National Library of Energy BETA

Sample records for antiferromagnetic vortex states

  1. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Direct Imaging of Antiferromagnetic Vortex States Print Wednesday, 28 September 2011 00:00 Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around

  2. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arenholz, A. Doran, A.T. Young, A. Scholl, C. Hwang, H.W. Zhao, J. Bokor, and Z.Q. Qiu, "Direct observation of imprinted antiferromagnetic vortex states in CoOFeAg(001) discs,"...

  3. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  4. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  5. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  6. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  7. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  8. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  9. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting and unique properties for the AFM vortex state. Recently, a...

  10. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity in the study of vortex states in FM disks, there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting...

  11. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recently, a research team from Berkeley, Korea, and China has taken the first direct image ... Young, and A. Scholl (ALS); C. Hwang (Korea Research Institute of Standards and ...

  12. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholl, and H.W. Zhao. Research conducted by J. Wu, D. Carlton, J.S. Park, J. Bokor, and Z.Q. Qiu (University of Califoria, Berkeley); Y. Meng (UC Berkeley and Institute of...

  13. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Current - An Energy.gov Podcast Direct Current - An Energy.gov Podcast Jump to Podcast Items List. Podcast Meta Data itunes-icon-1400px-square.jpg Direct Current - An Energy.gov Podcast Album Art Category Government & Organizations Category Author Energy.gov Digital Team Subscribe via iTunes HOW TO SUBSCRIBE To subscribe using iTunes, click here. To subscribe using another podcatcher, copy this URL: http://energy.gov/podcasts/direct-current-energygov-podcast?format=itunes Also,

  14. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    central disc experience a magnetic field produced by the surrounding Fe film. This localized field has limited effect on photemitted electrons, enabling PEEM studies of the...

  15. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information and is therefore a key aspect of magnetic data-storage applications. Sample geometry The samples under study consisted of single-crystalline NiO or CoO (AFM) thin ...

  16. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    SciTech Connect (OSTI)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; Sort, Jordi; Liu, Kai; Nogués, Josep

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.

  17. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore » asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  18. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOE Patents [OSTI]

    Naumov, Ivan I.; Bellaiche, Laurent M.; Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  19. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect (OSTI)

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  20. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    B. A. Frandsen; Liu, L.; Cheung, S. C.; Guguchia, Z.; Khasanov, R.; Morenzoni, E.; Munsie, T. J.S.; Hallas, A. M.; Wilson, M. N.; Cai, Y.; et al

    2016-08-17

    RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phasemore » separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.« less

  1. Decoupling of the antiferromagnetic and insulating states in Tb-doped Sr2IrO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, J. C.; Aswartham, S.; Ye, Feng; Terzic, J.; Zheng, H.; Haskel, Daniel; Chikara, Shalinee; Choi, Yong; Schlottmann, P.; Custelcean, Radu; et al

    2015-12-08

    Sr2IrO4 is a spin-orbit coupled insulator with an antiferromagnetic (AFM) transition at TN = 240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4 (0≤x≤0.03). This study found that mere 3% (x=0.03) tetravalent Tb4+(4f7) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of magnetic interactions and charge gap. The insulating state at x = 0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95, 0, 0) and (0,more » 0.95, 0) in the neutron diffraction, suggesting a spiral or spin density wave order. It is apparent that Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund’s rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM accompanies no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and renders a persistent insulating state. Furthermore, this work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.« less

  2. Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field

    SciTech Connect (OSTI)

    Ludu, A.; Van Deun, J.; Cuyt, A.; Milosevic, M. V.; Peeters, F. M.

    2010-08-15

    We solve the linear Ginzburg-Landau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.

  3. Jamming Behavior of Domains in a Spiral Antiferromagnetic System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jamming Behavior of Domains in a Spiral Antiferromagnetic System Jamming Behavior of Domains in a Spiral Antiferromagnetic System Print Tuesday, 04 June 2013 13:34 This schematic of x-ray scattering is from a spiral antiferromagnet with a spin structure that gives rise to domains with jamming behavior. Using resonant magnetic x-ray photon correlation spectroscopy, this research shows that the domains of a spiral antiferromagnet enter a jammed state at the onset of long-range order. Researchers

  4. Two-hole bound states from a systematic low-energy effective field theory for magnons and holes in an antiferromagnet

    SciTech Connect (OSTI)

    Bruegger, C.; Kaempfer, F.; Moser, M.; Wiese, U.-J.; Pepe, M.

    2006-12-01

    Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has remained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD, based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective field theory for magnons and holes located inside pockets centered at lattice momenta ({+-}({pi}/2a),{+-}({pi}/2a)). The effective theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise undoped system. Remarkably, in some cases the corresponding two-hole Schroedinger equations can even be solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of two holes residing in different hole pockets has a d{sub x{sup 2}-y{sup 2}}-like symmetry, while for two holes in the same pocket the symmetry resembles d{sub xy}.

  5. Crystalline Electric Field as a Probe for Long-Range Antiferromagnetic Order and Superconducting State of CeFeAsO1-xFx

    SciTech Connect (OSTI)

    Chi, Songxue; Adroja, D. T.; GUIDI, T.; Bewley, Robert I.; Li, Shiliang; Zhao, Jun; Lynn, J. W.; Brown, C. M.; Qiu, Y.; Chen, G. F,; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-01-01

    We use inelastic neutron scattering to study the crystalline electric field (CEF) excitations of Ce{sup 3+} in CeFeAsO{sub 1-x}F{sub x} (x=0, 0.16). For nonsuperconducting CeFeAsO, the Ce CEF levels have three magnetic doublets in the paramagnetic state, but these doublets split into six singlets when the Fe ions order antiferromagnetically. For superconducting CeFeAsO{sub 0.84}F{sub 0.16} (T{sub c} = 41 K), where the static antiferromagnetic order is suppressed, the Ce CEF levels have three magnetic doublets at {h_bar}{sub {omega}} = 0, 18.7, 58.4 meV at all temperatures. Careful measurements of the intrinsic linewidth {Lambda} and the peak position of the 18.7 meV mode reveal a clear anomaly at T{sub c}, consistent with a strong enhancement of local magnetic susceptibility {chi}{double_prime}({h_bar}{sub {omega}}) below T{sub c}. These results suggest that CEF excitations in the rare-earth oxypnictides can be used as a probe of spin dynamics in the nearby FeAs planes.

  6. Spintronics in antiferromagnets

    SciTech Connect (OSTI)

    Soh, Yeong-Ah; Kummamuru, Ravi K.

    2012-05-10

    Magnetic domains and the walls between are the subject of great interest because of the role they play in determining the electrical properties of ferromagnetic materials and as a means of manipulating electron spin in spintronic devices. However, much less attention has been paid to these effects in antiferromagnets, primarily because there is less awareness of their existence in antiferromagnets, and in addition they are hard to probe since they exhibit no net magnetic moment. In this paper, we discuss the electrical properties of chromium, which is the only elemental antiferromagnet and how they depend on the subtle arrangement of the antiferromagnetically ordered spins. X-ray measurement of the modulation wavevector Q of the incommensurate antiferromagnetic spin-density wave shows thermal hysteresis, with the corresponding wavelength being larger during cooling than during warming. The thermal hysteresis in the Q vector is accompanied with a thermal hysteresis in both the longitudinal and Hall resistivity. During cooling, we measure a larger longitudinal and Hall resistivity compared with when warming, which indicates that a larger wavelength at a given temperature corresponds to a smaller carrier density or equivalently a larger antiferromagnetic ordering parameter compared to a smaller wavelength. This shows that the arrangement of the antiferromagnetic spins directly influences the transport properties. In thin films, the sign of the thermal hysteresis for Q is the same as in thick films, but a distinct aspect is that Q is quantized.

  7. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe2O6: NMR and muon spin relaxation studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khuntia, P.; Bert, F.; Mendels, P.; Koteswararao, B.; Mahajan, A. V.; Baenitz, M.; Chou, F. C.; Baines, C.; Amato, A.; Furukawa, Y.

    2016-03-11

    In this study, PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneousmore » magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  8. Decoupling of the antiferromagnetic and insulating states in Tb-doped Sr2IrO4

    SciTech Connect (OSTI)

    Wang, J. C.; Aswartham, S.; Ye, Feng; Terzic, J.; Zheng, H.; Haskel, Daniel; Chikara, Shalinee; Choi, Yong; Schlottmann, P.; Custelcean, Radu; Yuan, S. J.; Cao, G.

    2015-12-08

    Sr2IrO4 is a spin-orbit coupled insulator with an antiferromagnetic (AFM) transition at TN = 240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4 (0≤x≤0.03). This study found that mere 3% (x=0.03) tetravalent Tb4+(4f7) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of magnetic interactions and charge gap. The insulating state at x = 0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95, 0, 0) and (0, 0.95, 0) in the neutron diffraction, suggesting a spiral or spin density wave order. It is apparent that Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund’s rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM accompanies no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and renders a persistent insulating state. Furthermore, this work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.

  9. An itinerant antiferromagnetic metal without magnetic constituents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; et al

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemedmore » crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.« less

  10. An itinerant antiferromagnetic metal without magnetic constituents

    SciTech Connect (OSTI)

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.

  11. Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons

    SciTech Connect (OSTI)

    Zhao, Shangqian; Lu, Yan; Zhang, Yuchun; Lu, Wengang Liang, Wenjie

    2014-05-19

    A type of sawtooth-like graphene nanoribbon (SGNR) with piezo-antiferromagnetic effect is studied numerically. The ground state of the studied SGNR changes from nonmagnetic state to antiferromagnetic state with uniaxial strain. The changes of the spin-charge distributions during the stretching are investigated. The Hubbard model reveals that the hopping integrals between the π-orbitals of the carbon atoms are responsible to the piezo-antiferromagnetic effect. The study sheds light on the application of graphene-based structures to nanosensors and spintronic devices.

  12. Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems

    SciTech Connect (OSTI)

    Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.

    2012-08-15

    The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.

  13. Vortex Hydro Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  14. Theory of antiferromagnetic superconductors

    SciTech Connect (OSTI)

    Machida, K.; Nokura, K.; Matsubara, T.

    1980-09-01

    In this paper a theory is presented of antiferromagnetic superconductors in which a spin-density wave (SDW) ordering with a wave vector Q may coexist with superconductivity. The effect of the antiferromagnetic molecular field h/sub Q/(T) on the Cooper pairing is studied, and it is shown that, below the magnetic transition temperature T/sub N/' the Bardeen-Cooper-Schruffer coupling parameter is reduced by a factor of (1-constsuch thatub Q/(T)epsilon/sub F/) due to the formation of energy gaps of SDW on the Fermi surface along Q and this reduction can explain the anomaly in the upper critical field H/sub c/2 just below T/sub N/ as observed in RMo/sub 6/S/sub 8/ (R=Gd, Tb, and Dy). Taking account of both the spin-orbit scattering and spin-fluctuation effect near T/sub N/ in addition to the effect of h/sub Q/(T), a theoretical calculation of the superconducting transition temperature T/sub c/ and H/sub c/2(T) is performed. Detailed quantitative comparisons between theory and experiments on H/sub c/2(T) are made with fairly good accord for the above three compounds. Some speculation is given to discuss the remaining descrepancies between theory and experiments and certain phenomena not yet explained by the theory.

  15. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosovmore » vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  16. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  17. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  18. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  19. The effect of Au and Ni doping on the heavy fermion state of the Kondo lattice antiferromagnet CePtZn

    SciTech Connect (OSTI)

    Dhar, S. K.; Aoki, Y.; Suemitsu, B.; Miyazaki, R.; Provino, A.; Manfrinetti, P.

    2014-05-07

    We have probed the effect of doping CePtZn with Au and Ni and also investigated in detail the magnetic behavior of the iso-structural CeAuZn. A magnetic ground state is observed in both CePt{sub 0.9}Au{sub 0.1}Zn and CePt{sub 0.9}Ni{sub 0.1}Zn with T{sub N}?=?2.1 and 1.1?K and the coefficient of the linear term of electronic heat capacity ??=?0.34 and 0.9?J/mol K{sup 2}, respectively. The corresponding values for CePtZn are 1.7?K and 0.6?J/mol K{sup 2}. The altered values of T{sub N} and ? show that the electronic correlations in CePtZn are affected by doping with Au and Ni. CeAuZn orders magnetically near 1.7?K and its electrical resistivity shows a normal metallic behavior. Together with a ? of 0.022?J/mol K{sup 2} the data indicate a weak 4f-conduction electron hybridization in CeAuZn characteristic of normal trivalent cerium based systems.

  20. Characterization of the Dilute Ising Antiferromagnet

    SciTech Connect (OSTI)

    Wiener, T.

    2000-09-12

    A spin glass is a magnetic ground state in which ferromagnetic and antiferromagnetic exchange interactions compete, thereby creating frustration and a multidegenerate state with no long range order. An Ising system is a system where the spins are constrained to lie parallel or antiparallel to a primary axis. There has been much theoretical interest in the past ten years in the effects of applying a magnetic field transverse to the primary axis in an Ising spin glass at low temperatures and thus study phase transitions at the T=0 limit. The focus of this study is to search for and characterize a new Ising spin glass system. This is accomplished by site diluting yttrium for terbium in the crystalline material TbNi{sub 2}Ge{sub 2}. The first part of this work gives a brief overview of the physics of rare earth magnetism and an overview of experimental characteristics of spin glasses. This is followed by the methodology used to manufacture the large single crystals used in this study, as well as the measurement techniques used. Next, a summary of the results of magnetic measurements on across the dilution series from pure terbium to pure yttrium is presented. This is followed by detailed measurements on particular dilutions which demonstrate spin glass behavior. Pure TbNi{sub 2}Ge{sub 2} is an Ising antiferromagnet with a several distinct metamagnetic states below 17 K. As the terbium is alloyed with yttrium, these magnetic states are weakened in a consistent manner, as is seen in measurements of the transition temperatures and analysis of Curie-Weiss behavior at high temperature. At low concentrations of terbium, below 35%, long range order is no longer present and a spin-glass-like state emerges. This state is studied through various measurements, dc and ac susceptibility, resistivity, and specific heat. This magnetic behavior was then compared to that of other well characterized spin glasses. It is concluded that there is a region of concentration s for which a spin

  1. Entanglement of strongly interacting low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating systems

    SciTech Connect (OSTI)

    Franca, V. V.; Capelle, K.

    2006-10-15

    We calculate the entanglement entropy of strongly correlated low-dimensional fermions in metallic, superfluid, and antiferromagnetic insulating phases. The entanglement entropy reflects the degrees of freedom available in each phase for storing and processing information, but is found not to be a state function in the thermodynamic sense. The role of critical points, smooth crossovers, and Hilbert space restrictions in shaping the dependence of the entanglement entropy on the system parameters is illustrated for metallic, insulating, and superfluid systems. The dependence of the spin susceptibility on entanglement in antiferromagnetic insulators is obtained quantitatively. The opening of spin gaps in antiferromagnetic insulators is associated with enhanced entanglement near quantum critical points.

  2. Jamming Behavior of Domains in a Spiral Antiferromagnetic System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jamming Behavior of Domains in a Spiral Antiferromagnetic System Jamming Behavior of Domains in a Spiral Antiferromagnetic System Print Tuesday, 04 June 2013 13:34 This schematic...

  3. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect (OSTI)

    Silva, R. M. da; Domnguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  4. Ferro- and antiferro-magnetism in (Np, Pu)BC

    SciTech Connect (OSTI)

    Klimczuk, T.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Wastin, F.; Falmbigl, M.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of (Np,Pu)BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T{sub N} = 44 K, whereas ferromagnetic ordering was found for NpBC below T{sub C} = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  5. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  6. Erratum: Evolution of antiferromagnetic susceptibility under...

    Office of Scientific and Technical Information (OSTI)

    susceptibility under uniaxial pressure inBa(Fe1-xCox)2As2Phys. Rev. B89, 214404 (2014) Citation Details In-Document Search Title: Erratum: Evolution of antiferromagnetic...

  7. Remarkably robust and correlated coherence and antiferromagnetism...

    Office of Scientific and Technical Information (OSTI)

    With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. ...

  8. Antiferromagnetic order induced by gadolinium substitution in Bi{sub 2}Se{sub 3} single crystals

    SciTech Connect (OSTI)

    Kim, S. W.; Jung, M. H.; Vrtnik, S.; Dolinšek, J.

    2015-06-22

    Magnetic topological insulators can serve as a fundamental platform for various spin-based device applications. We report the antiferromagnetic order induced by the magnetic impurity dopants of Gd in Gd{sub x}Bi{sub 2−x}Se{sub 3} and the systematic results with varying the Gd concentration x ( = 0.14, 0.20, 0.30, and 0.40). The antiferromagnetic order is demonstrated by the magnetic susceptibility, electrical resistivity, and specific heat measurements. The anomaly observed at T{sub N} = 6 K for x ≥ 0.30 shifts towards lower temperature with increasing the magnetic field, indicative of antiferromagnetic ground state. The Gd substitution into Bi{sub 2}Se{sub 3} enables not only tuning the magnetism from paramagnetic to antiferromagnetic for high x (≥ 0.30) but also giving a promising candidate for antiferromagnetic topological insulators.

  9. Vortex Energy | Open Energy Information

    Open Energy Info (EERE)

    Vortex Energy Place: Germany Sector: Wind energy Product: German wind farm developer. References: Vortex Energy1 This article is a stub. You can help OpenEI by expanding it....

  10. Observation of coupled vortex gyrations by 70-ps-time and 20-nm-space- resolved full-field magnetic transmission soft x-ray microscopy

    SciTech Connect (OSTI)

    Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Im, Mi-Young; Fischer, Peter; Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido; Kim, Sang-Koog

    2010-09-01

    We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni{sub 80}Fe{sub 20}) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.

  11. Kondo response of a single antiferromagnetic chromium trimer

    SciTech Connect (OSTI)

    Jamneala, T.; Madhavan, V.; Crommie, M.F.

    2001-03-25

    The triangular Cr trimer (Cr(3)) is a fundamental component in a number of frustrated, antiferromagnetic systems. We have used atomic manipulation and scanning tunneling spectroscopy to probe the local behavior of this basic magnetic substructure by fabricating and analyzing individual Cr trimers at the surface of gold. We find that Cr trimers can be reversibly switched between two distinct electronic states. This phenomenon can be explained as the Kondo response of a spin-switching, magnetically frustrated nanocluster. Such behavior is consistent with noncollinear magnetic states predicted for Cr trimers whose structures differ by the position of a single atom.

  12. Vortex Characterization for Engineering Applications

    SciTech Connect (OSTI)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  13. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields ... Sponsoring Org: NSF Country of Publication: United States Language: English Subject: ...

  14. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  15. Antiferromagnetic Spin Wave Field-Effect Transistor (Journal...

    Office of Scientific and Technical Information (OSTI)

    Antiferromagnetic Spin Wave Field-Effect Transistor Citation Details ... Type: Accepted Manuscript Journal Name: Scientific Reports Additional Journal Information: ...

  16. Temperature-dependent terahertz magnetic dipole radiation from antiferromagnetic GdFeO{sub 3} ceramics

    SciTech Connect (OSTI)

    Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji

    2013-11-18

    Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.

  17. Antiferromagnetic fluctuations in a quasi-two-dimensional organic superconductor detected by Raman spectroscopy.

    SciTech Connect (OSTI)

    Drichko, Natalia; Hackl, Rudi; Schlueter, John A.

