extended Search)

The House of the Future at MIT The House of the Future at MIT Speaker(s): Kent Larson Date: December 6, 2002 - 12:00pm Location: Bldg. 90 During this seminar, Professor Larson will discuss two related housing initiatives at MIT: Changing Places/Houses in The MIT Home of the Future Consortium. Change is accelerating, but the places we create are largely static and unresponsive. "Changing Places" is an MIT research consortium that explores how new technologies, materials, and strategies for design can make possible dynamic, evolving places that respond to the complexities of life. Open Source Building Alliance Providing individuals with choice creates competition and incentives for innovation. Mass-customization requires a modular component-based approach, which creates a pathway for new players to enter the $852

444

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

Duncan, David B. (Auburn, CA)

1992-01-01T23:59:59.000Z

445

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

Duncan, D.B.

1992-12-29T23:59:59.000Z

446

Building Momentum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Momentum Building Momentum Building Momentum June 28, 2012 - 4:02pm Addthis President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. Jeff Zients Acting Director of the Office of Management and Budget Brian Deese Deputy Director of the National Economic Council What does this mean for me? 36 new states, local governments and school districts joined the President's Better Buildings Challenge. This brings the total square footage of buildings enrolled to 2

447

Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)  

SciTech Connect

In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

Not Available

2014-02-01T23:59:59.000Z

448

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Buildings Hub Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

449

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

450

The New House of the Region of Hannover: Energy Efficiency in a Public Private Partnership  

E-Print Network (OSTI)

The New House of the Region of Hannover is the first building in Germany that has been built according to the Standard EnOB - Energieoptimiertes Bauen (Energy optimized building) as defined by the German Ministry of Economics and Technology...

Plesser, S.; Fisch, M. N.

2007-01-01T23:59:59.000Z

451

Building 32 35 Building 36  

E-Print Network (OSTI)

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

452

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network (OSTI)

area utilities, groundskeeping services, and repairs and maintenance of the Laureate Court complex. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750

California at Santa Cruz, University of

453

Decathletes Demonstrate Affordable Solar Housing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathletes Demonstrate Affordable Solar Housing Decathletes Demonstrate Affordable Solar Housing Decathletes Demonstrate Affordable Solar Housing September 27, 2011 - 3:54pm Addthis Parsons The New School for Design and Stevens Institute of Technology tied with Purdue University's INhome to win the Affordability Contest at the 2011 Solar Decathlon by building Empowerhouse for less than $230,000. | Courtesy of Empowerhouse. Parsons The New School for Design and Stevens Institute of Technology tied with Purdue University's INhome to win the Affordability Contest at the 2011 Solar Decathlon by building Empowerhouse for less than $230,000. | Courtesy of Empowerhouse. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

454

Apartment Hunting with an Eye to Energy Savings: Part I | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apartment Hunting with an Eye to Energy Savings: Part I Apartment Hunting with an Eye to Energy Savings: Part I Apartment Hunting with an Eye to Energy Savings: Part I August 10, 2010 - 5:30pm Addthis Kyle Rudzinski Special Assistant to the Director of Technology Advancement and Outreach, EERE Apartment hunting can be a long and stressful process. Finding that right place is difficult, let alone finding the right place with the right price. What's rent? What's the neighborhood like? How big is the closet? How long will my commute take? Was the kitchen recently re-finished? Are there hardwood floors? We think about so many things in hopes of finding the right fit. I recently went apartment hunting. After a few days and 15 apartment complexes, I finally found the right fit at the right price. Despite what my brothers say, I don't think I'm cheap. I'm frugal. Or

455

U.S. Department of Housing and Urban Development PROGRAMS OF HUD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing and Urban Development Housing and Urban Development PROGRAMS OF HUD Major Mortgage, Grant, Assistance, and Regulatory Programs 2013 ii Table of Contents Table of Contents ................................................................................................................ ii Community Planning and Development ............................................................................ 1 Brownfields Economic Development Initiative (BEDI) ........................................................ 1 Capacity Building for Community Development and Affordable Housing .......................... 2 Community Development Block Grants (Disaster Recovery Assistance) ............................. 3 Community Development Block Grants (CDBG) (Entitlement) ........................................... 4

456

Table HC1.1.1 Housing Unit Characteristics by  

U.S. Energy Information Administration (EIA) Indexed Site

"Stone",1,0.9,3.7,1.4,2.4,1.3,1.6,1.4 "Other",1.5,1.4,4,1.6,3,1.7,1.7,1.5 "FoundationBasement of Single-" "Family Units and Apartments in" "2 to 4 Unit Buildings" "(more...

457

Division of Housing & Food Service Division of Student Affairs  

E-Print Network (OSTI)

and manufactured with electricity that is offset with Green-eR certified renewable energy certificates. Remote and other items. All tree limbs at the University apartments are diverted from the landfill by chipping them through our buildings for air conditioning and will significantly reduce the energy usage in these dining

Hofmann, Hans A.

458

Maryland-National Capital Building Industry Association Regulatory...  

Energy Savers (EERE)

firms. Final Letter to DOE Regulatory Burden 972012.pdf More Documents & Publications Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the...

459

Building America Case Study: New Town Builders' Power of Zero...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Whole-House Solutions for New Homes Building America Case Study New Town Builders' Power of Zero Energy Center Denver, Colorado GENERAL INFORMATION Builder: New Town Builders of...

460

Building America Case Study: Field Testing of Compartmentalization...  

Energy Savers (EERE)

BUILDING AMERICA CASE STUDY: TECHNOLOGY SOLUTIONS FOR NEW AND EXISTING HOMES Garage Mechanical Room Mechanical rooms are located in the rear-facing garage and house the furnace...

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building America Case Study: Lancaster County Career and Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

students are involved in building real houses that incorporate state-of-the-art energy efficiency and green technologies. With two homes already completed, the Green Home...

462

Building America Final Expert Meeting Report: Simplified Space...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resources for Consumers (SERC) Success Story: Maryland Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

463

First Annual Housing Innovation Award Winners Announced | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

In Brief In Brief First Annual Housing Innovation Award Winners Announced November 22, 2013 Figure 5. Weiss Building & Development, LLC, System Home in River Forest, Illinois, 2013 Grand Winner for Systems Builder at the Housing Innovation Awards. Chicagoland's First Certified Passive House. On October 4, 2013, the US Department of Energy (DOE) presented the inaugural winners of the firstever Housing Innovation Awards. The Awards recognize 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the DOE Office of Energy Efficiency and Renewable Energy, offered rigorous application criteria within four building categories: DOE Challenge Home Builders, Home

464

Seismic retrofit of precast panel buildings in Eastern Europe  

E-Print Network (OSTI)

Many countries in Eastern Europe, particularly ones from the former Soviet Bloc, are facing a potential crisis regarding their deteriorating precast panel apartment buildings. These complexes were built using industrial ...

Tzonev, Tzonu

2013-01-01T23:59:59.000Z

465

Building America Technology Solutions for New and Existing Homes: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

This project by Building Science Corporation evaluated the performance of new homes in a hot-humid climate, with and without supplemental dehumidification systems.

466

Complete 90.1 Prototype Building Model package | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete 90.1 Prototype Building Model package Complete 90.1 Prototype Building Model package The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

467

90.1 Prototype Building Models Full Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

90.1 Prototype Building Models Full Service Restaurant 90.1 Prototype Building Models Full Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

468

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

469

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

470

Safety Sustainability and Public Perception of Manufactured Housing in Hot Humid Climates  

E-Print Network (OSTI)

SAFETY, SUSTAINABILITY AND PUBLIC PERCEPTION OF MANUFACTURED HOUSING IN HOT, HUMID CLIMATES K.R. Grosskopf, Ph.D., CEM Assistant Professor M.E. Rinker Sr. School of Building Construction University of Florida Gainesville, Florida David... Cutlip, MSBC Graduate Assistant M.E. Rinker Sr. School of Building Construction University of Florida Gainesville, Florida ABSTRACT Manufactured housing has become a staple in the US affordable housing market in spite of a prevailing public...

Grosskopf, K. R.; Cutlip, D.

2006-01-01T23:59:59.000Z

471

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

472

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Household Demographics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

473

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Fuels Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

474

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Household Demographics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

475

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

HC.1.11 Fuels Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

476

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

477

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

478

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Household Demographics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

479

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census...

480

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Fuels Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

Note: This page contains sample records for the topic "apartment buildings housing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

HOUSE PASSES ENERGY BILLS  

Science Journals Connector (OSTI)

Among the dissimilarities, the House bill would require that, by 2020, utilities generate 15% of their electricity from renewable sourceswind, solar, and hydropower. ...

JEFF JOHNSON

2007-08-13T23:59:59.000Z

482

Building America Whole-House Solutions for Existing Homes: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

This case study presents information about a Building America study conducted by the Partnership for Advanced Residential Retrofit team comparing measure packages installed during 800 Illinois Home Performance with ENERGY STAR residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software.

483

Page 28 Housing Services Sonoma State University 2012-2013 Catalog Zinfandel Hall  

E-Print Network (OSTI)

its own dining hall, swimming pools, study rooms, convenience store, post office, meeting roomsPage 28 Housing Services Sonoma State University 2012-2013 Catalog Zinfandel Hall (707) 664. The Community is a unique mix of nontraditional resident hall suites and campus apartments, all located just

Ravikumar, B.

484

Page 28 Housing Services Sonoma State University 2011-2012 Catalog Zinfandel Hall  

E-Print Network (OSTI)

its own dining hall, swimming pools, study rooms, convenience store, post office, meeting roomsPage 28 Housing Services Sonoma State University 2011-2012 Catalog Zinfandel Hall (707) 664. The Community is a unique mix of nontraditional resident hall suites and campus apartments, all located just

Ravikumar, B.

485

Better Buildings Challenge is Expanding, Improving Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm Addthis Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge MORE RESOURCES Read the press release about the Better Buildings expansion Learn more about Better Buildings Accelerators

486

Building America: Bringing Building Innovations to Market | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

487

Multiple pump housing  

DOE Patents (OSTI)

A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

Donoho, II, Michael R. (Edelstein, IL); Elliott, Christopher M. (Metamora, IL)

2010-03-23T23:59:59.000Z

488

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family...

489

90.1 Prototype Building Models Stand Alone Retail | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Stand Alone Retail Stand Alone Retail The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

490

90.1 Prototype Building Models Quick Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Quick Service Restaurant Quick Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

491

90.1 Prototype Building Models- Medium Office | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Models- Medium Office Models- Medium Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

492

90.1 Prototype Building Models Large Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

493

90.1 Prototype Building Models Warehouse (non-refrigerated) | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Warehouse (non-refrigerated) Warehouse (non-refrigerated) The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

494

90.1 Prototype Building Models Large Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

495

90.1 Prototype Building Models Small Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

496

90.1 Prototype Building Models Strip Mall | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Strip Mall Strip Mall The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

497

90.1 Prototype Building Models Small Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

498

90.1 Prototype Building Models Primary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary School Primary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

499

90.1 Prototype Building Models Hospital | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Hospital The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

500

90.1 Prototype Building Models Secondary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary School Secondary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the