    2015-10-15

    Using Raman scattering, the quasi-two-dimensional organic superconductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br (T-c = 11.8 K) and the related antiferromagnet kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl are studied. Raman scattering provides unique spectroscopic information about magnetic degrees of freedom that has been otherwise unavailable on such organic conductors. Below T = 200 K a broad band at about 500 cm(-1) develops in both compounds. We identify this band with two-magnon excitation. The position and the temperature dependence of the spectral weight are similar in the antiferromagnet and in the metallic Fermi liquid. We conclude that antiferromagnetic correlations are similarly present in the magnetic insulator and the Fermi-liquid state of the superconductor.

  18. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    SciTech Connect (OSTI)

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  19. Variable residence time vortex combustor

    DOE Patents [OSTI]

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  20. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core

  1. Magnetic and nematic orderings in spin-1 antiferromagnets with...

    Office of Scientific and Technical Information (OSTI)

    Magnetic and nematic orderings in spin-1 antiferromagnets with single-ion anisotropy Citation Details In-Document Search Title: Magnetic and nematic orderings in spin-1 ...

  2. Pressure-tuned quantum criticality in the antiferromagnetic Kondo...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2-As2 Citation ... Here, we report a systematic transport and thermodynamic ...

  3. Picture of the Week: Supercomputing the vortex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Supercomputing the vortex This computer simulation of vortex induced motion (VIM) from Los Alamos National Laboratory shows how ocean currents affect offshore oil rigs. The large size and complex physics of this problem requires advanced numerical simulations using supercomputers. April 12, 2015 Supercomputing the vortex x This computer simulation of vortex induced motion (VIM) from Los Alamos National Laboratory shows how ocean currents affect offshore oil rigs. Vortex shedding affects the

  4. Magnetic properties and Fermi surface of antiferromagnetic SmCu/sub 6/

    SciTech Connect (OSTI)

    Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W.; Nishihara, M.; Ina, K.; Yamazaki, T.; Omi, T.; Komatsubara, T.; Maezawa, K.

    1987-08-01

    We report measurements of the magnetic susceptibility, specific heat, magnetoresistance, Hall effect, and Fermi surface in SmCu/sup 6/. The susceptibility follows the Van Vleck form for Sm/sup 3 +/ near room temperature and shows two antiferromagnetic phase transitions at 9.6 K and 5.2 K. The specific heat implies a quartet ground state for the crystal field split J = 5/2 angular momentum state. Magnetoresistance indicates two conduction carriers of uncompensated electrons and holes. de Haas-van Alphen measurements show that the Fermi surface in the antiferromagnetic state consists of a network of cylinders oriented 30/degree/ from the b and c axes. 14 refs., 10 figs.

  5. Magnetic properties and Fermi surface of antiferromagnetic SmCu sub 6

    SciTech Connect (OSTI)

    Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W. ); Nishihara, M.; Ina, K.; Yamazaki, T.; Omi, T.; Komatsubara, T. ); Maezawa, K.; Wakabayashi, S. ); Takayanagi, S. ); Wada, N. )

    1990-01-01

    We report measurements of the magnetic susceptibility, specific heat, magnetoresistance, Hall effect, and Fermi surface in SmCu{sub 6}. The susceptibility follows the Van Vleck form for Sm{sup 3+} near room temperature and shows two antiferromagnetic phase transitions at 9.6 and 5.2 K. The specific heat implies a quartet ground state for the crystal-field-split {ital J}=5/2 angular momentum state. Magnetoresistance indicates that SmCu{sub 6} contains both electron and hole carriers but is uncompensated. de Haas--van Alphen measurements show that the Fermi surface in the antiferromagnetic state consists of a network of cylinders oriented 30{degree} from the {ital b} and {ital c} axes.

  6. Antiferromagnetic ordering in the doped Kondo insulator CeRhSb

    SciTech Connect (OSTI)

    Menon, L.; Malik, S.K.

    1997-06-01

    CeRhSb, the so-called {open_quotes}Kondo insulator,{close_quotes} is a mixed-valent compound showing a gap formation in the electronic density of states. On the other hand, CePdSb is ferromagnetically ordered with a Curie temperature of {approximately}17 K. We have carried out magnetic susceptibility and electrical resistivity measurements on CeRh{sub 1{minus}x}Pd{sub x}Sb (0{le}x{le}1.0), to study the ground-state properties of this system. For small Pd doping in CeRhSb, up to 20{percent}, the gap continually diminishes and no magnetic ordering is observed down to 2 K. In the region 0.3{le}x{le}0.4, as soon as the gap is suppressed, an antiferromagnetic ground state is observed. In the region 0.5{le}x{lt}0.7, the compounds are not single phase. At the CePdSb end, in the region 0.7{le}x{le}1, the ground state is ferromagnetic. The observation of an antiferromagnetic phase in the phase diagram of CeRh{sub 1{minus}x}Pd{sub x}Sb, where neither end is antiferromagnetic, is interesting and is discussed in the light of some recent theoretical models. {copyright} {ital 1997} {ital The American Physical Society}

  7. Emergence of robust gaps in two-dimensional antiferromagnets via additional spin-1/2 probes

    SciTech Connect (OSTI)

    Ferreira, Aires; Lopes, J. Viana; Lopes dos Santos, J. M. B.

    2010-08-15

    We study the capacity of antiferromagnetic lattices of varying geometries to entangle two additional spin-1/2 probes. Analytical modeling of the quantum Monte Carlo data shows the appearance of a robust gap, allowing a description of entanglement in terms of probe-only states, even in cases where the coupling to the probes is larger than the gap of the spin lattice and cannot be treated perturbatively. We find a considerable enhancement of the temperature at which probe entanglement disappears as we vary the geometry of the bus and the coupling to the probes. In particular, the square Heisenberg antiferromagnet exhibits the best thermal robustness of all systems, whereas the three-leg ladder chain shows the best performance in the natural quantum ground state.

  8. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    SciTech Connect (OSTI)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth ? and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.

  9. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    SciTech Connect (OSTI)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.

  10. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  11. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; et al

    2014-10-01

    Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a newmore » mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  12. Fragile antiferromagnetism in the heavy-fermion compound YbBiPt

    SciTech Connect (OSTI)

    Ueland, Benjamin G. [Ames Laboratory; Kreyssig, Andreas [Ames Laboratory; Prokes, K. [Helmholtz-Zentrum Berlin fur Materialien und Energie; Lynn, J. W. [NIST Center for Neutron Research; Harriger, L. W. [NIST Center for Neutron Research; Pratt, D. K. [NIST Center for Neutron Research; Singh, D. K. [NIST Center for Neutron Research; Heitmann, T. W. [University of Missouri; Sauerbrei, Samantha [Ames Laboratory; Saunders, Scott M. [Ames Laboratory; Mun, E. D. [Ames Laboratory; Budko, Serguei L. [Ames Laboratory; McQueeney, Robert J. [Ames Laboratory; Canfield, Paul C. [Ames Laboratory; Goldman, Alan I. [Ames Laboratory

    2014-05-08

    We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, ?AFM = (121212), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below TN?0.4 K and corresponds to a magnetic correlation length of ?n? 80 , and a broad component that persists up to T?? 0.7 K and corresponds to antiferromagnetic correlations extending over ?b? 20 . Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.

  13. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    SciTech Connect (OSTI)

    Folven, Eric; Linder, J.; Gomonay, O. V.; Scholl, Andreas; Doran, A.; Young, A. T.; Retterer, Scott T.; Malik, V. K.; Tybell, Thomas; Takamura, Yayoi; Grepstad, Jostein K.

    2015-09-14

    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.

  14. Excitation spectrum of a model antiferromagnetic spin-trimer.

    SciTech Connect (OSTI)

    Stone, Matthew B; Fernandez-Alonso, F.; Adroja, D. T.; Dalal, N. S.; Villagran, D.; Cotton, F. A.; Nagler, Stephen E

    2007-01-01

    We present an inelastic neutron scattering (INS) study of the excitation spectrum of a quantum S=1/2 equilateral Heisenberg trimer, Cu{sub 3}(O{sub 2}C{sub 16}H{sub 23}){sub 61.2}C{sub 6}H{sub 12}. The magnetic properties of the system can be described by an ensemble of independent equilateral triangles of S=1/2 Cu{sup 2+} ions. With antiferromagnetic Heisenberg coupling, the ground state of each trimer is a degenerate pair of S=1/2 doublets, with a quartet S=3/2 excited state. Previous bulk measurements led to an estimate for the excitation energy of 28 meV. Here, we report INS measurements that can provide a direct measurement of magnetic excitation energies. These measurements are challenging since inter- and intramolecular vibrational modes associated with the organic ligands are at frequencies similar to the magnetic excitations. Measurements on a nonmagnetic compound with the same ligands as well as the temperature dependence of the neutron scattering cross section are used to identify the vibrational modes. This leads to an identification of the magnetic excitation energy as being approximately 37 meV at T=10 K, with a gradual softening with increasing temperature.

  15. Giant magnetic effects and oscillations in antiferromagnetic Josephson weak links

    SciTech Connect (OSTI)

    Gorkov, L.; Kresin, Vladimir

    2001-04-01

    Josephson junctions with an antiferromagnetic metal as a link are described. The junction can be switched off by a relatively small magnetic field. The amplitude of the current oscillates as a function of the field.

  16. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  17. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  18. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  19. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  20. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  1. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  2. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  3. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  4. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TNmore » in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.« less

  5. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    SciTech Connect (OSTI)

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility ? versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature ?p in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = ?p/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that ?(T ? TN) of noncollinear 120 spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  6. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    SciTech Connect (OSTI)

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  7. Vortex Oscillation Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oscillation Technology Ltd Jump to: navigation, search Name: Vortex Oscillation Technology Ltd Address: Volochaevskaya Street 40 b Flat 38 Place: Moscow Zip: 111033 Region: Russian...

  8. Spin transport in tilted electron vortex beams

    SciTech Connect (OSTI)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  9. EERE Success Story-Vortex Hydro Energy Develops Transformational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to ...

  10. Resonant amplification of vortex-core oscillations by coherent...

    Office of Scientific and Technical Information (OSTI)

    Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses Citation Details In-Document Search Title: Resonant amplification of vortex-core oscillations ...

  11. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  12. MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy...

    Open Energy Info (EERE)

    SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile...

  13. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn?

    SciTech Connect (OSTI)

    Das, Pinaki [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Lin, S. -Z. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Ghimire, N.? J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Huang, K. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Univ. of California, San Diego, La Jolla, CA (United States); Ronning, F. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Bauer, E.? D. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Thompson, J.? D. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Batista, C.? D. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Ehlers, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janoschek, M. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2014-12-01

    We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn?. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J??J? model that also naturally explains the magnetic spin-spiral ground state of CeRhIn? and yields a dominant in-plane nearest-neighbor magnetic exchange constant J?=0.74(3)??meV. Our results pave the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn? (T = Co, Rh, Ir) class of heavy-fermion materials.

  14. Magnetoelastic Coupling and Symmetry Breaking in the Frustrated Antiferromagnet {alpha}-NaMnO{sub 2}

    SciTech Connect (OSTI)

    Giot, Maud; Chapon, Laurent C.; Radaelli, Paolo G.; Androulakis, John; Lappas, Alexandros; Green, Mark A.

    2007-12-14

    The magnetic and crystal structures of the {alpha}-NaMnO{sub 2} have been determined by high-resolution neutron powder diffraction. The system maps out a frustrated triangular spin lattice with anisotropic interactions that displays two-dimensional spin correlations below 200 K. Magnetic frustration is lifted through magneto-elastic coupling, evidenced by strong anisotropic broadening of the diffraction profiles at high temperature and ultimately by a structural phase transition at 45 K. In this low-temperature regime a three-dimensional antiferromagnetic state is observed with a propagation vector k=((1/2),(1/2),0)

  15. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; Hong, Jung-Il; Meier, Guido; Fischer, Peter

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

  16. The universal criterion for switching a magnetic vortex core in soft magnetic nanodots

    SciTech Connect (OSTI)

    Lee, K.-S.; Kim, S.-K.; Yu, Y.-S.; Choi, Y.-S.; Guslienko, K. Y.; Jung, H.; Fischer, P.

    2008-10-01

    The universal criterion for ultrafast vortex core switching between core-up and -down vortex bi-states in soft magnetic nanodots was empirically investigated by micromagnetic simulations and combined with an analytical approach. Vortex-core switching occurs whenever the velocity of vortex core motion reaches a critical value, which is {nu}{sub c} = 330 {+-} 37 m/s for Permalloy, as estimated from numerical simulations. This critical velocity was found to be {nu}{sub c} = {eta}{sub c}{gamma} {radical}A{sub ex} with A{sub ex} the exchange stiffness, {gamma} the gyromagnetic ratio, and an estimated proportional constant {eta}{sub c} = 1.66 {+-} 0.18. This criterion does neither depend on driving force parameters nor on the dimension or geometry of the magnetic specimen. The phase diagrams for the vortex core switching criterion and its switching time with respect to both the strength and angular frequency of circular rotating magnetic fields were derived, which offer practical guidance for implementing vortex core switching into future solid state information storage devices.

  17. Electronic structure reconstruction across the antiferromagnetic transition in TaFe₁̣₂₃Te₃ spin ladder

    SciTech Connect (OSTI)

    Xu, Min; Wang, Li -Min; Peng, Rui; Ge, Qing -Qin; Chen, Fei; Ye, Zi -Rong; Zhang, Yan; Chen, Su -Di; Xia, Miao; Liu, Rong -Hua; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Matsunami, M.; Kimura, S.; Shi, Ming; Chen, Xian -Hui; Yin, Wei -Guo; Ku, Wei; Xie, Bin -Ping; Feng, Dong -Lai

    2015-02-01

    With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that contains similar ingredients as the parent compounds of iron-based superconductors.

  18. Electronic structure reconstruction across the antiferromagnetic transition in TaFe₁̣₂₃Te₃ spin ladder

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Min; Wang, Li -Min; Peng, Rui; Ge, Qing -Qin; Chen, Fei; Ye, Zi -Rong; Zhang, Yan; Chen, Su -Di; Xia, Miao; Liu, Rong -Hua; et al

    2015-02-01

    With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less

  19. Vectorial mapping of noncollinear antiferromagnetic structure...

    Office of Scientific and Technical Information (OSTI)

    Authors: Zhang, K. F. ; Yang, Fang ; Song, Y. R. 1 ; Zhang, Xiaole 2 ; The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics ...

  20. Vortex lattices in a rotating Fermi superfluid in the BCS-BEC crossover with many Landau levels

    SciTech Connect (OSTI)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-08-15

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross-Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS-BEC crossover. - Highlights: Black-Right-Pointing-Pointer We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. Black-Right-Pointing-Pointer Decomposing the vortex from the condensate, we can explain the vortex lattice. Black-Right-Pointing-Pointer The calculation is consistent with numerical and experimental data. Black-Right-Pointing-Pointer It can characterize experimentally properties in different regimes of the BCS-BEC crossover.

  1. Biofunctionalized magnetic vortex microdisks for targeted cancer cell destruction.

    SciTech Connect (OSTI)

    Kim, D.-H.; Rozhkova, E. A.; Ulasov, I. V.; Bader, S. D.; Rajh, T.; Lesniak, M. S.; Novosad, V.; Univ. of Chicago Pritzker School of Medicine

    2010-01-01

    Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve {approx}90% cancer-cell destruction in vitro.

  2. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    DOE R&D Accomplishments [OSTI]

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  3. Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture

    SciTech Connect (OSTI)

    Yu, Y. -S.; Jung, H.; Lee, K. -S.; Fischer, P.; Kim, S. -K.

    2010-10-21

    In one of our earlier studies [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording and readout, which can be implementaed in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and information recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occurs only at the selected intersection is prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture.

  4. Vortex operators in gauge field theories

    SciTech Connect (OSTI)

    Polchinski, J.

    1980-07-01

    Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures.

  5. Stable Vortex-Bright-Soliton Structures in Two-Component Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Law, K. J. H.; Kevrekidis, P. G.; Tuckerman, Laurette S.

    2010-10-15

    We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

  6. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    SciTech Connect (OSTI)

    Ggercino?lu, Erbil; Alpar, M. Ali E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  7. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    SciTech Connect (OSTI)

    Jung, H.; Choi, Y. -S.; Yoo, M. -W.; Im, M. -Y.; Kim, S. -K.

    2010-10-13

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency {omega}{sub D} for a given vortex-state disk of polarization p, such that {sigma}=1/{omega}{sub D} and {Delta}t={pi}/2 p/{omega}{sub D} . The estimated optimal pulse parameters are in good agreement with the experimental results. This work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  8. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect (OSTI)

    Casadei, Cecilia

    2012-05-09

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  9. Vortex and structural dynamics of a flexible cylinder in cross...

    Office of Scientific and Technical Information (OSTI)

    Vortex and structural dynamics of a flexible cylinder in cross-flow Citation Details In-Document Search Title: Vortex and structural dynamics of a flexible cylinder in cross-flow A ...

  10. EERE Success Story-Vortex Hydro Energy Develops Transformational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Harness Energy from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and

  11. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  12. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  13. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  14. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  15. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  16. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  17. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  18. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+δ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, M. K.; Dorow, C. J.; Mangin-Thro, L.; Tang, Y.; Ge, Y.; Veit, M. J.; Yu, G.; Zhao, X.; Christianson, A. D.; Park, J. T.; et al

    2016-03-04

    We report that antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa2CuO4+δ. We report neutron-scattering results for HgBa2CuO4+δ (superconducting transition temperature Tc≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped ‘hourglass’ response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped andmore » significantly enhanced below T*, and hence a prominent signature of the pseudogap state.« less

  19. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  20. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5

    SciTech Connect (OSTI)

    Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; Huang, K.; Ronning, F.; Bauer, E. D.; Thompson, J. D.; Batista, C. D.; Ehlers, G.; Janoschek, M.

    2014-12-08

    We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn?. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J?-J? model that also naturally explains the magnetic spin-spiral ground state of CeRhIn? and yields a dominant in-plane nearest-neighbor magnetic exchange constant J?=0.74(3) meV. Our results lead the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn? (T = Co, Rh, Ir) class of heavy-fermion materials.

  1. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; Huang, K.; Ronning, F.; Bauer, E. D.; Thompson, J. D.; Batista, C. D.; Ehlers, G.; Janoschek, M.

    2014-12-08

    We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn₅. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J₁-J₂ model that also naturally explains the magnetic spin-spiral ground state of CeRhIn₅ and yields a dominant in-plane nearest-neighbor magnetic exchange constant J₀=0.74(3) meV. Our results lead the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn₅ (T = Co, Rh, Ir) class of heavy-fermion materials.

  2. On the evolution of vortex rings with swirl

    SciTech Connect (OSTI)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as peeling off appears. The amount of discharging fluid due to the peeling off increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the peeling off is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  3. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis inmore » agreement with magnetic susceptibility measurements.« less

  4. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect (OSTI)

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  5. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases

  6. Nanoscale Magnetic Structure of Ferromagnet/Antiferromagnet Manganite Multilayers

    SciTech Connect (OSTI)

    Niebieskikwiat, D.; Hueso, L. E.; Borchers, J. A.; Mathur, N. D.; Salamon, M. B.

    2007-12-14

    We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/Pr{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0{<=}t{sub A}{<=}7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to ferromagnetic (FM) inclusions within the AFM matrix is maximized at t{sub A}{approx}3 nm. This enhancement of FM moment occurs at the matching between layer thickness and cluster size, implying the possibility of tuning phase separation by imposing appropriate geometrical constraints which favor the accommodation of FM nanoclusters within the ''non-FM'' material.

  7. Antiferromagnetism and domain effects in UPdSn

    SciTech Connect (OSTI)

    Nakotte, H. [Manual Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Manual Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Robinson, R.A.; Purwanto, A. [Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Tun, Z. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (CANADA)] [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (CANADA); Prokes, K.; Brueck, E.; de Boer, F.R. [Van der Waals-Zeeman Institute, University of Amsterdam, 1018 XE Amsterdam (The Netherlands)] [Van der Waals-Zeeman Institute, University of Amsterdam, 1018 XE Amsterdam (The Netherlands)

    1998-10-01

    Neutron-diffraction experiments have been performed on a single crystal of the hexagonal noncollinear antiferromagnetic compound UPdSn as a function of temperature and magnetic field. The use of a special horizontal-field magnet (with very wide horizontal access to the neutron beams) has allowed the study of the principal magnetic Bragg reflections in all three antiferromagnetic domain pairs throughout the magnetic phase diagram for B{lt}3thinspT and T{gt}6thinspK. The data confirm a picture in which one domain pair (1) grows at the expense of the other two domain pairs (2 and 3), for fields along the [100] axis for domain 1. On the other hand, if the field is applied along the perpendicular axis, [010] for domain 1, the other two domains are preferred. These results are consistent with the picture given in a previous vertical-field study of only one magnetic reflection from one domain, in which the 3-T field-induced transition is viewed as a spin-flop transition. There is, however, a small amount of irreversible moment rotation (from {theta}=43{degree} to 48{degree}, where {theta} is the moment canting angle within the hexagonal basal plane), on passing through the spin-flop transition. This seems to be connected with whether the sample is single or multidomain. In addition, the field independence of the N{acute e}el temperature (T{sub N}=37thinspK) has been measured up to 3 T, and data on the domain kinetics are presented. {copyright} {ital 1998} {ital The American Physical Society}

  8. Effect of antiferromagnetic layer thickness on exchange bias, training effect, and magnetotransport properties in ferromagnetic/antiferromagnetic antidot arrays

    SciTech Connect (OSTI)

    Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.

    2014-04-07

    The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.

  9. Origin and dynamics of vortex rings in drop splashing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  10. Origin and dynamics of vortex rings in drop splashing

    SciTech Connect (OSTI)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  11. New insulating antiferromagnetic quaternary iridates MLa10Ir4O24 (M=Sr, Ba)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Qingbiao; Han, Fei; Stoumpos, Constantinos C.; Han, Tian -Heng; Li, Hao; Mitchell, J. F.

    2015-07-01

    Recently, oxides of Ir4+ have received renewed attention in the condensed matter physics community, as it has been reported that certain iridates have a strongly spin-orbital coupled (SOC) electronic state, Jeff = ½, that defines the electronic and magnetic properties. The canonical example is the Ruddlesden-Popper compound Sr2IrO4, which has been suggested as a potential route to a new class of high temperature superconductor due to the formal analogy between Jeff = ½ and the S = ½ state of the cuprate superconductors. The quest for other iridium oxides that present tests of the underlying SOC physics is underway. Inmore » this spirit, here we report the synthesis and physical properties of two new quaternary tetravalent iridates, MLa10Ir4O24 (M = Sr, Ba). The crystal structure of both compounds features isolated IrO6 octahedra in which the electronic configuration of Ir is d5. As a result, both compounds order antiferromagnetically despite the lack of obvious superexchange pathways, and resistivity measurement shows that SrLa10Ir4O24 is an insulator.« less

  12. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to

  13. Three-Dimensional Crystallization of Vortex Strings in Frustrated...

    Office of Scientific and Technical Information (OSTI)

    Three-Dimensional Crystallization of Vortex Strings in Frustrated Quantum Magnets Citation Details In-Document Search This content will become publicly available on August 31, 2016 ...

  14. Dynamics and efficiency of magnetic vortex circulation reversal...

    Office of Scientific and Technical Information (OSTI)

    Dynamics and efficiency of magnetic vortex circulation reversal Not Available Temp HTML Storage 2: Urbnek, Michal; Uhl, Vojtch; Lambert, Charles-Henri; Kan, Jimmy J.; ...

  15. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect (OSTI)

    Cuchet, La; Rodmacq, Bernard; Auffret, Stphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0?nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  16. Coupled antiferromagnetic spin- 12 chains in green dioptase Cu6[Si6O18]·6H2O

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Podlesnyak, Andrey A; Larry M. Anovitz; Kolesnikov, Alexander I; Matsuda, Masaaki; Prisk, Timothy R; Toth, Sandor; Ehlers, Georg

    2016-02-01

    Inmore » this paper, we report inelastic neutron scattering measurements of the magnetic excitations of green dioptase Cu6[Si6O18]∙6H2O. The observed spectrum contains two magnetic modes and a prominent spin gap that is consistent with the ordered ground state of Cu moments coupled antiferromagnetically in spiral chains along the c axis and ferromagnetically in ab planes on the hexagonal cell. The data are in excellent agreement with a spin- 12Hamiltonian that includes antiferromagnetic nearest-neighbor intrachain coupling Jc=10.6(1) meV, ferromagnetic interchain coupling Jab=₋1.2 (1) meV, and exchange anisotropy ΔJc=0.14(1) meV. We calculated the sublattice magnetization to be strongly reduced, ~0.39μB. This appears compatible with a reduced Néel temperature, TN=14.5K

  17. Itinerant and localized magnetization dynamics in antiferromagnetic Ho

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; et al

    2016-06-21

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flipmore » process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less

  18. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  19. Field induced spin density wave and spiral phases in a layered antiferromagnet

    SciTech Connect (OSTI)

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.

    2015-07-28

    We determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along the [1\\bar{1}0] direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. The nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.

  20. High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Wei; Svoboda, Chris; Ochi, M.; Matsuda, M.; Cao, Huibo; Cheng, J. -G.; Sales, B. C.; Mandrus, D.; Arita, R.; Trivedi, Nandini; et al

    2015-09-14

    We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μB/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA)more » to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .« less

  1. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  2. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  3. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  4. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect (OSTI)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  5. Evolution of a vortex in glow discharge plasma

    SciTech Connect (OSTI)

    Soukhomlinov, V.S.; Sheverev, V.A.; Oetuegen, M.V.

    2005-05-01

    The evolution of a vortex in glow discharge plasma is studied analytically. Specifically, the mechanism of local energy deposition into the flow by the plasma is considered and its effect on the structure of an inviscid vortex is analyzed. The vortex is modeled by a set of Euler's equations while the energy transferred by the plasma into the gas is represented by Rayleigh mechanism. In this mechanism, the amount of heat addition is a function of local gas density. The analysis indicates that the plasma can have a considerable effect on the structure of a vortex. The inviscid calculations show that in a uniform discharge, a 1 cm vortex dies out in a fraction of a second.

  6. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    SciTech Connect (OSTI)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  7. Reentrant spin-glass state in a geometrical frustrated multiferroic system: Role of disorder

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Giri, S.; Majumdar, S.; Ganesan, V.; Venkateshwarlu, D.

    2014-05-07

    We investigated the effect of magnetic (Mn) and nonmagnetic (Ga) doping at the Cr site of the layered geometrically frustrated antiferromagnetic compound LiCrO{sub 2}. 10% Ga doping at the Cr site does not invoke any metastability typical of a glassy magnetic state. However, similar amount of Mn doping drives the system to a spin glass (SG) state which is particularly evident from the magnetic memory and heat capacity studies. The onset of glassy state in 10% Mn doped sample is of reentrant type developing out of higher temperature antiferromagnetic state. The SG state in the Mn-doped sample shows a true reentry with the complete disappearance of the antiferromagnetic phase below the SG transition. The lack of SG state on Ga doping indicates the importance of random ferromagnetic/antiferromagnetic bonds for the glassy ground state in LiCrO{sub 2}.

  8. Symmetry breaking in the formation of magnetic vortex states...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Nature Research Org: Ernest Orlando Lawrence Berkeley National Laboratory, ...

  9. -Asymmetric formation (process) of vortex state in permalloy...

    Office of Scientific and Technical Information (OSTI)

    National Institute fo r Materials Science (NIMS), Tukuba 305-0047, Japan The ... Here we show the first direct observation of an asymmetric phenomenon in the formation ...

  10. Ising antiferromagnet with ultracold bosonic mixtures confined in a harmonic trap

    SciTech Connect (OSTI)

    Guglielmino, M.; Penna, V.; Capogrosso-Sansone, B.

    2011-09-15

    We present accurate results based on quantum Monte Carlo simulations of two-component bosonic systems on a square lattice and in the presence of an external harmonic confinement. Starting from hopping parameters and interaction strengths which stabilize the Ising antiferromagnetic phase in the homogeneous case and at half-integer filling factor, we study how the presence of the harmonic confinement challenges the realization of such a phase. We consider realistic trapping frequencies and number of particles, and we establish under which conditions, i.e., total number of particles and population imbalance, the antiferromagnetic phase can be observed in the trap.

  11. Interface Coupling Transition in a Thin EpitaxialAntiferromagnetic Film Interacting with a Ferromagnetic Substrate

    SciTech Connect (OSTI)

    Finazzi, M.; Brambilla, A.; Biagioni, P.; Graf, J.; Gweon, G.-H.; Scholl, A.; Lanzara, A.; Duo, L.

    2006-09-07

    We report experimental evidence for a transition in theinterface coupling between an antiferromagnetic film and a ferromagneticsubstrate. The transition is observed in a thin epitaxial NiO film grownon top of Fe(001) as the film thickness is increased. Photoemissionelectron microscopy excited with linearly polarized x rays shows that theNiO film is antiferromagnetic at room temperature with in-plane uniaxialmagnetic anisotropy. The anisotropy axis is perpendicular to the Fesubstrate magnetization when the NiO thickness is less than about 15A,but rapidly becomes parallel to the Fe magnetization for a NiO coveragehigher than 25 A.

  12. Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and

    Office of Scientific and Technical Information (OSTI)

    comparison to the superconductor LaPd1-xBi₂ (Journal Article) | SciTech Connect Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and comparison to the superconductor LaPd1-xBi₂ Citation Details In-Document Search Title: Antiferromagnetic Kondo lattice in the layered compound CePd1-xBi₂ and comparison to the superconductor LaPd1-xBi₂ The layered compound CePd1-xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic

  13. Rotor spectra, berry phases, and monopole fields: From antiferromagnets to QCD

    SciTech Connect (OSTI)

    Chandrasekharan, S.; Jiang, F.-J.; Wiese, U.-J.; Pepe, M.

    2008-10-01

    The order parameter of a finite system with a spontaneously broken continuous global symmetry acts as a quantum mechanical rotor. Both antiferromagnets with a spontaneously broken SU(2){sub s} spin symmetry and massless QCD with a broken SU(2){sub L}xSU(2){sub R} chiral symmetry have rotor spectra when considered in a finite volume. When an electron or hole is doped into an antiferromagnet or when a nucleon is propagating through the QCD vacuum, a Berry phase arises from a monopole field and the angular momentum of the rotor is quantized in half-integer units.

  14. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    millitesla (mT) to reverse the direction of a vortex core. ... and their possible application to data storage technologies. ... Is there a physical limit to how far this process can go? At ...

  15. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  16. Fuel injection of coal slurry using vortex nozzles and valves

    DOE Patents [OSTI]

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  17. Spin Hall Effects in Metallic Antiferromagnets (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Accepted...

  18. Spin Hall Effects in Metallic Antiferromagnets (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...

  19. Potential Antiferromagnetic Fluctuations in Hole-Doped Iron-Pnictide...

    Office of Scientific and Technical Information (OSTI)

    We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance ... The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak ...

  20. Room temperature spin-polarizations of Mn-based antiferromagnetic nanoelectrodes

    SciTech Connect (OSTI)

    Yamada, Toyo Kazu; Vazquez de Parga, Amadeo L.

    2014-11-03

    Antiferromagnets produce no stray field, and therefore, a tip electrode made of antiferromagnetic material has been considered to be the most suitable choice to measure such as magnetoresistance (MR) through single isolated magnetic nanoparticles, molecules, and ultrathin films. Spin polarizations (P) of antiferromagnetic 3-nm, 6-nm, and annealed 3-nm Mn films grown on W tips with a bcc(110) apex as well as bulk-NiMn tips were obtained at 300?K by measuring MR in ultrahigh vacuum by means of spin-polarized scanning tunneling microscopy using a layerwise antiferromagnetically stacking bct-Mn(001) film electrode. The Mn-coated tips with coverages of 3 and 6?nm exhibited P values of 1??1% and 3??2%, respectively, which tips likely contain ?- or strained Mn. With a thermal assist, the crystalline quality and the magnetic stability of the film could increase. The annealed tip exhibited P?=?9??2%. The bulk-NiMn tips exhibit spin polarizations of 0 or 6??2% probably depending on the chemical species (Mn or Ni) present at the apex of the tip. Fe-coated W tips were used to estimate the bct-Mn(001) film spin polarization.

  1. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti4O7 Magneli phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; Zhong, Xiaoling; Kent, Paul R. C.; Heinonen, Olle

    2016-06-07

    The Magneli phase Ti4O7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation. Our resultsmore » confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  2. Alleviation of fuselage form drag using vortex flows: Final report

    SciTech Connect (OSTI)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  3. Structural distortions in the spin-gap regime of the quantum antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}

    SciTech Connect (OSTI)

    Vecchini, C.; Adamopoulos, O.; Chapon, L.C.; Lappas, A.; Kageyama, H.; Ueda, Y.; Zorko, A.

    2009-12-15

    We report the first crystallographic study within the low-temperature (<40 K) spin-gap region of the two-dimensional frustrated antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. The crystal system does not deviate from the tetragonal I-42m space group symmetry. However, our high-resolution neutron powder diffraction measurements uncover subtle structural modifications below 34 K, concomitant to the formation of the dimer singlet ground state. Intimate spin-lattice coupling leads to negative thermal expansion of the tetragonal structure, which reflects into particular local lattice adjustments. The extracted structural parameters suggest the reduction of the buckling found in the copper-borate planes and the strengthening of the leading, in-plane intra-dimer superexchange interaction. The observed contraction along the c-axis, associated with the inter-dimer exchange in adjacent layers, indicates the involvement of weaker three-dimensional interactions in the magnetic properties. The rules posed by the crystal symmetry do not preclude Dzyaloshinsky-Moriya interactions, which therefore remain as an important source of spin anisotropy necessary to rationalise the ground state behaviour. - Abstract: We report the first crystallographic study within the low-temperature spin-gap region of the two-dimensional frustrated antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. Subtle spin-lattice coupling was unveiled in the low-temperature region. Display Omitted

  4. Vortex and structural dynamics of a flexible cylinder in cross-flow

    SciTech Connect (OSTI)

    Shang, Jessica K., E-mail: jshang@princeton.edu; Stone, Howard A. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Smits, Alexander J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Monash University, VIC 3800 (Australia)

    2014-05-15

    A low-density, flexible cantilevered cylinder was permitted to vibrate freely under the influence of vortex shedding in the laminar flow regime. We find that the vortex-induced vibrations (VIV) of a flexible cantilever depart from those of a flexible cylinder that is fixed at both ends. In particular, we find discontinuous regions of VIV behavior here called states as a function of the reduced velocity U{sup *}. These states are demarcated by discrete changes in the dominant eigenmodes of the structural response as the cylinder vibrates in progressively higher structural modes with increasing U{sup *}. The contribution of structural modes can be identified readily by a modal projection of the cylinder oscillation onto known cantilever beam modes. Oscillation frequencies do not monotonically increase with U{sup *}. The wake response between different states is also found to have distinct characteristics; of particular note is the occurrence of a P+S wake over one of these regions, which is associated with a high-amplitude vibration of the cylinder that is due to the constructive interference of contributing eigenmodes.

  5. Wavevortex interactions in the nonlinear Schrdinger equation

    SciTech Connect (OSTI)

    Guo, Yuan Bhler, Oliver

    2014-02-15

    This is a theoretical study of wavevortex interaction effects in the two-dimensional nonlinear Schrdinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wavevortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wavevortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  6. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

  7. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    vortex system of SmFeAs(O,F) at extreme magnetic fields Citation Details In-Document Search Title: Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic ...

  8. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2–δAs2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Yongkang; Ronning, F.; Wakeham, N.; Lu, Xin; Park, Tuson; Xu, Z. -A.; Thompson, J. D.

    2015-10-19

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2–δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressuremore » and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e–/formular unit in CeNi2–δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.« less

  9. Pressure and magnetic field dependence of the antiferromagnetism of PrFe sub 4 P sub 12

    SciTech Connect (OSTI)

    Kuric, M.V.; Guertin, R.P. ); Torikachvili, M.S. ); Maple, M.B. ); Foner, S. )

    1990-05-01

    The compound PrFe{sub 4}P{sub 12}, which has the cubic LaFe{sub 4}P{sub 12} modified CoAs{sub 3}-type structure, orders antiferromagnetically, with {ital T}{sub {ital N}}=6.2 K and with several field-induced magnetic transitions for {ital T}{lt}{ital T}{sub {ital N}}, up to 5 T for {ital T}{much lt}{ital T}{sub {ital N}}. Heat capacity measurements show the transition is a bulk effect, with magnetic entropy consistent with a magnetic doublet or triplet crystal-field ground state. dc magnetization measurements, {ital M}({ital H}), at {ital T}=4.2 K up to 23 T reveal no further field-induced transitions, and {ital M}({ital H}) attains only 54% of the Pr{sup 3+} free-ion moment at highest fields. Pulsed field measurements of {ital dM}/{ital dH} at 4.2 K up to 45 T fail to resolve further transitions. The transition to the antiferromagnetic state is accompanied by a very sharp Suezaki--Mori-type electrical resistivity transition due to critical scattering of electrons by spin fluctuations. Hydrostatic pressure decreases {ital T}{sub {ital N}}, ({ital dT}{sub {ital N}}/{ital dP}={minus}0.11 K/kbar), in sharp contrast to the behavior for the isomorphic semiconducting ferromagnet, UFe{sub 4}P{sub 12} ({ital T}{sub {ital C}}=3.15 K; {ital dT}{sub {ital C}}/{ital dP}=+0.26 K/kbar). The field-induced magnetic transitions are also sharply reduced with pressure. The pressure dependence of the electrical resistivity showed a decrease in {ital T}{sub {ital N}}, with a concomitant decrease in the size of the Suezaki--Mori anomaly. The results are discussed in terms of crystal-field splittings of the Pr ion and possible hybridization effects.

  10. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect (OSTI)

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  11. Vortex breakdown in closed containers with polygonal cross sections

    SciTech Connect (OSTI)

    Naumov, I. V. Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.

  12. Systematic low-energy effective field theory for electron-doped antiferromagnets

    SciTech Connect (OSTI)

    Bruegger, C.; Kaempfer, F.; Moser, M.; Wiese, U.-J.; Hofmann, C. P.; Pepe, M.

    2007-06-01

    In contrast to hole-doped systems which have hole pockets centered at ({+-}({pi}/2a),{+-}({pi}/2a)), in lightly electron-doped antiferromagnets the charged quasiparticles reside in momentum space pockets centered at (({pi}/a),0) or (0,({pi}/a)). This has important consequences for the corresponding low-energy effective field theory of magnons and electrons which is constructed in this paper. In particular, in contrast to the hole-doped case, the magnon-mediated forces between two electrons depend on the total momentum P-vector of the pair. For P-vector=0, the one-magnon exchange potential between two electrons at distance r is proportional to 1/r{sup 4}, while in the hole case, it has a 1/r{sup 2} dependence. The effective theory predicts that spiral phases are absent in electron-doped antiferromagnets.

  13. Partially disordered antiferromagnetism and multiferroic behavior in a frustrated Ising system CoCl2–2SC(NH2)2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mun, Eundeok; Weickert, Dagmar Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.

    2016-03-07

    We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which ab-plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T = 50mK and up to μ0H = 60T. The Co2+more » S = 3/2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Lastly, we find that magnetic exchange striction induces changes in the electric polarization up to 3μC/m2, and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300μC/m2.« less

  14. Experimental investigation of magnetic anisotropy in spin vortex discs

    SciTech Connect (OSTI)

    Garraud, N. Arnold, D. P.

    2014-05-07

    We present experimental 2D vector vibrating sample magnetometer measurements to demonstrate the shape anisotropy effects occurring in micrometer-diameter supermalloy spin vortex discs. Measurements made for different disc sizes and orientations confirm the out-of-plane susceptibility is several orders of magnitude smaller than the in-plane susceptibility. These results validate with a high certitude that spin vortices with high diameter to thickness ratio retain in-plane-only magnetization, even when subjected to fields in the out-of-plane direction. These results contribute to further computational simulations of the dynamics of spin vortex structures in colloidal suspensions where external fields may be applied in any arbitrary direction.

  15. Topological Hall conductivity of vortex and skyrmion spin textures

    SciTech Connect (OSTI)

    Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng

    2014-05-07

    We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.

  16. Vortex equations governing the fractional quantum Hall effect

    SciTech Connect (OSTI)

    Medina, Luciano

    2015-09-15

    An existence theory is established for a coupled non-linear elliptic system, known as “vortex equations,” describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.

  17. Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr{sub 2}IrO{sub 4}

    SciTech Connect (OSTI)

    Wang, C.; Seinige, H.; Tsoi, M.; Cao, G.; Zhou, J.-S.; Goodenough, J. B.

    2015-05-07

    Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr{sub 2}IrO{sub 4} are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr{sub 2}IrO{sub 4} were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an IrO{sub 2} (ab) plane with angular dependence showing a crossover from four-fold to two-fold symmetry with an increasing magnetic field. Point contact measurement exhibits distinctive anisotropic magnetoresistance (AMR) in comparison to a bulk experiment, imposing intriguing questions about the mechanism of AMR in this material. Temperature-dependent MR measurements show that the MR falls to zero at the Neel temperature, but the temperature dependence of the MR ratio differs qualitatively from that of the resistivity. This AMR study helps to unveil the entanglement between electronic transport and magnetism in Sr{sub 2}IrO{sub 4} while the observed magnetoresistive phenomena can be potentially used to sense the antiferromagnetic order parameter in spintronic applications.

  18. State

    U.S. Energy Information Administration (EIA) Indexed Site

    Created on: 8/26/2016 3:22:30 PM Table 2. Natural gas consumption in the United States, 2011-2016 (billion cubic feet, or as indicated) Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Delivered to Consumers Total Consumption Heating Value c (Btu per cubic foot) Residential Commercial Industrial Electric Power Vehicle Fuel Total 2011 Total 1,323 688 4,714 3,155 6,994 7,574 30 22,467 24,477 1,022 2012 Total 1,396 731 4,150 2,895 7,226 9,111 30 23,411 25,538 1,024 2013 Total

  19. Vortex lattices and crystalline geometries (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...

  20. Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Saparov, Bayrammurad; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; et al

    2014-12-05

    BaMn2Bi2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn2Bi2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn2Bi2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress the AFM order in the K-doped BaMn2Bi2more » to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba0.61K0.39Mn2Bi2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.« less

  1. Structural and magnetic properties of the Kagome antiferromagnet YbBaCo{sub 4}O{sub 7}

    SciTech Connect (OSTI)

    Huq, A.; Mitchell, J.F. . E-mail: mitchell@anl.gov; Zheng, H.; Chapon, L.C.; Radaelli, P.G.; Knight, K.S.; Stephens, P.W.

    2006-04-15

    The mixed-valent compound YbBaCo{sub 4}O{sub 7} is built up of Kagome sheets of CoO{sub 4} tetrahedra, linked in the third dimension by a triangular layer of CoO{sub 4} tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr{sub 9} {sub x} Ga{sub 12-9} {sub x} O{sub 19} (SCGO). We have undertaken a study of the structural and magnetic properties of this compound using combined high-resolution powder neutron and synchrotron X-ray diffraction. YbBaCo{sub 4}O{sub 7} undergoes a first-order trigonal{sup {yields}}orthorhombic phase transition at 175 K. We show that this transition occurs as a response to a markedly underbonded Ba{sup 2+} site in the high-temperature phase and does not appear to involve charge ordering of Co{sup 2+}/Co{sup 3+} ions in the tetrahedra. The symmetry lowering relieves the geometric frustration of the structure, and a long-range-ordered 3-D antiferromagnetic state develops below 80 K.

  2. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  3. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect (OSTI)

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  4. All electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects.

    SciTech Connect (OSTI)

    Zhang, Wei; Jungfleisch, Matthias B.; Freimuth, Frank; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Mokrousov, Yuri; Hoffmann, Axel

    2015-10-06

    We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.

  5. Homogeneous versus spiral phases of hole-doped antiferromagnets: A systematic effective field theory investigation

    SciTech Connect (OSTI)

    Bruegger, C.; Kaempfer, F.; Wiese, U.-J.; Hofmann, C. P.; Pepe, M.

    2007-01-01

    Using the low-energy effective field theory for magnons and holes--the condensed matter analog of baryon chiral perturbation theory for pions and nucleons in QCD--we study different phases of doped antiferromagnets. We systematically investigate configurations of the staggered magnetization that provide a constant background field for doped holes. The most general configuration of this type is either constant itself or represents a spiral in the staggered magnetization. Depending on the values of the low-energy parameters, a homogeneous phase, a spiral phase, or an inhomogeneous phase is energetically favored. The reduction of the staggered magnetization upon doping is also investigated.

  6. Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)

    SciTech Connect (OSTI)

    Berti, Giulia Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco

    2015-04-20

    We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.

  7. Response to Comment on General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation [Phys. Fluids 26, 119101 (2014)

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-11-15

    In R. A. Van Gorder, General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation, Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, Comment on General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation [Phys. Fluids 26, 065105 (2014)], Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it was clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.

  8. Phase locking of vortex cores in two coupled magnetic nanopillars

    SciTech Connect (OSTI)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi; Zhang, Senfu; Wang, Jianbo; Liu, Qingfang

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  9. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  10. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  11. Magnetic vortex-antivortex dynamics on a picosecond timescale in a rectangular Permalloy pattern

    SciTech Connect (OSTI)

    Kim, D.-H.; Mesler-Lai, B.; Anderson, E.; Fischer, P.; Moon, J.-H.; Lee, K.-J.

    2009-06-25

    We report our experimental finding that there exists a pair of magnetic vortex and antivortex generated during an excited motion of a magnetic vortex core. Two vortices structure in 2 x 4 {micro}m{sup 2} rectangular Permalloy pattern is excited by an external field pulse of 1-ns duration, where each vortex is excited and followed by the vortex core splitting. X-ray microscopy with high spatiotemporal resolution enables us to observe a linking domain between two temporarily generated pairs of vortex-antivortex cores only surviving for several hundreds of picoseconds. The linking domain structure is found to depend on the combinational configuration of two original vortex cores, which is supported by micromagnetic simulations with a very good agreement.

  12. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-x Lax)Cu?Ge?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hodovanets, H.; Budko, S.? L.; Straszheim, W.? E.; Taufour, V.; Mun, E.? D.; Kim, H.; Flint, R.; Canfield, P.? C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-x Lax)Cu?Ge? single crystals (0 ? x ? 1). With La substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~ 0.9 of La, indicating a small percolation limit ~ 9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x more> 0.9. Remarkably, (Tcoh) at H = 0 was found to be linearly proportional to TN. The jump in the magnetic specific heat ?Cm at TN as a function of TK/TN for (Ce1-x Lax)Cu?Ge? follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.less

  13. Itinerant Antiferromagnetism in FeMnP0.8Si0.2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; Yan, Jiaqiang Q.; May, Andrew F.

    2015-09-25

    Compounds based on the Fe2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP0.8Si0.2 with the Fe2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room-temperature resistivity is closemore » to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less

  14. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    DOE Patents [OSTI]

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  15. High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

    SciTech Connect (OSTI)

    Tian, Wei; Svoboda, Chris; Ochi, M.; Matsuda, M.; Cao, Huibo; Cheng, J. -G.; Sales, B. C.; Mandrus, D.; Arita, R.; Trivedi, Nandini; Yan, Jiaqiang

    2015-09-14

    We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) ?B/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA) to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .

  16. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect (OSTI)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  17. Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Wijnheijmer, A. P.; Koenraad, P. M.; Marti, X.; Holy, V.; Cukr, M.; Novak, V.; Jungwirth, T.

    2012-03-12

    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

  18. Spin reorientation and Ce-Mn coupling in antiferromagnetic oxypnictide CeMnAsO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Qiang; Tian, Wei; Peterson, Spencer G.; Dennis, Kevin W.; Vaknin, David

    2015-02-18

    Structure and magnetic properties of high-quality polycrystlline CeMnAsO, a parent compound of the “1111”-type oxypnictides, have been investigated using neutron powder diffraction and magnetization measurements. We find that CeMnAsO undergoes a C-type antiferromagnetic order with Mn2+(S = 5/2) moments pointing along the c axis below a relatively high Néel temperature of TN = 347(1) K. Below TSR = 35 K, two simultaneous transitions occur where the Mn moments reorient from the c axis to the ab plane preserving the C-type magnetic order, and Ce moments undergo long-range AFM ordering with antiparallel moments pointing in the ab plane. Another transition tomore » a noncollinear magnetic structure occurs below 7 K. The ordered moments of Mn and Ce at 2 K are 3.32(4) μB and 0.81(4)μB, respectively. We find that CeMnAsO primarily falls into the category of a local-moment antiferromagnetic insulator in which the nearest-neighbor interaction (J1) is dominant with J2 < J1/2 in the context of J1 – J2 – Jc model. The spin reorientation transition driven by the coupling between Ce and the transition metal seems to be common to Mn, Fe, and Cr ions, but not to Co and Ni ions in the isostructural oxypnictides. As a result, a schematic illustration of magnetic structures in Mn and Ce sublattices in CeMnAsO is presented.« less

  19. Mixing characteristics of compressible vortex rings interacting with normal shock waves

    SciTech Connect (OSTI)

    Cetegen, B.M. . Mechanical Engineering Dept.); Hermanson, J.C. )

    1995-01-01

    Current interest in the interaction between compressible vortical flows and shock waves is largely motivated by the need to promote rapid, loss-effective mixing and combustion of hydrogen and hydrocarbon fuels for supersonic combustor applications. The instability mechanisms and mixing enhancement arising from the interaction of a compressible vortex ring with a normal shock wave were studied in a colinear, dual-shock tube. This flow geometry simulates features of the interaction of a shock wave with a jet containing streamwise vorticity, a configuration of significant interest for supersonic combustion applications. Flow visualization and quantitative concentration measurements were performed by planar laser Rayleigh scattering. For a given primary shock strength, interfacial instability is more evident in a weak vortex ring than in a strong vortex ring. In all cases, the identity of the vortex ring is lost after a sufficiently long time of interaction. The probability density function of the mixed fluid changes rapidly from a bimodal distribution to a single peak upon processing by a shock wave. The most probable concentration decreases with time, indicating a rapid increase in mixing and dilution of the vortex fluid. The mixing enhancement is most rapid for the case of a strong vortex ring interacting with a strong shock wave, somewhat slower for a weak vortex ring and a strong shock wave, and significantly slower for the case of a strong vortex ring and a weaker shock wave. These observations are consistent with the earlier numerical predictions.

  20. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    SciTech Connect (OSTI)

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) ?B/Ce, respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.

  1. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl4Si2 and CeIrAl4Si2

    SciTech Connect (OSTI)

    Ghimire, N. J.; Calder, S.; Janoschek, M.; Bauer, E. D.

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl4Si2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions TN1 and TN2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition TN2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl4Si2 and CeIrAl4Si2 were determined to be 1.14(2) and 1.41(3) μB/Ce, respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.

  2. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOE Patents [OSTI]

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  3. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

    SciTech Connect (OSTI)

    Kogan, V. G.; Mints, R. G.

    2014-01-31

    The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

  4. Glass-like recovery of antiferromagnetic spin ordering in a photo-excited manganite Pr0.7Ca0.3MnO3

    SciTech Connect (OSTI)

    Zhou, S.Y.; Langner, M.C.; Zhu, Y.; Chuang, Y.-D.; Rini, M.; Glover, T.E.; Hertlein, M.P.; Gonzalez, A.G. Cruz; Tahir, N.; Tomioka, Y.; Tokura, Y.; Hussain, Z.; Schoenlein, R.W.

    2014-01-16

    Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward understanding the underlying physics of important emergent phenomena. Here we use time-resolved resonant soft x-ray scattering spectroscopy to probe the dynamics of antiferromagnetic spin ordering in the manganite Pr0:7Ca0:3MnO3 following ultrafast photo-exitation. Our studies reveal a glass-like recovery of the spin ordering and a crossover in the dimensionality of the restoring interaction from quasi-1D at low pump fluence to 3D at high pump fluence. This behavior arises from the metastable state created by photo-excitation, a state characterized by spin disordered metallic droplets within the larger charge- and spin-ordered insulating domains. Comparison with time-resolved resistivity measurements suggests that the collapse of spin ordering is correlated with the insulator-to-metal transition, but the recovery of the insulating phase does not depend on the re-establishment of the spin ordering.

  5. New insulating antiferromagnetic quaternary iridates MLa10Ir4O24 (M=Sr, Ba)

    SciTech Connect (OSTI)

    Zhao, Qingbiao; Han, Fei; Stoumpos, Constantinos C.; Han, Tian -Heng; Li, Hao; Mitchell, J. F.

    2015-07-01

    Recently, oxides of Ir4+ have received renewed attention in the condensed matter physics community, as it has been reported that certain iridates have a strongly spin-orbital coupled (SOC) electronic state, Jeff = ½, that defines the electronic and magnetic properties. The canonical example is the Ruddlesden-Popper compound Sr2IrO4, which has been suggested as a potential route to a new class of high temperature superconductor due to the formal analogy between Jeff = ½ and the S = ½ state of the cuprate superconductors. The quest for other iridium oxides that present tests of the underlying SOC physics is underway. In this spirit, here we report the synthesis and physical properties of two new quaternary tetravalent iridates, MLa10Ir4O24 (M = Sr, Ba). The crystal structure of both compounds features isolated IrO6 octahedra in which the electronic configuration of Ir is d5. As a result, both compounds order antiferromagnetically despite the lack of obvious superexchange pathways, and resistivity measurement shows that SrLa10Ir4O24 is an insulator.

  6. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2–δAs2

    SciTech Connect (OSTI)

    Luo, Yongkang; Ronning, F.; Wakeham, N.; Lu, Xin; Park, Tuson; Xu, Z. -A.; Thompson, J. D.

    2015-10-19

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2–δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e/formular unit in CeNi2–δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.

  7. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  8. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite

  9. Structural investigations on Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0 < x ? 2); High temperature ferromagnetism and enhanced low temperature anti-ferromagnetism

    SciTech Connect (OSTI)

    Singh, Harishchandra; Sinha, A. K. E-mail: hng@rrcat.gov.in; Ghosh, Haranath E-mail: hng@rrcat.gov.in; Singh, M. N.; Rajput, Parasmani; Prajapat, C. L.; Singh, M. R.; Ravikumar, G.

    2014-08-21

    In the quest of materials with high temperature ferromagnetism and low temperature anti-ferromagnetism, we prepare Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0?state, Co{sup 2+}/Mn{sup 2+} and Co{sup 3+}/Mn{sup 3+}. Relative ratios of Co{sup 3+}/Co{sup 2+} and Mn{sup 3+}/Mn{sup 2+} obtained using Linear combination fit decrease with increasing x (for x???0.5). These structural and spectroscopic evidences are used to provide possible interpretation of the observed paramagnetic to ferromagnetic transition at around 185?K followed by an enhanced antiferromagnetic transition ?45?K for x?=?0.5.

  10. Gas turbine engine combustor can with trapped vortex cavity

    DOE Patents [OSTI]

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  11. High-field magnetoresistance and de Haas--van Alphen effect in antiferromagnetic PrB sub 6 and NdB sub 6

    SciTech Connect (OSTI)

    Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W. ); Nishihara, M.; Yamazaki, T.; Omi, T.; Komatsubara, T. )

    1989-12-01

    The transport properties and the de Haas--van Alphen (dHvA) effect have been measured for antiferromagnetic PrB{sub 6} and NdB{sub 6}. The number of conduction electrons is approximately one per unit cell. The magnetoresistance shows the existence of open orbits, implying a multiply connected Fermi surface. The angular dependence of the magnetoresistance is roughly similar to that of the reference material, LaB{sub 6}. The dHvA data in PrB{sub 6} show both paramagnetic and antiferromagnetic Fermi surfaces. The antiferromagnetic Fermi surface arises from new magnetic Brillouin zone boundaries and antiferromagnetic gaps introduced by the magnetic order, and the paramagnetic Fermi surface from magnetic breakdown through the small antiferromagnetic gaps in high field. Hybridization between the conduction electrons and the {ital f} electrons has been observed through the cyclotron masses, which in PrB{sub 6} are three times larger than the corresponding masses of LaB{sub 6}. In NdB{sub 6} only the antiferromagnetic Fermi surface, quite different from those of LaB{sub 6} and PrB{sub 6}, has been observed.

  12. High field magnetoresistance and de Haas-van Alphen effect in antiferromagnetic PrB/sub 6/ and NdB/sub 6/

    SciTech Connect (OSTI)

    Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W.; Nishihara, M.; Yamazaki, T.; Omi, T.; Komatsubara, T.

    1987-08-01

    The transport properties and the de Haas-van Alphen (dHvA) effect have been measured for antiferromagnetic PrB/sub 6/ and NdB/sub 6/. The number of conduction electrons is approximately one per unit cell. The magnetoresistance shows the existence of open orbits implying a multiply connected Fermi surface. The angular dependence of the magnetoresistance is roughly similar to that of the reference material, LaB/sub 6/. The dHvA data in PrB/sub 6/ shows both paramagnetic and antiferromagnetic Fermi surfaces. The antiferromagnetic Fermi surface arises from new magnetic Brillouin zone boundaries and antiferromagnetic gaps introduced by the magnetic order, and the paramagnetic Fermi surface from magnetic breakdown through the small antiferromagnetic gaps in high field. Hybridization between the conduction electrons and the f electrons has been observed through the cyclotron masses, which in PrB/sub 6/ are three times larger than the corresponding masses of LaB/sub 6/. In NdB/sub 6/ only the antiferromagnetic Fermi surface, quite different from those of LaB/sub 6/ and PrB/sub 6/, has been observed. 26 refs., 10 figs., 3 tabs.

  13. Antiferromagnetic dipolar ordering in [Co{sub 2}MnGe/V]{sub N} multilayers

    SciTech Connect (OSTI)

    Bergmann, A.; Grabis, J.; Zabel, H.; Westerholt, K.; Toperverg, B.P.; Leiner, V.; Wolff, M.

    2005-12-01

    We have studied [Co{sub 2}MnGe/V]{sub N} multilayers with a thickness of the V layers t{sub V} between 1.5 and 10 nm and a fixed thickness of the Heusler layer t{sub Co{sub 2}}{sub MnGe}=3 nm by x-ray scattering, neutron reflectivity, and magnetization measurements. In the thickness range t{sub V}{<=}3 nm neutron reflectivity results provide clear evidence for an antiferromagnetic (af) interlayer long-range order below a Neel temperature T{sub N}. The interlayer long range order does not show an oscillating character and is stabilized by a weak af coupling field H{sub af}{approx_equal}100 Oe. We attribute the af coupling to magnetic dipolar stray fields originating from magnetically rough surfaces of a granular Co{sub 2}MnGe microstructure. In the thickness range t{sub V}{>=}4 nm the multilayers undergo a cluster glass transition at T{sub f}{approx_equal}150 K. At high temperatures above T{sub N} or T{sub f} the mutilayers are superparamagnetic with a huge cluster magnetic moment {mu}{sub c}{>=}10{sup 5}{mu}{sub B}.

  14. CaMn2Sb2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; Smith, G. J.; Hassinger, J. E.; DeBeer-Schmidt, L.; Kolesnikov, A. I.; Zaliznyak, I.; Aronson, M. C.

    2015-05-22

    We present inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn2Sb2:, which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first and second neighbor exchange interactions, J1 and J2, in the Mn plane and also an exchange interaction between planes. The determined ratio J2/J1 ≈ 1/6 suggests that CaMn2Sb2: is the first example of a compound that lies very close to themore » mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the N´eel phase and two different spiral phases coexist. The magnitude of the determined exchange interactions reveal a mean field ordering temperature ≈ 4 times larger than the reported N´eel temperature TN = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less

  15. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    SciTech Connect (OSTI)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ?(T) increases rapidly as the temperature is lowered and find ?/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  16. Vortex motion of dust particles due to non-conservative ion drag...

    Office of Scientific and Technical Information (OSTI)

    in a plasma This content will become publicly available on February 12, 2017 Title: Vortex motion of dust particles due to non-conservative ion drag force in a plasma Authors: ...

  17. Enhancement of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M.; Raghavan, Kamaldev

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  18. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanometer-scale magnetic films. At the core of each vortex, the magnetization can point vertically up or down out of the film, thereby providing a possible new data storage...

  19. Helical antiferromagnetic ordering in Lu1-xScxMnSi

    SciTech Connect (OSTI)

    Goetsch, Ryan J; Anand, V K; Johnston, David C

    2014-08-01

    Polycrystalline samples of Lu1?xScxMnSi (x=0, 0.25, 0.5) are studied using powder x-ray diffraction, heat capacity Cp, magnetization, magnetic susceptibility ?, and electrical resistivity ? measurements versus temperature T and magnetic field H. This system crystallizes in the primitive orthorhombic TiNiSi-type structure (space group Pnma) as previously reported. The ?(T) data indicate metallic behavior. The Cp(T), ?(T), and ?(T) measurements consistently indicate long-range antiferromagnetic (AF) transitions with AF ordering temperatures TN=246, 215, and 188 K for x=0, 0.25, and 0.5, respectively. A second transition is observed at somewhat lower T for each sample from the ?(T) and ?(T) measurements, which we speculate are due to spin reorientation transitions; these second transitions are completely suppressed in H=5.5 T. The Cp data below 10 K for each composition indicate an enhanced Sommerfeld electronic heat capacity coefficient for the series in the range ?=2429 mJ/mol K2. The ?(T) measurements up to 1000 K were fitted by local-moment Curie-Weiss behaviors which indicate a low Mn spin S?1. The ? data below TN are analyzed using the Weiss molecular field theory for a planar noncollinear cycloidal AF structure with a composition-dependent pitch, following the previous neutron diffraction work of Venturini et al. [J. Alloys Compd. 256, 65 (1997)]. Within this model, the fits indicate a turn angle between Mn ordered moments along the cycloid axis of ?100? or ?145?, either of which indicate dominant AF interactions between the Mn spins in the Lu1?xScxMnSi series of compounds.

  20. The internal structure of a vortex in a two-dimensional superfluid with long healing length and its implications

    SciTech Connect (OSTI)

    Klein, Avraham; Aleiner, Igor L.; Agam, Oded

    2014-07-15

    We analyze the motion of quantum vortices in a two-dimensional spinless superfluid within Popov’s hydrodynamic description. In the long healing length limit (where a large number of particles are inside the vortex core) the superfluid dynamics is determined by saddle points of Popov’s action, which, in particular, allows for weak solutions of the Gross–Pitaevskii equation. We solve the resulting equations of motion for a vortex moving with respect to the superfluid and find the reconstruction of the vortex core to be a non-analytic function of the force applied on the vortex. This response produces an anomalously large dipole moment of the vortex and, as a result, the spectrum associated with the vortex motion exhibits narrow resonances lying within the phonon part of the spectrum, contrary to traditional view.

  1. Low-emission vortex combustion of biomass and fossil fuel

    SciTech Connect (OSTI)

    Finker, F.Z.; Kubischkin, I.B.; Akhmedov, D.B.

    1995-11-01

    The article introduces the results of development and industrial experience of low-emission vortex combustion technology (LEVC) of biomass and fossil fuel in industrial and utility boilers in Russian timber and paper industries and Polish power plants. The LEVC technology is based on aerodynamics method of multiple circulation of gases and fuel in the furnaces. LEVC technology accumulates the advantages of conventional and fluidized bed combustion technology. Existing boilers could be easily retrofitted for the application of LEVC technology without requiring major investment. The repowering of boiler with LEVC was the result the reduction NOx emission to the level 170g/GJ without installation additional flue gas cleaning equipment and it gave the opportunity for an injection of sulfur sorbent in the furnace. The authors discussed Russian-Polish experiment on utility boiler retrofitted with the application of LEVC. As the result the efficiency of the boiler increased in 2%. The reduction of the emission is: NOx-40%, SO2-17%.

  2. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    SciTech Connect (OSTI)

    Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  3. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  4. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    SciTech Connect (OSTI)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.

  5. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    SciTech Connect (OSTI)

    Hu, JiaCheng; Peterson, Sean D.; Porfiri, Maurizio

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  6. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1–xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as inmore » the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1–xCox)2As2.« less

  7. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1xCox)2As2 studied by ??As nuclear magnetic resonance and anisotropic resistivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as inmorethe case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ?c(T), but not with the in-plane resistivity ?a(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1xCox)2As2.less

  8. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1xCox)2As2 studied by As75 nuclear magnetic resonance and anisotropic resistivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as inmorethe case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ?c(T), but not with the in-plane resistivity ?a(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1xCox)2As2.less

  9. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect (OSTI)

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  10. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    SciTech Connect (OSTI)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy

    2014-03-05

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,? = 0.65, for different Higgs field strength ?. For ? < 4.93, there is only one fundamental branch of vortex ring solution, but at the critical value of ?{sub b} = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of ?{sub t} = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  11. Estimating dispersion from a tornado vortex and mesocyclone

    SciTech Connect (OSTI)

    Weber, A.H.; Hunter, C.H.

    1996-06-01

    Atmospheric dispersion modeling is required to ensure that a postulated breach in radionuclide storage containers at the Savannah River Site (SRS) from a tornado strike of Fujita-scale intensity F2 or higher will not result in an unacceptable dose to individuals. Fujita-scale tornado descriptions are included in Appendix A of this report. Dispersion models previously used at SRS for estimating dispersion following a tornado strike were developed by D.W. Pepper in 1975 (DP-1387, Dispersion of Small Particles) and H.R. Haynes and D.W. Taylor in 1983 (DPST-82-982, Estimating Doses from Tornado Winds). Research conducted in 1983 on the formation and evolution of tornadic thunderstorms has lead to a more complete understanding of the tornado vortex and associated persistent updraft and downdraft regions within the parent thunderstorm. To ensure that appropriate, contemporary methods are used for safety analysis, the Pepper model and the Haynes and Taylor model were evaluated with respect to current knowledge of circulations within tornadic thunderstorms. Pepper`s model is complex numerically but contains most of the desired physical parameterizations. Haynes and Taylor`s model is used with the Puff-Plume model (an emergency response model on the Weather INformation and Display System at SRS) and has provisions for radionuclide deposition and rainout. Haynes and Taylor assumed heavy rain following the tornado for a period of ten minutes, followed by a lighter rain for another ten minutes, then no rain for the period when the material is transported to 100 km downwind. However, neither model incorporates the effects of a nearby thunderstorm downdraft.

  12. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; et al

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamicsmore » in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less

  13. Exchange-bias instability in a bilayer with an ion-beam imprinted stripe pattern of ferromagnetic/antiferromagnetic interfaces

    SciTech Connect (OSTI)

    Theis-Broehl, Katharina; Wolff, Maximilian; Westphalen, Andreas; Zabel, Hartmut; McCord, Jeffrey; Hoeink, Volker; Schmalhorst, Jan; Reiss, Guenther; Weis, Tanja; Engel, Dieter; Ehresmann, Arno; Ruecker, Ulrich; Toperverg, Boris P.

    2006-05-01

    We have investigated the magnetization arrangement in an in-plane stripe pattern with alternating exchange-bias domains. The stripe pattern was produced by ion bombardment induced magnetic patterning, which changed locally the exchange-bias direction at the ferromagnet/antiferromagnet interface, but not the magnetic or antiferromagnetic properties of the Co{sub 70}Fe{sub 30} and Mn{sub 83}Ir{sub 17} layers, respectively. For the analysis of the magnetic domain structure evolution along the hysteresis loop we used a combination of experimental techniques: magneto-optical Kerr effect, Kerr microscopy, polarized neutron reflectometry, and off-specular scattering of polarized neutrons with polarization analysis. Instead of a perfect antiparallel alignment we found that the magnetization in neighboring stripes is periodically canted with respect to the stripe axis so that the net magnetization of the ferromagnetic film turns almost perpendicular to the stripes. At the same time the projection of the magnetization vector onto the stripe axis has a periodically alternating sign. The experimental observations are explained and quantitatively described within the frame of a phenomenological model, taking into account interfacial exchange bias, intralayer exchange energy, and uniaxial anisotropy. The model defines conditions which can be used for tailoring nano- and micro-patterned exchange-bias systems with different types of magnetic order.

  14. Itinerant Antiferromagnetism in FeMnP0.8Si0.2

    SciTech Connect (OSTI)

    Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; Yan, Jiaqiang Q.; May, Andrew F.

    2015-09-25

    Compounds based on the Fe2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP0.8Si0.2 with the Fe2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature

  15. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2more » at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.« less

  16. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  17. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  18. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect (OSTI)

    Fischer, P.; Im, M.-Y.; Kasai, S.; Yamada, K.; Ono, T.; Thiaville, A.

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analysed by high resolution magnetic soft X-ray microscopy. A decrease of the vortex core radius was observed, from #24; ~38 to 18 nm with decreasing disk thickness. By comparing with full 3D micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  19. Reduction of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  20. Search for Stripes in Antiferromagnetic Lightly Hole-Doped YBa2Cu3O6: An Electron Spin Resonance and Infrared Tranmission Study

    SciTech Connect (OSTI)

    Janossy,A.; Nagy, K.; Feher, T.; Mihaly, L.; Erb, A.

    2007-01-01

    We present a series of electron spin resonance (ESR) and infrared transmission experiments in antiferromagnetic (AF), lightly hole-doped YBa{sub 2}Cu{sub 3}O{sub 6} in search for the effect of a spatially inhomogeneous ground state on the magnetic and electric properties. Crystal compositions were Ca{sub x}Gd{sub y}Y{sub 1-x-y}Ba{sub 2}Cu{sub 3}O{sub 6} with x=0 , 0.008, 0.02, and 0.03 and y{approx}0.01 . Gd{sup 3+} ESR satellites from sites with first-neighbor Ca atoms show that holes are not preferentially localized at low temperatures in the vicinity of Ca dopants. We mapped by multifrequency Gd{sup 3+} ESR the AF domain structure as a function of hole concentration, temperature, and magnetic fields up to 8T . We attribute the hole-doping-induced rotation of the magnetic easy axis from collateral to diagonal (with respect to the tetragonal CuO{sub 2} lattice) to the pinning of the AF magnetization to a static modulation or a phase-separated network of the hole density. The dominantly fourfold symmetry of pinning suggests that the hole density network has this symmetry also and is not an array of stripes. At higher temperatures the pinning to the diagonal direction becomes weak and the possibility of domain wall fluctuations is discussed. There is no magnetic field dependence and no in-plane anisotropy of the infrared transmission polarized in the CuO{sub 2} planes in an x=0.02 crystal placed in magnetic fields up to 12T . Thus, the network of holes is rigid and is not affected by magnetic fields that are, however, strong enough to rotate the AF magnetization into a single domain.

  1. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ≃ 4.5 pN, corresponding to a critical current up to Jc ≃ 7×105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, λab = 320 ± 60 nm, which ismore » larger than previous bulk measurements.« less

  2. (A neutron scattering experiment to study the high-energy spin dynamics of the itinerant antiferromagnet Mn sub 90 Cu sub 10 )

    SciTech Connect (OSTI)

    Fernandez-Baca, J.A.

    1990-10-26

    The traveler performed a neutron scattering experiment to study the high-energy spin dynamics of the itinerant antiferromagnet. This experiment was conducted at a unique instrument located at the hot-neutron source at the ILL. The traveler also held various scientific discussions with ILL research staff members and visiting scientists.

  3. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D0{sub 3}-type Heusler alloys

    SciTech Connect (OSTI)

    Gao, G. Y. Yao, Kai-Lun

    2013-12-02

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D0{sub 3}-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V{sub 3}Si and V{sub 3}Ge, half-metallic antiferromagnets of Mn{sub 3}Al and Mn{sub 3}Ga, half-metallic ferrimagnets of Mn{sub 3}Si and Mn{sub 3}Ge, and a spin gapless semiconductor of Cr{sub 3}Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  4. Statistical Behavior of Formation Process of Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    application to data storage and memory scheme as well as their scientific ... Sponsoring Org: Materials Sciences Division Country of Publication: United States Language...

  5. Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures

    SciTech Connect (OSTI)

    Eftekharian, Amin; Jafari Salim, Amir; University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 ; Atikian, Haig; Akhlaghi, Mohsen K.; Hamed Majedi, A.

    2013-12-09

    In this Letter, we present a theoretical model with experimental verifications to describe the abnormal behaviors of the measured fluctuation rates occurring in nano-patterned superconducting structures below the critical temperature. In the majority of previous works, it is common to describe the fluctuation rate by defining a fixed ground state or initial state level for the singularities (vortex or vortex-antivortex pairs), and then employing the well-known rate equations to calculate the liberation rates. Although this approach gives an acceptable qualitative picture, without utilizing free parameters, all the models have been inadequate in describing the temperature dependence of the rate for a fixed width or the width dependence of the rate for a fixed temperature. Here, we will show that by defining a current-controlled ground state level for both the vortex and vortex-antivortex liberation mechanisms, the dynamics of these singularities are described for a wide range of temperatures and widths. According to this study, for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions and can not be neglected.

  6. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1-xSex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun; Xu, Guangyong; Schneeloch, J. A.; Wen, Jinsheng; Bozin, E. S.; Granroth, G. E.; Winn, B. L.; Feygenson, M.; Birgeneau, R. J.; Gu, Genda; et al

    2016-03-14

    It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe1–xSex. We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure ofmore » antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. Lastly, we also present powder neutron diffraction results for lattice parameters in FeTe1–xSex indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3d orbitals.« less

  7. Dynamics of vortex structure formation during the evolution of modulation instability of dark solitons

    SciTech Connect (OSTI)

    Mironov, V. A.; Smirnov, A. I. Smirnov, L. A.

    2011-01-15

    The nonlinear stage of modulation instability of dark solitons is studied analytically and numerically. We propose an asymptotic description of the dynamics of these solitons in terms of their local velocity and the curvature of the lines at which solitons are concentrated. The features of the destruction of dark solitons (in particular, the formation of vortex structures from them) are analyzed.

  8. Surface driven effects on magnetic properties of antiferromagnetic LaFeO{sub 3} nanocrystalline ferrite

    SciTech Connect (OSTI)

    Sendil Kumar, A. E-mail: anilb42@gmail.com; Manivel Raja, M.; Bhatnagar, Anil K. E-mail: anilb42@gmail.com

    2014-09-21

    LaFeO{sub 3} nanocrystalline ferrites were synthesized through sol-gel method in different size distributions and the effect of finite size on magnetic properties is investigated. Results of magnetization and Mössbauer measurements show that superparamagnetism and weak ferromagnetic behavior in some of the size distributions. The origin of the superparamagnetism is from fine particles similar to ferromagnetic single domains and the weak ferromagnetism comes from surface spin disorder caused by Dzyaloshinskii-Moriya interaction. The magnetic ground state of LaFeO{sub 3} nanoparticles differs from that of bulk, and the ground state is dictated by the finite size effect because density of states depends on the dimensionality of the sample.

  9. The equilibrium vortex melting transition in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect (OSTI)

    Crabtree, G.W.; Welp, U.; Kwok, W.K.; Fendrich, J.A.; Veal, B.W.

    1996-10-01

    The dynamic and thermodynamic experimental evidence supporting first order vortex melting in clean crystals of YBa{sub 2}Cu{sub 3}O{sub 7} is reviewed.

  10. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

  11. A vortex panel method for calculating aircraft downwash on parachute trajectories

    SciTech Connect (OSTI)

    Fullerton, T.L.; Strickland, J.H.; Sundberg, W.D.

    1991-01-01

    This paper presents a discussion of a methodology of the paneled-wing method for calculating aircraft-induced wake velocities. This discussion will include a description of how an aircraft and its wake are represented by finite length vortex filaments, how the strength and location of these filaments are determined based upon aircraft characteristics and trajectory data, and how the induced velocity values are determined once the location and strength of the vortex filaments are known. Examples will be presented showing comparisons between induced velocity values calculated using both the paneled-wing method and Strickland's lifting line method. Comparison is also made between calculated results from the paneled-wing method and wind tunnel data collected in the wake of a scale model aircraft. Additional examples will show the effect of including aircraft downwash calculations in a trajectory analysis for a parachute-retarded store delivered via aircraft. 3 refs., 12 figs.

  12. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect (OSTI)

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  13. On the momentum of solitons and vortex rings in a superfluid

    SciTech Connect (OSTI)

    Pitaevskii, L. P.

    2014-12-15

    This paper is devoted to the calculation of the momentum of localized excitations, such as solitons and vortex rings, moving in a superfluid. The direct calculation of the momentum by integration of the mass flux density results in a badly-converging integral. I suggest a method for the renormalization of the integral with the explicit separation of a term related to the vortex line. This term can be calculated explicitly and gives the main contribution for the rings whose size is large compared to the healing length. I compare my method with the Jones and Roberts prescription for renormalization. I investigate the case of a uniform superfluid, and that of a superfluid in a cylindrical trap. I discuss the calculation of the jump in the phase of the order parameter and obtain a simple estimate for this jump.

  14. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect (OSTI)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  15. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  16. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Ml, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  17. Efficiently Recovering from the "Polar Vortex" | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Simple weatherization actions can help keep your home warm. Simple weatherization actions can help keep your home warm. Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office What does this mean for me? Kept your house warm during the next cold snap with these tips. Two thirds of the country, and especially the Midwest, spent nearly a week consumed by the appropriately-titled "Polar Vortex" earlier this month. Basically, as temperatures

  18. Oscillations of Bose-Einstein condensates with vortex lattices: Finite temperatures

    SciTech Connect (OSTI)

    Sedrakian, Armen; Wasserman, Ira

    2004-05-01

    We derive the finite-temperature oscillation modes of a harmonically confined Bose-Einstein condensed gas undergoing rigid body rotation supported by a vortex lattice in the condensate. The hydrodynamic modes separate into two classes corresponding to center of mass and relative oscillations of the thermal cloud and the condensate. These classes are independent of each other in the case where the thermal cloud is inviscid for all modes studied, except the radial pulsations which couple them because the pressure perturbations of the condensate and the thermal cloud are governed by different adiabatic indices. If the thermal cloud is viscous, the two classes of oscillations are coupled, i.e., each type of motion involves simultaneously mass and entropy currents. The relative oscillations are damped by the mutual friction between the condensate and the thermal cloud mediated by the vortex lattice. The damping is large for the values of the drag-to-lift ratio of the order of unity and becomes increasingly ineffective in either limit of small or large friction. An experimental measurement of a subset of these oscillation modes and their damping can provide information on the values of the phenomenological mutual friction coefficients and the quasiparticle-vortex scattering processes in dilute atomic Bose gases.

  19. THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY

    SciTech Connect (OSTI)

    Mawet, D.; Serabyn, E.; Liewer, K.; Burruss, R.; Hickey, J.; Shemo, D.

    2010-01-20

    High-contrast coronagraphy will be needed to image and characterize faint extrasolar planetary systems. Coronagraphy is a rapidly evolving field, and many enhanced alternatives to the classical Lyot coronagraph have been proposed in the past 10 years. Here, we discuss the operation of the vector vortex coronagraph, which is one of the most efficient possible coronagraphs. We first present recent laboratory results and then first light observations at the Palomar observatory. Our near-infrared H-band (centered at approx1.65 mum) and K-band (centered at approx2.2 mum) vector vortex devices demonstrated excellent contrast results in the lab, down to approx10{sup -6} at an angular separation of approx3lambda/d. On sky, we detected a brown dwarf companion 3000 times fainter than its host star (HR 7672) in the K{sub s} band (centered at approx2.15 mum), at an angular separation of approx2.5lambda/d. Current and next-generation high-contrast instruments can directly benefit from the demonstrated capabilities of such a vector vortex: simplicity, small inner working angle, high optical throughput (>90%), and maximal off-axis discovery space.

  20. Kondo lattice and antiferromagnetic behavior in quaternary CeTAl4Si2 (T = Rh, Ir) single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, Arumugam; Paudyal, Durga; Dhar, Sudesh Kumar

    2016-02-26

    Here, we have explored in detail the anisotropic magnetic properties of CeRhAl4Si2 and CeIrAl4Si2, which undergo two antiferromagnetic transitions, at TN1 = 12.6 and 15.5 K, followed by a second transition at TN2 = 9.4 and 13.8 K, respectively, with the [001]-axis as the relatively easy axis of magnetization. The electrical resistivity at ambient and applied pressure provides evidence of Kondo interaction in both compounds, further supported by a reduced value of the entropy associated with the magnetic ordering. The Sommerfeld coefficient γ is inferred to be 195.6 and 49.4 mJ/(mol K2) for CeRhAl4Si2 and CeIrAl4Si2, respectively, classifying these materialsmore » as moderate heavy-fermion compounds. The crystal electric field energy levels are derived from the peak seen in the Schottky heat capacity. Furthermore, we have also performed electronic structure calculations by using the local spin density approximation + U [LSDA+U] approach, which provide physical insights on the observed magnetic behavior of these two compounds.« less

  1. High-precision determination of low-energy effective parameters for a two-dimensional Heisenberg quantum antiferromagnet

    SciTech Connect (OSTI)

    Jiang, F.-J.; Wiese, U.-J.

    2011-04-15

    The two-dimensional (2D) spin-(1/2) Heisenberg antiferromagnet with exchange coupling J is investigated on a periodic square lattice of spacing a at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e., the staggered magnetization density M{sub s}=0.307 43(1)/a{sup 2}, the spin stiffness {rho}{sub s}=0.180 81(11)J, and the spin wave velocity c=1.6586(3)Ja, are determined with very high precision. Our study may serve as a test case for the comparison of lattice quantum chromodynamics Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.

  2. CaMn2Sb2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    SciTech Connect (OSTI)

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; Smith, G. J.; Hassinger, J. E.; DeBeer-Schmidt, L.; Kolesnikov, A. I.; Zaliznyak, I.; Aronson, M. C.

    2015-05-22

    We present inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn2Sb2:, which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first and second neighbor exchange interactions, J1 and J2, in the Mn plane and also an exchange interaction between planes. The determined ratio J2/J1 ≈ 1/6 suggests that CaMn2Sb2: is the first example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the N´eel phase and two different spiral phases coexist. The magnitude of the determined exchange interactions reveal a mean field ordering temperature ≈ 4 times larger than the reported N´eel temperature TN = 85 K, suggesting significant frustration arising from proximity to the tricritical point.

  3. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    SciTech Connect (OSTI)

    Gubbiotti, G. Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R.; Tamisari, M.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  4. On the peculiar properties of triangular-chain EuCr{sub 3}(BO{sub 3}){sub 4} antiferromagnet

    SciTech Connect (OSTI)

    Gondek, ?.; Szytu?a, A.; Przewo?nik, J.; ?ukrowski, J.; Prokhorov, A.; Chernush, L.; Zubov, E.; Dyakonov, V.; Tyvanchuk, Yu.

    2014-02-15

    In this paper we report studies on EuCr{sub 3}(BO{sub 3}){sub 4} compound, that is a member of newly discovered family of huntite-related specimens for non-linear optics. For the first time, the uncommon temperature dependence of the EuCr{sub 3}(BO{sub 3}){sub 4} lattice parameters is reported. Additionally, the magnetism of this compound is extremely interesting. Namely, a possible interplay in between potentially magnetic rare-earth ions and 3d metal stacked within quasi-1D chain that can lead to a great variety of magnetic behaviour. Indeed, in our studies we have found 3D-long range ordering with metamagnetic behaviour, while at higher temperature the magnetic chains become uncoupled. - Graphical abstract: Torsion-like vibrations are the key to understand negative thermal expansion along the a-axis. Display Omitted - Highlights: EuCr{sub 3}(BO{sub 3}){sub 4} is a peculiar triangular-chain antiferromagnet. Rare earth sublattice is non-magnetic with Eu{sup 3+} configuration. Cr{sup 3+} magnetic moments show 1-D behaviour along with spin fluctuations. Torsion vibrations of Cr triangular tubes lead to anomalous expansion of unit cell.

  5. Comment on General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation [Phys. Fluids 26, 065105 (2014)

    SciTech Connect (OSTI)

    Hietala, Niklas Hnninen, Risto

    2014-11-15

    Van Gorder considers a formulation of the local induction approximation, which allows the vortex to move in the direction of the reference axis [General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation, Phys. Fluids 26, 065105 (2014)]. However, in his analytical and numerical study he does not use it. A mistake in the torsion of a helical vortex is also corrected.

  6. Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2

    SciTech Connect (OSTI)

    Gu, Dachun; Dai, Xia; Le, Congcong; Sun, Liling; Wu, Qi; Saparov, Bayrammurad; Guo, Jing; Gao, Peiwen; Zhang, Shan; Zhou, Yazhou; Zhang, Chao; Jin, Shifeng; Xiong, Lun; Li, Rui; Li, Yanchun; Li, Xiaodong; Liu, Jing; Sefat, Athena S.; Hu, Jiangping; Zhao, Zhongxian

    2014-12-05

    BaMn2Bi2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn2Bi2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn2Bi2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress the AFM order in the K-doped BaMn2Bi2 to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba0.61K0.39Mn2Bi2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.

  7. A vortex panel analysis of circular-arc bluff-bodies in unsteady flow

    SciTech Connect (OSTI)

    Strickland, J.H.

    1989-01-01

    A method which is capable of calculating the unsteady flow field around circular-arc bluff bodies of zero thickness is presented. This method utilizes linear vortex panels to model the body surface and a portion of the wake surfaces. Discrete vortices are used to model the remainder of the wake surfaces. Separation is assumed to occur at the sharp edges of the bodies. Numerical results for circular-arc bodies with included angles of less than 180/degree/ are compared with experimental data and found to be in good agreement. 31 refs., 15 figs.

  8. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect (OSTI)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  9. Static property and current-driven precession of 2π-vortex in nano-disk with Dzyaloshinskii-Moriya interaction

    SciTech Connect (OSTI)

    Liu, Xianyin; Zhu, Qiyuan; Zhang, Senfu; Liu, Qingfang E-mail: wangjb@lzu.edu.cn; Wang, Jianbo E-mail: wangjb@lzu.edu.cn

    2015-08-15

    An interesting type of skyrmion-like spin texture, 2π-vortex, is obtained in a thin nano-disk with Dzyaloshinskii-Moriya interaction. We have simulated the existence of 2π-vortex by micromagnetic method. Furthermore, the spin polarized current is introduced in order to drive the motion of 2π-vortex in a nano-disk with diameter 2 R = 140 nm. When the current density matches with the current injection area, 2π-vortex soon reaches a stable precession (3∼4 ns). The relationship between the precession frequency of 2π-vortex and the current density is almost linear. It may have potential use in spin torque nano-oscillators.

  10. Critical current density and mechanism of vortex pinning in KxFe2-ySe₂ doped with S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lei, Hechang; Petrovic, C.

    2011-08-15

    We report the critical current density Jc in KxFe2-ySe2-zSz crystals. The Jc can be enhanced significantly with optimal S doping (z=0.99). For K0.70(7)Fe1.55(7)Se1.01(2)S0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  11. Direct femtosecond laser ablation of copper with an optical vortex beam

    SciTech Connect (OSTI)

    Anoop, K. K.; Rubano, A.; Marrucci, L.; Bruzzese, R.; Amoruso, S.; Fittipaldi, R.; Vecchione, A.; Wang, X.; Paparo, D.

    2014-09-21

    Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with the laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.

  12. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    SciTech Connect (OSTI)

    Vieira Jnior, D. S.; Leonel, S. A. Dias, R. A. Toscano, D. Coura, P. Z. Sato, F.

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurationsvortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned statestype Cas a function of the shape of each elliptical nano-islands and constructed a phase diagram vortextype C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  13. secretary of state | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    state

  14. Antiferromagnetic Kondo lattice in the layered compound CePd1–xBi₂ and comparison to the superconductor LaPd1–xBi₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; et al

    2015-07-13

    The layered compound CePd1–xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1–xBi₂ show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce⁻¹ K⁻² obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1–xBi₂. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 Kmore » which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1–xBi₂ around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.« less

  15. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    SciTech Connect (OSTI)

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; Zhitomirsky, M. E.

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamics in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.

  16. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba{sub 2}LnOsO{sub 6} (Ln=rare earths)

    SciTech Connect (OSTI)

    Hinatsu, Yukio Doi, Yoshihiro; Wakeshima, Makoto

    2013-10-15

    The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, SmLu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Os{sup 5+} ions are structurally ordered at the M site of the perovskite BaMO{sub 3}. Magnetic susceptibility and specific heat measurements show that an antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 6571 K. Magnetic ordering of Ln{sup 3+} moments occurs when the temperature is furthermore decreased. - Graphical abstract: The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, SmLu) have been prepared. An antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 6571 K. Measurements and analysis of the specific heat for Ba{sub 2}PrOsO{sub 6} show that magnetic ordering of the Pr{sup 3+} moments should have occurred at ?20 K. Display Omitted.

  17. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2

    SciTech Connect (OSTI)

    Hodovanets, H.; Budko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ? x ? 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2 at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat ?Cm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.

  18. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2

    SciTech Connect (OSTI)

    Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2 at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.

  19. Structural and magnetic characterization of the one-dimensional S = 5/2 antiferromagnetic chain system SrMn(VO4)(OH)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.

    2016-06-06

    The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO4] chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearestmore » Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less

  20. Vortex Lattice Studies in CeCoIn₅ with H⊥c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, P.; White, J. S.; Holmes, A. T.; Gerber, S.; Forgan, E. M.; Bianchi, A. D.; Kenzelmann, M.; Zolliker, M.; Gavilano, J. L.; Bauer, E. D.; et al

    2012-02-23

    We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn₅ with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H II 100], a single VL orientation is observed, while a 90° reorientation transition is found for H II [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Γ=2.0±0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H II [001]. At high fields, above which the upper critical field (Hc2) becomes a first-order transition,more » an increased disordering of the VL is observed.« less

  1. Alternative method to control radiative vortex forces in a magneto-optical trap

    SciTech Connect (OSTI)

    Kiersnowski, K.; Kawalec, T.; Dohnalik, T.

    2006-06-15

    We present an experimental and theoretical study of controlling the atomic spatial distributions in a magneto-optical trap (MOT). With a diaphragm we can vary the waist and power of one of the cooling laser beams and we can change parameters of large-diameter, parallelogram-shaped atomic orbits. We show that the radiative force generated by the repumping MOT laser has to be taken into consideration. Computer simulations of atomic trajectories explain the observed spatial structures, and we employ these simulations to present potential applications of controlling the diaphragm diameter as a function of time. A potential use of controlled vortex forces seems to have a great significance in recently presented important new methods to investigate cold atom collisions in the MOT, which were recently published.

  2. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    SciTech Connect (OSTI)

    Kalashnik, M. V. Visheratin, K. N.

    2008-04-15

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100 deg. C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  3. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn; Buchanan, Kristen

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  4. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    SciTech Connect (OSTI)

    Griffin, D.A.

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  5. Numerical simulation of the shock-tip leakage vortex interaction in a HPC front stage

    SciTech Connect (OSTI)

    Hoeger, M.; Fritsch, G.; Bauer, D.

    1999-07-01

    For a single-stage transonic compressor rig at the TU Darmstadt, three-dimensional viscous simulations are compared to L2F measurements and data from the EGV leading edge instrumentation to demonstrate the predictive capability of the Navier-Stokes code TRACE{_}S. In a second step the separated regions at the blade tip are investigated in detail to gain insight into the mechanisms of tip leakage vortex-shock interaction at operating points close to stall, peak efficiency, and choke. At the casing the simulations reveal a region with axially reversed flow, leading to a rotationally asymmetric displacement of the outermost stream surface and a localized additional pitch-average blockage of approximately 2 percent. Loss mechanisms and streamline patterns deduced from the simulation are also discussed. Although the flow is essentially three-dimensional, a simple model for local blockage from tip leakage is demonstrated to significantly improve two-dimensional simulations on S1-surfaces.

  6. Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets

    SciTech Connect (OSTI)

    Metlov, Konstantin L.

    2013-12-14

    Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.

  7. Ultra-fast magnetic vortex core reversal by a local field pulse

    SciTech Connect (OSTI)

    Rückriem, R.; Albrecht, M.; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps were achieved, which are ten times faster compared to a global pulse.

  8. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  9. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    SciTech Connect (OSTI)

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  10. Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe1–xCox)₂As₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ran, S.; Bud'ko, S. L.; Straszheim, W. E.; Soh, J.; Kim, M. G.; Kreyssig, A.; Goldman, A. I.; Canfield, P. C.

    2012-06-22

    We have grown single-crystal samples of Co substituted CaFe₂As₂ using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960°C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800°C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-Tanneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity is revealed.more » We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and Tanneal values, the Ca(Fe₁₋xCox)₂As₂ system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.« less

  11. In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy

    SciTech Connect (OSTI)

    Wang, L.; Cui, Y. G.; Wan, J. F.; Rong, Y. H.; Zhang, J. H.; Jin, X.; Cai, M. M.

    2013-05-06

    The N-type untwinning surface relief associated with the fcc {r_reversible} fct martensitic transformation (MT) was observed in the Mn{sub 81.5}Fe{sub 14.0}Cu{sub 4.5} antiferromagnetic high-temperature shape memory alloy (SMA) by in situ atomic force microscopy. The measured untwinning relief angles ({theta}{sub {alpha}} Double-Vertical-Line {theta}{sub {beta}}) at the ridge and at the valley were different, and both angles were less than the conventional values. The surface relief exhibited good reversibility during heating and cooling because of the crystallographic reversibility of thermal-elastic SMAs. Untwinning shear was proposed as the main mechanism of the N-type surface relief. The order of the reverse MT was discussed based on the experimental measurements.

  12. Finite-size effects on the vortex-glass transition in thin YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films

    SciTech Connect (OSTI)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1995-08-01

    Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films of a thickness {ital t} ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films ({ital t}{le}400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities {ital J}, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low {ital J} by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature.

  13. The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries

    SciTech Connect (OSTI)

    Weber, N.; Galindo, V.; Stefani, F.; Weier, T.; Priede, J.

    2015-01-15

    The Tayler instability (TI) is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently discussed as a possible limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability and, second, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries. Electro-vortex flows might pose a larger risk to the integrity of the battery than the TI.

  14. Reconstruction of the constituent distribution and trends in the Antarctic polar vortex from ER-2 flight observations

    SciTech Connect (OSTI)

    Schoeberl, M.R.; Lait, L.R. ); Newman, P.A.; Martin, R.L. ); Proffitt, M.H. ); Hartmann, D.L. ); Loewenstein, M.; Podolske, J.; Strahan, S.E.; Chan, K.R. ); Anderson, J. ); Gary, B. )

    1989-11-30

    Ozone, chlorine monoxide, and nitrous oxide concentrations have been measured in the south polar region. These measurements have been analyzed using conservative coordinate transformations to potential temperature-N{sub 2}O and potential temperature-potential vorticity space. The latter transformation is equivalent to interpreting trace species observations within the modified Lagrangian mean (MLM) coordinate system. The analysis shows that the MLM transformed ozone concentration decreases at about 0.06 ppmv (parts per million by volume) per day between 20 and 16 km altitude inside the polar vortex during the mid-August to mid-September period. These ozone changes must be chemical in origin; they are also collocated with the region of high CIO. Outside the CPR (chemically perturbed region) at the highest aircraft altitudes, ozone systematically increases, suggesting a diabatic cooling of the order of 0.3-0.6 K/d. Within the CPR the cooling rate appears to be less than 0.2 K/d. The MLM analysis technique creates a picture of the general chemical structure of the Austral polar vortex which shows that air deep within the chemically perturbed region has subsided substantially in relation to the air outside. However, there is also a tongue of high ozone air which extends from mid-latitudes downward along the stratospheric jet at 65{degree}W and 60{degree}S. An examination of the last three flight days, September 20-22, 1987, shows that during this period the polar vortex shifts systematically equatorward along the Antarctic Peninsula. Apparent changes in the constituents measured over this period result from sampling air progressively further into the vortex.

  15. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  16. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  17. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Elkassabgi, Yousri M.; De Leon, Gerardo I.; Fetterly, Caitlin N.; Ramos, Jorge A.; Cunningham, Richard Burns

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  18. Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor

    SciTech Connect (OSTI)

    Altay, H. Murat; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F.

    2009-05-15

    The combustion dynamics of propane-hydrogen mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure, velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame-vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed flames can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel

  19. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow

    SciTech Connect (OSTI)

    Zhao, Tian-Liang; Liu, Jing-Lin; Li, Xiao-Song; Liu, Jin-Bao; Song, Yuan-Hong; Xu, Yong; Zhu, Ai-Min

    2014-05-15

    An annular-mode gliding arc discharge powered by a 50?Hz alternating current (ac) supply was studied in a vortex flow of dry and humid air. Its temporal evolution characteristics were investigated by electrical measurement, temporally resolved imaging, and temporally resolved optical emission spectroscopic measurements. Three discharge stages of arc-ignition, arc-gliding, and arc-extinction were clearly observed in each half-cycle of the discharge. During the arc-gliding stage, the intensity of light emission from the arc root at the cathode was remarkably higher than that at other areas. The spectral intensity of N{sub 2}(C{sup 3}?{sub u}?B{sup 3}?{sub g}) during the arc-ignition stage was much higher than that during the arc-gliding stage, which was contrary to the temporal evolutions of spectral intensities for N{sub 2}{sup +}(B{sup 2}?{sub u}{sup +}?X{sup 2}?{sub g}{sup +}) and OH(A{sup 2}?{sup +}?X{sup 2}?{sub i}). Temporally resolved vibrational and rotational temperatures of N{sub 2} were also presented and decreased with increasing the water vapor content.

  20. Current-driven vortex domain wall motion in wire-tube nanostructures

    SciTech Connect (OSTI)

    Espejo, A. P.; Vidal-Silva, N.; López-López, J. A.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  1. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carretero-González, R.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-03-01

    In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show howmore » these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.« less

  2. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    SciTech Connect (OSTI)

    Mizrahi, M. E-mail: cabrera@fisica.unlp.edu.ar; Cabrera, A. F. E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J.; Stewart, S. J.

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  3. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite intensive activity in

  4. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite intensive activity in

  5. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite intensive activity in

  6. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite intensive activity in

  7. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 324 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite

  8. ALSNews Vol. 324

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSNews Vol. 324 Print Bioactive Glass Scaffolds for Bone Regeneration Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. Researchers at Beamline 8.3.2 have created bioactive glass scaffolds that mirror nature's efficient materials and may provide a means for previously problematic bone regeneration in large, load-bearing limbs. Read more... Contact: Q. Fu Direct Imaging of Antiferromagnetic Vortex States Despite

  9. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    SciTech Connect (OSTI)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ≃ 4.5 pN, corresponding to a critical current up to Jc ≃ 7×105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, λab = 320 ± 60 nm, which is larger than previous bulk measurements.

  10. Crystal structure and antiferromagnetic ordering of quasi-2D [Cu(HF{sub 2})(pyz){sub 2}]TaF{sub 6} (pyz = pyrazine).

    SciTech Connect (OSTI)

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.; Materials Science Division; Eastern Washington Univ.; LANL

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF{sub 2}{sup -} ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains Taf{sub 6}{sup -} anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  11. Twofold enhancement of the hidden-order/large-moment antiferromagnetic phase boundary in the URu2-xFexSi₂ system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanchanavatee, N.; Janoschek, M.; Baumbach, R. E.; Hamlin, J. J.; Zocco, D. A.; Huang, K.; Maple, M. B.

    2011-12-16

    Electrical resistivity, specific heat, and magnetization measurements on URu2-xFexSi₂ reveal a twofold enhancement of the “hidden-order” (HO)/large-moment antiferromagnetic (LMAFM) phase boundary T₀(x). The T₀(Pch) curve, obtained by converting x to “chemical pressure” Pch, is strikingly similar to the T₀(P) curve, where P is applied pressure, for URu₂Si₂ both exhibit a “kink” at 1.5 GPa and a maximum at ~7 GPa. This similarity suggests that the HO-LMAFM transition at 1.5 GPa in URu₂Si₂ occurs at x ≈ 0.2 (Pch≈1.5 GPa) in URu2-xFexSi₂. URu2-xFexSi₂ provides an opportunity for studying the HO and LMAFM phases with methods that probe the electronic structure [e.g.,more » scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and point-contact spectroscopy (PCS)] but cannot be used under pressure.« less

  12. Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by Co59 and As75 NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; Johnston, D. C.; Furukawa, Y.

    2015-06-15

    In nonsuperconducting, metallic paramagnetic SrCo2As2, inelastic neutron scattering measurements have revealed strong stripe-type q=(?,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75Asnuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo2As2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(?,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility ?(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo2As2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similar enhancements of the ?(q) at both q=(?,0)moreand q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo2As2 calls for detailed studies of FM correlations in the iron-based superconductors.less

  13. Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by 59Co and 75As NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; Johnston, D. C.; Furukawa, Y.

    2015-06-15

    In nonsuperconducting, metallic paramagnetic SrCo2As2, inelastic neutron scattering measurements have revealed strong stripe-type q=(π,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75As nuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo2As2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(π,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility χ(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo2As2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similar enhancements of the χ(q) at bothmore » q=(π,0) and q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo2As2 calls for detailed studies of FM correlations in the iron-based superconductors.« less

  14. Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties

    SciTech Connect (OSTI)

    Akmaldinov, K.; Ducruet, C.; Portemont, C.; Joumard, I.; Prejbeanu, I. L.; Dieny, B.; Baltz, V.

    2014-05-07

    Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (T{sub B}) are required. In contrast, for the storage layer, mostly moderate T{sub B} are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a T{sub B} larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the T{sub B} distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

  15. Investigation of vortex generators for augmentation of wind turbine power performance

    SciTech Connect (OSTI)

    Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

    1996-12-01

    This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

  16. Comment on Motion of a helical vortex filament in superfluid {sup 4}He under the extrinsic form of the local induction approximation [Phys. Fluids 25, 085101 (2013)

    SciTech Connect (OSTI)

    Hietala, Niklas Hnninen, Risto

    2014-01-15

    We comment on the paper by Van Gorder [Motion of a helical vortex filament in superfluid {sup 4}He under the extrinsic form of the local induction approximation, Phys. Fluids 25, 085101 (2013)]. We point out that the flow of the normal fluid component parallel to the vortex will often lead into the DonnellyGlaberson instability, which will cause the amplification of the Kelvin wave. We explain why the comparison to local nonlinear equation is unreasonable, and remark that neglecting the motion in the x-direction is not reasonable for a Kelvin wave with an arbitrary wavelength and amplitude. The correct equations in the general case are also derived.

  17. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    SciTech Connect (OSTI)

    Chang, Y. C.; Duh, J. G. E-mail: lin.yg@nsrrc.org.tw; Hsiao, S. N. E-mail: lin.yg@nsrrc.org.tw; Liu, S. H.; Su, S. H.; Chiu, K. F.; Hsieh, W. C.; Chen, S. K.; Lin, Y. G. E-mail: lin.yg@nsrrc.org.tw; Lee, H. Y.; Sung, C. K.

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in a 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.

  18. Spin liquid state in the disordered triangular lattice Sc2Ga2CuO7 revealed by NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; Baenitz, M.; Furukawa, Y.

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc2Ga2CuO7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/kB ≈ 35 K between Cu2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T1) reveals a slowing down of Cu2+ spin fluctuations with decreasing T down to 100 mK.more » Magnetic specific heat (Cm) and 1/T1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of Cm and 1/T1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  19. Fragmentation of fast Josephson vortices and breakdown of ordered states by moving topological defects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less

  20. Fragmentation of fast Josephson vortices and breakdown of ordered states by moving topological defects

    SciTech Connect (OSTI)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

  1. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    SciTech Connect (OSTI)

    nder, Asim; Meyers, Johan

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub ?} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  2. Characterization of the antiferromagnetism in Ag(pyz)2(S2O8) with a two-dimensional square lattice of Ag 2+ ions (Ag=silver, Pyz-pyrdzine, S2O8=sulfate)

    SciTech Connect (OSTI)

    Singleton, John; Mc Donald, R; Sengupta, P; Cox, S; Manson, J; Southerland, H; Warter, M; Stone, K; Stephens, P; Lancaster, T; Steele, A; Blundell, S; Baker, P; Pratt, F; Lee, C; Whangbo, M

    2009-01-01

    X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}Sr measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

  3. State Overview

    Energy Savers [EERE]

    of Energy Competitive Financial Assistance Program State Energy Program Competitive Financial Assistance Program The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy's (EERE's) State Energy Program (SEP) dedicates a portion of its funding each year (during Fiscal Years 2010-2013, DOE awarded $51.8 million) to provide competitively awarded financial assistance to U.S. states and territories to advance policies, programs, and market strategies that

  4. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  5. Model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity

    SciTech Connect (OSTI)

    Yang, J.; Kubota, T.; Zukoski, E.E.

    1994-01-01

    This work investigates the two-dimensional flow of a shock wave over a circular light-gas inhomogeneity in a channel with finite width. The pressure gradient from the shock wave interacts with the density gradient at the edge of the inhomogeneity to deposit vorticity around the perimeter, and the structure rolls up into a pair of counter-rotating vortices. The aim of this study is to develop an understanding of the scaling laws for the flow field produced by this interaction at times long after the passage of the shock across the inhomogeneity. Numerical simulations are performed for various initial conditions and the results are used to guide the development of relatively simple algebraic models that characterize the dynamics of the vortex pair, and that allow extrapolation of the numerical results to conditions more nearly of interest in practical situations. The models are not derived directly from the equations of motion but depend on these equations and on intuition guided by the numerical results. Agreement between simulations and models is generally good except for a vortex-spacing model which is less satisfactory. A practical application of this shock-induced vortical flow is rapid and efficient mixing of fuel and oxidizer in a SCRAMJET combustion chamber. One possible injector design uses the interaction of an oblique shock wave with a jet of light fuel to generate vorticity which stirs and mixes the two fluids and lifts the burning jet away from the combustor wall. Marble proposed an analogy between this three-dimensional steady flow and the two-dimensional unsteady problem of the present investigation. Comparison is made between closely corresponding three-dimensional steady and two-dimensional unsteady flows, and a mathematical description of Marble`s analogy is proposed. 17 refs.

  6. Antiferromagnetic Kondo lattice in the layered compound CePd1xBi? and comparison to the superconductor LaPd1xBi?

    SciTech Connect (OSTI)

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-07-13

    The layered compound CePd1xBi? with the tetragonal ZrCuSi?-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1xBi? show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient ? of 0.191 J mol Ce? K? obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1xBi?. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 K which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1xBi? around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular ... Complete understanding of the formation process of vortex state in magnetic vortex systems ...

  8. State Overview

    Energy Savers [EERE]

    U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW HAMPSHIRE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural ...

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February ... to transmit electric energy from the United States to Mexico as a power marketer. ...

  10. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  11. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    SciTech Connect (OSTI)

    Thompson, Joe E; Nair, S; Stockert, O; Witte, U; Nicklas, M; Schedler, R; Bianchi, A; Fisk, Z; Wirth, S; Steglich, K

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  12. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect (OSTI)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  13. State Overview

    Energy Savers [EERE]

    PAGE | 1 Produced by Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability (OE) State Overview Population: 0.63 million (<1% total U.S.) Housing Units: 0.32 million (<1% total U.S.) Business Establishments: 0.02 million (<1% total U.S.) Annual Energy Consumption Electric Power: 5.5 TWh (<1% total U.S.) Coal: 0 MSTN (0% total U.S.) Natural Gas: 392 Bcf (2% total U.S.) Motor Gasoline: 7,800 Mbarrels (<1% total U.S.) Distillate Fuel: 3,900 Mbarrels

  14. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  15. United States

    Office of Environmental Management (EM)

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  16. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  17. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  18. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  19. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  20. The transition to the metallic state in low density hydrogen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less

  1. The transition to the metallic state in low density hydrogen

    SciTech Connect (OSTI)

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.

  2. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    SciTech Connect (OSTI)

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1–xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1–xCox)2As2.

  3. Spin-orbit coupling controlled ground state in Sr2ScOsO6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; Calder, S.; Kolesnikov, A. I.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2016-06-27

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d3Os5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4d3 and 5d3more » systems and that theoretical treatments must include spin-orbit coupling.« less

  4. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  5. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  6. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    SciTech Connect (OSTI)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapid intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.

  7. Understanding and controlling complex states arising from magnetic frustration

    SciTech Connect (OSTI)

    Zapf, Vivien

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  8. Manipulation of magnetic state in nanostructures by perpendicular anisotropy and magnetic field

    SciTech Connect (OSTI)

    Chen, J. P.; Xie, Y. L.; Chu, P.; Wang, Y. L.; Wang, Z. Q.; Gao, X. S.; Liu, J.-M.

    2014-06-28

    We investigate the transitions of spin configurations in ultrathin nanostructures by tuning the perpendicular anisotropy (K{sub z}) and out-of-plane magnetic field (H), using the Monte Carlo simulation. It is revealed that enhancing the anisotropy K{sub z} can drive the evolution of in-plane vortex state into intriguing saturated magnetization states under various H, such as the bubble domain state and quadruple-block-domain state etc. The spin configurations of these states exhibit remarkable H-dependence. In addition, the strong effects of geometry and size on the spin configurations of nanostructures are observed. In particular, a series of edged states occur in the circular disk-shaped lattices, and rich intricate saturated magnetization patterns appear in big lattices. It is suggested that the magnetic states can be manipulated by varying the perpendicular anisotropy, magnetic field, and geometry/size of the nanostructures. Furthermore, the stability (retention capacity) of the saturated magnetization states upon varying magnetic field is predicted, suggesting the potential applications of these saturated magnetization states in magnetic field-controlled data storages.

  9. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    SciTech Connect (OSTI)

    Avila, J. I. Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C.

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  10. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect (OSTI)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  11. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  12. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    SciTech Connect (OSTI)

    Lara, A.; Aliev, F. G.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  13. Realization of ground-state artificial skyrmion lattices at room temperature

    SciTech Connect (OSTI)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  14. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  15. State Energy Program Helps States Plan

    Broader source: Energy.gov (indexed) [DOE]

    Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program (SEP) provides grants and technical assis- tance to states and U.S. territories to promote energy conservation and reduce the growth of energy demand in ways that are consistent with national energy goals. State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing pro-

  16. Annular vortex combustor

    DOE Patents [OSTI]

    Nieh, Sen; Fu, Tim T.

    1992-01-01

    An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.

  17. Nature of the insulating ground state of the5d postperovskite CaIrO?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate thatmoreCaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.less

  18. Nature of the insulating ground state of the 5d postperovskite CaIrO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate thatmore » CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less

  19. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    SciTech Connect (OSTI)

    Mitri, F.G.; Li, R.X.; Guo, L.X.; Ding, C.Y.

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  20. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

    SciTech Connect (OSTI)

    Bauer, Elvira M. Bellitto, Carlo; Gomez Garcia, Carlos J. Righini, Guido

    2008-05-15

    A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

  1. STATE OF WASHINGTON August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATE OF WASHINGTON August 29, 2012 The Honorable Stephen Chu, Secretary United States Department of Energy 1000 Independence Avenue Washington, DC 20585 Dear Secretary Chu: As you...

  2. State Energy Program Guidance

    Broader source: Energy.gov [DOE]

    The State Energy Program (SEP) has released the following guidance documents, listed chronologically below, that explain how states must report and manage SEP program funding.

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  10. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  16. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  17. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  18. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  19. Nature of the insulating ground state of the 5d postperovskite CaIrO3

    SciTech Connect (OSTI)

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate that CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.

  20. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  1. State Energy Program Helps States Plan and Implement Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program ...

  2. LANGEVIN DYNAMICS OF THE TWO STAGE MELTING TRANSITION OF VORTEX MATTER IN Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} IN THE PRESENCE OF STRAIGHT AND OF TILTED COLUMNAR DEFECTS

    SciTech Connect (OSTI)

    GOLDSCHMIDT, YADIN Y.; LIU, Jin-Tao

    2007-08-07

    In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}#14; in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by 45{degree} with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.

  3. Substitution of Ni for Fe in superconducting Fe?.??Te?.?Se?.? depresses the normal-state conductivity but not the magnetic spectral weight

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jinghui; Tranquada, J. M.; Zhong, Ruidan; Li, Shichao; Gan, Yuan; Xu, Zhijun; Zhang, Cheng; Ozaki, T.; Matsuda, M.; Zhao, Yang; et al

    2015-01-05

    We have performed systematic resistivity and inelastic neutron scattering measurements on Fe?.???zNizTe?.?Se?.? samples to study the impact of Ni substitution on the transport properties and the low-energy (? 12 meV) magnetic excitations. It is found that, with increasing Ni doping, both the conductivity and superconductivity are gradually suppressed; in contrast, the low-energy magnetic spectral weight changes little. Comparing with the impact of Co and Cu substitution, we find that the effects on conductivity and superconductivity for the same degree of substitution grow systematically as the atomic number of the substituent deviates from that of Fe. The impact of the substituentsmoreas scattering centers appears to be greater than any contribution to carrier concentration. The fact that low-energy magnetic spectral weight is not reduced by increased electron scattering indicates that the existence of antiferromagnetic correlations does not depend on electronic states close to the Fermi energy.less

  4. Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm)

    SciTech Connect (OSTI)

    Cho, B.

    1995-11-01

    The interaction of superconductivity with magnetism has been one of the most interesting and important phenomena in solid state physics since the 1950`s when small amounts of magnetic impurities were incorporated in superconductors. The discovery of the magnetic superconductors RNi{sub 2}B{sub 2}C (R = rare earth, Y) offers a new system to study this interaction. The wide ranges of superconducting transition (T{sub c}) and antiferromagnetic (AF) ordering temperatures (T{sub N}) (0 K {le} T{sub c} {le} 16 K, 0 K {le} T{sub N} {le} 20 K) give a good opportunity to observe a variety of interesting phenomena. Single crystals of high quality with appropriate size and mass are crucial in examining the anisotropic intrinsic properties. Single crystals have been grown successfully by an unusual high temperature flux method and characterized thoroughly by X-ray, electrical transport, magnetization, neutron scattering, scanning electron microscopy, and other measurements.

  5. Erratum: Evolution of antiferromagnetic susceptibility under...

    Office of Scientific and Technical Information (OSTI)

    Authors: Dhital, Chetan ; Hogan, Tom ; Yamani, Z. ; Birgeneau, Robert J. ; Tian, W. ; Matsuda, M. ; Sefat, A. S. ; Wang, Ziqiang ; Wilson, Stephen D. Publication Date: 2014-10-09 ...

  6. Antiferromagnetic Spin Wave Field-Effect Transistor

    Office of Scientific and Technical Information (OSTI)

    ... Assume that the spin wave is generated at one end of the chain by an oscillating magnetic field along the y-direction at 1.4 THz. tte spin wave is subsequently modulated by a 20 ...

  7. Spin Hall effects in metallic antiferromagnets - perspectives...

    Office of Scientific and Technical Information (OSTI)

    60439, USA, Department of Physics and Astronomy, Northwestern University, Evanston IL ... IL 60616, USA Department of Physics and Astronomy, Northwestern University, Evanston IL ...

  8. Antiferromagnetic Spin Seebeck Effect (Journal Article) | DOE...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 116; Journal Issue: 9; Journal ID: ISSN 0031-9007 Publisher: American Physical Society Sponsoring Org: USDOE Office of Science (SC), ...

  9. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  10. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  11. State Energy Strategic Plans

    Broader source: Energy.gov [DOE]

    Most state energy offices across the country are required to have current and long-term strategic energy management plans in place. These strategic plans help to ensure that state agencies are...

  12. FY 2005 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The

  13. AASG STATE GDR

    Energy Science and Technology Software Center (OSTI)

    003198MLTPL00 AASG State Geothermal Data Repository for the National Geothermal Data System. http://repository.stategeothermaldata.org/repository/

  14. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  15. Observation of high-spin mixed oxidation state of cobalt in ceramic Co{sub 3}TeO{sub 6}

    SciTech Connect (OSTI)

    Singh, Harishchandra E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Sinha, A. K.; Chandrasekhar Rao, T. V.; Rajput, Parasmani

    2014-12-07

    We report coexistence of high spin Co{sup 3+} and Co{sup 2+} in ceramic Co{sub 3}TeO{sub 6} using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co{sup 2+} and Co{sup 3+}as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ?1.26?eV between e{sub g} and t{sub 2g} states, suggesting a mixture of high spin states of both Co{sup 2+} and Co{sup 3+}. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (T{sub N1}???29?K and T{sub N2}???18?K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co{sup 2+}), supports our inference that Co{sup 3+} exists in high spin state. Furthermore, we show that both Co{sup 2+} and Co{sup 3+} being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.

  16. State and Local Code Implementation: State Energy Officials ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of State Energy Officials View the Presentation PDF ...

  17. Nevada State Air Regulations and State Implementation Plan Webpage...

    Open Energy Info (EERE)

    in Nevada and its state implementation plan. Author State of Nevada Division of Environmental Protection Published State of Nevada, Date Not Provided DOI Not Provided...

  18. State and Local Incentives

    Broader source: Energy.gov [DOE]

    To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs.

  19. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  20. State Energy Strategic Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

  1. United States Government

    Office of Legacy Management (LM)

    & Merrel Co., Saginaw, M ichigan l North Carolina State University, Raleigh, North Carolina l National Smelt & Refining, Cleveland, O h io Sutton Steele & Steele, Dallas, Texas <. ...

  2. Electricity Restructuring by State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Restructuring Status Status of Electricity Restructuring by State Data as of: September 2010 Next Release Date: None The map below shows information on the electric industry ...

  3. High-pressure stability relations, crystal structures, and physical...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; CRYSTAL STRUCTURE; EXCHANGE ...

  4. New tetragonal derivatives of cubic NaZn{sub 13}-type structure...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; CRYSTAL STRUCTURE; MAGNETIC MOMENTS; ...

  5. Appalachian State | Open Energy Information

    Open Energy Info (EERE)

    Appalachian State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  6. State Fact Sheets

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy provides joint funding to university, national laboratory, and industrial partners at the state level to research, develop, and demonstrate sustainable bio-based fuels and products. Learn how these states are expanding promising bioenergy research into commercial production.

  7. Grid State Estimation Tool

    Energy Science and Technology Software Center (OSTI)

    2014-10-09

    This software code is designed to track generator state variables in real time using the Ensemble Kalman Filter method with the aid of PMU measurements. This code can also be used to calibrate dynamic model parameters by augmenting parameters in the state variable vector.

  8. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  9. State of the States 2009: Renewable Energy Development and the...

    Open Energy Info (EERE)

    manual, Lessons learnedbest practices Website: www.nrel.govapplyingtechnologiesstatelocalactivitieswebinar2009 State of the States 2009: Renewable Energy Development and...

  10. State of the States: Fuel Cells in America 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report from Fuel Cells 2000 describes the state of fuel cell technologies across the United States.

  11. The role of orbital order in the stabilization of the (?, 0) ordered magnetic state in a minimal two-band model for iron pnictides

    SciTech Connect (OSTI)

    Ghosh, Sayandip Singh, Avinash

    2014-03-14

    Spin wave excitations and stability of the (?, 0) ordered magnetic state are investigated in a minimal two-band itinerant-electron model for iron pnictides. Presence of hopping anisotropy generates a strong ferro-orbital order in the d{sub xz} and d{sub yz} Fe orbitals in the (?, 0) state. The orbital order sign is as observed in experiments. The induced ferro-orbital order strongly enhances the spin wave energy scale and stabilizes the magnetic state by optimizing the strength of the emergent antiferromagnetically and ferromagnetically spin couplings through optimal band fillings in the two orbitals. The calculated spin-wave dispersion is in quantitative agreement with neutron scattering measurements. Finite inter-orbital Hund's coupling is shown to further enhance the spin wave energies state by coupling the two magnetic sub-systems. A more realistic two-band model with less hopping anisotropy is also considered, which yields not only the circular hole pockets but also correct ferro-orbital order and emergent F spin coupling.

  12. State Energy Program Operations Manual

    Broader source: Energy.gov [DOE]

    The State Energy Program Operations Manual is a reference tool for the SEP network states and program officials within DOE.

  13. Multipartite secure state distribution

    SciTech Connect (OSTI)

    Duer, W.; Briegel, H.-J.; Calsamiglia, J.

    2005-04-01

    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  15. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  16. NetState

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  17. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 ... Share of State total (percent) Net generation (thousand mwh) Illinois nuclear power ...

  18. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 ... Share of State total (percent) Net generation (thousand mwh) New York nuclear power ...

  19. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 ... Share of State total (percent) Net generation (thousand mwh) Maryland nuclear power ...

  20. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 ... Share of State total (percent) Net generation (thousand mwh) Michigan nuclear power ...

  1. United States Government

    Office of Legacy Management (LM)

    81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical...

  2. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of State nuclear net generation (percent) Cooper 1 767 6,793 101.1 BWR 711974 1182014 767 6,793 101.1 Data for 2010 BWR Boiling Water Reactor. Source: Form EIA-860, ...

  3. United States Government

    Office of Environmental Management (EM)

    States Government Department of Energy memorandum Carlsbad Field Office Carlsbad, New Mexico 88221 DATE: REPLY TO ATTN OF: SUBJECT: JAN 1 7 2014 CBFO:OESH:GTB:MN:14-1404:UFC...

  4. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: strong evidence of a FFLO state

    SciTech Connect (OSTI)

    Agosta, C. C.; Jin, J.; Coniglio, W. A.; Smith, B. E.; Cho, K.; Mihut, I.; Martin, C.; Tozer, S. W.; Murphy, T. P.; Palm, E. C.; Schlueter, J. A.; Kurmoo, M.

    2012-01-01

    We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which is calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.

  5. FY 2006 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or

  6. FY 2007 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    state tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer state tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  7. FY 2008 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments

  8. FY 2011 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated

  9. FY 2012 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  10. Solid state switch

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  11. FY 2013 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0079 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  12. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    SciTech Connect (OSTI)

    Yin, Y. W.; Raju, M.; Li, Qi; Hu, W. J.; Burton, J. D.; Gruverman, A.; Tsymbal, E. Y.; Kim, Y.-M.; Borisevich, A. Y.; Pennycook, S. J.; Yang, S. M.; Noh, T. W.; Li, X. G.; Zhang, Z. D.

    2015-05-07

    As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO{sub 3}/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO{sub 3} is ferroelectric and La{sub 0.5}Ca{sub 0.5}MnO{sub 3} is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  14. United States Environmental Monitoring

    Office of Legacy Management (LM)

    EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud,

  15. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  16. State Clean Energy Policies Analysis (SCEPA): State Policy and...

    Open Energy Info (EERE)

    Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis...

  17. State and Local Code Implementation: State Energy Offices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * State Funding for Energy Codes 9 Approach Distinctive Characteristics: 1. Utilize NASEO's network of 56 State and Territory Energy Offices, Affiliate members, and NASEO's ...

  18. Funding for state, city, and county governments in the state...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Funding for state, city, and county governments in the state includes: Project Reports for Washoe Tribe of Nevada and California - 2010 Project Nevada ...

  19. State Energy Risk Assessment Initiative - State and Regional...

    Broader source: Energy.gov (indexed) [DOE]

    OE is leading a State Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed...

  20. State of the States: Fuel Cells in America 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia in 2010, featuring the top five fuel cell states.

  1. NREL: State and Local Governments - State Solar Technical Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What suite of solar PV policies and finance or incentive programs could be implemented in your state to maximize economic development opportunities? If your state agency implements ...

  2. dynamo_double_vortex.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of triggering. * During a VDE, the gas jet is triggered when the vertical position of the plasma center drops by a set distance. * There is no straightforward way for a proper...

  3. Pseudogap state of two-dimensional Kondo lattice

    SciTech Connect (OSTI)

    Barabanov, A. F. Belemuk, A. M.

    2010-08-15

    The pseudogap behavior of spectral function A(k, {omega}) of charge carriers is considered in the weak doping regime for a 2D Kondo lattice with a strong spin-hole antiferromagnetic interaction. The scattering of carriers is described in terms of a local polaron according to the irreducible Green functions. The behavior of the carrier spectrum in the nodal and antinodal domains is considered. The resultant value of the pseudogap is in conformity with experimental data on photoemission with angular resolution.

  4. Solid State Lighting

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  5. Bluegrass State Getting Greener

    Broader source: Energy.gov [DOE]

    To help reduce Kentucky’s energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings.

  6. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    0.2 Other Renewable 1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 ... Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ...

  7. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1 Other Renewable 1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 ... Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ...

  8. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    * Other Renewable 1 637 1.7 3,181 2.3 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 ... Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ...

  9. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Renewable 1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 67,328 100.0 ... Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ...

  10. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 Other Renewable 1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 ... Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ...

  11. Variational transition state theory

    SciTech Connect (OSTI)

    Truhlar, D.G.

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  12. Concurrence of quasipure quantum states

    SciTech Connect (OSTI)

    Mintert, Florian; Buchleitner, Andreas

    2005-07-15

    We derive an analytic approximation for the concurrence of weakly mixed bipartite quantum states--typical objects in state of the art experiments. This approximation is shown to be a lower bound of the concurrence of arbitrary states.

  13. State authorization manual. Volume 1

    SciTech Connect (OSTI)

    Brugler-Jones, S.

    1990-10-01

    The State Authorization Manual (SAM) (Vol. I) provides guidance for States applying for program revisions to their authorized RCRA State program. The SAM is an updated version of the 1988 State Consolidated RCRA Authorization Manual (SCRAM). It focuses on program revision applications rather than initial applications since most States have received initial authorization for the RCRA program. The SCRAM should continue to be used to assist States not yet authorized under the RCRA program.

  14. Fermilab Today | Wayne State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wayne State University May 29, 2013 NAME: Wayne State University HOME TOWN: Detroit, Mich. COLORS: Green and gold COLLABORATING AT FERMILAB SINCE: 1995 WORLDWIDE PARTICLE PHYSICS...

  15. Fermilab Today | Kansas State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kansas State University Feb. 27, 2013 NAME: Kansas State University HOME TOWN: Manhattan, Kan. MASCOT: Willie the Wildcat COLORS: Royal purple COLLABORATING AT FERMILAB SINCE: 1993...

  16. Resources for State Energy Officials

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to state energy officials, organized by topic.

  17. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  6. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322

  7. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031

  8. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31

  10. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630

  11. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0

  12. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314

  3. State Energy Program awards $5 million to states for State Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Innovative Energy Practices | Department of Energy State Energy Program awards $5 million to states for State Energy Planning and Innovative Energy Practices State Energy Program awards $5 million to states for State Energy Planning and Innovative Energy Practices October 27, 2014 - 1:02pm Addthis As part of an “all-of-the-above” approach, Alabama, Arkansas, Idaho, Illinois, Kentucky, Michigan, Minnesota, New Mexico, South Carolina, Texas, Vermont, Virginia, and Washington will

  4. UNITED STATES GOVERNMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United states government department of energy ____________________________________________________________________________ ___ CONFERENCE CALL DOE FEDERAL LABOR FORUM PRELIMINARY MEETING AENDA August 9, 2013 @ 11:00 A.M. EDT Agenda: Confirm interest in DOE-wide labor forum Scope of Forum: This federal labor forum will be charged with jointly identifying and crafting recommended solutions to the problems facing us as a Department. The forum will accomplish this by using a constructive and

  5. Tracking intruder states

    SciTech Connect (OSTI)

    Riedinger, L.L.; Mueller, W.F.; Yu, C.H.

    1992-12-31

    The deformation-driving effects of intruder states are studied by analysis of various types of data on rotational bands in rare-earth deformed nuclei. The sensitivity of four measurables (bandhead energy, B(E2) value, neutron i{sub 13/2} crossing frequency, and signature splitting) to increase deformation in an intruder band is shown. The analysis of signature splitting systematics is extended to know superdeformed bands.

  6. Tracking intruder states

    SciTech Connect (OSTI)

    Riedinger, L.L.; Mueller, W.F.; Yu, C.H.

    1992-01-01

    The deformation-driving effects of intruder states are studied by analysis of various types of data on rotational bands in rare-earth deformed nuclei. The sensitivity of four measurables (bandhead energy, B(E2) value, neutron i[sub 13/2] crossing frequency, and signature splitting) to increase deformation in an intruder band is shown. The analysis of signature splitting systematics is extended to know superdeformed bands.

  7. United States Government

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 9, 2005 REPLY TO ATTN OF: IG-34 (A05TG036) Audit Report No.: OAS-L-06-01 SUBJECT: Report on Audit of "The Department of Energy's Radio Communications Systems" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) complex-wide radio systems infrastructure supports and facilitates activities such as site emergency response,

  8. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing

  9. Potential Antiferromagnetic Fluctuations in Hole-Doped Iron-Pnictide Superconductor Ba1-xKxFe2As2 Studied by 75As Nuclear Magnetic Resonance Measurement0.1143/JPSJ.81.054704

    SciTech Connect (OSTI)

    Hirano, Masanori; Yamada, Yuji; Saito, Taku; Nagashima, Ryo; Konishi, Takehisa; Toriyama, Tatsuya; Ohta, Yukinori; Fukazawa, Hideto; Kohori, Yoh; Furukawa, Yuji; Kihou, Kunihiro; Lee, Chul-Ho; Eisaki, Hiroshi

    2012-04-12

    We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on single-crystalline Ba1-xKxFe2As2 for x = 0.27–1. 75As nuclear quadruple resonance frequency (νQ) increases linearly with increasing x. The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak temperature T dependence. K increases gradually with increasing x. By contrast, the nuclear spin–lattice relaxation rate 1/T1 in the normal state has a strong T dependence, which indicates the existence of large antiferomagnetic (AF) spin fluctuations for all x's. The T dependence of 1/T1 shows a gaplike behavior below approximately 100 K for 0.6 < x < 0.9. This behaviors is well explained by the change in the band structure with the expansion of hole Fermi surfaces and the shrinkage and disappearance of electron Fermi surfaces at the Brillouin zone (BZ) with increasing x. The anisotropy of 1/T1, represented by the ratio of 1/T1ab to 1/T1c, is always larger than 1 for all x's, which indicates that stripe-type AF fluctuations are dominant in this system. The K in the superconducting (SC) state decreases, which corresponds to the appearance of spin-singlet superconductivity. The T dependence of 1/T1 in the SC state indicates a multiple-SC-gap feature. A simple two-gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and a smaller gap decreases rapidly and nearly vanishes for x > 0.6 where electron pockets in BZ disappear.

  10. Spectroscopy of tetraquark states

    SciTech Connect (OSTI)

    Santopinto, Elena; Galata, Giuseppe

    2007-04-15

    A complete classification of qqqq tetraquark states in terms of the spin-flavor, color, and spatial degrees of freedom was constructed. The permutation symmetry properties of both the spin-flavor and orbital parts of the qq and qq subsystems are discussed. This complete classification is general and model independent and it is useful both for model builders and experimentalists. The total wave functions are also explicitly constructed in the hypothesis of ideal mixing; this basis for tetraquark states will enable the eigenvalue problem to be solved for a definite dynamical model. An evaluation of the tetraquark spectrum was obtained from the Iachello mass formula for normal mesons, here generalized to tetraquark systems. This mass formula is a generalization of the Gell-Mann Okubo mass formula, whose coefficients have been upgraded by a study of the latest PDG data. The ground-state tetraquark nonet was identified with f{sub 0}(600),{kappa}(800),f{sub 0}(980),a{sub 0}(980). The diquark-antidiquark limit was also studied.

  11. JWL Equation of State

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.

  12. State Opportunities for Action: Update of States' CHP Activities (ACEEE),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2003 | Department of Energy Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 American Council for an Energy-Efficient Economy (ACEEE) report brings up to date the review of state policies with regard to CHP that ACEEE completed in 2002. The report describes the current activities of states with programs during the initial survey and also reviews new

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  17. Kansas State University: Business Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wildcat Wind Power Advisors Electrical Dr. Ruth Miller, Associate Professor, Kansas State University Mechanical Dr. Warren White, Associate Professor, Kansas State Greg Spaulding, P.E., Assistant Professor, Kansas State Dr. Youqi Wang, Professor, Kansas State University Business Kim Fowler, Graduate Student, Kansas State Jason Schmitt, Founder & COO, Nitride Solutions Mechanical Team Joe Kuhn - CEO/President Aaron Akin Stuart Disberger Bret Gross Aaron Thomsen Jordan Robl Cody Yost Lane

  18. State Clean Energy Policies Analysis (SCEPA): State Tax Incentives

    SciTech Connect (OSTI)

    Lantz, E.; Doris, E.

    2009-10-01

    As a policy tool, state tax incentives can be structured to help states meet clean energy goals. Policymakers often use state tax incentives in concert with state and federal policies to support renewable energy deployment or reduce market barriers. This analysis used case studies of four states to assess the contributions of state tax incentives to the development of renewable energy markets. State tax incentives that are appropriately paired with complementary state and federal policies generally provide viable mechanisms to support renewable energy deployment. However, challenges to successful implementation of state tax incentives include serving project owners with limited state tax liability, assessing appropriate incentive levels, and differentiating levels of incentives for technologies with different costs. Additionally, state tax incentives may result in moderately higher federal tax burdens. These challenges notwithstanding, state tax incentives that consider certain policy design characteristics can support renewable energy markets and state clean energy goals.The scale of their impact though is directly related to the degree to which they support the renewable energy markets for targeted sectors and technologies. This report highlights important policy design considerations for policymakers using state tax incentives to meet clean energy goals.

  19. Unite2 States Government

    Office of Legacy Management (LM)

    +39J t% (3740~ - Unite2 States Government m e m o randuin L3 DATE: AU6 3, 9 %g4 REPLY TO All-N OF: m -421 (U. A. W illiams, 427-1719) -. - >' SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Hr. Doug Toukay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recouwndations were made to

  20. United States Government

    Office of Legacy Management (LM)

    EFS (07-W United States Government memorandukn Department of Energy j ; I.-- ' -i;: /J DATE: j.gjG 2 9 1994 REPLY TO En-421 (W. A. Williams, 427-1719) AlTN OF: h p)\;--/ ;,;' J ( SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Ur. Doug Tonkay and Us. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites,