From a Failed-Growth Economy to a Steady-State Economy
Zaferatos, Nicholas C.
From a Failed-Growth Economy to a Steady-State Economy By Herman Daly A steady-state economy of negative growth, a depression such as we are entering now, is a failed-growth economy, not a steady-state economy. Halting an accelerating downward spiral is necessary but is not the same thing as resuming
Quantum Evolution and Anticipation
Hans-Rudolf Thomann
2010-03-04
In a previous paper we have investigated quantum states evolving into mutually orthogonal states at equidistant times, and the quantum anticipation effect exhibited by measurements at one half step. Here we extend our analyzes of quantum anticipation to general type quantum evolutions and spectral measures and prove that quantum evolutions possessing an embedded orthogonal evolution are characterized by positive joint spectral measure. Furthermore, we categorize quantum evolution, assess anticipation strength and provide a framework of analytic tools and results, thus preparing for further investigation and experimental verification of anticipation in concrete physical situations such as the H-atom, which we have found to exhibit anticipation.
Anticipated transients without scram
Lellouche, G.S.
1980-07-01
This article discusses in various degrees of depth the publications WASH-1270, WASH-1400, and NUREG-0460, and has as its purpose a description of the technical work done by Electric Power Research Institute (EPRI) personnel and its contractors on the subject of anticipated transients without scram (ATWS). It demonstrates the close relation between the probability of scram failure derived from historical scram data and that derived from the use of component data in a model of a system (the so-called synthesis method), such as was done in WASH-1400. The inherent conservatism of these models is demonstrated by showing that they predict significantly more events than have in fact occurred and that such models still predict scram failure probabilities low enough to make ATWS an insignificant contributor to accident risk.
Using Data to Achieve Anticipated Savings
Broader source: Energy.gov (indexed) [DOE]
Capabilities Build 9 Using Data to Achieve Anticipated Savings Way Ahead - Navy "SmartGrid" Enabling Capabilities 10 October 13, 2009 Using Data to Achieve Anticipated Savings...
Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...
DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...
Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...
Jones, Chloe Cooper
2012-05-31
. ________________________________ Chairperson Dr. Philip Barnard ________________________________ Dr. Kathryn Conrad ________________________________ Dr. Frank Farmer ________________________________ Dr. Mary Klayder...: A STEADY LESSENING ________________________________ Chairperson Dr. Philip Barnard Date approved: 11 April 2012 iii Abstract Presented here is a novella plus an academic introduction. The introduction attempts...
Castagnoli, G. )
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
Record attendance anticipated for 6th Annual Portsmouth Site...
Record attendance anticipated for 6th Annual Portsmouth Site Science Alliance Record attendance anticipated for 6th Annual Portsmouth Site Science Alliance October 2, 2015 - 3:39pm...
Mats Ehrnström; Erik Wahlén
2013-10-31
We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.
Why Geology Matters: Decoding the Past, Anticipating the Future
Anderson, Byron P.
2011-01-01
Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to
AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating...
Office of Scientific and Technical Information (OSTI)
AISDOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet Citation Details In-Document Search Title: AISDOE Technology Roadmap Program: Strip...
The non-anticipation of the asynchronous systems
Serban E. Vlad
2008-04-12
The asynchronous systems are the models of the asynchronous circuits from the digital electrical engineering and non-anticipation is one of the most important properties in systems theory. Our present purpose is to introduce several concepts of non-anticipation of the asynchronous systems.
Multi-Anticipative Piecewise-Linear Car-Following Model
Nadir Farhi; Habib Haj-Salem; Jean-Patrick Lebacque
2013-02-01
We propose in this article an extension of the piecewise linear car-following model to multi-anticipative driving. As in the one-car-anticipative model, the stability and the stationary regimes are characterized thanks to a variational formulation of the car-dynamics. We study the homogeneous driving case. We show that in term of the stationary regime, the multi-anticipative model guarantees the same macroscopic behavior as for the one-car-anticipative one. Nevertheless, in the transient traffic, the variance in car-velocities and accelerations is mitigated by the multi-anticipative driving, and the car-trajectories are smoothed. A parameter identification of the model is made basing on NGSIM data and using a piecewise linear regression approach.
Offshore Wind Energy Market Installed Capacity is Anticipated...
Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...
Webinar: Hydrogen Fueling for Current and Anticipated FCEVs
Broader source: Energy.gov [DOE]
The Energy Department will present a live webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles" on Tuesday, June 24, from 12:00 p.m. to 1:00 p.m. Eastern...
"Readiness is all”: anticipating death in the U.K.
Richards, Naomi
2010-01-01
This thesis explores some of the different ways in which people anticipate their dying in the U.K. Through an ethnographic exploration of an arts initiative, a social movement, a legal case, and a new law, this thesis ...
ATWS: a reappraisal. Part 3. Frequency of anticipated transients
McClymont, A.S.; Poehlman, B.W.
1982-01-01
This document is the first revision of Part 3 of the EPRI study of the anticipated transients without scram question. This revision includes an update of events at nuclear power plants which had led to fast reactor shutdowns (scrams). The purpose of this document is to present the nuclear power plant operating experience, reflecting the frequency of these events identified by their principal characteristics.
Current Control in ITER Steady State Plasmas With Neutral Beam Steering
R.V. Budny
2009-09-10
Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.
"Conflict Between Economic Growth and Environmental Protection...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dr. Bryan Czech, resident, Center for the Advancement of the Steady State of the Economy Presentation: Presentation Abstract: Abstract Conflict Between Economic Growth and...
Typical Pure Nonequilibrium Steady States
Takaaki Monnai; Kazuya Yuasa
2014-08-12
We show that typicality holds for a class of nonequilibrium systems, i.e., nonequilibrium steady states (NESSs): almost all the pure states properly sampled from a certain Hilbert space well represent a NESS and characterize its intrinsic thermal nature. We clarify the relevant Hilbert space from which the pure states are to be sampled, and construct practically all the typical pure NESSs. The scattering approach leads us to the natural extension of the typicality for equilibrium systems. Each pure NESS correctly yields the expectation values of observables given by the standard ensemble approach. It means that we can calculate the expectation values in a NESS with only a single pure NESS. We provide an explicit construction of the typical pure NESS for a model with two reservoirs, and see that it correctly reproduces the Landauer-type formula for the current flowing steadily between the reservoirs.
Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid
Ma, Kai; Hu, Guoqiang; Spanos, Costas J
2014-01-01
Price-Anticipating Buildings in Smart Grid Kai Ma Guoqiangprice-anticipating buildings in smart grid. The cooperativebuilding electricity use, with application to demand response,” IEEE Transactions on Smart
Steady state compact toroidal plasma production
Turner, W.C.
1983-05-17
This invention relates to the confinement of field reversed plasma rings and, more particularly, to the steady state maintainance of field reversed plasma rings produced by coaxial plasma guns.
BWR Anticipated Transients Without Scram Leading to Instability
Cheng L. Y.; Baek J.; Cuadra, A.; Aronson, A.; Diamond, D.; Yarsky, P.
2013-11-10
Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor power decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).
Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)
Broader source: Energy.gov [DOE]
Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.
Some Observations Regarding Steady Laminar Flows Past Bluff Bodies
Fornberg, Bengt
Some Observations Regarding Steady Laminar Flows Past Bluff Bodies Bengt Fornberg Department, 2013. February 4, 2014 Abstract Steady laminar flows past simple objects, such as a cylinder
Transpolar voltage and polar cap flux during the substorm cycle and steady convection events
Lockwood, Mike
of the 10,216 passes is classified by its substorm phase or as a steady convection event (SCE) by inspection of the AE indices. For all phases, we detect a contribution to the transpolar voltage by reconnection is 97% certain during quiet intervals and >99% certain during substorm/SCE growth phases but falls to 75
DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE
Sites, James R.
i DISSERTATION ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT Submitted ENTITLED `ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT' BE ACCEPTED(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT The demand for alternative sources of energy is rapidly
Steady-state inductive spheromak operation
Janos, Alan C. (E. Windsor, NJ); Jardin, Stephen C. (Princeton, NJ); Yamada, Masaaki (Lawrenceville, NJ)
1987-01-01
The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.
Steady water waves with multiple critical layers
Mats Ehrnström; Joachim Escher; Erik Wahlén
2011-04-01
We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.
Florida consumer confidence holds steady in May
Belogay, Eugene A.
. Consumer confidence held steady at 68 in May after dropping for three months since Feb. 1 when gasoline prices began shooting up, according to a new survey. But Floridians' perceptions of their own finances.8 from a revised 66 in April on worries about jobs and inflation for groceries and gasoline. The survey
4, 797821, 2007 Steady state 13C
Paris-Sud XI, Université de
of plant litter into more persistent organic compounds (Jones and Donelly, 2004). Carbon sequestration can-term steady state 13 C labelling to investigate carbon turnover in plant soil systems K. Klumpp, J. F mesocosms, allows tracing the fate of photosynthetic carbon in plant-soil systems in natural light
Steady-state inductive spheromak operation
Janos, A.C.; Jardin, S.C.; Yamada, M.
1985-02-20
The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.
Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior
R. L. Williamson; D. A. Knoll
2009-09-01
A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.
R. L. Williamson
2011-08-01
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.
Ascertainment bias causes false signal of anticipation in genetic Prion disease
2014-01-01
Ascertainment Bias Causes False Signal of Anticipation inThe Glu200Lys substitution causes CJD with nearly 100%due to deaths due to other causes (‘‘competing risks’’), we
Steady state compact toroidal plasma production
Turner, William C. (Livermore, CA)
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
ORC Closed Loop Control Systems for Transient and Steady State...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles System-level models using...
Intense steady state electron beam generator
Hershcovitch, A.; Kovarik, V.J.; Prelec, K.
1990-07-17
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.
FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS
Nozawa, Takaya [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kozasa, Takashi, E-mail: takaya.nozawa@ipmu.jp [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2013-10-10
The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO{sub 3} grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f{sub con,{sub ?}}, and average radius a{sub ave,{sub ?}} of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule ?{sub coll} is much smaller than the timescale ?{sub sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f{sub con,{sub ?}} and a larger a{sub ave,{sub ?}}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies ? ? ?{sub sat}/?{sub coll} ?> 30 during the formation of dust, and find that f{sub con,{sub ?}} and a{sub ave,{sub ?}} are uniquely determined by ?{sub on} at the onset time t{sub on} of dust formation. The approximation formulae for f{sub con,{sub ?}} and a{sub ave,{sub ?}} as a function of ?{sub on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.
Effects of aging in catastrophe on the steady state and dynamics of a microtubule population
V. Jemseena; Manoj Gopalakrishnan
2015-07-01
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {\\it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {\\bf147}, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000
Priest, Eric
High Energy Solar Physics: Anticipating HESSI ASP Conference Series, Vol. xxx, 2000 R. Ramaty and N. Mandzhavidze, eds. Solar Flare Theory and the Status of Flare Understanding E.R. Priest Department current understanding of the mag netohydrodynamics of solar flares. The theory of reconnection in 2D
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Knaust, Helmut
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math Ian M Abstract Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math
Constraints On The Mechanism Of Long-Term, Steady Subsidence...
Constraints On The Mechanism Of Long-Term, Steady Subsidence At Medicine Lake Volcano, Northern California, From Gps, Leveling, And Insar Jump to: navigation, search OpenEI...
EXISTENCE OF KNOTTED VORTEX TUBES IN STEADY EULER FLOWS
Enciso, Alberto
EXISTENCE OF KNOTTED VORTEX TUBES IN STEADY EULER FLOWS ALBERTO ENCISO AND DANIEL PERALTA-SALAS Abstract. We prove the existence of knotted and linked thin vortex tubes for steady solutions of vortex tubes of a Beltrami field that tends to zero at infinity. The structure of the vortex lines
SLOPE DISTRIBUTIONS, THRESHOLD HILLSLOPES, AND STEADY-STATE TOPOGRAPHY
Montgomery, David R.
SLOPE DISTRIBUTIONS, THRESHOLD HILLSLOPES, AND STEADY-STATE TOPOGRAPHY DAVID R. MONTGOMERY hillslopes, and steady-state topography. Plots of drainage area versus slope for these mountain ranges or exponential distributions in areas of active rock uplift and depositional topography, respectively. Local
Steady two-layer source-sink flow Lynne Talley
Talley, Lynne D.
and plane steady ocean circulation models. 2. Equations The two-layer system is illustrated in Fig. 1. H1 Dynamics at the Woods Hole Oceanographic Institution WHOI-79-84 (advisor: Adrian Gill) August, 1979 Note Greenland Current and colder fresher water from the north. The model discussed here is a steady extension
Quantifying Maintenance Requirements From the Steady-State Operation
Daugulis, Andrew J.
Quantifying Maintenance Requirements From the Steady-State Operation of a Two-Phase Partitioning remarkably through achievement of steady-state operation. The data conclusively show that maintenance and explicitly quantifying the maintenance energy requirements of pure cultures growing on volatile organic
Steady State of Pedestrian Flow in Bottleneck Experiments
Liao, Weichen; Seyfried, Armin; Chraibi, Mohcine; Drzycimski, Kevin; Zheng, Xiaoping; Zhao, Ying
2015-01-01
Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. In this work, a feasible algorithm - Cumulative Sum Control Chart - is proposed and improved to automatically detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with previous manually selected ones, the modified algorithm gives more reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The study about pedestrian flow shows that the difference between the flows in all states and in steady state mainly depends on the ratio of pedestrian number to bottleneck width. When the ratio is higher than a critical value (approximately 115 persons/m), the flow in all states is almost ...
Giachetti, R.T. (Giachetti (Richard T.), Ann Arbor, MI (USA))
1989-09-01
This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.
Autonomous quantum thermal machine for generating steady-state entanglement
Jonatan Bohr Brask; Nicolas Brunner; Géraldine Haack; Marcus Huber
2015-04-15
We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
NATURE PHYSICS | VOL 8 | NOVEMBER 2012 | www.nature.com/naturephysics 775 Pattern of growth
Loss, Daniel
, for example) that would consume very little energy, and thereby uncouple economic growth from energy growth to growth, pointing out that growth in energy use has held steady at around 2% yearly over the past three to thermodynamics alone. Talk all you want of future improvements in energy efficiency, but the energy we use always
The steady-state control problem for Markov decision processes
Doyen, Laurent
ensuring that the steady-state distribution of M under is exactly goal. We first show that station- ary MDP, and provide a PTIME algorithm using linear programming tech- niques. (2) We next lift the problem
BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS
Lieuwen, Timothy C.
mechanisms developed for hydrogen/carbon monoxide ignition overestimate the ignition delay time, indicating Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 2 UCI Combustion Laboratory, University- back, dynamic stability, and autoignition in premixed, steady flowing combustion systems
Issues in the statistical mechanics of steady sedimentation Sriram Ramaswamy*
Ramaswamy, Sriram
Issues in the statistical mechanics of steady sedimentation Sriram Ramaswamy* Centre for Condensed://www.tandf.co.uk/journals DOI: 10.1080/0001873011005061 7 * e-mail: sriram@ physics.iisc.ernet.in #12;4.5. Theories
Method and apparatus for adapting steady flow with cyclic thermodynamics
Swift, Gregory W. (Santa Fe, NM); Reid, Robert S. (Los Alamos, NM); Ward, William C. (Santa Fe, NM)
2000-01-01
Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.
On the Steady Nature of Line-Driven Disk Winds
Nicolas A. Pereyra; Stanley P. Owocki; D. John Hillier; David A. Turnshek
2003-11-11
We perform an analytic investigation of the stability of line-driven disk winds, independent of hydrodynamic simulations. Our motive is to determine whether or not line-driven disk winds can account for the wide/broad UV resonance absorption lines seen in cataclysmic variables (CVs) and quasi-stellar objects (QSOs). In both CVs and QSOs observations generally indicate that the absorption arising in the outflowing winds has a steady velocity structure on time scales exceeding years (for CVs) and decades (for QSOs). However, published results from hydrodynamic simulations of line-driven disk winds are mixed, with some researchers claiming that the models are inherently unsteady, while other models produce steady winds. The analytic investigation presented here shows that if the accretion disk is steady, then the line-driven disk wind emanating from it can also be steady. In particular, we show that a gravitational force initially increasing along the wind streamline, which is characteristic of disk winds, does not imply an unsteady wind. The steady nature of line-driven disk winds is consistent with the 1D streamline disk-wind models of Murray and collaborators and the 2.5D time-dependent models of Pereyra and collaborators. This paper emphasizes the underlying physics behind the steady nature of line-driven disk winds using mathematically simple models that mimic the disk environment
Cortes, Corinna
Enhancing Android Accessibility for Users with Hand Tremor by Reducing Fine Pointing and Steady; magnification; Android; disambiguation; fine pointing; steady tapping. ACM Classification Keywords H.5
Dissipative production of a maximally entangled steady state
Y. Lin; J. P. Gaebler; F. Reiter; T. R. Tan; R. Bowler; A. S. Sørensen; D. Leibfried; D. J. Wineland
2013-07-16
Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called "quantum gates", have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that inevitably arises from coupling between the system and the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion qubits independent of their initial state. While previous works along this line involved the application of sequences of multiple time-dependent gates [3] or generated entanglement of atomic ensembles dissipatively but relied on a measurement record for steady-state entanglement [4], we implement the process in a continuous time-independent fashion, analogous to optical pumping of atomic states. By continuously driving the system towards steady-state, the entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation, and dissipative phase transitions [5-7]. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation [8].
Tracer advection by steady groundwater flow in a stratified aquifer
Sposito, Garrison; Weeks, Scott W.
1997-01-02
The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.
RAMONA-3B calculations for Browns Ferry ATWS (Anticipated Transient Without Scram) study
Saha, P; Slovik, G C; Neymotin, L Y
1987-02-01
Several aspects of the Anticipated Transient Without Scram (ATWS) initiated by an inadvertent closure of all Main Steam Isolation Valves (MSIV) in a typical BWR/4 are analyzed in the report. The analysis is performed using the Brookhaven National Laboratory code, RAMONA-3B, which employs a three-dimensional neutron kinetics model coupled with a parallel-channel thermal hydraulics in representing a Boiling Water Reactor (BWR) Core. Four different transient scenarios have been investigated: (a) downcomer water level and reactor pressure control, (b) manual control rod insertion transient, (c) high pressure boil-off, and (d) recirculation pump trip failure. Results of these calculations should provide better understanding of mitigative effects of operator actions during ATWS, thus helping in the development of adequate Emergency Procedure Guidelines (EPG) required for the BWR plant safety. A few unresolved questions subject to future investigations are also discussed.
Wulff, W.; Cheng, H.S.; Mallen, A.N.
1990-01-01
Nine selected Anticipated Transients Without Scram (ATWS) have been simulated on the BNL Engineering Plant Analyzer (EPA), to determine how power and flow oscillations, similar to those that did or could have occurred at the LaSalle-2 boiling Water Reactor (BWR), could affect the rate of Pressure Suppression Pool heating. It has been determined that the pool can reach its temperature limit of 80{degree}C in 4.3 min. after Turbine Trip without Bypass, if the feedwater pumps are not tripped. The pool will not reach its limit, if Boron is injected, even when oscillations are encountered. Simultaneous turbine and recirculation pump trips, introduced under stable conditions, can lead to instability. 2 refs., 17 figs., 9 tabs.
Effect of recirculation pump trip following anticipated transients without scram at Big Rock Point
Lyon, R.E.
1981-08-01
As requested by the US Atomic Energy Commission (now US Nuclear Regulatory Commission) in their Technical Report on Anticipated Transients Without Scram (ATWS) for Water-Cooled Reactors (WASH-1270), Consumers Power Company has submitted analyses which describe the response of their Big Rock Point (BRP) Plant to ATWS. The original analyses were submitted on Febuary 21, 1975, and results indicated that a recirculation pump trip (RPT) was effective in limiting the consequences of an ATWS. The response of BRP to an ATWS was reanalyzed as a part of the Big Rock Point Probabilistic Risk Assessment (PRA). Results of the analysis were submitted on February 26, 1981, with the conclusion that automatic RPT provides little safety improvement at BRP. Purpose of this report is to evaluate the submitted analyses to determine the effectiveness of Recirculation Pump Trip in ATWS recovery.
Entropy and specific heat for open systems in steady states
X. L. Huang; B. Cui; X. X. Yi
2010-01-27
The fundamental assumption of statistical mechanics is that the system is equally likely in any of the accessible microstates. Based on this assumption, the Boltzmann distribution is derived and the full theory of statistical thermodynamics can be built. In this paper, we show that the Boltzmann distribution in general can not describe the steady state of open system. Based on the effective Hamiltonian approach, we calculate the specific heat, the free energy and the entropy for an open system in steady states. Examples are illustrated and discussed.
Existence of knotted vortex tubes in steady Euler flows
Alberto Enciso; Daniel Peralta-Salas
2014-10-23
We prove the existence of knotted and linked thin vortex tubes for steady solutions to the incompressible Euler equation in R^3. More precisely, given a finite collection of (possibly linked and knotted) disjoint thin tubes in R^3, we show that they can be transformed with a C^m-small diffeomorphism into a set of vortex tubes of a Beltrami field that tends to zero at infinity. The structure of the vortex lines in the tubes is extremely rich, presenting a positive-measure set of invariant tori and infinitely many periodic vortex lines. The problem of the existence of steady knotted vortex tubes can be traced back to Lord Kelvin.
Non-equilibrium steady state in the hydro regime
Pourhasan, Razieh
2015-01-01
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Non-equilibrium steady state in the hydro regime
Razieh Pourhasan
2015-11-20
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Non-equilibrium steady state in the hydro regime
Razieh Pourhasan
2015-09-03
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Models for steady state cycles in simple cells
Bennett, Steven D.
Models for steady state cycles in simple cells Steve Bennett April 19, 2004 Abstract Candidate simple cell models are explored, with emphasis on their potential to result in a stable cell cycle, and consequences and limitations of each model are discussed. 1 Introduction and Background Cell architecture
Steady water waves with multiple critical layers: interior dynamics
Mats Ehrnström; Joachim Escher; Gabriele Villari
2011-04-01
We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.
Steady detonation problem for slow and fast chemical reactions
Ceragioli, Francesca
Steady detonation problem for slow and fast chemical reactions F. Conforto1 , M. Groppi2 , R chemical reaction are discussed. The former consists in a system of balance laws for the case of a chemical is a system of conser- vation laws for the case of short chemical relaxation time (fast reaction). After
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
Don Scoffield
2015-01-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
Baumgartner, S.; Bieli, R.; Bergmann, U. C.
2012-07-01
An overview is given of existing CPR design criteria and the methods used in BWR reload analysis to evaluate the impact of channel bow on CPR margins. Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an optimized CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This is considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria set-up for the analyses of Anticipated Operation Occurrences (AOOs) and accidents. In the Monte Carlo approach a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant SLMCPR and OLMCPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. Emphasis is put on quantifying the statistical distribution of channel bow throughout the core using measurement data. The optimized CPR methodology has been implemented in the Westinghouse Monte Carlo code, McSLAP. The methodology improves the quality of dryout safety assessments by supplying more valuable information and better control of conservatisms in establishing operational limits for CPR. The methodology is demonstrated with application examples from the introduction at KKL. (authors)
Steady-state growth in a Hotelling model of resource extraction
Lin, C.-Y. Cynthia; Wagner, Gernot
2007-01-01
Estimating supply and demand in the world oil market.the demand curve for all commodities, including oil andgas, oil, silver, and tin have decreasing demand. The sole
New Report Charts Dynamic, Steady Growth of the U.S. Solar Jobs Market |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface is better6,
TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR
Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.
2013-11-10
A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.
US Army Corps of Engineers
ENGLISH Project Anticipated Midpoint Date - 1 October 2004 (MCP Index = 2253) Cost Escalation Factor = 2253/2209 = 1.019 The base cost index for the unit costs herein in Appendix A is for an assumed midpoint of construction date of 1 October 2003 (MCP Index = 2209) as described in paragraph 1.b above
US Army Corps of Engineers
ENGLISH Project Anticipated Midpoint Date - 1 October 2005 (MCP Index = 2279) Cost Escalation Factor = 2279/2239 = 1.018 The base cost index for the unit costs herein in Appendix A is for an assumed midpoint of construction date of 1 October 2004 (MCP Index = 2239) as described in paragraph 1.b above
Hydrodynamics of stratified epithelium: steady state and linearized dynamics
Wei-Ting Yeh; Hsuan-Yi Chen
2015-08-07
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.
Arbitrary axisymmetric steady streaming: Flow, force and propulsion
Spelman, Tamsin A
2015-01-01
A well-developed method to induce mixing on microscopic scales is to exploit flows generated by steady streaming. Steady streaming is a classical fluid dynamics phenomenon whereby a time-periodic forcing in the bulk or along a boundary is enhanced by inertia to induce a non-zero net flow. Building on classical work for simple geometrical forcing and motivated by the complex shape oscillations of elastic capsules and bubbles, we develop the mathematical framework to quantify the steady streaming of a spherical body with arbitrary axisymmetric time-periodic boundary conditions. We compute the flow asymptotically for small-amplitude oscillations of the boundary in the limit where the viscous penetration length scale is much smaller than the body. In that case, the flow has a boundary layer structure and the fluid motion is solved by asymptotic matching. Our results, presented in the case of no-slip boundary conditions and extended to include the motion of vibrating free surfaces, recovers classical work as parti...
QUASI-STEADY CONFIGURATIONS OF CONDUCTIVE INTRACLUSTER MEDIA
Voit, G. M.
2011-10-10
The radial distributions of temperature, density, and gas entropy among cool-core clusters tend to be quite similar, suggesting that they have entered a quasi-steady state. If that state is regulated by a combination of thermal conduction and feedback from a central active galactic nucleus (AGN), then the characteristics of those radial profiles ought to contain information about the spatial distribution of AGN heat input and the relative importance of thermal conduction. This paper addresses those topics by deriving steady-state solutions for clusters in which radiative cooling, electron thermal conduction, and thermal feedback fueled by accretion are all present, with the aim of interpreting the configurations of cool-core clusters in terms of steady-state models. It finds that the core configurations of many cool-core clusters have entropy levels just below those of conductively balanced solutions in which magnetic fields have suppressed electron thermal conduction to {approx}1/3 of the full Spitzer value, suggesting that AGN feedback is triggered when conduction can no longer compensate for radiative cooling. And even when feedback is necessary to heat the central {approx}30 kpc, conduction may still be the most important heating mechanism within a cluster's central {approx}100 kpc.
Optimization of hybrid dynamic/steady-state processes using process integration
Grooms, Daniel Douglas
2009-06-02
PROBLEM STATEMENT................................................................ 5 III OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE MASS EXCHANGE NETWORKS..................................................................................... 23 IV OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE PROPERTY INTEGRATION NETWORKS ......................................................... 24 4.1 Introduction...
Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models
Watanabe, Masahiro
Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models Masahiro approach, referred to as the accelerated iterative method (AIM), is developed for solving steady state, respectively. For ensuring the accelerated asymptotic convergence of iterative procedure
Design and Present status of Steady-state spherical tokamak, QUEST
Princeton Plasma Physics Laboratory
Design and Present status of Steady-state spherical tokamak, QUEST K.Hanada, H.Zushi, K.N.Sato, K Component Interactions in Steady State Magnetic Fusion Devices at NIFS #12;Japanese Collaborators and Map knowledge QUEST #12;Why steady-state ? Time (sec) Hsupply(1020 H) wall pumping ~4 x 1017 [H/m2s] High
Steady state entanglement in the mechanical vibrations of two dielectric membranes
Michael J. Hartmann; Martin B. Plenio
2008-09-15
We consider two dielectric membranes suspended inside a Fabry-Perot-cavity, which are cooled to a steady state via a drive by suitable classical lasers. We show that the vibrations of the membranes can be entangled in this steady state. They thus form two mechanical, macroscopic degrees of freedom that share steady state entanglement.
Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state,
Flury, Markus
Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state), Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state, variably and colloid transport through coarse Hanford sediments under steady state, variably saturated flow'' by Kelly
LSST: from Science Drivers to Reference Design and Anticipated Data Products
Z. Ivezic; J. A. Tyson; B. Abel; E. Acosta; R. Allsman; Y. AlSayyad; S. F. Anderson; J. Andrew; R. Angel; G. Angeli; R. Ansari; P. Antilogus; K. T. Arndt; P. Astier; E. Aubourg; T. Axelrod; D. J. Bard; J. D. Barr; A. Barrau; J. G. Bartlett; B. J. Bauman; S. Beaumont; A. C. Becker; J. Becla; C. Beldica; S. Bellavia; G. Blanc; R. D. Blandford; J. S. Bloom; J. Bogart; K. Borne; J. F. Bosch; D. Boutigny; W. N. Brandt; M. E. Brown; J. S. Bullock; P. Burchat; D. L. Burke; G. Cagnoli; D. Calabrese; S. Chandrasekharan; S. Chesley; E. C. Cheu; J. Chiang; C. F. Claver; A. J. Connolly; K. H. Cook; A. Cooray; K. R. Covey; C. Cribbs; W. Cui; R. Cutri; G. Daubard; G. Daues; F. Delgado; S. Digel; P. Doherty; R. Dubois; G. P. Dubois-Felsmann; J. Durech; M. Eracleous; H. Ferguson; J. Frank; M. Freemon; E. Gangler; E. Gawiser; J. C. Geary; P. Gee; M. Geha; R. R. Gibson; D. K. Gilmore; T. Glanzman; I. Goodenow; W. J. Gressler; P. Gris; A. Guyonnet; P. A. Hascall; J. Haupt; F. Hernandez; C. Hogan; D. Huang; M. E. Huffer; W. R. Innes; S. H. Jacoby; B. Jain; J. Jee; J. G. Jernigan; D. Jevremovic; K. Johns; R. L. Jones; C. Juramy-Gilles; M. Juric; S. M. Kahn; J. S. Kalirai; N. Kallivayalil; B. Kalmbach; J. P. Kantor; M. M. Kasliwal; R. Kessler; D. Kirkby; L. Knox; I. Kotov; V. L. Krabbendam; S. Krughoff; P. Kubanek; J. Kuczewski; S. Kulkarni; R. Lambert; L. Le Guillou; D. Levine; M. Liang; K-T. Lim; C. Lintott; R. H. Lupton; A. Mahabal; P. Marshall; S. Marshall; M. May; R. McKercher; M. Migliore; M. Miller; D. J. Mills; D. G. Monet; M. Moniez; D. R. Neill; J-Y. Nief; A. Nomerotski; M. Nordby; P. O'Connor; J. Oliver; S. S. Olivier; K. Olsen; S. Ortiz; R. E. Owen; R. Pain; J. R. Peterson; C. E. Petry; F. Pierfederici; S. Pietrowicz; R. Pike; P. A. Pinto; R. Plante; S. Plate; P. A. Price; M. Prouza; V. Radeka; J. Rajagopal; A. Rasmussen; N. Regnault; S. T. Ridgway; S. Ritz; W. Rosing; C. Roucelle; M. R. Rumore; S. Russo; A. Saha; B. Sassolas; T. L. Schalk; R. H. Schindler; D. P. Schneider; G. Schumacher; J. Sebag; G. H. Sembroski; L. G. Seppala; I. Shipsey; N. Silvestri; J. A. Smith; R. C. Smith; M. A. Strauss; C. W. Stubbs; D. Sweeney; A. Szalay; P. Takacs; J. J. Thaler; R. Van Berg; D. Vanden Berk; K. Vetter; F. Virieux; B. Xin; L. Walkowicz; C. W. Walter; D. L. Wang; M. Warner; B. Willman; D. Wittman; S. C. Wolff; W. M. Wood-Vasey; P. Yoachim; H. Zhan; for the LSST Collaboration
2014-08-29
(Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system designed to obtain multiple images covering the sky visible from Cerro Pach\\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. This system can image about 10,000 square degrees of sky in three clear nights using pairs of 15-second exposures twice per night, with typical 5$\\sigma$ depth for point sources of $r\\sim24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\\delta<+34.5^\\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\\sim27.5$. The remaining 10\\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.
A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion
Grcar, Joseph F
2008-01-01
for Modeling Steady, Laminar, One-Dimensional PremixedType of Steady and Stable, Laminar, Premixed Flame in Ultra-to support another kind of laminar ?ame that is steady and
Effective Temperature in Steady-state Dynamics from Holography
Kundu, Arnab
2015-01-01
We argue that, within the realm of gauge-gravity duality, for a large class of systems in a steady-state there exists an effective thermodynamic description. This description comes equipped with an effective temperature and a free energy, but no well-defined notion of entropy. Such systems are described by probe degrees of freedom propagating in a much larger background, e.g. $N_f$ number of ${\\cal N} =2$ hypermultiplets in ${\\cal N}=4$ $SU(N_c)$ super Yang-Mills theory, in the limit $N_f \\ll N_c$. The steady-state is induced by exciting an external electric field that couples to the hypermultiplets and drives a constant current. With various stringy examples, we demonstrate that an open string equivalence principle determines a unique effective temperature for all fluctuations in the probe-sector. We further discuss various properties of the corresponding open string metric that determines the effective geometry which the probe degrees of freedom are coupled to. We also comment on the non-Abelian generalizat...
Steady-state solution methods for open quantum optical systems
P. D. Nation
2015-04-25
We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterations using the stabilized bi-conjugate gradient method outperform generalized minimal residual methods. In contrast, minimal residual methods work best for solvers based on direct LU decomposition. This work serves as a guide for solving the steady-state density matrix of an arbitrary quantum optical system, and points to several avenues of future research that will extend the applicability of these classical algorithms in absence of a quantum computer.
Quasipatterns in steady Benard-Rayleigh Gerard Iooss
Iooss, GÃ©rard
of pattern formation, the primary modes have zero growth rate, and there are other modes on the quasilattice in the Faraday wave experiment [3, 5], in which a layer of fluid is subjected to vertical oscillation. Since
Fueling Requirements for Steady State high butane current fraction discharges
R.Raman
2003-10-08
The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.
Interfacial colloidal monolayers under steady shear: structure and flow profiles
Ivo Buttinoni; Zachary A. Zell; Todd M. Squires; Lucio Isa
2015-09-11
We study the coupling between the structural dynamics and rheological response of charged colloidal monolayers at water/oil interfaces, driven into steady shear by a microdisk rotating at a controlled angular velocity. The flow causes particles to layer into rotating concentric rings linked to the local, position-dependent shear rate, which triggers two distinct dynamical regimes: particles move continuously "Flowing") close to the microdisk, or exhibit intermittent "Hopping" between local energy minima farther away. The shear-rate dependent surface viscosity of a monolayer can be extracted from an interfacial stress balance, giving "macroscopic" flow curves whose behavior corresponds to the distinct microscopic regimes of particle motion. Hopping Regions correspond to a surface yield stress $\\eta \\sim \\tau_S^Y \\dot{\\gamma}^{-1}$, whereas Flowing Regions exhibit surface viscosities with power-law shear-thinning characteristics.
Non-equilibrium steady states for chains of four rotors
Noé Cuneo; Jean-Pierre Eckmann
2015-04-20
We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain of length three (considered previously by C. Poquet and the current authors), the new difficulty with four rotors is the apparition of resonances when both central rotors are fast. We deal with these resonances using the rapid thermalization of the two external rotors.
Exact equalities and thermodynamic relations for nonequilibrium steady states
Teruhisa S. Komatsu; Naoko Nakagawa; Shin-ichi Sasa; Hal Tasaki
2014-12-25
We study thermodynamic operations which bring a nonequilibrium steady state (NESS) to another NESS in physical systems under nonequilibrium conditions. We model the system by a suitable Markov jump process, and treat thermodynamic operations as protocols according to which the external agent varies parameters of the Markov process. Then we prove, among other relations, a NESS version of the Jarzynski equality and the extended Clausius relation. The latter can be a starting point of thermodynamics for NESS. We also find that the corresponding nonequilibrium entropy has a microscopic representation in terms of symmetrized Shannon entropy in systems where the microscopic description of states involves "momenta". All the results in the present paper are mathematically rigorous.
Interfacial colloidal monolayers under steady shear: structure and flow profiles
Ivo Buttinoni; Zachary A. Zell; Todd M. Squires; Lucio Isa
2015-04-01
We study the coupling between the structural dynamics and rheological response of charged colloidal monolayers at water/oil interfaces, driven into steady shear by a microdisk rotating at a controlled angular velocity. The flow causes particles to layer into rotating concentric rings linked to the local, position-dependent shear rate, which triggers two distinct dynamical regimes: particles move continuously "Flowing") close to the microdisk, or exhibit intermittent "Hopping" between local energy minima farther away. The shear-rate dependent surface viscosity of a monolayer can be extracted from an interfacial stress balance, giving "macroscopic" flow curves whose behavior corresponds to the distinct microscopic regimes of particle motion. Hopping Regions correspond to a surface yield stress $\\eta \\sim \\tau_S^Y \\dot{\\gamma}^{-1}$, whereas Flowing Regions exhibit surface viscosities with power-law shear-thinning characteristics.
Steady-State Electrical Conduction in the Periodic Lorentz Gas
N. I. Chernov; G. L. Eyink; J. L. Lebowitz; Ya. G. Sinai
1993-02-08
We study nonequilibrium steady states in the Lorentz gas of periodic scatterers when an external field is applied and the particle kinetic energy is held fixed by a ``thermostat'' constructed according to Gauss' principle of least constraint (a model problem previously studied numerically by Moran and Hoover). The resulting dynamics is reversible and deterministic, but does not preserve Liouville measure. For a sufficiently small field, we prove the following results: (1) existence of a unique stationary, ergodic measure obtained by forward evolution of initial absolutely continuous distributions, for which the Pesin entropy formula and Young's expression for the fractal dimension are valid; (2) exact identity of the steady-state thermodyamic entropy production, the asymptotic decay of the Gibbs entropy for the time-evolved distribution, and minus the sum of the Lyapunov exponents; (3) an explicit expression for the full nonlinear current response (Kawasaki formula); and (4) validity of linear response theory and Ohm's transport law, including the Einstein relation between conductivity and diffusion matrices. Results (2) and (4) yield also a direct relation between Lyapunov exponents and zero-field transport (=diffusion) coefficients. Although we restrict ourselves here to dimension $d=2,$ the results carry over to higher dimensions and to some other physical situations: e.g. with additional external magnetic fields. The proofs use a well-developed theory of small perturbations of hyperbolic dynamical systems and the method of Markov sieves, an approximation of Markov partitions. In our context we discuss also the van Kampen objection to linear response theory, which, we point out, overlooks the ``structural stability'' of strongly hyperbolic flows.
Dallman, R J; Gottula, R C; Holcomb, E E; Jouse, W C; Wagoner, S R; Wheatley, P D
1987-05-01
An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.
Pak Yuen Chan; Nigel Goldenfeld
2007-08-22
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match well the measured shapes near the vent at the top of observed travertine domes. Closer to the base of the dome, the solutions deviate from observations, and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane, and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
Steady state relativistic stellar dynamics around a massive black hole
Bar-Or, Ben
2015-01-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...
Steady-state and transient thermal performance of subsea hardware
Zabaras, G.J.; Zhang, J.
1998-06-01
The thermal performance of subsea hardware is of ultimate importance to the economic development and reliable operation of deepwater subsea oil and gas systems because of the potential for hydrate formation. Results of numerical calculations are presented on the thermal performance of subsea equipment such as wellheads, tubing and flowline jumpers, and flowline field joints. In contrast to previous published studies on the thermal performance of insulated subsea wellbores and flowlines, this paper addresses the thermal performance of the subsea equipment that can provide weak thermal links for the subsea system. A two-dimensional (2D), general-purpose, finite-element, partial-differential equation solver was used to analyze the steady-state and transient thermal behavior at different cross sections of the subsea tree. This paper presents a new method for predicting pressure profiles in oil and gas wells. The method combines mechanistic flow-pattern transition criteria with physical models for pressure-loss and liquid-holdup calculations for each of the flow patterns considered. Past published methods relied heavily on empirical fit of limited field data. As a result, they are inaccurate when used outside the range of data upon which they are based. In contrast, the new method is universally applicable to all types of wells under all operating scenarios because it is based on fundamental physics rather than the curve-fit of field data. Its prediction performance has been demonstrated by extensive comparison to field data from a variety of wells.
Method for crystal growth control
Yates, Douglas A. (Burlington, MA); Hatch, Arthur E. (Waltham, MA); Goldsmith, Jeff M. (Medford, MA)
1981-01-01
The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.
A steady-state L-mode tokamak fusion reactor : large scale and minimum scale
Reed, Mark W. (Mark Wilbert)
2010-01-01
We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state ...
High-Steady-State Advanced Tokamak Regimes for ITER and FIRE D. M. Meade1
FT High- Steady-State Advanced Tokamak Regimes for ITER and FIRE D. M. Meade1 , N. R. Sauthoff1 , C Institute of Technology, Cambridge, MA 02139, USA An attractive tokamak-based fusion power plant will require the development of high- steady- state advanced tokamak regimes to produce a high gain burning
BOOTSTRAP-CURRENT-DRIVEN STEADY-STATE TOKAMAK J.C. Sprott
Sprott, Julien Clinton
BOOTSTRAP-CURRENT-DRIVEN STEADY-STATE TOKAMAK J.C. Sprott PLP 891 January 1983 Plasma Studies of the authors and major professor. #12;BOOTSTRAP-CURRENT-DRIVEN STEADY-STATE TOKAMAK J.C. Sprott We examime here the possibility of modifying the Levitated Octupole to operate as a tokamak with a rotational transform produced
APS/123-QED Hydraulic Flow through a Contraction: Multiple Steady States
Al Hanbali, Ahmad
APS/123-QED Hydraulic Flow through a Contraction: Multiple Steady States Benjamin Akers Department states, as well as a steady reservoir with a two-dimensional hydraulic jump in the contraction occur-dimensional hydraulic theory provides a comprehensive leading-order explanation, but quadratic friction is re- quired
Optimization of a Steady-State Tokamak-Based Power Plant
Optimization of a Steady-State Tokamak-Based Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA IEA Workshop 59 "Shape and aspect ratio optimization for high , steady between a physics optimization and an integrated systems optimization Identify key impact of physics
Three-dimensionality of sand ripples under steady laminar shear flow
Three-dimensionality of sand ripples under steady laminar shear flow V. Langlois and A. Valance laminar shear flow using a process-based stability approach. The hydrodynamics of the problem is solved under steady laminar shear flow, J. Geophys. Res., 110, F04S09, doi:10.1029/2004JF000278. 1
A stochastic analysis of steady state two-phase flow in heterogeneous media
Lu, Zhiming
and soil pore size distribution. A stochastic numerical model for steady state water-oil flow in a random these expansions of Y(x), b(x) and dependent pressures, the steady state water-oil flow equations and corresponding size distribution b(x) are assumed to be Gaussian random functions with a separable exponential
Luryi, Serge
Photovoltaic transistors based on a steady-state internal polarization effect in asymmetric that a modified structure can generate a steady-state photovoltage. We then propose a new class of photovoltaic novelty is such a photovoltaic transistor (PVT) aspect. Our idea of the PVT arises from the well known
On the computation of steady hopper flows I: stress determination for Coulomb materials.1
importance for many manufacturing industries, where vast quantities of raw materials are stored and handledOn the computation of steady hopper flows I: stress determination for Coulomb materials.1 Pierre A@math.ncsu.edu,jvmatthe@eos.ncsu.edu The problem of determining the steady state flow of granular materials in silos under the action of gravity
On the computation of steady hopper flows I: stress determination for Coulomb materials. 1
importance for many manufacturing industries, where vast quantities of raw materials are stored and handledOn the computation of steady hopper flows I: stress determination for Coulomb materials. 1 Pierre A@eos.ncsu.edu The problem of determining the steady state flow of granular materials in silos under the action of gravity
Generalized Steady-state Analysis of Multiphase Interleaved Boost Converter with Coupled Inductors
Lipo, Thomas
2005-38 Generalized Steady-state Analysis of Multiphase Interleaved Boost Converter with Coupled interleaved boost converter with coupled inductors H.-B. Shin, J.-G. Park, S.-K. Chung, H.-W. Lee and T.A. Lipo Abstract: The generalised steady-state analysis of the multi-phase interleaved boost converter
Groundwater dynamics along a hillslope: A test of the steady state hypothesis
McDonnell, Jeffrey J.
Groundwater dynamics along a hillslope: A test of the steady state hypothesis Jan Seibert,1 Kevin modeling is that the relation between groundwater levels and runoff can be described as a succession of steady state conditions. This results in a single- valued, monotonic function between the groundwater
Non-equilibrium steady state of sparse systems Daniel Hurowitz and Doron Cohen
Cohen, Doron
or weakly interacting driven systems. Such "sparse" systems reach a novel non-equilibrium steady state (NESS case the quantum NESS might differ enormously from the stochastic NESS, with saturation temperature ensemble is analyzed. The study of systems with non-equilibrium steady state (NESS) has become active
Modulation of the 40-Hz Auditory Steady State Response by Attention during Acoustic Training
Roberts, Larry
Modulation of the 40-Hz Auditory Steady State Response by Attention during Acoustic Training Gander modulates the 40-Hz auditory steady-state response (SSR) which localizes to cortical sources in the region source waveform was enhanced in right hemisphere, implying modulation of A1 by attention
The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans
Horio, Tetsuya; Oakley, Berl R.
2005-02-01
of growth fluctuated over time from almost 0–0.194 #2;m/min. These germlings underwent repeated slow but steady growth periods punctuated by pauses in growth (Figure 1B). Tip growth in hyphal tip cells was steadier and much more rapid (0.506 #3; 0.21 #2;m..., and there was no obvious slowing of growth as germlings went through mitosis (Figure 1B). It is well established that the nuclei in the same cytoplas- mic compartment go into mitosis in semisynchronous man- ner (Robinow, 1969; Doonan, 1992). Time-lapse observations...
Progress Towards High Performance, Steady-state Spherical Torus
M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden
2003-10-02
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted on NSTX to test the method up to Ip {approx} 500 kA. In parallel, start-up using radio-frequency current drive and only external poloidal field coils are being developed on NSTX. The area of power and particle handling is expected to be challenging because of the higher power density expected in the ST relative to that in conventional aspect-ratio tokamaks. Due to its promise for power and particle handling, liquid lithium is being studied in CDX-U as a potential plasma-facing surface for a fusion reactor.
A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL PORTION OF A TWO-BEAM ACCELERATOR
Sternbach, E.
2008-01-01
September 8-13, 1985 A STEADY-STATE FEL: PARTICLE DYNAMICSIN THE FEL PORTION OF A TWO-BEAM ACCELERATOR E. SternbachLBL-19939 A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL
Anticipating Patentable Subject Matter
Burk, DL
2015-01-01
February 2013] PATENTABLE SUBJECT MATTER patentability—imports into patent law’s subject matter provisions theunder either novelty or subject matter. The proper question
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith
Steady-State Poisson-Nernst-Planck Systems: Asymptotic expansions and applications to ion channels
Abaid, Nicole Teresa
2008-07-31
Important properties of ion channels can be described by a steady state Poisson-Nernst-Plank system for electrodiffusion. The solution to the PNP system gives a relation between the current and electric potential of the ...
Statistical Behavior of Quasi-Steady Balanced Reconnection in Earth's Magnetosphere
Kissinger, Jennifer Eileen
2012-01-01
slow, steady solar wind conditions, one might expect to seeejections at one AU during 1995-2004, Solar Physics, 239,and declining solar cycle phases, and that one component of
IMPROVED QUASI-STEADY-STATE-APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION
Jay, Laurent O.
IMPROVED QUASI-STEADY-STATE-APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION L. O. JAY are presented. Key words. atmospheric chemistry, stiff ordinary differential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry
Quadratic voltage profiles in lead acid cells during slow, steady processes
Haaser, Robert Anthony
1999-01-01
It is standard lore that the voltage profile varies linearly in space within the electrolyte of a lead acid cell under slow, steady discharge. However, this hypothesis has never been put to the test. A recent theory predicts ...
Solute transport under steady and transient conditions in biodegraded municipal solid waste
Bendz, David; Singh, Vijay P.
1999-01-01
The transport of a conservative tracer (lithium) in a large (3.5 m3) undisturbed municipal solid waste sample has been investigated under steady and fully transient conditions using a simple model. The model comprises a ...
Particle Migration of Quasi-Steady Flow in Concentrated Suspension for Powder Injection Molding
Chen, X.
A hybrid FEM/FDM algorithm for particle migration of quasi-steady flow in concentrated suspension materials is proposed in this study. This hybrid FEM/FDM algorithm in which the planar variables, such as pressure field, ...
Kim, S.; Hu, Chia-Ren; Andrews, MJ.
2004-01-01
A numerical scheme to study the mixed states in a mesoscopic type-II superconducting cylinder is described. Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied magnetic field H are presented...
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Cardella, A; Erckmann, V.; Gantenbein, G; Hathiramani, D; Kasparek, W; Klinger, T.; Koenig, R; Kornejew, P; Laqua, H P; Lechte, C; Michel, G; Peacock, A.; Sunn Pedersen, T; Thumm, M; Turkin, Yu.; Wegener, Lutz; Werner, A.; Zhang, D; Beidler, C.; Bozhenkov, S.; Brown, T.; Geiger, J.; Harris, Jeffrey H; Heitzenroeder, P.; Lumsdaine, Arnold; Maassberg, H.; Marushchenko, N B; Neilson, G. H.; Otte, M; Rummel, Thomas; Spong, Donald A; Tretter, Jorg
2013-01-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Aspects of Steady-State Operation of the Wendelstein 7-X Stellarator
Geiger, J.; Wolf, R. C.; Beidler, C.; Cardella, A; Chlechowitz, E; Erckmann, V.; Gantenbein, G; Hathiramani, D; Hirsch, M; Kasparek, W; Kisslinger, J; Kornejew, P; Laqua, H P; Lechte, C; Lore, Jeremy D; Lumsdaine, Arnold; Maassberg, H.; Marushchenko, N B; Michel, G; Otte, M; Peacock, A.; Sunn Pedersen, T; Thumm, M; Turkin, Yu.; Werner, A.; Zhang, D
2013-01-01
The objective of Wendelstein 7-X is to demonstrate steady-state operation at -values of up to 5%, at ion temperatures of several keV and plasma densities of up to 2 1020 m 3. The second operational phase foresees a fully steady-state high heat flux (HHF) divertor. Preparations are underway to cope with residual bootstrap currents, either by electron cyclotron current drive or by HHF protection elements. The main steady-state heating system is an electron cyclotron resonance heating facility. Various technical improvements of the gyrotrons have been implemented recently. They enable a reliable operation at the 1MW power level. Some of the technical issues preparing plasma diagnostics for steady-state operation are exemplified. This includes the protection against non-absorbed microwave radiation.
Analysis of a high pressure ATWS (anticipated transient without scram) with very low make-up flow
Wagner, K.C.
1988-10-01
A series of calculations were performed to analyze the response of General Electric Company's (GE) advanced boiling water reactor (ABWR) during an anticipated transient without scram (ATWS). This work investigated the early plant response with an assumed failure or manual inhibit of the high pressure core flooder (HPCF). Consequently, the reactor core isolation cooling (RCIC) and control rod drive (CRD) systems are the only sources of high pressure injection available to maintain core cooling. Steam leaving the reactor pressure vessel was diverted to the pressure suppression pool (PSP) via the steam line and the safety relief valves. The combination of an unscrammed core and the CRD and RCIC injection sources make this a particularly challenging transient. System energy balance calculations were performed to predict the core power and PSP heat-up rate. The amount of vessel vapor superheat and the PSP temperature were found to significantly affect the resultant core power. Consequently, detailed thermal-hydraulic calculations were performed to simulate the system response during the postulated transient. 15 refs., 15 figs., 4 tabs.
Pearce, James David
1975-01-01
APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis JAMES DAVID PEARCE Submitted to the Graduate College of Texas A6M University in partial fulfillment... of the requirement for the degree of MASTER OP SCIENCE May 1975 Ma)or Subject: Nuclear Engineering APPLICATION OF VARIATIONAL TECHNIQUES FOR PARAMETRIC STUDIES OF STEADY-STATE CONTROLLED THERMONUCLEAR REACTOR BLANKETS A Thesis by JAMES DAVID PEARCE Approved...
Characteristics of various methods for solving steady state and unsteady state distillation problems
Coco, Vincent Joseph
1965-01-01
CHARACTERISTICS OF VARIOUS METHODS FOR SOLVING STEADY STATE AND UNSTEADY STATE DISTILLATION PROBLEMS A Thesis By VINCENT JOSEPH COCO Submitted to the Graduate College of the Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1965 Major Subject: Chemical Engineering CHARACTERISTICS OF VARIOUS METHODS FOR SOLVING STEADY STATE AND UNSTEADY STATE DISTILLATION PROBLEMS A Thesis By VINCENT JOSEPH COCO Approved as to style and content by...
Geometric and topological properties of the canonical grain growth microstructure
Jeremy K. Mason; Emanuel A. Lazar; Robert D. MacPherson; David J. Srolovitz
2015-07-13
Many physical systems can be modeled as large sets of domains "glued" together along boundaries - biological cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries, and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular microstructure resulting from a gradient flow of a simple energy, directly proportional to the total length or area of all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a more complete understanding of the grain growth steady-state can provide insight into the physics of a broad range of everyday materials. In this paper we report geometric and topological features of these canonical two- and three-dimensional steady-state microstructures obtained through large, accurate simulations of isotropic grain growth.
2013-01-01
on return frequencies for episodic disturbances, a balancereturn frequency of succession-inducing disturbances, variesEpisodic disturbance events with return frequencies greater
Casimir effect in the nonequilibrium steady state of a quantum spin chain
Gonzalez-Cabrera, D. L.; Racz, Z.
2010-05-15
We present a fully microscopics-based calculation of the Casimir effect in a nonequilibrium system, namely, an energy-flux-driven quantum XX chain. The force between the walls (transverse-field impurities) is calculated in a nonequilibrium steady state which is prepared by letting the system evolve from an initial state with the two halves of the chain prepared at equilibrium at different temperatures. The steady state emerging in the large-time limit is homogeneous but carries an energy flux. The Casimir force in this nonequilibrium state is calculated analytically in the limit when the transverse fields are small. We find that the the Casimir force range is reduced compared to the equilibrium case, and suggest that the reason for this is the reduction of fluctuations in the flux-carrying steady state.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Improved Growth Methods for LaBr3 Scintillation Radiation Detectors
McGregor, Douglas S
2011-05-01
The objective is to develop advanced materials for deployment as high-resolution gamma ray detectors. Both LaBr3 and CeBr3 are advanced scintillation materials, and will be studied in this research. Prototype devices, in collaboration Sandia National Laboratories, will be demonstrated along with recommendations for mass production and deployment. It is anticipated that improved methods of crystal growth will yield larger single crystals of LaBr3 for deployable room-temperature operated gamma radiation spectrometers. The growth methods will be characterized. The LaBr3 and CeBr3 scintillation crystals will be characterized for light yield, spectral resolution, and for hardness.
Gravity Effects on Steady Two-Dimensional Partially Premixed MethaneAir Flames
Aggarwal, Suresh K.
Gravity Effects on Steady Two-Dimensional Partially Premixed MethaneAir Flames ZHUANG SHU, CHUN W, University of Illinois at Chicago, Chicago, IL 60607-7022 Under normal-gravity conditions the flame heat is only weakly affected by gravity, the outer flame shows significant spatial differences for the two
Upscaling of soil hydraulic properties for steady state evaporation and infiltration
Mohanty, Binayak P.
Upscaling of soil hydraulic properties for steady state evaporation and infiltration Jianting Zhu September 2002. [1] Estimation of effective/average soil hydraulic properties for large land areas and guidelines for upscaling soil hydraulic properties in an areally heterogeneous field. In this study, we
APS/123-QED Hydraulic Flow through a Channel Contraction: Multiple Steady States
Al Hanbali, Ahmad
APS/123-QED Hydraulic Flow through a Channel Contraction: Multiple Steady States Benjamin Akers with a complex hydraulic jump in the contraction occurring in a small section of the bc/b0 and Froude number parameter plane. One- dimensional hydraulic theory provides a comprehensive leading-order approximation
Effective hydraulic parameters for steady state vertical flow in heterogeneous soils
Mohanty, Binayak P.
Effective hydraulic parameters for steady state vertical flow in heterogeneous soils Jianting Zhu August 2003. [1] In hydroclimate and land-atmospheric interaction models, effective hydraulic properties are needed at large grid scales. In this study, the effective soil hydraulic parameters of the areally
FRC on the Path to Fusion Energy (Moderate Density Steady-State Approach)
to start from already formed FRC) Plasma measurement in RMF frame of reference so s RMF r Br T *2 22 µ1 FRC on the Path to Fusion Energy (Moderate Density Steady-State Approach) Alan Hoffman Redmond Plasma Physics Laboratory University of Washington (FPA Meeting on Fusion Pathways to the Future
ECONOMIC COMPARISON OF MHD EQUILIBRIUM OPTIONS FOR ADVANCED STEADY STATE TOKAMAK POWER PLANTS
Najmabadi, Farrokh
ECONOMIC COMPARISON OF MHD EQUILIBRIUM OPTIONS FOR ADVANCED STEADY STATE TOKAMAK POWER PLANTS D for commercial tokamak power plants. The economic prospects of future designs are compared for several tokamak for future power plants. 1. INTRODUCTION The development path to economical and environ- mentally attractive
Steady and unsteady flow within an axisymmetric tube dilatation Ch. Stamatopoulos a
Papaharilaou, Yannis
Accepted 20 February 2010 Keywords: Tube dilatation Wall shear Vortex Flow separationreattachment a bSteady and unsteady flow within an axisymmetric tube dilatation Ch. Stamatopoulos a , Y s t r a c t The flow field in an axisymmetric tube dilatation is studied employing a 2D PIV system
Axisymmetric, High-, Steady-State Plasma Torus: A "Wind-Tunnel" to Develop Whole Device Models
Mauel, Michael E.
Axisymmetric, High-, Steady-State Plasma Torus: A "Wind-Tunnel" to Develop Whole Device Models Mike College, Hanover, NH White Paper for the 2015 DOE Integrated Simulations Workshop (Topics: C, D) Motivation The development of experimentally-validated whole device models is a grand challenge of fusion
Steady subsidence of Medicine Lake volcano, northern California, revealed by repeated leveling) in 1954 and 1989 show that the summit area subsided by as much as 302 ± 30 mm (À8.6 ± 0.9 mm in the earlier analysis of the same data by Dzurisin et al. [1991], who reported the subsidence rate as À11.1 ± 1
Stability of Multiple Steady States of Catalytic Combustion , and J. BRINDLEY
James, Alex
Stability of Multiple Steady States of Catalytic Combustion A. JAMES* , and J. BRINDLEY Department reaction (m s 1 ) Ag Pre-exponential factor for gas-phase reaction (m3 mol 1 s 1 ) Cox Initial [O2] (mol m mol 1 ) h Heat transfer coefficient (W m 2 K 1 ) hD Mass transfer coefficient (m s 1 ) kc Thermal
HU, T.A.
2000-04-27
This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.
HU, T.A.
2005-10-27
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Out-of-equilibrium energy flow and steady state configurations in AdS/CFT
Megias, Eugenio
2015-01-01
We study out-of-equilibrium energy flow in a strongly coupled system by using the AdS/CFT correspondence. In particular, we describe the appearance of a steady state connecting two asymptotic equilibrium systems. We obtain results within the linear response regime.
On the Steady Nature of Line-Driven Disk Winds: Application to Cataclysmic Variables
Nicolas A. Pereyra; David A. Turnshek; D. John Hillier
2005-06-01
We apply the semi-analytical analysis of the steady nature of line-driven winds presented in two earlier papers to disk winds driven by the flux distribution of a standard Shakura & Sunyaev (1973) disk for typical cataclysmic variable (CV) parameters. We find that the wind critical point tends to be closer to the disk surface towards the inner disk regions. Our main conclusion, however, is that a line-driven wind, arising from a steady disk flux distribution of a standard Shakura-Sunyaev disk capable of locally supplying the corresponding mass flow, is steady. These results confirm the findings of an earlier paper that studied "simple" flux distributions that are more readily analyzable than those presented here. These results are consistent with the steady velocity nature of outflows observationally inferred for both CVs and quasi-stellar objects (QSOs). We find good agreement with the 2.5D CV disk wind models of Pereyra and collaborators. These results suggest that the likely scenario to account for the wind outflows commonly observed in CVs is the line-driven accretion disk wind scenario, as suggested early-on by Cordova & Mason (1982). For QSOs, these results show that the line-driven accretion disk wind continues to be a promising scenario to account for the outflows detected in broad absorption line (BAL) QSOs, as suggested early-on by Turnshek (1984), and analyzed in detail by Murray et al. (1995).
Sharp Uniform Bounds for Steady Potential Fluid-Poisson Systems Irene M. Gamba1
, for the potential hydrodynamic{Poisson systems, cavitation speed is a function that depends on the potential ow consider steady potential hydrodynamic-Poisson system with a dissipation term (viscosity) proportional is bounded pointwise, at points x0 in the interior of the ow domain, by cavitation speed (given by Bernoulli
Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states
Khandekar, Sameer
Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states V t Understanding of the operational characteristics of a closed loop Pulsating Heat Pipe (PHP) with non- intrusive. Introduction A pulsating heat pipe/oscillating heat pipe is essentially a pas- sive two-phase heat transfer
Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas
Lévy, Bruno
Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jérémie Dumas Université de Figure 1: The upper leg of the Poppy robot (www.poppy-project.org) cannot be 3D printed on low cost FDM usage. Abstract Fused Filament Fabrication (FFF) is the process of 3D printing ob- jects from melted
EXISTENCE AND STABILITY OF STEADY-STATE SOLUTIONS WITH FINITE ENERGY FOR THE NAVIER-STOKES
Schonbek, Maria
EXISTENCE AND STABILITY OF STEADY-STATE SOLUTIONS WITH FINITE ENERGY FOR THE NAVIER to viscosity is sufficiently small in a natural norm we construct solutions which have finite energy (finite L2 norm). These solutions are unique among all solutions with finite energy and finite Dirichlet integral
Stability of steady gravity waves generated by a moving localised pressure disturbance in water of
Stability of steady gravity waves generated by a moving localised pressure disturbance in water-dimensional surface waves generated by an applied steadily moving localized pressure distribution over water of finite is ignored, and has applications for the modelling of waves generated by ships. The flow parameters
Tracer transport in the presence of steady zonal jets in a forced and viscous barotropic model
Collier, Jonathan Craig
2000-01-01
to the time since release, and in the long-time limit, to the square root of the time. Tracers released into a fluid which was anisotropic and contained steady zonal jets, exhibited an inhibition of meridional excursion. However, the length scale associated...
Aircraft landing gear greased slider bearing steady-state thermo-elastohydrodynamic concept model
to take place at the lower bearingpiston sliding interface of the main landing gear (MLG) (see Fig. 1Aircraft landing gear greased slider bearing steady-state thermo-elastohydrodynamic concept model for studying the thermal behavior of a greased aircraft landing gear lower slider bearing. Structural damage
Tartakovsky, Daniel M.
soils Zhiming Lu and Shlomo P. Neuman Department of Hydrology and Water Resources, University of Arizona 26 April 2002. [1] We consider steady state unsaturated flow in bounded, randomly heterogeneous soils that the solution may remain asymptotic for values of sY 2 as large as 2. INDEX TERMS: 1866 Hydrology: Soil moisture
. Introduction to drives and power electronics in control of electric machines, including switch-mode PWM (ABET Outcomes A, C, E, j, k) Learning Resources: Electric Machines and Drives: A First Course, Ned for electric motors. Steady-state characteristics and analysis of induction, synchronous and direct current
Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection
Vlad, Gregorio
Steady Improved Confinement in FTU High Field Plasmas Sustained by Deep Pellet Injection D at the maximum nominal toroidal field (8 T), and lower, by deep multiple pellet injection. These plasmas featured due to particle concentration in the well confined hot core. Deep pellet injection in Alcator C high
Steady improved confinement in FTU high field plasmas sustained by deep pellet injection
Vlad, Gregorio
Steady improved confinement in FTU high field plasmas sustained by deep pellet injection D to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas also feature high to the input power due to particle concentration in the well confined hot core. Deep pellet injection (e
ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water
ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water-to-water. The model includes several unspecified parameters that are esti- mated from catalog data using a multi available from manufacturers' catalogs. Compared to equation-fit models, by retaining the physically based
Stochastics and Statistics A wavelet-based spectral procedure for steady-state
q Emily K. Lada a,1 , James R. Wilson b,* a SAS Institute Inc., 100 SAS Campus Drive, R5413, Cary Box 7906, Raleigh, NC 27695-7906, USA Received 23 February 2004; accepted 21 April 2005 Available online 27 June 2005 Abstract We develop WASSP, a wavelet-based spectral method for steady
Current control in ITER steady state plasmas with neutral beam steering R. V. Budnya
Budny, Robert
. The heating and current drive systems for ITER plasmas are being designed. The primary systems being for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid as the ratio of the DT fusion and the external heating powers PDT/Pext 5 for durations of up to 3000 s
Nonequilibrium steady states of finite quantum systems coupled to thermal reservoirs
, at small coupling, the combined quantum system S+R 1 +R 2 has a unique nonÂequilibrium steady state (NESS) and that the approach to this NESS is exponentially fast. We show that the entropy production of the coupled system argument is general and deals with spectral theory of NESS. In the abstract setting of algebraic quantum
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen
Cohen, Doron
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen Ben-Gurion University Htotal implies a glassy NESS We can define NESS effective temperature D() exhibit LRT to SLRT crossover Quantum (s=0.01) T B #12;Quantum NESS for toy model with n.n. transitions d dt = -i[H, ] - 2 2 [V, [V,
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen
Cohen, Doron
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen Ben-Gurion University Daniel (s=0.85) Quantum (s=0.01) Stochastic (s=0.01) T B #12;Quantum NESS for toy model with n.n. transitions d dt = -i[H, ] - 2 2 [V, [V,
The non-equilibrium steady state of sparse systems with non trivial topology
Cohen, Doron
, the system will reach a Non-Equilibrium Steady State (NESS). #12;The model system System + Bath + Driving of cooling = DB TB - DB Tsystem Driving System Work (W)Heat (Q) Bath SB() SA() Hence at the NESS: Tsystem = 1 to the sparsity of the perturbation matrix, the NESS is of glassy nature [1]. 2. An extension of the Fluctuation
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen
Cohen, Doron
Non-equilibrium steady state (NESS) of sparse systems Doron Cohen Ben-Gurion University Daniel + D() DB Â« TB Sparsity implies a glassy NESS We can define NESS effective temperature D() exhibit LRT (s=0.85) Quantum (s=0.01) Stochastic (s=0.01) T B #12;Quantum NESS for toy model with n
The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling
Paris-Sud XI, Université de
The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power, Gas turbine, Hybrid, Solid Oxide Fuel Cell hal-00703135,version1-31May2012 Author manuscript
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Steady-state laboratory ow laws alone fail to explain postseismic observations Andrew M. Freed a,
Freed, Andrew
dislocation creep geodesy nite element modeling We test whether laboratory derived steady-state ow laws- and stress-dependent ow laws for diffusion and dislocation creep of olivine. We primarily concentrate of a number of creep mechanisms and associated constitutive relationships that quantify how viscosity and ow
Quasi-Steady Katabatic Winds on Slopes in Wide Valleys: Hydraulic Theory and Observations
Hunt, Julian
Quasi-Steady Katabatic Winds on Slopes in Wide Valleys: Hydraulic Theory and Observations M in the presence of weak synoptic winds. Because of the lateral constraints on the flow, Coriolis effects by sloping topography (Strobach 1991), as is the terrain of most urban areas of the world. Air circulation
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J. (Cambridge, MA)
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham (Arlington, MA)
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
Bell, John B.
Lawrence Berkeley National Laboratory report LBNL-725E 1 A New Type of Steady and Stable, Laminar-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames;Nomenclature fuel equivalence ratio 1 Introduction There is growing evidence that a new type of laminar
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 171 Continuation-Based Quasi-Steady-State Analysis Qin Wang, Member, IEEE, Hwachang Song, Member, IEEE, and Venkataramana Ajjarapu, Senior Member, IEEE Abstract--This paper presents continuation-based quasi-steady- state (CQSS) analysis
Oren, Shmuel S.
Optimal Strategic Petroleum Reserve Policies: A Steady State Analysis Author(s): Shmuel S. Oren.S.A. OPTIMAL STRATEGIC PETROLEUM RESERVE POLICIES: A STEADY STATE ANALYSIS* SHMUEL S. OREN AND SHAO HONG WAN Petroleum Reserve (SPR) under a variety of supply and demand conditions. The optimal policy variables
Cohen, Doron
2013-01-01
an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate nonequilibrium steady state (NESS). Considering the NESS of a mesoscopically glassy system, our working
Absence of a steady-state space charge limited regime for a sheath in a weakly collisional plasma average kinetic energy in the direction normal to the walls. Electrons are stratified into several groups leads to absence of a steady-state space charge limited regime for a sheath even in presence of a high
Tillack, Mark
1 Steady-State Impurity Control, Heat Removal and Tritium Recovery by Moving-Belt Plasma-Z getter materials, heat removal and tritium recovery. In order to minimize MHD effects as well as induced is the application of "Moving-Belt Plasma-Facing Components" for steady-state impurity gettering, heat removal
Tromberg, Bruce J. (Irvine, CA); Berger, Andrew J. (Rochester, NY); Cerussi, Albert E. (Lake Forest, CA); Bevilacqua, Frederic (Costa Mesa, CA); Jakubowski, Dorota (Irvine, CA)
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
Study on the steady operating state of a micro-pulse electron gun
Kui, Zhou; Xing, Luo; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Ziqin, Yang
2014-09-15
Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856?MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.
Particle-based simulations of steady-state mass transport at high P\\'eclet numbers
Müller, Thomas; Rajah, Luke; Cohen, Samuel I A; Yates, Emma V; Vendruscolo, Michele; Dobson, Chrisopher M; Knowles, Tuomas P J
2015-01-01
Conventional approaches for simulating steady-state distributions of particles under diffusive and advective transport at high P\\'eclet numbers involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at high P\\'eclet numbers where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in p...
Graf, D.C.; Warpinski, N.R.
1994-03-01
Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome and expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.
Robust random number generation using steady-state emission of gain-switched laser diodes
Yuan, Z. L. Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-06-30
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20?Gb/s, for laser repetition rates of 1 and 2.5?GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80?Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5?GHz.
Technology Policy and Economic Growth
Borrus, Michael; Stowsky, Jay
1997-01-01
economic growth) and the Pentagon’s Technology Reinvestment20 Tassey, Technology and Economic Growth: Implications forTechnology Policy and Economic Growth Michael Borrus Jay
Non-equilibrium steady states in the Klein-Gordon theory
Benjamin Doyon; Andrew Lucas; Koenraad Schalm; M. J. Bhaseen
2014-09-23
We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension $d$ following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures $T_{\\rm L}$ and $T_{\\rm R}$, are connected along a $d-1$-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures $T_{\\rm L}$ and $T_{\\rm R}$ for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.
An All-Sky Search for Steady VHE Gamma-Ray Sources
Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B
1999-01-01
The Milagrito water Cherenkov detector in the Jemez Mountains near Los Alamos, New Mexico took data from February 1997 to April 1998. Milagrito served as a prototype for the larger Milagro detector, which has just begun operations. Milagrito was the first large-aperture gamma-ray detector with sensitivity to gamma rays below 1 TeV. We report here on a search for steady emission from point sources over most of the northern sky using data from Milagrito.
An All-Sky Search for Steady VHE Gamma-Ray Sources
R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh
1999-06-23
The Milagrito water Cherenkov detector in the Jemez Mountains near Los Alamos, New Mexico took data from February 1997 to April 1998. Milagrito served as a prototype for the larger Milagro detector, which has just begun operations. Milagrito was the first large-aperture gamma-ray detector with sensitivity to gamma rays below 1 TeV. We report here on a search for steady emission from point sources over most of the northern sky using data from Milagrito.
Arc plasma generator of atomic driver for steady-state negative ion source
Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Novosibirsk State University, Novosibirsk ; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A. Mishagin, V. V.; Shulzhenko, G. I.; Putvinsky, S. V.; Smirnov, A.
2014-02-15
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB{sub 6} cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
On the energy-minimizing steady states of a thin film equation
Almut Burchard; Marina Chugunova; Benjamin K. Stephens
2010-09-21
Steady states of the thin film equation $u_t+[u^3 (u_xxx + \\alpha^2 u_x -\\sin(x) )]_x=0$ are considered on the periodic domain $\\Omega = (-\\pi,\\pi)$. The equation defines a generalized gradient flow for an energy functional that controls the $H^1$-norm. The main result establishes that there exists for each given mass a unique nonnegative function of minimal energy. This minimizer is symmetric decreasing about $x=0$. For $\\alpha<1$ there is a critical value for the mass at which the minimizer has a touchdown zero. If the mass exceeds this value, the minimizer is strictly positive. Otherwise, it is supported on a proper subinterval of the domain and meets the dry region at zero contact angle. A second result explores the relation between strict positivity and exponential convergence for steady states. It is shown that positive minimizers are locally exponentially attractive, while the distance from a steady state with a dry region cannot decay faster than a power law.
Gas-bubble growth mechanisms in the analysis of metal fuel swelling
Gruber, E.E.; Kramer, J.M.
1986-06-01
During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.
Kim, Sangbum
2006-04-12
In part I, a numerical study of the mixed states in a mesoscopic type-II superconducting cylinder is described. Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied ...
Strategic Growth Initiative (Michigan)
Broader source: Energy.gov [DOE]
A joint venture between Michigan Department of Agriculture and Rural Development (MDARD) and the Michigan Economic Development Corporation (MEDC), the Strategic Growth Initiative Grant Program was...
Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, Lai-Yung R.
2014-12-02
Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore »CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely captured the variability of the HWSD SOC across the different dominant plant functional types (PFTs) at global scale. The numerical correlation between the calculated and HWSD SOC was, however, weak at both point and global scales, suggesting that the models used in describing biogeochemical processes in CLM needs improvements and/or HWSD needs updating as suggested by other studies. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, such as NPP, GPP, total vegetation C etc., which makes the developed approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare different aspects simulated by different CN mechanisms in the model.« less
Nonequilibrium steady state transport of collective-qubit system in strong coupling regime
Chen Wang; Ke-Wei Sun
2015-08-10
We investigate the steady state photon transport in a nonequilibrium collective-qubit model. By adopting the noninteracting blip approximation, which is applicable in the strong photon-qubit coupling regime, we describe the essential contribution of indirect qubit-qubit interaction to the population distribution, mediated by the photonic baths. The linear relations of both the optimal flux and noise power with the qubits system size are obtained. Moreover, the inversed power-law style for the finite-size scaling of the optimal photon-qubit coupling strength is exhibited, which is proposed to be universal.
Improved volume-averaged model for steady and pulsed-power electronegative discharges
Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.; Gudmundsson, J. T.
2006-11-15
An improved volume-averaged global model is developed for a cylindrical (radius R, length L) electronegative (EN) plasma that is applicable over a wide range of electron densities, electronegativities, and pressures. It is applied to steady and pulsed-power oxygen discharges. The model incorporates effective volume and surface loss factors for positive ions, negative ions, and electrons combining three electronegative discharge regimes: a two-region regime with a parabolic EN core surrounded by an electropositive edge, a one-region parabolic EN plasma, and a one-region flat-topped EN plasma, spanning the plasma parameters and gas pressures of interest for low pressure processing (below a few hundred millitorr). Pressure-dependent effective volume and surface loss factors are also used for the neutral species. A set of reaction rate coefficients, updated from previous model calculations, is developed for oxygen for the species O{sub 2}, O{sub 2}({sup 1}{delta}{sub g}), O, O{sub 2}{sup +}, O{sup +}, and O{sup -}, based on the latest published cross-section sets and measurements. The model solutions yield all of the quantities above together with such important processing quantities such as the neutral/ion flux ratio {gamma}{sub O}/{gamma}{sub i}, with the discharge aspect ratio 2R/L and pulsed-power period and duty ratio (pulse on-time/pulse period) as parameters. The steady discharge results are compared to an experiment, giving good agreement. For steady discharges, increasing 2R/L from 1 to 6 leads to a factor of 0.45 reduction in {gamma}{sub O}/{gamma}{sub i}. For pulsed discharges with a fixed duty ratio, {gamma}{sub O}/{gamma}{sub i} is found to have a minimum with respect to pulse period. A 25% duty ratio pulse reduces {gamma}{sub O}/{gamma}{sub i} by a factor of 0.75 compared to the steady-state case.
Interaction stabilized steady states in the driven O(N) model
Anushya Chandran; Shivaji. L. Sondhi
2015-06-29
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has non-trivial correlations and is synchronized with the drive. The O(N) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.
U-Tube Steam Generator experiments: steady state and transients analysis using RELAP5/MOD2
Kalyanasundaram, Mathangi
1989-01-01
by the code. RELAP. The floii. regime sv transitions and heat transfer correlations based on a two phase flow over tube bundles have improved the heat transfer prediction at steady state and transient accident in s. U-tube steam generator. ACKNOWLEDGEMENT... two-phase flow and the void distribution in the steam generator to accurately predict PIVR plant response. The 'Alodel Boiler Xo22 (kIB-'2) steani generator is oue such experimental facihty to provide comprehensive data on the behavior of steam...
Particle-based simulations of steady-state mass transport at high Péclet numbers
Thomas Müller; Paolo Arosio; Luke Rajah; Samuel I. A. Cohen; Emma V. Yates; Michele Vendruscolo; Chrisopher M. Dobson; Tuomas P. J. Knowles
2015-10-17
Conventional approaches for simulating steady-state distributions of particles under diffusive and advective transport at high P\\'eclet numbers involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at high P\\'eclet numbers where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative agreement of the predicted concentration profiles with the results of experiments performed with fluorescent particles in microfluidic channels under continuous flow. This approach is computationally advantageous and readily allows non-trivial initial distributions to be considered. In particular, this method is highly suitable for simulating advective and diffusive transport in microfluidic devices.
Natural equilibria in steady-state neutron diffusion with temperature feedback
Pounders, J. M.; Ingram, R. [Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122-0079 (United States)
2013-07-01
The critical diffusion equation with feedback is investigated within the context of steady-state multiphysics. It is proposed that for critical configurations there is no need to include the multiplication factor k in the formulation of the diffusion equation. This is notable because exclusion of k from the coupled system of equations precludes the mathematically tenuous notion of a nonlinear eigenvalue problem. On the other hand, it is shown that if the factor k is retained in the diffusion equation, as is currently common practice, then the resulting problem is equivalent to the constrained minimization of a functional representing the critical equilibrium of neutron and temperature distributions. The unconstrained solution corresponding to k = 1 represents the natural equilibrium of a critical system at steady-state. Computational methods for solving the constrained problem (with k) are briefly reviewed from the literature and a method for the unconstrained problem (without k) is outlined. A numerical example is studied to examine the effects of the constraint in the nonlinear system. (authors)
Development of steady-state operation using ICH in the LHD
Kasahara, H.; Seki, T.; Saito, K.; Seki, R.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tokitani, M.; Ashikawa, N.; Shoji, M.; Kamio, S.; Tsuchiya, H.; Tanaka, H.; Yoshimura, S.; Tamura, N.; Yamada, I.; Suzuki, C.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); and others
2014-02-12
Long-pulse discharge with the electron density n{sub e0} of 1 × 10{sup 19} m{sup ?3}, electron temperature T{sub e0} of 2.5 keV, discharge length t{sub dis} of 19 minutes and heating power P{sub inject} of 1MW, is demonstrated using the HAS antenna and the PA antenna for ion cyclotron heating (ICH) and increasing in the power of electron cyclotron heating (ECH). The HAS antenna is designed to phase dipole and excite ideal fast wave with parallel electric field kept small, and low impurity generation and accumulation are achieved on the steady-state discharge by weak parasitic heating around antennas. On the long-pulse discharge, the radiation measured by bolometer is kept smaller than 20% for injection power, and the heat load to divertor is approximately 60 % with low energetic particle losses. The heat load ratio to divertor is not as a function of injection power around 1MW, and energy confinement has been kept during the steady-state discharge.
Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force
Francisco Vega Reyes; Andrés Santos
2015-11-04
We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational modes, translational and rotational kurtoses, and translational-rotational velocity correlations. By comparison with a numerical solution of the Boltzmann kinetic equation (by means of the Direct Simulation Monte Carlo method) we show that our analytical solution provides a good description that is quantitatively very accurate in certain ranges of inelasticity and roughness. We also find three important features that make the forced granular gas steady state very different from the homogeneous cooling state (attained by an unforced granular gas). First, the marginal velocity distributions are always close to a Maxwellian. Second, there is a continuous transition to the purely smooth limit (where the effects of particle rotations are ignored). And third, the angular translational-rotational velocity correlations show a preference for a quasiperpendicular mutual orientation (which is called "lifted-tennis-ball" behavior).
Steady-state propagation speed of rupture fronts along 1D frictional interfaces
Amundsen, David Skålid; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien
2015-01-01
The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasi-static velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a 1D spring-block model of an extended frictional interface, for various friction laws. With the classical Amontons--Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates stead...
The Role of Gas In Maintaining Quasi-Steady Spiral Structure In Stellar Disks
Sukanya Chakrabarti
2008-12-03
We study the dynamical evolution of spiral structure in the stellar disks of isolated galaxies using high resolution Smoothed Particle Hydrodynamics (SPH) simulations that treat the evolution of gas, stars, and dark matter self-consistently. We focus this study on the question of self-excited spiral structure in the stellar disk and investigate the dynamical coupling between the cold, dissipative gaseous component and the stellar component. We find that angular momentum transport from the gas to the stars inside of corotation leads to a roughly time-steady spiral structure in the stellar disk. To make this point clear, we contrast these results with otherwise identical simulations that do not include a cold gaseous component that is able to cool radiatively and dissipate energy, and find that spiral structure, when it is incipient, dies out more rapidly in simulations that do not include gas. We also employ a standard star formation prescription to convert gas into stars and find that our results hold for typical gas consumption time scales that are in accord with the Kennicutt-Schmidt relation. We therefore attribute the long-lived roughly time steady spiral structure in the stellar disk to the dynamical coupling between the gas and the stars and the resultant torques that the self-gravitating gaseous disk is able to exert on the stars due to an azimuthal phase shift between the collisionless and dissipative components.
Heating and current drive requirements towards steady state operation in ITER
Poli, F. M.; Kessel, C. E.; Gorelenkova, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Batchelor, D. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Harvey, B.; Petrov, Y. [CompX, Box 2672, Del Mar, CA 92014 (United States)
2014-02-12
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Transient growth mechanisms of low Reynolds number flow over a low-pressure turbine blade
Sharma, AS; Sherwin, SJ; Theofilis, V; 10.1007/s00162-010-0183-9
2013-01-01
A direct transient growth analysis for three-dimensional perturbations to flow past a periodic array of T-106/300 low-pressure turbine fan blades is presented. The methodology is based on a singular value decomposition of the flow evolution operator, linearised about a steady or periodic base flow. This analysis yields the optimal growth modes. Previous work on global mode stability analysis of this flow geometry showed the flow is asymptotically stable, indicating a non-modal explanation of transition may be more appropriate. The present work extends previous investigations into the transient growth around a steady base flow, to higher Reynolds numbers and periodic base flows. It is found that the notable transient growth of the optimal modes suggests a plausible route to transition in comparison to modal growth for this configuration. The spatial extent and localisation of the optimal modes is examined and possible physical triggering mechanisms are discussed. It is found that for longer times and longer sp...
Turco, F.; Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ferron, J. R.; Luce, T. C.; Politzer, P. A.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Park, J. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Brennan, D. P. [University of Tulsa, Tulsa, Oklahoma 74104 (United States); Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton 08543, New Jersey (United States); In, Y. [Far-Tech, Inc., San Diego, California 92121 (United States)
2012-12-15
Recent experiments on DIII-D have provided the first systematic data on the impact of the current profile on the transport and stability properties of high-performance, steady-state scenario plasmas. In a future tokamak, to achieve 100% noninductive conditions and produce net power, the current profile J must be sustained by a large fraction of bootstrap current J{sub BS}, which is nonlinearly coupled with the kinetic profiles. Systematic scans of q{sub min} and q{sub 95} were performed to determine empirically the best alignment of the noninductive currents with J and the variation of the transport properties with q. Transport analysis indicates that {chi}{sub e} and {chi}{sub i} are sensitive to the details of J in a way that makes the pressure profile peaking and J{sub BS} scale nonlinearly with both q and {beta} in the experiment. Drift wave stability analysis yields linear growth rates that do not reproduce experimental trends in {chi} with q{sub min} and q{sub 95}. At high beta, necessary to maximize f{sub BS}, the plasma duration is often limited by n=1 tearing modes, whose stability also depends on the J profile. Broadly deposited electron cyclotron (EC) current at mid-radius was found to supply part of the required noninductive current and to positively affect the tearing stability. The modes appear when J{sub EC} is turned off for stable cases and always appear when the EC deposition is shifted outwards. The variation in the EC scan results is consistent with PEST3 calculations, showing that the tearing stability becomes extremely sensitive to small perturbations of the equilibrium in wall-stabilized plasmas run close to the ideal MHD limit. These modeling results are being used to design new experiments with higher ideal and tearing limits. A new capability for off-axis neutral beam injection system will be used to explore higher q{sub min} scenarios and different current alignments.
Weinberger, Christopher Robert
2013-08-01
Tin, lead, and lead-tin solders are the most commonly used solders due to their low melting temperatures. However, due to the toxicity problems, lead must now be removed from solder materials. This has lead to the re-emergence of the issue of tin whisker growth. Tin whiskers are a microelectronic packaging issue because they can lead to shorts if they grow to sufficient length. However, the cause of tin whisker growth is still not well understood and there is lack of robust methods to determine when and if whiskering will be a problem. This report summarizes some of the leading theories on whisker growth and attempts to provide some ideas towards establishing the role microstructure plays in whisker growth.
Renewable Energy Growth Program
Broader source: Energy.gov [DOE]
In 2014, Act H 7727 created the Renewable Energy Growth (REG) program with the goal to promote installation of grid connected renewable energy within the load zones of electric distribution...
Doppelhofer, Gernot; Weeks, Melvyn
2011-01-31
growth in European regions, allowing for spa- tial spillovers across regions. The robust model averaging approach can also account for spatial clustering of errors by accommodating outliers and heteroscedastic errors. In both Classical and Bayesian...
Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)
2012-07-24
The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.
Steady-state entanglement of cavity arrays in finite-bandwidth squeezed reservoirs
Zippilli, Stefano
2014-01-01
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.
Salvatore Antoci
2008-03-25
A particular exact solution of Einstein's Hermitian theory of relativity is examined, after recalling that there is merit in adding phenomenological sources to the theory, and in choosing the metric like it was done long ago by Kursunoglu and Hely. It is shown by intrinsic arguments, relying on the properties of the chosen metric manifold, that the solution describes in Einstein's theory the field of n thin parallel wires at rest, run by steady electric currents, and predicts their equilibrium positions through the injunction that the metric must display cylindrical symmetry in the infinitesimal neighbourhood of each wire. In the weak field limit the equilibrium positions coincide with the ones prescribed by Maxwell's electrodynamics.
Status of steady-state irradiation testing of mixed-carbide fuel designs. [LMFBR
Harry, G.R.
1983-01-01
The steady-state irradiation program of mixed-carbide fuels has demonstrated clearly the ability of carbide fuel pins to attain peak burnup greater than 12 at.% and peak fluences of 1.4 x 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV). Helium-bonded fuel pins in 316SS cladding have achieved peak burnups of 20.7 at.% (192 MWd/kg), and no breaches have occurred in pins of this design. Sodium-bonded fuel pins in 316SS cladding have achieved peak burnups of 15.8 at.% (146 MWd/kg). Breaches have occurred in helium-bonded fuel pins in PE-16 cladding (approx. 5 at.% burnup) and in D21 cladding (approx. 4 at.% burnup). Sodium-bonded fuel pins achieved burnups over 11 at.% in PE-16 cladding and over 6 at.% in D9 and D21 cladding.
Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate
Jones, G.F.; Bennett, G.A.; Bultman, D.H.
1987-01-01
We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.
Chan, Pak Yuen
2007-01-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match well the measured shapes near the vent at the top of observed travertine domes. Closer to the base of the dome, the solutions deviate from observations, and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recent...
Advanced fueling system for steady-state operation of a fusion reactor
Raman, R. [Univ. of Washington, AERB 352250, Seattle, WA 98195 (United States)
2008-07-15
Steady-state Advanced Tokamak scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. A precision fuelling system has the capability for controlling the fusion burn by maintaining the required pressure profile to maximize the bootstrap current fraction. An advanced fuelling system based on Compact Toroid (CT) injection has the potential to meet these needs while simultaneously simplifying the requirements of the tritium handling systems. Simpler engineering systems would reduce reactor construction and maintenance cost through increased reliability. A CT fueling system is described together with the associated tritium handling requirements. (authors)
Steady-State Dynamics of the Forest Fire Model on Complex Networks
Bancal, Jean-Daniel
2009-01-01
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this topological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field...
Delayed feedback control of unstable steady states with high-frequency modulation of the delay
Aleksandar Gjurchinovski; Thomas Jüngling; Viktor Urumov; Eckehard Schöll
2013-08-21
We analyze the stabilization of unstable steady states by delayed feedback control with a periodic time-varying delay in the regime of a high-frequency modulation of the delay. The average effect of the delayed feedback term in the control force is equivalent to a distributed delay in the interval of the modulation, and the obtained distribution depends on the type of the modulation. In our analysis we use a simple generic normal form of an unstable focus, and investigate the effects of phase-dependent coupling and the influence of the control loop latency on the controllability. In addition, we have explored the influence of the modulation of the delays in multiple delay feedback schemes consisting of two independent delay lines of Pyragas type. A main advantage of the variable delay is the considerably larger domain of stabilization in parameter space.
H. Ness
2014-12-02
We suggest a generalisation of the expression of the nonequilibrium density matrix obtained by Hershfield's method for the cases where both heat and charge steady state currents are present in a quantum open system. The finite-size quantum system, connected to two temperature and particle reservoirs, is driven out of equilibrium by the presence of both a temperature gradient and a chemical potential gradient between the two reservoirs. We show that the NE density matrix is given by a generalised Gibbs-like ensemble, and is in full agreement with the general results of the McLennan-Zubarev nonequilibrium ensembles. The extra non-equilibrium terms are related to the entropy production in the system and characterise the fluxes of heat and particle.An explicit example, for the lowest order expansion, is provide for a model system of non-interacting fermions.
Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics
COLTRIN,MICHAEL E.; WIXOM,RYAN R.; DANDY,DAVID S.
2000-05-01
Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.
Magnetic nozzle and plasma detachment model for a steady-state flow
Breizman, B. N.; Tushentsov, M. R.; Arefiev, A. V. [University of Texas at Austin, Austin, Texas 78712 (United States)
2008-05-15
Plasma propulsion concepts that employ a guiding magnetic field raise the question of how the magnetically controlled plasma can detach from the spacecraft. This paper presents a detachment scenario relevant to high-power thrusters in which the plasma can stretch the magnetic field lines to infinity, similar to the solar wind. In previous work, the corresponding ideal magnetohydrodynamics equations have been solved analytically for a plasma flow in a slowly diverging nozzle. That solution indicates that efficient detachment is feasible if the nozzle is sufficiently long. In order to extend the previous model beyond the idealizations of analytical theory, a Lagrangian code is developed in this work to simulate steady-state kinetic plasma flows and to evaluate nozzle efficiency. The code is benchmarked against the analytical results and then used to examine situations that are not analytically tractable, including plasma behavior in the recent Detachment Demonstration Experiment at the National Aeronautics and Space Administration.
Uhm, H.S.; Lee, W.M.
1991-01-01
A steady-state source of neutrons is produced within an electrically grounded and temperature controlled chamber confining tritium or deuterium plasma at a predetermined density to effect implantation of ions in the surface of a palladium target rod coated with diffusion barrier material and immersed in such plasma. The rod is enriched with a high concentration of deuterium atoms after a prolonged plasma ion implantation. Collision of the deuterium atoms in the target by impinging ions of the plasma initiates fusion reactions causing emission of neutrons during negative voltage pulses applied to the rod through a high power modulator. The neutrons are so generated at a relatively high dose rate under optimized process conditions.
Cropper, Clark; Perfect, Edmund; van den Berg, Dr. Elmer; Mayes, Melanie
2010-01-01
The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Da -Jiang; Evans, James W.
2015-04-02
We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure pCO, to a strongly-correlated near-O-covered steady-state for low pCO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low pCO.
Simulation of LOFT anticipated-transient experiments L6-1, L6-2, and L6-3 using TRAC-PF1/MOD1
Sahota, M.S.
1984-01-01
Anticipated-transient experiments L6-1, L6-2, and L6-3, performed at the Loss-of-fluid Test (LOFT) facility, are analyzed using the latest released version of the Transient Reactor Analysis Code (TRAC-PF1/MOD1). The results are used to assess TRAC-PF1/MOD1 trip and control capabilities, and predictions of thermal-hydraulic phenomena during slow transients. Test L6-1 simulated a loss-of-stream load in a large pressurized-water reactor (PWR), and was initiated by closing the main steam-flow control valve (MSFCV) at its maximum rate, which reduced the heat removal from the secondary-coolant system and increased the primary-coolant system pressure that initiated a reactor scram. Test L6-2 simulated a loss-of-primary coolant flow in a large PWR, and was initiated by tripping the power to the primary-coolant pumps (PCPs) allowing the pumps to coast down. The reduced primary-coolant flow caused a reactor scram. Test L6-3 simulated an excessive-load increase incident in a large PWR, and was initiated by opening the MSFCV at its maximum rate, which increased the heat removal from the secondary-coolant system and decreased the primary-coolant system pressure that initiated a reactor scram. The TRAC calculations accurately predict most test events. The test data and the calculated results for most parameters of interest also agree well.
Bang, Y.S.; Seul, K.W.; Kim, H.J.
1994-02-01
The RELAP5/MOD3 5m5 code is assessed using the L9-1/L3-3 test carried out in the LOFT facility, a 1/60-scaled experimental reactor, simulating a loss of feedwater accident with multiple failures and the sequentially-induced small break loss-of-coolant accident. The code predictability is evaluated for the four separated sub-periods with respect to the system response; initial heatup phase, spray and power operated relief valve (PORV) cycling phase, blowdown phase and recovery phase. Based on the comparisons of the results from the calculation with the experiment data, it is shown that the overall thermal-hydraulic behavior important to the scenario such as a heat removal between the primary side and the secondary side and a system depressurization can be well-predicted and that the code could be applied to the full-scale nuclear power plant for an anticipated transient with multiple failures within a reasonable accuracy. The minor discrepancies between the prediction and the experiment are identified in reactor scram time, post-scram behavior in the initial heatup phase, excessive heatup rate in the cycling phase, insufficient energy convected out the PORV under the hot leg stratified condition in the saturated blowdown phase and void distribution in secondary side in the recovery phase. This may come from the code uncertainties in predicting the spray mass flow rate, the associated condensation in pressurizer and junction fluid density under stratified condition.
O'Donnell, John Joseph
1983-01-01
THE DETERMINATION OF NEUTRON FLUX IN THE TEXAS A & M TRIGA REACTOR DURING PULSE AND STEADY-STATE OPERATIONS A Thesis by JOHN JOSEPH O'DONNELL Submitted to the Graduate College of Texas A 6 M University in partial fulfillment... of the requirements for t'ne degree of MASTER OF SCIENCE December 1983 Ma3 or Sub] ect: Nuclear Engineering THE DETERMINATION OF NEUTRON FLUX IN THE TEXAS A & M TRIGA REACTOR DURING PULSE AND STEADY-STATE OPERATIONS A Thesis by JOHN JOSEPH O'DONNELL Approved...
Iadecola, Thomas; Chamon, Claudio; Hou, Chang-Yu; Jackiw, Roman; Pi, So-Young; Kusminskiy, Silvia Viola
2013-01-01
Controlling the properties of materials by driving them out of equilibrium is an exciting prospect that has only recently begun to be explored. In this paper we give a striking theoretical example of such materials design: a tunable gap in monolayer graphene is generated by exciting a particular optical phonon. We show that the system reaches a steady state whose transport properties are the same as if the system had a static electronic gap, controllable by the driving amplitude. Moreover, the steady state displays topological phenomena: there are chiral edge currents, which circulate a fractional charge e/2 per rotation cycle, with frequency set by the optical phonon frequency.
Thomas Iadecola; David Campbell; Claudio Chamon; Chang-Yu Hou; Roman Jackiw; So-Young Pi; Silvia Viola Kusminskiy
2013-04-26
Controlling the properties of materials by driving them out of equilibrium is an exciting prospect that has only recently begun to be explored. In this paper we give a striking theoretical example of such materials design: a tunable gap in monolayer graphene is generated by exciting a particular optical phonon. We show that the system reaches a steady state whose transport properties are the same as if the system had a static electronic gap, controllable by the driving amplitude. Moreover, the steady state displays topological phenomena: there are chiral edge currents, which circulate a fractional charge e/2 per rotation cycle, with frequency set by the optical phonon frequency.
US Army Corps of Engineers
as addressed above. 2. APPENDIX C - TRI-SERVICE MILITARY CONSTRUCTION PROGRAM (MCP) INDEX c. Unit costsENGLISH Project Anticipated Midpoint Date - 1 January 2009 (MCP Index = 2454) Cost Escalation Factor = MCP Index 1 Jan 09 / MCP Index 1 Oct 2007 = 2454/2391 = 1.0263 a. Most unit costs are based
Becker, Jörg D
2015-01-01
In many European countries the growth of the real GDP per capita has been linear since 1950. An explanation for this linearity is still missing. We propose that in artificial intelligence we may find models for a linear growth of performance. We also discuss possible consequences of the fact that in systems with linear growth the percentage growth goes to zero.
Carlson, Jean
Bifurcations from steady sliding to stick slip in boundary lubrication A. A. Batista and J. M in models for boundary lubrication introduced in J. M. Carlson and A. A. Batista, Phys. Rev. E 53, 4153 1996 distinguishing features associated with surfaces separated by a few molecular layers of lubricant. Here we find
Wind-Driven Currents The first, and simplest, theory of steady wind-driven flow is due to Ekman
Griesel, Alexa
Wind-Driven Currents The first, and simplest, theory of steady wind-driven flow is due to Ekman gradients are negligible. The goal of this project is to isolate the wind-driven flow using the FASINEX moored measurements of velocity and wind stress. 1. Writing u Uei t = , and assuming a parameterization
Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid
Attard, Phil
Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid
Skogestad, Sigurd
2007-01-01
process. I--steady-state optimization and self-optimizing control Antonio C.B. de Arau´ jo, Marius of the series. r 2006 Elsevier Ltd. All rights reserved. Keywords: HDA process; Self-optimizing control proposed control structures for the HDA process. Section 3 shortly introduces the self-optimizing control
Internet-scale storage systems under churn --A study of the steady-state using Markov models
Aberer, Karl
and a specific maintenance strategy, the system operates in a corresponding steady-state (dynamic equilib- rium the required operational maintenance cost. We also propose a new randomized vari- ant of a lazy-maintenance redundancy, since it ignores the crucial interplay between churn and main- tenance operations, and looks only
A Steady-State Impedance Model for a PEMFC Cathode Qingzhi Guo* and Ralph E. White**,z
Carolina 29208, USA A model for the simulation of the steady-state impedance response of a polymer to consist of many flooded spherical agglomerate particles surrounded by a small volume fraction of gas pores to take place in the flooded agglomerate particles. Newman's porous electrode theory is applied
Shepherd, Simon
Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar, or cross polar cap potential, ÈPC. Periods are chosen to satisfy the criteria that (1) the solar wind-based radars to functional forms of the electrostatic potential [Ruohoniemi and Baker, 1998]; and global mag
Can we predict long-run economic growth?
Garrett, Timothy J
2012-01-01
For those concerned with the long-term value of their accounts, it can be a challenge to plan in the present for inflation-adjusted economic growth over coming decades. Here, I argue that there exists an economic constant that carries through time, and that this can help us to anticipate the more distant future: global economic wealth has a fixed link to civilization's overall rate of energy consumption from all sources; the ratio of these two quantities has not changed over the past 40 years that statistics are available. Power production and wealth rise equally quickly because civilization, like any other system in the universe, must consume and dissipate its energy reserves in order to sustain its current size. One perspective might be that financial wealth must ultimately collapse as we deplete our energy reserves. However, we can also expect that highly aggregated quantities like global wealth have inertia, and that growth rates must persist. Exceptionally rapid innovation in the two decades following 19...
) at high pressure of CO2 (initial PCO2 ¼ 55 bar) and moderate to high temperature (30 and 90 1C) was used and the dissolved quantity of CO2 have a significant effect on the average particle size, specific surface areaJournal of Crystal Growth ] (
MEACHAM JE
2008-11-17
This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).
Characterization of the TRIGA Mark II reactor full-power steady state
Antonio Cammi; Matteo Zanetti; Davide Chiesa; Massimiliano Clemenza; Stefano Pozzi; Ezio Previtali; Monica Sisti; Giovanni Magrotti; Michele Prata; Andrea Salvini
2015-03-03
In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the available experimental data as benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core is necessary. To evaluate it, a thermal-hydraulic model has been developed, using the power distribution results from MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then introduced in the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configuration. The good agreement between experimental data and simulation results concerning full-power reactor criticality, proves the reliability of the adopted methodology of analysis, both from neutronics and thermal-hydraulics perspective.
Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.
Nakos, James Thomas
2005-12-01
The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.
MEACHAM JE
2009-10-26
This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).
Steady-State Thermal Performance Evaluation of Steel-Framed Wall Assembly with Local Foam Insulation
Kosny, Jan [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL
2010-01-01
During January and May, 2009, two configurations of steel-framed walls constructed with conventional 2 4 steel studs insulated with R-19 ~14cm. (5.5-in. thick) and R-13 ~9cm. (3.5-in. thick) fiberglass insulation batts were tested in the Oak Ridge National Laboratory (ORNL) guarded hot-box using ASTM C1363 test procedure. The first test wall used conventional 2 4 steel studs insulated with 2.5-cm. (1-in.) thick foam profiles, called stud snugglers. These stud snugglers converted the 2 4 wall assembly into a 2 6 assembly allowing application of R-19 fiberglass insulation. The second wall tested for comparison was a conventional 2 4 steel stud wall using R-13 insulation batts. Further, numerical simulations were performed in order to evaluate the steady-state thermal performance of various wood- and steel-framed wall assemblies. The effects of adding the stud-snugglers to the wood and steel studs were also investigated numerically. Different combinations of insulation and framing factor were used in the simulations.
Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors
Noé Cuneo; Jean-Pierre Eckmann; Christophe Poquet
2015-09-03
We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbors due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.
Modelling of Quench Limit for Steady State Heat Deposits in LHC Magnets
Bocian, D; Siemko, A
2008-01-01
A quench, the transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in the accelerator magnets if one of the three parameters: temperature, magnetic field or current density exceeds a critical value. Energy deposited in the superconductor by the particle beams provokes quenches detrimental for the accelerator operation. In particular if particles impacting on the vacuum chamber and their secondary showers depose energy in the magnet coils. The Large Hadron Collider (LHC) nominal beam intensity is 3.2 ldr 10^14 protons. A quench occurs if a fraction of the order of 10^7 protons per second is lost locally. A network model is used to simulate the thermodynamic behaviour of the magnets. The heat flow in the network model was validated with measurements performed in the CERN magnet test facility. A steady state heat flow was introduced in the coil by using the quench heaters implemented in the LHC magnets. The value of the heat source current is determined by the ne...
Quantum Entanglement at High Temperatures? II. Bosonic Systems in Nonequilibrium Steady State
Hsiang, Jen-Tsung
2015-01-01
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures $T_1 > T_2$. For \\textit{constant bilinear inter-oscillator coupling} studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal bath...
Eco-Growth: A Framework for Sustainable Growth
Blanco, Edgar E.
Growth is imperative for corporate success and yet the environmental impact of this growth is not sustainable. In this paper we offer a framework for thinking about the stages of tackling the environmental sustainability ...
D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks, San JET-EFDA Contributors D. Moreau #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High · Conclusion #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks
J.E. Menard - IEA Workshop 59 - Shape and Aspect Ratio Optimization for High Beta, Steady Physics Laboratory IEA Workshop 59 February 14, 2005 General Atomics - San Diego, CA #12;J.E. Menard - IEA, February 2003 #12;J.E. Menard - IEA Workshop 59 - Shape and Aspect Ratio Optimization for High Beta, Steady
Cohen, Doron
-equilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source to glassy systems. Conse- quently there is a wide range of driving intensities where the NESS is like- equilibrium steady state (NESS). Considering the NESS of a mesoscopically glassy sys- tem, our working
DiNezza, Michael J.; Liu, Shi; Kirk, Alexander P.; Zhang, Yong-Hang [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States) [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Zhao, Xin-Hao [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States) [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)
2013-11-04
CdTe/MgCdTe double heterostructures (DHs) are grown on InSb substrates using molecular beam epitaxy and reveal strong photoluminescence with over double the intensity of a GaAs/AlGaAs DH with an identical layer structure design grown on GaAs. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a Shockley-Read-Hall recombination lifetime of 86 ns, which is more than one order of magnitude longer than that of typical polycrystalline CdTe films. These findings indicate that monocrystalline CdTe/MgCdTe DHs effectively reduce surface recombination, have limited nonradiative interface recombination, and are promising for solar cells that could reach power conversion efficiencies similar to that of GaAs.
Pelletier, Jon D.
The geomorphic literature contains many analytic solutions for the topographic evolution of gently sloping soil-mantled hillslopes responding to base level changes. Most of these solutions are limited to vertical base level ...
Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H
2011-01-01
Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.
Bubble growth rates in boiling
Griffith, P.
1956-01-01
The conditions determining the growth rate of a bubble on a surface in boiling are considered and a mathematical model framed in the light of these conditions. The growth rate is then calculated for bubbles growing under ...
PRETEX (Halifax NS) #1 1054 1999 Mar 05 10:59:16
2010-01-20
Feb 16, 2007 ... Logistic Population Model. The Malthusian growth law (1.5.1) does not provide an accurate model for the growth of a population over a long ...
Role of Nucleation and Growth in Two-Phase Microstructure Formation
Jong Ho Shin
2008-05-01
During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different oscillatory microstructures that depend on the imposed velocity and the size of the sample. At low thermal gradient to velocity ratio, a steady-state composite microstructure is observed. Two mechanisms of composite microstructure formation were examined: (1) the formation of the peritectic phase in the intercellular region of the primary phase where the solute rejected by the primary phase is absorbed by the peritectic phase. The peritectic phase forms a small distance behind the growing primary phase front. (2) The second mechanism is the coupled growth of the two phases with a macroscopically planar interface, as in the case of eutectic growth. Detailed studies showed that this composite microstructure, although it appears as a eutectic microstructure, did not grow in the coupled manner at the advancing interface in the Sn-cd system. However, a new observation was made when experiments were carried out in thin ampoule of Ta. The peritectic phase nucleated at the wall-interface triple junction and grew along the wall, while the primary phase continued to grow at the center, giving rise to a steady-state couple growth at some specific velocity. The mechanism of coupled growth in this case was shown to be operative due to the presence of a finite contact angle at the wall, and this was demonstrated by including the contact angle effect at the wall in the rod eutectic growth model. The experimental results were summarized to map out the conditions of thermal gradient and velocity on the regimes of composite and oscillatory microstructure formation. The formation of complex time-dependent microstructures was then discussed in terms of the time-dependent dynamics of planar interface growth.
Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F.
2010-04-15
The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)
Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie
2013-01-01
We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.
Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.
2013-02-15
Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.
Quantum Entanglement at High Temperatures? II. Bosonic Systems in Nonequilibrium Steady State
Jen-Tsung Hsiang; B. L. Hu
2015-03-12
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures $T_1 > T_2$. For \\textit{constant bilinear inter-oscillator coupling} studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature $T_c$. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on $T_{1}$, $T_{2}$ , the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature $T_c$ is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction. In Paper III we will examine the case (C2) of \\textit{time-dependent driven coupling } which contains the parametric pumping type described in [2] wherein entanglement was first shown to sustain at high temperatures.
HU TA
2007-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.
No steady water waves of small amplitude are supported by a shear flow with still free surface
Vladimir Kozlov; Nikolay Kuznetsov
2012-09-17
The two-dimensional free-boundary problem describing steady gravity waves with vorticity on water of finite depth is considered. It is proved that no small-amplitude waves are supported by a horizontal shear flow whose free surface is still in a coordinate frame such that the flow is time-independent in it. The class of vorticity distributions for which such flows exist includes all positive constant distributions, as well as linear and quadric ones with arbitrary positive coefficients.
Roberto de la Cruz; Pilar Guerrero; Fabian Spill; Tomás Alarcón
2015-08-12
We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under1 quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the Chemical Master Equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provide the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually-inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species are order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.
Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)
2014-09-01
The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.
Standard test method for measurement of creep crack growth times in metals
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension ?ai = 0.2 mm from the onset of first applied force and creep crack growth rate, ?a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...
Jointness of Growth Determinants
Doppelhofer, Gernot; Weeks, Melvyn
2006-03-14
@cam.ac.uk, Tel: +44 1223 335200, Fax: +44 1223 335475. ‡Faculty of Economics, University of Cambridge, Cambridge CB3 9DD, UK. Email: mw217@econ.cam.ac.uk 1 Introduction Model uncertainty is encountered in many areas of empirical work in economics... presents the empirical results for jointness of growth, and section 5 concludes. 2 Bayesian Model Averaging Consider the following general linear regression model y = X? + ? (1) where y is a (T × 1) vector of observations of the dependent variable...
Growth, microstructure, and luminescent
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— WeUpdate Jon Peschong Richland5 EOCGroveGrowth,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout UsRegional companies eye growth Regional
Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi
2013-12-15
Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.
Steady-state MreB helices inside bacteria: dynamics without motors
Jun F. Allard; Andrew D. Rutenberg
2007-08-03
Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.
Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng
2015-08-12
The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projectedmore »area and the length of the major axis using a power function, A ? LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ? LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in Dpf and AR show that the flocs become less convoluted and more symmetrical and that their boundaries become smoother and more regular in the high shear rate group than in the low shear rate group due to breakage and possible restructuring processes. To assess the effects of electrolyte and sediment concentration, 0.1 mol/L calcium chloride (CaCl2) and initial sediment concentration from 7.87 × 10-5 to 1.57 × 10-5 were used in this preliminary study. The addition of electrolyte and increasing sediment concentration could produce more symmetrical flocs with less convoluted and simpler boundaries. In addition, some new information on the temporal variation of the median size of the flocs during the flocculation process is presented.« less
Dimension growth for C -algebras
2007-05-14
Feb 6, 2007 ... its range is exhausted by simple, nuclear C?-algebras. As consequences we obtain a well developed the- ory of dimension growth for ...
Information externality, bank structure, and growth
Doh, Bo-Eun
2004-09-30
This dissertation addresses the question of whether a monopolistic banking system can lead to a higher steady state level of capital stock. Specifically, this research analyzes the comparative advantage of a monopoly banking ...
Time dependence of tip morphology during cellular/dendritic arrayed growth
Song, H.; Tewari, S.N.
1996-04-01
Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 x 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the wall effects, which are present during growth in the generally used thin (about 200 {micro}m) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules.
Beacon Power Corporation NREL Industry Growth Forum
, the successful execution of the Company's plan of operation, changes in the Company's anticipated earnings;55 Safe Harbor Statement This presentation contains forward-looking statements, including the Company's beliefs about its business prospects and future results of operations. These statements involve risks
Growth management and sustainable transport: Do growth management policies promote transit use?
Deal, Brian; Kim, Jae H; Chackraborty, Arnab
2009-01-01
4). Figure 4. Sustainable Growth Management and TransportIntegration Growth Management and Sustainable Transport2004. Do state growth management regulations reduce sprawl?
Ness, H., E-mail: herve.ness@kcl.ac.uk [Department of Physics, School of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Dash, L. K. [European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium) [European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2014-04-14
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.
SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements
Hayes, S.L.
1993-12-01
SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.
Ikenaga, Bruce
9281998 Logistic Growth The logistic equation is a model of limited population growth of organisms runs out of food, encounters predators, or fouls its own environment with waste. The logistic the carrying capacity. Example. A population of roaches grows logistically in Calvin Butterball's kitchen
Not Available
1988-01-01
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.
The Very Long Run Economic Growth
Wu, Lemin
2013-01-01
the stochastic growth of technology as the source of inter-2000. “Population, technology, and growth: From Malthusianhas constant growth rates of technology g A and g B , then g
Growth machine theory: a qualitative analysis
Smith, Gavin Paul
1993-01-01
of land inherent in growth machine theory, does not necessarily result in a dialectic, win-lose situation. Furthermore, it is argued that the growth coalition may not always ado t a unidimensional roach to development where further growth...
Stojanovic, B.; Hallberg, D.; Akander, J.
2010-10-15
This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer course of events adopts a 1D heat flow that reassembles the conditions of the 1D simple model (for the assessed USC duct geometry); 1D heat flow through the top and bottom fins/sheets as the duct wall reassembles a state of adiabatic condition. (author)
Human linear growth trajectory defined
2013-01-01
a child’s height in its 3rd year of age is greater than thatbut its growth rate in the 3rd year is slower than that in
Courtright, J. E.
1903-01-01
KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection The Annual Growth In Plants 1903 by J. E. Courtright This work was digitized by the Scholarly Communications program staff in the KU Libraries’ Center...
Cosmic Growth History and Expansion History
Linder, Eric V.
2009-01-01
LBNL- 58260 Cosmic Growth History andExpansion History Eric V. Linder Physics Division, LawrenceCalifornia. Cosmic Growth History and Expansion History Eric
Pierre Rouchon; Alain Sarlette
2013-02-27
For discrete-time systems, governed by Kraus maps, the work of D. Petz has characterized the set of universal contraction metrics. In the present paper, we use this characterization to derive a set of quadratic Lyapunov functions for continuous-time systems, governed by Lindblad differential equations, that have a steady-state with full rank. An extremity of this set is given by the Bures metric, for which the quadratic Lyapunov function is obtained by inverting a Sylvester equation. We illustrate the method by providing a strict Lyapunov function for a Lindblad equation designed to stabilize a quantum electrodynamic "cat" state by reservoir engineering. In fact we prove that any Lindblad equation on the Hilbert space of the (truncated) harmonic oscillator, which has a full-rank equilibrium and which has, among its decoherence channels, a channel corresponding to the photon loss operator, globally converges to that equilibrium.
Stefano Zippilli; Fabrizio Illuminati
2014-02-16
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.
A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion
Grcar, Joseph F; Grcar, Joseph F
2008-06-30
Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.
Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming
2013-12-23
We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.
Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials
Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A. [School of Physics and Technologies, V.N. Karazin Kharkiv National University, Kharkiv, 61022 (Ukraine); Gutkin, M. [Micron Surface Technologies, 5033 Dantes View Dr., Calabasas, California 91301 (United States); Sleptsov, V. [Moscow State Aviation Technological University, Moscow 121552 (Russian Federation)
2012-08-15
This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.
Siddiqui, Abuzar A
2011-01-01
Analytic expressions for the speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting steady, symmetric and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hueckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. As the aciculate particles in a micropolar fluid can rotate without translation, micropolarity influences fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies as the radius increases. The stress tensor is confined to the region near the wall of the microcapillary but the couple stress tensor is uniform across the cross-section.
Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.
2014-10-23
Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U??Ga??, (UC)??Ga?? and U??Cs?, (UC)??Cs??, respectively.
Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.
1982-03-01
Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.
Nonlinear structural crack growth monitoring
Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)
2002-01-01
A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.
HU, T.A.
2003-09-30
Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.
Novel method for carbon nanofilament growth on carbon fibers
Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R
2009-01-01
Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs with smooth walls and low impurity content were grown. Carbon nanofibers were also grown on a carbon fiber cloth using plasma enhanced chemical vapor deposition (CVD) from a mixture of acetylene and ammonia. In this case, a cobalt colloid was used to achieve a good coverage of nanofibers on carbon fibers in the cloth. Caveats to CNT growth include damage in the carbon fiber surface due to high-temperatures (>800 C). More recently, Qu et al. reported a new method for uniform deposition of CNT on carbon fibers. However, this method requires processing at 1100 C in the presence of oxygen and such high temperature is anticipated to deepen the damage in the carbon fibers. In the present work, multi-scale filaments (herein, linear carbon structures with multi-micron diameter are called 'fibers', all structures with sub-micron diameter are called 'filaments') were created with a low temperature (ca. 550 C) alternative to CVD growth of CNTs. Specifically, nano-scale filaments were rapidly generated (> 10 microns/hour) on commercial micron scale fibers via catalytic (Pd particles) growth from a fuel rich combustion environment at atmospheric pressure. This atmospheric pressure process, derived from the process called Graphitic Growth by Design (GSD), is rapid, the maximum temperature low enough (below 700 C) to avoid structural damage and the process inexpensive and readily scalable. In some cases, a significant and unexpected aspect of the process was the generation of 'three scale' materials. That is, materials with these three size characteristics were produced: (1) micrometer scale commercial PAN fibers, (2) a layer of 'long' sub-micrometer diameter scale carbon filaments, and (3) a dense layer of 'short' nanometer diameter filaments.
Flynn, Morris R.
The Dynamics of Steady, Partial-Depth Intrusive Gravity Currents M. R. Flynn1,*, T. Boubarne2 and P] ABSTRACT Experiments of intrusive gravity currents generated by lock exchange offer insights into atmospher- ic and oceanic flows. However, whereas many previous investigations have considered the `full
Office of Energy Efficiency and Renewable Energy (EERE)
Alcohols as gasoline blending agent at up to 85 vol-% levels were evaluated in a 2.2L direct injection SI engine for combustion, engine efficiency, and engine-out emissions effects at steady-state and transient test conditions
Attard, Phil
Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient Phil Attard School of Chemistry F11, University of Sydney, New statistical mechanics for inhomogeneous systems may now be applied to determining the structure
Lewis, Timothy
DriVe, Salt Lake City, Utah 84132, and Department of Mathematics, UniVersity of Utah, 233 John Widtsoe, and consequently identify kinetic steps following the rate-determining step. For catalytic turnover, type II DNAH-rate studies, as described below. All buffers were filtered (0.45 µm). Steady-State Product Inhibition Studies
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.
28 th EPS Conf. on Contr. Fusion and Plasma Physics, 2001, P3.11 Energy Confinement in Steady State Association, D-85748 Garching, GERMANY; 3Laboratory for Plasma Physics, ERM/KMS, Trilateral Euregio Cluster Jülich, Germany; 5EFDA-CSU, D-85748 Garching, Germany; 6PPPL, Princeton, Univ, NJ, USA. 1. INTRODUCTION
SBA Growth Accelerator Fund Competition
Broader source: Energy.gov [DOE]
The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.
Graphene Growth and Device Integration
INVITED P A P E R Graphene Growth and Device Integration This paper describes one of the emerging methods for growing grapheneVthe chemical vapor deposition methodVwhich is based on a catalytic reaction, Fellow IEEE, Robert M. Wallace, Fellow IEEE, and Rodney S. Ruoff ABSTRACT | Graphene has been introduced
Griesheimer, D. P. [Bertis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 (United States); Stedry, M. H. [Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301 (United States)
2013-07-01
A rigorous treatment of energy deposition in a Monte Carlo transport calculation, including coupled transport of all secondary and tertiary radiations, increases the computational cost of a simulation dramatically, making fully-coupled heating impractical for many large calculations, such as 3-D analysis of nuclear reactor cores. However, in some cases, the added benefit from a full-fidelity energy-deposition treatment is negligible, especially considering the increased simulation run time. In this paper we present a generalized framework for the in-line calculation of energy deposition during steady-state Monte Carlo transport simulations. This framework gives users the ability to select among several energy-deposition approximations with varying levels of fidelity. The paper describes the computational framework, along with derivations of four energy-deposition treatments. Each treatment uses a unique set of self-consistent approximations, which ensure that energy balance is preserved over the entire problem. By providing several energy-deposition treatments, each with different approximations for neglecting the energy transport of certain secondary radiations, the proposed framework provides users the flexibility to choose between accuracy and computational efficiency. Numerical results are presented, comparing heating results among the four energy-deposition treatments for a simple reactor/compound shielding problem. The results illustrate the limitations and computational expense of each of the four energy-deposition treatments. (authors)
Woolley, R.D.
1998-09-08
A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.
Woolley, Robert D. (Hillsborough, NJ)
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.
1981-01-01
FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.
Christian Kreuzer; Endre Süli
2015-03-18
We develop the a posteriori error analysis of finite element approximations of implicit power-law-like models for viscous incompressible fluids. The Cauchy stress and the symmetric part of the velocity gradient in the class of models under consideration are related by a, possibly multi--valued, maximal monotone $r$-graph, with $\\frac{2d}{d+1}finite element residual, as well as the local stability of the error bound. We then consider an adaptive finite element approximation of the problem, and, under suitable assumptions, we show the weak convergence of the adaptive algorithm to a weak solution of the boundary-value problem. The argument is based on a variety of weak compactness techniques, including Chacon's biting lemma and a finite element counterpart of the Acerbi--Fusco Lipschitz truncation of Sobolev functions, introduced by L. Diening, C. Kreuzer and E. S\\"uli [Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2), 984--1015].
Fleishman, Gregory D.; Kuznetsov, Alexey A.
2014-02-01
Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and n-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and n-distributions, and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth ? for kappa-distribution, but decreases with ? for n-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example.
Akarsu, Özgür; Dereli, Tekin, E-mail: oakarsu@ku.edu.tr, E-mail: tdereli@ku.edu.tr [Department of Physics, Koç University, 34450 Sariyer, ?stanbul (Turkey)
2013-02-01
We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.
Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)
2005-06-15
To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.
Pawel, R.E.; Yoder, G.L.; West, C.D.; Montgomery, B.H.
1990-06-01
The corrosion of aluminum alloy 6061 is being studied in a special test loop facility under the range of thermal-hydraulic conditions appropriate for fuel plate operation in the Advanced Neutron Source (ANS) reactor core. Experimental measurements describing the growth of the boehmite (Al{sub 2}O{sub 3}H{sub 2}O) films on the exposed aluminum surfaces are now available for a range of coolant conditions and heat fluxes, and these results have been analyzed to demonstrate the influence of several important experimental variables. A subset of our data base particularly appropriate to the ANS conditions presently anticipated was used to develop a preliminary correlation based on an empirical oxidation model.
Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphousmetal
Schroeder, V.; Ritchie, R.O.
2005-09-21
Electrochemical and mechanical experiments were conducted to analyze the environmentally-influenced cracking behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5. This study was motivated by a scientific interest in mechanisms of fatigue-crack propagation in an amorphous metal, and by a practical interest in the use of this amorphous metal in applications that take advantage of its unique properties, including high specific strength, large elastic strains and low damping. The objective of the work was to determine the rate and mechanisms of subcritical crack growth in this metallic glass in an aggressive environment. Specifically, fatigue-crack propagation behavior was investigated at a range of stress intensities in air and aqueous salt solutions by examining the effects of loading cycle, stress-intensity range, solution concentration, anion identity, solution de-aeration, and bulk electrochemical potential. Results indicate that crack growth in aqueous solution in this alloy is driven by a stress-assisted anodic reaction at the crack tip. Rate-determining steps for such behavior are reasoned to be electrochemical, stress-dependent reaction at near-threshold levels, and mass transport at higher (steady-state) growth rates.
Employee ID # Position # Department Anticipated Start
Aazhang, Behnaam
, hospital or other repository of juvenile or adult criminal justice records, military records, psychiatric or a copy thereof, to obtain any information in your files pertaining to my juvenile or adult criminal justice record, employment history, driving record history, medical or psychiatric
Anticipating PHEV Energy Impacts in California
Axsen, John; Kurani, Kenneth S.
2009-01-01
contribute to peak electricity demand (depending on a givenadditions to daytime electricity demand from PHEVs. However,Their higher peak electricity demand estimate is due to
Anticipating the unintended consequences of security dynamics.
Backus, George A.; Overfelt, James Robert; Malczynski, Leonard A.; Saltiel, David H.; Simon Paul Moulton
2010-01-01
In a globalized world, dramatic changes within any one nation causes ripple or even tsunamic effects within neighbor nations and nations geographically far removed. Multinational interventions to prevent or mitigate detrimental changes can easily cause secondary unintended consequences more detrimental and enduring than the feared change instigating the intervention. This LDRD research developed the foundations for a flexible geopolitical and socioeconomic simulation capability that focuses on the dynamic national security implications of natural and man-made trauma for a nation-state and the states linked to it through trade or treaty. The model developed contains a database for simulating all 229 recognized nation-states and sovereignties with the detail of 30 economic sectors including consumers and natural resources. The model explicitly simulates the interactions among the countries and their governments. Decisions among governments and populations is based on expectation formation. In the simulation model, failed expectations are used as a key metric for tension across states, among ethnic groups, and between population factions. This document provides the foundational documentation for the model.
Anticipating PHEV Energy Impacts in California
Axsen, John; Kurani, Kenneth S.
2009-01-01
Plug-in hybrid electric vehicles: How does one determinerd International Electric Vehicle Symposium and Exposition (of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide
Anticipating PHEV Energy Impacts in California
Axsen, John; Kurani, Kenneth S.
2009-01-01
scenarios of gasoline use and recharge patterns for each plausible early market respondent as if they had driven their PHEV design
Catalog solvent extraction: anticipate process adjustments
Campbell, S.G.; Brass, E.A.; Brown, S.J.; Geeting, M.W.
2008-07-01
The Modular Caustic-Side Solvent Extraction Unit (MCU) utilizes commercially available centrifugal contactors to facilitate removal of radioactive cesium from highly alkaline salt solutions. During the fabrication of the contactor assembly, demonstrations revealed a higher propensity for foaming than was initially expected. A task team performed a series of single-phase experiments that revealed that the shape of the bottom vanes and the outer diameter of those vanes are key to the successful deployment of commercial contactors in the Caustic-Side Solvent Extraction Process. (authors)
Not Available
1980-04-01
The production level in the Elk Hills oil field in California (normally 161,000 bpd) is expected to remain constant in 1980 with the possibility of a 2000 to 3000 bpd increase in the second 6 months. The drilling pace also is expected to follow the same pattern of increased activity in the second 6 months of the year. The field is part of Naval Petroleum Reserve No. 1, where operation of a gas plant and construction of new production facilities also is occurring. The predicted increase in Elk Hills production would come from operations of the gas plant as it comes fully on stream. The new production facilities include a low temperature separation facility. The possibility of implementing a waterflood program in part of the reserve and the future development of fractured shale sections also are discussed.
Nutritional Modulations of Piglet Growth and Survival
Rezaei, Reza
2012-02-14
on mortality, growth performance, and efficiency of sow-reared piglets; and 2) determine the effects of a phytochemical (Yucca schidigera) on growth performance of postweaning pigs. In the first experiment, piglets (n=160) from 18 multiparous sows (Landrace X...
New Partners for Smart Growth Conference
Broader source: Energy.gov [DOE]
The New Partners for Smart Growth Conference is the nation's largest smart growth and sustainability conference. The three-day conference is themed, "Practical Tools and Innovative Strategies for Creating Great Communities."
Stress corrosion crack growth in porous sandstones.
Ojala, Ira O
Stress corrosion crack growth occurs when the chemical weakening of strained crack tip bonds facilitates crack propagation. I have examined the effect of chemical processes on the growth of a creack population by carrying out triaxial compression...
Zhedong Zhang; Jin Wang
2015-12-25
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules.
Reduced models of algae growth Heikki Haario,
Bardsley, John
Reduced models of algae growth Heikki Haario, Leonid Kalachev Marko Laine, Lappeenranta University of the phenomena studied. Here, in the case of algae growth modelling, we show how a systematic model reduction may: Algae growth modelling, asymptotic methods, model reduction, MCMC, Adaptive Markov chain Monte Carlo. 1
Growth in Solar Means Growth in Ohio | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment1Sustained Pumping at2009ofGrowth
Brindle, K.M.; Blackledge, M.J.; Challiss, R.A.J.; Radda, G.K. )
1989-05-30
Phosphorus-31 NMR magnetization-transfer measurement have been used to measure the flux between ATP and inorganic phosphate during steady-state isometric muscle contraction in the rat hind limb in vivo. Steady-state contraction was obtained by supramaximal sciatic nerve stimulation. Increasing the stimulation pulse width from 10 to 90 ms, at a pulse frequency of 1 Hz, or increasing the frequency of a 10-ms pulse from 0.5 to 2 Hz resulted in an increase in the flux which was an approximately linear function of the increase in the tension-time integral. The flux showed an approximately linear dependence on the calculated free cytosolic ADP concentration up to an ADP concentration of about 90 {mu}M. The data are consistent with control of mitochondrial ATP synthesis by the cytosolic ADP concentration and indicate that the apparent K{sub m} of the mitochondria for ADP is at least 30 {mu}M.
Schwedock, M.J.; Windes, L.C.; Ray, W.H.
1985-01-01
Heterogeneous and pseudohomogeneous models are compared to experimental data from a packed bed reactor for the partical oxidation of methanol to formaldehyde over an iron oxide-molybdenum oxide catalyst. Heat transfer parameters which were successful in matching data from experiments without reaction were not successful in matching temperature data from experiments with reaction. This made it necessary to decrease the fluid radial heat transfer to obtain good fit. A good fit was obtained for steady state composition profiles by optimizing selected frequency factors and the activation energy for methanol. A redox rate expression for the oxidation of formaldehyde to carbon monoxide was proposed since a simple first-order rate expression did not fit the data. The pseudohomogeneous model gave results similar to the heterogeneous model for both steady state and dynamic experiments and has been recommended for future experimental state estimation and control studies. 21 refs., 31 figs., 6 tabs.
Korea's Green Growth Strategy: Mitigating Climate Change and...
Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...
1 Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Achieving Hazard-Resilient Coastal & Waterfront Smart Growth #12;2 Achieving Hazard-Resilient Coastal & Waterfront Smart Growth www
none,
2014-12-31
This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.
Swaminathan, K.; Chandra, S.; Jha, R.C.; Tewari, S.P. )
1991-07-01
This paper reports on the thermal neutron scattering kernel that explicitly incorporates the presence of chemical binding energy and the collective oscillations in the dynamics of water, the steady-state thermal neutron spectra in light water reactor fuel assemblies poisoned with non-1/v absorbers, such as cadmium, samarium, erbium, and gadolinium, in various concentrations have been computed at 298 K. The calculated spectra are in reasonable agreement with the corresponding experimental spectra for realistic source terms.
Saurabh Mahajan; Chaitanya A. Athale
2012-11-01
Neuronal growth cones are the most sensitive amongst eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuronal growth cone (GC). We explore the limits of directional cues in modifying the spatial polarization of microtubules by testing the role of microtubule dynamics, gradients of regulators and retrograde forces along filopodia. We analyze the steady state and transition behavior of microtubules on being presented with a directional stimulus. The model makes novel predictions about the minimal angular spread of the chemical signal at the growth cone and the fastest polarization times. A regulatory reaction-diffusion network based on the cyclic phosphorylation-dephosphorylation of a regulator predicts that the receptor signal magnitude can generate the maximal polarization of microtubules and not feedback loops or amplifications in the network. Using both the phenomenological and network models we have demonstrated some of the physical limits within which the MT polarization system works in turning neuron.
Rosengren, Sanna; Corr, Maripat; Boyle, David L
2010-01-01
et al. , Platelet-derived growth factor and transformingactivated by platelet-derived growth factor. Clin Expmesylate inhibits platelet derived growth factor stimulated
Bernstein, Hans C.; Konopka, Allan; Melnicki, Matthew R.; Hill, Eric A.; Kucek, Leo A.; Zhang, Shuyi; Shen, Gaozhong; Bryant, Donald A.; Beliaev, Alex S.
2014-09-19
Synechococcus sp. PCC 7002 was grown to steady state in optically thin turbidostat cultures under conditions for which light quantity and quality was systematically varied by modulating the output of narrow-band LEDs. Cells were provided photons absorbed primarily by chlorophyll (680 nm) or phycocyanin (630 nm) as the organism was subjected to four distinct mono- and dichromatic regimes. During cultivation with dichromatic light, growth rates displayed by Synechococcus sp. PCC 7002 were generally proportional to the total incident irradiance at values < 275 µmol photons m-2 s-1 and were not affected by the ratio of 630:680 nm wavelengths. Notably, under monochromatic light conditions, cultures exhibited similar growth rates only when they were irradiated with 630 nm light; cultures irradiated with only 680 nm light grew at rates that were 60 – 70% of those under other light quality regimes at equivalent irradiances. The functionality of photosystem II and associated processes such as maximum rate of photosynthetic electron transport, rate of cyclic electron flow, and rate of dark respiration generally increased as a function of growth rate. Nonetheless, some of the photophysiological parameters measured here displayed distinct patterns with respect to growth rate of cultures adapted to a single wavelength including phycobiliprotein content, which increased under severely light-limited growth conditions. Additionally, the ratio of photosystem II to photosystem I increased approximately 40% over the range of growth rates, although cells grown with 680 nm light only had the highest ratios. These results suggest the presence of effective mechanisms which allow acclimation of Synechococcus sp. PCC 7002 acclimation to different irradiance conditions.
Well having inhibited microbial growth
Lee, Brady D.; Dooley, Kirk J.
2006-08-15
The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.
Differential growth of wrinkled biofilms
Espeso, D R; Einarsson, B
2015-01-01
Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...
Controlled growth of semiconductor crystals
Bourret-Courchesne, E.D.
1992-07-21
A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.
Controlled growth of semiconductor crystals
Bourret-Courchesne, Edith D. (Richmond, CA)
1992-01-01
A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.
Synthetic heparin-binding growth factor analogs
Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.
2007-01-23
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.
Interface control and snow crystal growth
Jessica Li; Laura P. Schaposnik
2015-05-08
The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter's model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.
Graphene Growth on Low Carbon Solubility Metals
Wofford, Joseph Monroe
2012-01-01
graphene is both a semimetal and a zero bandgap semiconductorgraphene growth. Ge wafers are also available with the exceptional surface qualities common to semiconductor
Shaping metal nanocrystals through epitaxial seeded growth
Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai, Gabor A.; Yang, Peidong
2008-01-01
Structural Evolution in Metal Oxide/Semiconductor Colloidalasymmetric one-sided metal-tipped semiconductor nanocrystalGrowth of Magnetic-Metal- Functionalized Semiconductor Oxide
The Very Long Run Economic Growth
Wu, Lemin
2013-01-01
Growth before the Industrial Revolution. ” Journal of Law2001. “ Was an Industrial Revolution Inevitable? EconomicThe British Industrial Revolution in Global Perspective. ”
Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.
2012-03-29
To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.
Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura
2010-06-15
This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)
Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander
2005-10-01
This report constitutes the third deliverable of LBNLs contracted role in the FERMI {at} Elettra Technical Optimization study. It describes proposed R&D activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac.
Mincey, J.F.
1980-01-01
The experimental and COBRA-IV computational data presented in this report confirm that increased pressure losses, induced by the steady-state axial flow of water exterior to deformed Multirod Burst Test (MRBT) bundles B-1 and B-2, may be closely predicted using a bundle-averaged approach for describing flow channel restrictions. One anomaly that was encountered using this technique occurred while modeling the B-2 flow test data near a severe channel restriction: the COBRA-IV results tended to underestimate experimental pressure losses.
Journal of Crystal Growth 304 (2007) 399401 Growth of high quality, epitaxial InSb nanowires
Wang, Zhong L.
2007-01-01
Journal of Crystal Growth 304 (2007) 399401 Growth of high quality, epitaxial InSb nanowires Hyun, Washington, DC. 20375, USA b School of Materials Science and Engineering, Georgia Institute of Technology March 2007 Communicated by R.M. Biefeld Available online 1 April 2007 Abstract The growth of In
Graphene Growth on Low Carbon Solubility Metals
Wofford, Joseph Monroe
2012-01-01
preparation of Cu substrates will lead to larger grapheneGraphene Growth on Cu(100), Cu(111), and Au(111) Substrate selection and preparationGraphene Growth on Cu(100), Cu(111), and Au(111) 3.1 Substrate selection and preparation
SMOOTHING SPLINE GROWTH CURVES WITH COVARIATES
#11;ect growth curves. Due to the repeated measurement structure of his model, he is able to determine adapt the interactive spline model of Wahba to growth curves with covariates. The smoothing spline smoothing spline models (Ch. 10, Wahba (1990)). In this brief article, we adapt interactive spline models
Limiting Abnormal Mold Growth in Buildings
Graham, C. W.
2002-01-01
in wood, or rusting and corrosion of metals. Abnormal mold or fungal growth, then, can create major problems for building owners. Moisture is the key factor that building designers and owners can manage in order to limit mold growth. This paper introduces...
Export Growth and Credit Constraints Tibor Besedes
Das, Suman
Export Growth and Credit Constraints Tibor Besedes Byung-Cheol Kim Volodymyr Lugovskyy§ May 14, 2014 Abstract We investigate the effect of credit constraints on the growth of exports at the micro of exporting, but not in later stages. Our empirical results using product level data on exports to twelve
Communications CVD Growth of Boron Nitride Nanotubes
in dense thickets on and about nickel boride catalyst particles at 1100 °C. The BN nanotubes resemble thoseCommunications CVD Growth of Boron Nitride Nanotubes Oleg R. Lourie, Carolyn R. Jones, Bart M Manuscript Received May 9, 2000 We describe BN-nanotube growth by chemical vapor deposition (CVD) using
Economic Growth, Physical Limits and Liveability
Economic Growth, Physical Limits and Liveability: Can Metro Vancouver Achieve all Three? by Jeremy of Thesis: Economic Growth, Physical Limits and Liveability: Can Metro Vancouver Achieve all Three. The Local Energy scenario adds a local energy limit. For each scenario I assume continuous economic
Fish production: integrating growth, mortality, and
Limburg, Karin E.
1 Fish production: integrating growth, mortality, and population density K. Limburg lecture notes, Fisheries Science Outline: 1. Biological production a critical ecological parameter 2. How to compute production from a simple biomass model 3. Production:biomass ratios 4. Growth: mortality ratios Reading
Structural Controls on Growth Stratigraphy in Contractional
Connors, Christopher D.
Structural Controls on Growth Stratigraphy in Contractional Fault-related Folds John H. Shaw Dept stratigraphy. An understanding of this interplay between local deformation and dep- osition helps us infer on growth stratigraphy in contractional fault-related folds, in K. R. McClay, ed., Thrust tectonics
Digital electronic bone growth stimulator
Kronberg, J.W.
1993-01-01
The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.
Hypersonic Measurements of Roughness-Induced Transient Growth
Sharp, Nicole Susanne
2014-04-17
The effects of surface roughness on boundary-layer disturbance growth and laminar-to-turbulent transition are not well understood, especially in hypersonic boundary layers. The transient growth mechanism that produces algebraic growth of stream wise...
Reallocating innovative resources around growth bottlenecks
Bresnahan, Timothy
Economy-wide increasing returns to scale embodied in a general purpose technology (GPT) and its applications are often a key source of long-run growth. Yet the successful exploitation of increasing returns calls for ...
Unlocking Growth Opportunities for Minority Businesses Through...
Broader source: Energy.gov (indexed) [DOE]
around 80,000 a year and 5.4 million of economic growth. At the Energy Innovation Portal, the Department's hub for technology transfer resources, minority owned firms and...
Geothermal Energy Growth Continues, Industry Survey Reports
Broader source: Energy.gov [DOE]
A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.
Nanoscale Surface Topography to Guide Bone Growth
Nanoscale Surface Topography to Guide Bone Growth P R O J E C T L E A D E R : Jirun Sun (American T S Designed and fabricated devices with nanoscale surface topography. Controlled cell alignment by varying
Modeling plant growth and development Przemyslaw Prusinkiewicz
Prusinkiewicz, Przemyslaw
Modeling plant growth and development Przemyslaw Prusinkiewicz Department of Computer Science plant models or "virtual plants" are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form
Selective anisotropic growth of zeolite crystals
Desai, Tasha April
2013-02-22
Precise control over particle size and morphology is emerging as a critical issue in the design of nanostructured materials. The explosive growth of nanoparticle synthesis is a good example of this. As material chemists have developed the ability...
GROWTH OF SOUTH AFRICAN AFRICA' ~-' ,, I
GROWTH OF SOUTH AFRICAN FISHERIES -SQUTH-: WEST .-' AFRICA' ~-' ,, I I , I :--. .,' UN I .............................................. Regrouping of Interests ······························ Fisheries Development Corporation of South Africa, Ltd and the trawling interests, respectively. The quasi-official Fisheries Develop- ment Corporation of South Africa
Introduction: California's Growth: An Uncertain Future
Teitz, Michael B.
2008-01-01
s Growth: An Uncertain Future BY MICHAEL B. TEITZ Editor'shave to be California’s future? Clearly, not so. This ofat the issue of accommodating future tions within them, for
Graphene Growth on Low Carbon Solubility Metals
Wofford, Joseph Monroe
2012-01-01
growth. LEEM micrographs and LEED patterns showing thespecies of sp 2 bonded C. LEED from a large region of aof rotational variants. LEED from a R0 oriented domain of
Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...
Vietnam-Strengthening Planning Capacity for Low Carbon Growth...
Growth in Developing Asia Jump to: navigation, search Name Vietnam-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...
Suppression of Grain Boundaries in Graphene Growth on Superstructured...
Office of Scientific and Technical Information (OSTI)
Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface Prev Next Title: Suppression of Grain Boundaries in Graphene Growth on...
Atomistic surface erosion and thin film growth modelled over...
Office of Scientific and Technical Information (OSTI)
Atomistic surface erosion and thin film growth modelled over realistic time scales Citation Details In-Document Search Title: Atomistic surface erosion and thin film growth...
Enhancing Plant Growth and Stress Tolerance through Use of Fungi...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Enhancing Plant Growth and Stress Tolerance through Use of Fungi and Bacteria that Comprise Plant Microbiomes Enhancing Plant Growth and Stress Tolerance through Use of Fungi and...
Agricultural Productivity Growth in China: Farm Level versus National Measurement
Carter, Colin A.; Chen, Jing; Chu, Baojin
1999-01-01
bias any measurement of agricultural productivity, becauseProductivity Growth in China: Farm Level versus National MeasurementProductivity Growth in China: Farm Level versus National Measurement
Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial...
Office of Scientific and Technical Information (OSTI)
Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene. Citation Details In-Document Search Title: Growth Mode and Substrate Symmetry Dependent Strain in...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore »scattering angle component out of the equatorial plane.« less
Taitel, Y. (Tel-Aviv Univ., Israel); Bornea, D.; Dukler, A.E.
1980-05-01
Models for predicting flow patterns in steady upward gas-liquid flow in vertical tubes (such as production-well tubing) delineate the transition boundaries between each of the four basic flow patterns for gas-liquid flow in vertical tubes: bubble, slug, churn, and dispersed-annular. Model results suggest that churn flow is the development region for the slug pattern and that bubble flow can exist in small pipes only at high liquid rates, where turbulent dispersion forces are high. Each transition depends on the flow-rate pair, fluid properties, and pipe size, but the nature of the dependence is different for each transition because of differing control mechanisms. The theoretical predictions are in reasonably good agreement with a variety of published flow maps based on experimental data.
Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio [UPMC Univ. Paris 06, UMR 7092, LPMAA, 4 place Jussieu, case 76, F-75005 Paris, France, and CNRS, UMR 7092, LPMAA, 4 place Jussieu, case 76, F-75005 Paris (France); LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l'Observatoire, F-75014 Paris (France); Dipartimento di Fisica ''E. Fermi,'' Universita di Pisa, Lgo. B. Pontecorvo 3, I-56122 Pisa (Italy)
2011-12-15
Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap a large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.
Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.
2009-06-01
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.
Apparatus for silicon web growth of higher output and improved growth stability
Duncan, Charles S. (Penn Hills, PA); Piotrowski, Paul A. (Monroeville, PA)
1989-01-01
This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.
Growth Kinetics and Modeling of Direct Oxynitride Growth with NO-O2 Gas Mixtures
Everist, Sarah; Nelson, Jerry; Sharangpani, Rahul; Smith, Paul Martin; Tay, Sing-Pin; Thakur, Randhir
1999-05-03
We have modeled growth kinetics of oxynitrides grown in NO-O_{2} gas mixtures from first principles using modified Deal-Grove equations. Retardation of oxygen diffusion through the nitrided dielectric was assumed to be the dominant growth-limiting step. The model was validated against experimentally obtained curves with good agreement. Excellent uniformity, which exceeded expected walues, was observed.
Growth of the NGV Market:Growth of the NGV Market: Lessons LearnedLessons Learned
Growth of the NGV Market:Growth of the NGV Market: Lessons LearnedLessons Learned Roadmap NGVAmerica #12;""Roadmap For Development ofRoadmap For Development of NGV Fueling InfrastructureNGV FuelingData Collection Section · Report defines underlying problem with current data Lack of fuel consumption and NGV
Journal of Crystal Growth 307 (2007) 302308 Equilibrium analysis of zirconium carbide CVD growth
Anderson, Timothy J.
2007-01-01
Journal of Crystal Growth 307 (2007) 302308 Equilibrium analysis of zirconium carbide CVD growth analysis; A3. Metalorganic chemical vapor deposition; A3. Zirconium carbide 1. Introduction Zirconium, is not straightforward particularly by chemical vapor deposition (CVD). Although atmospheric halide CVD using zirconium
Johnson, Eric E.
Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic
Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon
Joselevich, Ernesto
obstacles toward nanotube-based electronic technology. Vectorial growth of SWNTs is a new approach wherebyVectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes Ernesto Joselevich growth of single-wall carbon nanotube arrays is presented. The origin of growth is defined by patterning
Role of nucleation in nanodiamond film growth
Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.
2006-06-12
Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C{sub 2} dimer growth (CH{sub 4} and H{sub 2} in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH{sub 4} in H{sub 2}) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C{sub 2} dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite.
Efg Crystal Growth Apparatus And Method
Mackintosh, Brian H. (Concord, MA); Ouellette, Marc (Nashua, NH)
2003-05-13
An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.
Time scales in atmospheric chemistry: Theory, GWPs for CH 4 and CO, and runaway growth
Prather, Michael J
1996-01-01
Program and NSF's Atmospheric Chemistry Program for supporteigenstates in atmospheric chemistry, (2) Exponential decaytracer gases and atmospheric chemistry, in steady-state
Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth
Prather, MJ; Prather, MJ
1996-01-01
Program and NSF's Atmospheric Chemistry Program for supporteigenstates in atmospheric chemistry, (2) Exponential decaytracer gases and atmospheric chemistry, in steady-state
Klebsiella pneumoniae inoculants for enhancing plant growth
Triplett, Eric W. (Middleton, WI); Kaeppler, Shawn M. (Oregon, WI); Chelius, Marisa K. (Greeley, CO)
2008-07-01
A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.
Direct growth of graphene on Si(111)
Thanh Trung, Pham Joucken, Frédéric; Colomer, Jean-François; Robert, Sporken; Campos-Delgado, Jessica; Raskin, Jean-Pierre; Hackens, Benoît; Santos, Cristiane N.
2014-06-14
Due to the need of integrated circuit in the current silicon technology, the formation of graphene on Si wafer is highly desirable, but is still a challenge for the scientific community. In this context, we report the direct growth of graphene on Si(111) wafer under appropriate conditions using an electron beam evaporator. The structural quality of the material is investigated in detail by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, high resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. Our experimental results confirm that the quality of graphene is strongly dependent on the growth time during carbon atoms deposition.
Lucht, Robert; Anderson, William
2015-01-23
An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.
Fahey, Mark R.; Candy, Jeff
2013-11-07
This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two decades. The design of an efficient feedback algorithm is a serious numerical challenge. Although the power source and transport balance coding in the master are standard, it is nontrivial to design a feedback loop that can cope with outputs that are both intermittent and extremely expensive. A prototypical feedback scheme has already been successfully demonstrated for a single global GYRO simulation, although the robustness and efficiency are likely far from optimal. Once the transport feedback scheme is perfected, it could, in principle, be embedded into any of the more elaborate transport codes (ONETWO, TRANSP, and CORSICA), or adopted by other FSP-related multi-scale projects.
Bioclimatology Water deficits during reproductive growth
Paris-Sud XI, Université de
) constantly maintained at > 50% of soil available water. The treatment drought periods were: 0I) from R1 to R4 greater dry matter production than 0I and 10, and these 2 treatments produced more dry matter than 00Bioclimatology Water deficits during reproductive growth of soybeans. l. Their effects on dry
Spectroscopic studies of metal growth on oxides
Luo, Kai
2000-01-01
of metal clusters on well-defined oxide surfaces. In this work, the nucleation and growth modes of Ag on TiO?(110)(1x1) and (1x2) surfaces, Ag on ultra-thin Al?O? films, and Au on ultra-thin SiO? films were studied by scanning tunneling microscopy (STM...
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS
Ferguson, Thomas S.
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance
Growth Of Oriented Crystals At Polymerized Membranes
Charych, Deborah H. (Albany, CA), Berman, Amir (Ben-Shiva, IL)
2000-01-25
The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.
Economic Growth and Inequality: Drawing the
von der Heydt, Rüdiger
and policies in later sessions #12;Economic Growth and Inequality: The Famous Kuznets Curve #12;Income Inequality #12;The New Kuznets Curve #12;Income Inequality #12;From Income Inequality to Health #12;Percent the Channels) #12;Kuznets Curves for Socially Determined Health Outcomes David Bishai, MD,MPH, PhD Professor
Eucalyptus fuelwood growth rate improves with age
Eucalyptus fuelwood growth rate improves with age Dean R. Donaldson 0 Richard B. Standiford I n The two species of Eucalyptus were the fastest growing of the five tree spe- cies evaluated at Grant Street (table 1). Manna gum, Eucalyptus viminalis, al- though about a year younger, is signifi- cantly
Emittance growth from electron beam modulation
Blaskiewicz, M.
2009-12-01
In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.
Melt dumping in string stabilized ribbon growth
Sachs, Emanuel M. (42 Old Middlesex Rd., Belmont, MA 02178)
1986-12-09
A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.
ECONOMIC GROWTH WHILE PROTECTING THE ENVIRONMENT
Bateman, Ian J.
-8875 #12;Abstract This paper reviews the historical development of the energy sector in India as background to consideration of how India might develop its energy sector in the future to ensure economic growth and limit. It is estimated that India may account for 21% of the increase in energy-related carbon emissions from developing
JELLYFISH BLOOMS The growth of jellyfishes
Pauly, Daniel
JELLYFISH BLOOMS The growth of jellyfishes M. L. D. Palomares Æ D. Pauly Published online: 15, Consequences, and Recent Advances M. L. D. Palomares (&) Á D. Pauly The Sea Around Us Project, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, Canada V6T 1Z4 e-mail: m.palomares
Revisiting BGP Churn Growth Ahmed Elmokashfi
California at San Diego, University of
Revisiting BGP Churn Growth Ahmed Elmokashfi Simula Research Laboratory ahmed@simula.no Amogh protocol. The focus was on update churn (the number of routing protocol messages that are exchanged when the network undergoes routing changes) and whether churn was grow- ing too fast for routers to handle. Recent
Energy scarcity and economic growth reconsidered
Uri, N.D. [Economics Research Service, Washington, DC (United States). National Resources and Environment Div.
1995-05-01
This analysis is concerned with the effect of energy scarcity on economic growth in the US. After defining the notion of scarcity and introducing two measures of scarcity, namely unit costs and relative energy price, changes in the trend in resource scarcity are investigated for natural gas, bituminous coal, anthracite coal, and crude oil over the most recent three decades. Each of the energy resources became significantly more scarce during the decade of the 1970s in the Malthusian stock scarcity and Malthusian flow scarcity sense. Unit costs exhibit a similar change for natural gas and crude oil but not for bituminous coal and anthracite coal. The situation reversed itself during the 1980s. Natural gas, bituminous coal, anthracite coal, and crude oil all became significantly less scarce during the 1980s than the 1970s. That is, the increase in scarcity as measured by relative energy prices observed during the 1970s was not reversed completely during the 1980s for natural gas and crude oil. Unit costs for natural gas and crude oil demonstrate analogous patterns and test results. Given that change has take place, it has implications for future economic growth to the extent that resource scarcity and economic growth are interrelated. To see whether this is a relevant concern, subsequent to the examination of changing trends in resource scarcity, an objective effort is made to identify a long-run equilibrium relationship between energy scarcity and economic growth. Relying on cointegration techniques, only for crude oil is there a suggestion that resource scarcity has affected economic growth in the US over the period 1889--1992. 56 refs.
Hu, Xiaobo, E-mail: hxb1314@gmail.com; Sakurai, Takeaki; Akimoto, Katsuhiro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamada, Akimasa; Ishizuka, Shogo; Niki, Sigeru [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)
2014-10-28
The properties of defect levels located 0.8?eV above the valence band in Cu(In{sub 1?x},Ga{sub x})Se{sub 2} thin films were investigated by a steady-state photocapacitance method. When illuminated by light with a photon energy of 0.8?eV at 60?K, a fast increase, followed by a slow increase, was observed in the photocapacitance transients of all samples. Upon being re-exposed, samples with a low bandgap energy showed a slow decrease in photocapacitance transients. These observations were interpreted using a configuration coordinate model assuming two states for the 0.8?eV defect: a stable state D and its metastable state D* with a large lattice relaxation. The difference in the evolution mechanisms of the photocapacitance transients was attributed to the difference in the optical transition of carriers between the two states of the 0.8?eV defect and the valence and conduction bands.
Berna, G.A.; Bohn, M.P.; Rausch, W.N.; Williford, R.E.; Lanning, D.D.
1981-01-01
FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and failure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include: (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e) fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version2.
Bryan, Z; Bryan, I; Gaddy, BE; Reddy, P; Hussey, L; Bobea, M; Guo, W; Hoffmann, M; Kirste, R; Tweedie, J; Gerhold, M; Irving, DL; Sitar, Z; Collazo, R
2014-12-01
A Fermi-level control scheme for point defect management using above-bandgap UV illumination during growth is presented. We propose an extension to the analogy between the Fermi level and the electrochemical potential such that the electrochemical potential of a charged defect in a material with steady-state populations of free charge carriers may be expressed in terms of the quasi-Fermi levels. A series of highly Si-doped Al0.65Ga0.35N films grown by metalorganic chemical vapor deposition with and without UV illumination showed that samples grown under UV illumination had increased free carrier concentration, free carrier mobility, and reduced midgap photoluminescence all indicating a reduction in compensating point defects. (c) 2014 AIP Publishing LLC.
Stratified Steady Periodic Water Waves
Samuel Walsh
2009-02-11
This paper considers two-dimensional stratified water waves propagating under the force of gravity over an impermeable flat bed and with a free surface. We prove the existence of a global continuum of classical solutions that are periodic and traveling. These waves, moreover, can exhibit large density variation, speed and amplitude.
Epitaxial growth of silicon for layer transfer
Teplin, Charles; Branz, Howard M
2015-03-24
Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
Fast Fermi Acceleration and Entropy Growth
Tiago Pereira; Dmitry Turaev
2015-03-13
Fermi acceleration is the process of energy transfer from massive objects in slow motion to light objects that move fast. The model for such process is a time-dependent Hamiltonian system. As the parameters of the system change with time, the energy is no longer conserved, which makes the acceleration possible. One of the main problems is how to generate a sustained and robust energy growth. We show that the non-ergodicity of any chaotic Hamiltonian system must universally lead to the exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of a Geometric Brownian Motion with a positive drift and relate it to the entropy increase.
Transient Growth in Stochastic Burgers Flows
Poças, Diogo
2015-01-01
This study considers the problem of the extreme behavior exhibited by solutions to Burgers equation subject to stochastic forcing. More specifically, we are interested in the maximum growth achieved by the "enstrophy" (the Sobolev $H^1$ seminorm of the solution) as a function of the initial enstrophy $\\mathcal{E}_0$, in particular, whether in the stochastic setting this growth is different than in the deterministic case considered by Ayala & Protas (2011). This problem is motivated by questions about the effect of noise on the possible singularity formation in hydrodynamic models. The main quantities of interest in the stochastic problem are the expected value of the enstrophy and the enstrophy of the expected value of the solution. The stochastic Burgers equation is solved numerically with a Monte Carlo sampling approach. By studying solutions obtained for a range of optimal initial data and different noise magnitudes, we reveal different solution behaviors and it is demonstrated that the two quantities ...
Method for solid state crystal growth
Nolas, George S.; Beekman, Matthew K.
2013-04-09
A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.
Substrate solder barriers for semiconductor epilayer growth
Drummond, Timothy J. (Tijeras, NM); Ginley, David S. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)
1989-01-01
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Pattern formation and nonlocal logistic growth
Nadav M. Shnerb
2004-03-25
Logistic growth process with nonlocal interactions is considered in one dimension. Spontaneous breakdown of translational invariance is shown to take place at some parameter region, and the bifurcation regime is identified for short and long range interactions. Domain walls between regions of different order parameter are expressed as soliton solutions of the reduced dynamics for nearest neighbor interactions. The analytic results are confirmed by numerical simulations.
Growth process for gallium nitride porous nanorods
Wildeson, Isaac Harshman; Sands, Timothy David
2015-03-24
A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.
Transient Growth in Stochastic Burgers Flows
Diogo Poças; Bartosz Protas
2015-10-16
This study considers the problem of the extreme behavior exhibited by solutions to Burgers equation subject to stochastic forcing. More specifically, we are interested in the maximum growth achieved by the "enstrophy" (the Sobolev $H^1$ seminorm of the solution) as a function of the initial enstrophy $\\mathcal{E}_0$, in particular, whether in the stochastic setting this growth is different than in the deterministic case considered by Ayala & Protas (2011). This problem is motivated by questions about the effect of noise on the possible singularity formation in hydrodynamic models. The main quantities of interest in the stochastic problem are the expected value of the enstrophy and the enstrophy of the expected value of the solution. The stochastic Burgers equation is solved numerically with a Monte Carlo sampling approach. By studying solutions obtained for a range of optimal initial data and different noise magnitudes, we reveal different solution behaviors and it is demonstrated that the two quantities always bracket the enstrophy of the deterministic solution. The key finding is that the expected values of the enstrophy exhibit the same power-law dependence on the initial enstrophy $\\mathcal{E}_0$ as reported in the deterministic case. This indicates that the stochastic excitation does not increase the extreme enstrophy growth beyond what is already observed in the deterministic case.
Theoretical priors on modified growth parametrisations
Song, Yong-Seon; Hollenstein, Lukas; Caldera-Cabral, Gabriela; Koyama, Kazuya E-mail: Lukas.Hollenstein@unige.ch E-mail: Kazuya.Koyama@port.ac.uk
2010-04-01
Next generation surveys will observe the large-scale structure of the Universe with unprecedented accuracy. This will enable us to test the relationships between matter over-densities, the curvature perturbation and the Newtonian potential. Any large-distance modification of gravity or exotic nature of dark energy modifies these relationships as compared to those predicted in the standard smooth dark energy model based on General Relativity. In linear theory of structure growth such modifications are often parameterised by virtue of two functions of space and time that enter the relation of the curvature perturbation to, first, the matter over- density, and second, the Newtonian potential. We investigate the predictions for these functions in Brans-Dicke theory, clustering dark energy models and interacting dark energy models. We find that each theory has a distinct path in the parameter space of modified growth. Understanding these theoretical priors on the parameterisations of modified growth is essential to reveal the nature of cosmic acceleration with the help of upcoming observations of structure formation.
ALS Technique Gives Novel View of Lithium Battery Dendrite Growth
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALS Technique Gives Novel View of Lithium Battery Dendrite Growth ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Thursday, 24 April 2014 09:46 Lithium-ion...
The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth
Wirth, Christoph T.; Bayer, Bernhard C.; Gamalski, Andrew D.; Esconjauregui, Santiago; Weatherup, Robert S.; Ducati, Caterina; Baehtz, Carsten; Robertson, John; Hofmann, Stephan
2012-11-28
growth modes occur upon hydrocarbon exposure: For ?-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For ?-rich catalyst mixtures, Fe3C formation more...
Distributed Wind Market Report: Small Turbines Lead to Big Growth...
Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports August 18, 2014 - 12:13pm...
Home Performance with ENERGY STAR -- 10 Years of Continued Growth...
ENERGY STAR -- 10 Years of Continued Growth Home Performance with ENERGY STAR -- 10 Years of Continued Growth Provides an overview of the HPwES program, HPwES successes, and...
Continuum-scale Modeling of Hydrogen and Helium Bubble Growth...
Office of Environmental Management (EM)
Continuum-scale Modeling of Hydrogen and Helium Bubble Growth in Metals Continuum-scale Modeling of Hydrogen and Helium Bubble Growth in Metals Presentation from the 34th Tritium...
Engineering design of a hypobaric plant growth chamber
Purswell, Joseph Lawrence
2002-01-01
This system was developed to measure the effects of low-atmospheric pressure on the growth and function of plants for applications in Advanced Life Support systems research. The system is composed of six independent growth vessels...
A STOCHASTIC MODEL FOR COMPETING GROWTH ON R d
HÃ¤ggstrÃ¶m, Olle
A STOCHASTIC MODEL FOR COMPETING GROWTH ON R d Maria Deijfen # Olle HË?aggstrË?om + Jonathan Bagley # March 2003 Abstract A stochastic model, describing the growth of two competing infections on R d , is introduced. The growth is driven by outbursts in the infected region, an outburst in the type 1 (2) infected
Coexistence in a two-type continuum growth model
HÃ¤ggstrÃ¶m, Olle
Coexistence in a two-type continuum growth model Maria Deijfen #3; Olle Haggstrom y April 2004 Abstract We consider a stochastic model, describing the growth of two com- peting infections on R d . The growth takes place by way of spherical outbursts in the infected region, an outburst in the type 1 (2
Internet growth: Myth and reality, use and abuse Andrew Odlyzko
Odlyzko, Andrew M.
Internet growth: Myth and reality, use and abuse Andrew Odlyzko AT&T Labs - Research amo@research.att.com http://www.research.att.com/ amo Abstract Actual Internet traffic growth rates of 100 percent per year to Internet growth claim astronomical rates of increase; the usual phrase is that "Internet traffic
Climate and Sockeye Salmon Climate effects on growth, phenology, and
Hinch, Scott G.
Climate and Sockeye Salmon Climate effects on growth, phenology, and survival of sockeye salmon in peer-reviewed studies that link sockeye salmon growth, phenology, and survival to climate variables 2. State the known knowledge in regards to effects of climate variables on growth, phenology, and survival
Growth of Cloud Droplets in a Turbulent Environment
Wang, Lian-Ping
Growth of Cloud Droplets in a Turbulent Environment Wojciech W. Grabowski1 and Lian-Ping Wang2 1 Keywords condensational growth, turbulent collision-coalescence, particle-laden flow, cloud microphysical concerning the growth of cloud droplets by water-vapor diffu- sion and by collision
crack growth, and some implications for rock engineering R.A. Schultz* Geomechanics-Rock Fracture Group
van Ark, Bart; Smits, Jan Pieter
2005-01-01
Productivity Growth, Netherlands, Technology Regime PeriodSteam as a General Purpose Technology: A Growth Accountingeds. , Productivity, Technology, and Economic Growth, Kluwer
Motta, Arthur T.
IRRADIATION GROWTH IN ZIRCONIUM AT LOW TEMPERATURES BY DIRECT ATHERMAL DEPOSITION OF VACANCIES, which can contribute to the observed growth strains. 1. Introduction Irradiation growth of zirconium
2007-01-01
Journal of Crystal Growth 308 (2007) 105109 The effect of growth time on the morphology of ZnO structures deposited on Si (1 0 0) by the aqueous chemical growth technique D. Vernardoua,b,c,Ã, G. Katsarakisa,b,i a Center of Materials Technology and Laser, School of Applied Technology, Technological
Logistic Growth Logistic growth is a simple model for predicting the size y(t) of a population as a
Feldman, Joel
Logistic Growth Logistic growth is a simple model for predicting the size y(t) of a population the differential equation y (t) = by(t) Logistic growth adds one more wrinkle to this model. It assumes available to each member decreases. This in turn causes the net birth rate b to decrease. In the logistic
Buldyrev, Sergey
Percolation model for growth rates of aggregates and its application for business firm growth of business firm growth, we develop a dynamic percolation model which captures some of the features of the economical system--i.e., merging and splitting of business firms-- represented as aggregates on a d
Construction Cost Growth for New Department of Energy Nuclear Facilities
Kubic, Jr., William L.
2014-05-25
Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.
Growth histories in bimetric massive gravity
Berg, Marcus; Buchberger, Igor; Enander, Jonas; Mörtsell, Edvard; Sjörs, Stefan E-mail: igor.buchberger@kau.se E-mail: edvard@fysik.su.se
2012-12-01
We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.
Philippines' downstream sector poised for growth
Not Available
1992-05-11
This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.
Crystal growth under external electric fields
Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo
2014-10-06
This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.
Career Growth | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C | NationalBenefitsDiamondCTBT |Growth
#MarketGrowth | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult formatswind powering#MarketGrowth Home
A Statistical Physics Perspective on Web Growth
P. L. Krapivsky; S. Redner
2002-06-07
Approaches from statistical physics are applied to investigate the structure of network models whose growth rules mimic aspects of the evolution of the world-wide web. We first determine the degree distribution of a growing network in which nodes are introduced one at a time and attach to an earlier node of degree k with rate A_ksim k^gamma. Very different behaviors arise for gamma1. We also analyze the degree distribution of a heterogeneous network, the joint age-degree distribution, the correlation between degrees of neighboring nodes, as well as global network properties. An extension to directed networks is then presented. By tuning model parameters to reasonable values, we obtain distinct power-law forms for the in-degree and out-degree distributions with exponents that are in good agreement with current data for the web. Finally, a general growth process with independent introduction of nodes and links is investigated. This leads to independently growing sub-networks that may coalesce with other sub-networks. General results for both the size distribution of sub-networks and the degree distribution are obtained.
A Study of Detonation Diffraction in the Ignition-and-Growth Model
Kapila, A K; Schwendeman, D W; Bdzil, J B; Henshaw, W D
2006-04-14
Heterogeneous high-energy explosives are morphologically, mechanically and chemically complex. As such, their ab-initio modeling, in which well-characterized phenomena at the scale of the microstructure lead to a rationally homogenized description at the scale of observation, is a subject of active research but not yet a reality. An alternative approach is to construct phenomenological models, in which forms of constitutive behavior are postulated with an eye on the perceived picture of the micro-scale phenomena, and which are strongly linked to experimental calibration. Most prominent among these is the ignition-and-growth model conceived by Lee and Tarver. The model treats the explosive as a homogeneous mixture of two distinct constituents, the unreacted explosive and the products of reaction. To each constituent is assigned an equation of state, and a single reaction-rate law is prescribed for the conversion of the explosive to products. It is assumed that the two constituents are always in pressure and temperature equilibrium. The purpose of this paper is to investigate in detail the behavior of the model in situations where a detonation turns a corner and undergoes diffraction. A set of parameters appropriate for the explosive LX-17 is selected. The model is first examined analytically for steady, planar, 1-D solutions and the reaction-zone structure of Chapman-Jouguet detonations is determined. A computational study of two classes of problems is then undertaken. The first class corresponds to planar, 1-D initiation by an impact, and the second to corner turning and diffraction in planar and axisymmetric geometries. The 1-D initiation, although interesting in its own right, is utilized here as a means for interpretation of the 2-D results. It is found that there are two generic ways in which 1-D detonations are initiated in the model, and that these scenarios play a part in the post-diffraction evolution as well. For the parameter set under study the model shows detonation failure, but only locally and temporarily, and does not generate sustained dead zones. The computations employ adaptive mesh refinement and are finely resolved. Results are obtained for a rigid confinement of the explosive. Compliant confinement represents its own computational challenges and is currently under study. Also under development is an extended ignition-and-growth model which takes into account observed desensitization of heterogeneous explosives by weak shocks.
Productivity Growth in the 1990s: Technology, Utilization, or Adjustment? Susanto Basu
Cafarella, Michael J.
Productivity Growth in the 1990s: Technology, Utilization, or Adjustment? Susanto Basu University (SRB-9617437). #12;ABSTRACT Productivity Growth in the 1990s: Technology, Utilization, or Adjustment in technological change. Cyclical utilization raised measured productivity growth relative to technology growth
Bastian, Peter
in chemotherapy. To optimize the6 production of valuable secondary metabolites it is necessary to understand7 applications to5 describe e.g. secondary metabolite production.6 keywords: growth model, nutrient uptake, hairy camptothecin (Camptotheca acuminata)3 used in chemotherapy, are secondary metabolites that are not essential
A Quantitative Analysis of Branching, Growth Cone Turning, and Directed Growth in Zebrafish
Goodhill, Geoffrey J.
in Goodhill and Richards, 1999; McLaughlin and O'Leary, 2005; Feldheim and O'Leary, 2010). Studies these maps (McLaughlin and O'Leary, 2005). In chicks and rodents, serial histology at different developmental their targets (Nakamura and O'Leary, 1989; Simon and O'Leary, 1992; Yates et al., 2001). Pri- mary axon growth
Precision growth index using the clustering of cosmic structures and growth data
Pouri, Athina; Basilakos, Spyros; Plionis, Manolis E-mail: svasil@academyofathens.gr
2014-08-01
We use the clustering properties of Luminous Red Galaxies (LRGs) and the growth rate data provided by the various galaxy surveys in order to constrain the growth index ?) of the linear matter fluctuations. We perform a standard ?{sup 2}-minimization procedure between theoretical expectations and data, followed by a joint likelihood analysis and we find a value of ?=0.56± 0.05, perfectly consistent with the expectations of the ?CDM model, and ?{sub m0} =0.29± 0.01, in very good agreement with the latest Planck results. Our analysis provides significantly more stringent growth index constraints with respect to previous studies, as indicated by the fact that the corresponding uncertainty is only ? 0.09 ?. Finally, allowing ? to vary with redshift in two manners (Taylor expansion around z=0, and Taylor expansion around the scale factor), we find that the combined statistical analysis between our clustering and literature growth data alleviates the degeneracy and obtain more stringent constraints with respect to other recent studies.
Abnormal grain growth in AISI 304L stainless steel
Shirdel, M.; Mirzadeh, H.; Parsa, M.H.
2014-11-15
The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.
A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants
Fenton, Tanis R; Kim, Jae H
2013-01-01
growth chart with the new World Health Organization (WHO)growth chart, harmonized with the World Health Organization
Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.
2014-03-15
Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.
Marine Hybrid Propulsion Market Revenue is anticipated to Reach...
ferry operators are the major adopters of marine hybrid propulsion systems across the world. These vessels primarily operate in coastal areas and inland waterways, where emission...
Small Scale LNG Terminals Market Installed Capacity is anticipated...
Although large scale LNG terminals have been preferably constructed across the world till date, the emergence of small demand centers for natural gas within small...
Optimal Dam Construction under Climate Change Uncertainty and Anticipated Learning
Cameron-Loyd, Patricia Jane
2012-01-01
CBA ..dam. Cost-bene…t analysis (CBA) and it’s close cousin, Cost-methods. Two extreme views of CBA follow, the …rst from
ANTICIPATION-FREE DIAGNOSIS OF STRUCTURAL FAULTS Wolfgang Menzel
Qr Sprachwissenschaft Akademie der Wissenschaften der DDR Prenzlauer Promenade 949-152 Berlin, iI00, DDR Current
Paying with money or effort: Pricing when customers anticipate hassle
Lambrecht, Anja
For many services, customers subscribe to long-term contracts. Standard economic theory suggests that customers evaluate a contract on the basis of its overall net benefits. the authors suggest that rather than evaluating ...
Anticipation: A Key for Collaboration in a Team of Agents
Stone, Peter
], NT-Swift [Huang98] and Globus toolkit [Stelling98]. 2. Layered Models capturing Failure Occurrence
Optimal Dam Construction under Climate Change Uncertainty and Anticipated Learning
Cameron-Loyd, Patricia Jane
2012-01-01
K Mattas, 2007. Using real option theory to irrigation damdevelop the concept of real option theory and use dynamicin economics on real options in a general setting. A smaller
Contractor Subject Matter Amount of Consideration Start Date Anticipated
Greenslade, Diana
Systems SAP Project Manager Office Lead $ 218,625 24-Jan-12 30-Jun-12 N N/A N N/A Ajilon Australia Pty Ltd Professional Services- Enterprise Business Systems SAP Test Manager $ 216,759 24-Jan-12 30-Jun-12 N N/A N N/A Ajilon Australia Pty Ltd Professional Services- Enterprise Business Systems SAP Employee Self Service
Optimal Dam Construction under Climate Change Uncertainty and Anticipated Learning
Cameron-Loyd, Patricia Jane
2012-01-01
real option theory to irrigation dam investment analysis: an43, 2) 482–498. [40] World Commission on Dams (WCD), 2000.Dams and development: A new framework for decision- making.
Anticipating the atom: popular perceptions of atomic power before Hiroshima
d'Emal, Jacques-Andre Christian
1994-01-01
Before Hiroshima made the Bomb an object of popular concern, possible implications and applications of atomic physics had been discussed in the public forum. The new science of X-rays and radium promised the possibilities of unlimited energy...
Nationwide: New Efficiency Standards for Power Supplies Anticipate...
California: Heliotrope Technologies Wins R&D 100 Award for Universal Smart Window Coating that Saves Energy and Increases Comfort Project Overview Positive Impact New energy...
Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel CellFuel for(FCEVs) |
Rational design of metal-organic frameworks with anticipated porosities
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications The NREL QueueTechnologies |and
EIA - 2008 New Electric Power EIA-860 Form Anticipated Questions
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1--Electronic860 Form The
EIA - 2008 New Electric Power EIA-923 Form Anticipated Questions
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1--Electronic860 Form923
Nationwide: New Efficiency Standards for Power Supplies Anticipate Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of Energy Nationwide: EERE Program Leads
Long-term control of root growth
Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)
1992-05-26
A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.
Cadmium zinc sulfide by solution growth
Chen, Wen S. (Seattle, WA)
1992-05-12
A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.
Lid for improved dendritic web growth
Duncan, Charles S. (Penn Hills, PA); Kochka, Edgar L. (Greentree, PA); Piotrowski, Paul A. (Monroeville, PA); Seidensticker, Raymond G. (Forest Hills, PA)
1992-03-24
A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.
Spinodal instability growth in new stochastic approaches
P. Napolitani; M. Colonna; V. de la Mota
2014-09-21
Are spinodal instabilities the leading mechanism in the fragmentation of a fermionic system? Numerous experimental indications suggest such a scenario and stimulated much effort in giving a suitable description, without being finalised in a dedicated transport model. On the one hand, the bulk character of spinodal behaviour requires an accurate treatment of the one-body dynamics, in presence of mechanical instabilities. On the other hand, pure mean-field implementations do not apply to situations where instabilities, bifurcations and chaos are present. The evolution of instabilities should be treated in a large-amplitude framework requiring fluctuations of Langevin type. We present new stochastic approaches constructed by requiring a thorough description of the mean-field response in presence of instabilities. Their particular relevance is an improved description of the spinodal fragmentation mechanism at the threshold, where the instability growth is frustrated by the mean-field resilience.
Cosmological HII Bubble Growth During Reionization
Shin, Min-Su; Cen, Renyue
2007-01-01
We present general properties of ionized hydrogen (HII) bubbles and their growth based on a state-of-the-art large-scale (100 Mpc/h) cosmological radiative transfer simulation. The simulation resolves all halos with atomic cooling at the relevant redshifts and simultaneously performs radiative transfer and dynamical evolution of structure formation. Our major conclusions include: (1) for significant HII bubbles, the number distribution is peaked at a volume of ~ 0.6 Mpc^3/h^3 at all redshifts. But, at z 10 even the largest HII bubbles have a balanced ionizing photon contribution from Pop II and Pop III stars, while at z Pop II stars start to dominate the overall ionizing photon production for large bubbles, although Pop III stars continue to make a non-negligible contribution. (6) The relationship between halo number density and bubble size is complicated but a strong correlation is found between halo number density and bubble size for for large bubbles.
Laboratory Evidence for Stochastic Plasma-Wave Growth
Austin, D. R.; Hole, M. J.; Robinson, P. A.; Cairns, Iver H.; Dallaqua, R.
2007-11-16
The first laboratory confirmation of stochastic growth theory is reported. Floating potential fluctuations are measured in a vacuum arc centrifuge using a Langmuir probe. Statistical analysis of the energy density reveals a lognormal distribution over roughly 2 orders of magnitude, with a high-field nonlinear cutoff whose spatial dependence is consistent with the predicted eigenmode profile. These results are consistent with stochastic growth and nonlinear saturation of a spatially extended eigenmode, the first evidence for stochastic growth of an extended structure.
Royer, Michael P.; McCullough, Jeffrey J.; Tucker, Joseph C.
2014-12-01
The lumen depreciation and color shift of 17 different A lamps (15 LED, 1 CFL, 1 halogen) was monitored in the automated long-term test apparatus (ALTA) for more than 7,500 hours. Ten samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at an ambient temperature of 45°C (-1°C). Importantly, the steady-state test conditions were not optimized for inducing catastrophic failure for any of the lamp technologies—to which thermal cycling is a strong contributor— and are not typical of normal use patterns—which usually include off periods where the lamp cools down. Further, the test conditions differ from those used in standardized long-term test methods (i.e., IES LM-80, IES LM-84), so the results should not be directly compared. On the other hand, the test conditions are similar to those used by ENERGY STAR (when elevated temperature testing is called for). Likewise, the conditions and assumptions used by manufacturers to generated lifetime claims may vary; the CALiPER long-term data is informative, but cannot necessarily be used to discredit manufacturer claims. The test method used for this investigation should be interpreted as one more focused on the long-term effects of elevated temperature operation, at an ambient temperature that is not uncommon in luminaires. On average, the lumen maintenance of the LED lamps monitored in the ALTA was better than benchmark lamps, but there was considerable variation from lamp model to lamp model. While three lamp models had average lumen maintenance above 99% at the end of the study period, two products had average lumen maintenance below 65%, constituting a parametric failure. These two products, along with a third, also exhibited substantial color shift, another form of parametric failure. While none of the LED lamps exhibited catastrophic failure—and all of the benchmarks did—the early degradation of performance is concerning, especially with a new technology trying to build a reputation with consumers. Beyond the observed parametric failures nearly half of the products failed to meet early-life thresholds for lumen maintenance, which were borrowed from ENERGY STAR specifications. That is, the lumen maintenance was sufficiently low at 6,000 hours that seven of the products are unlikely to have lumen maintenance above 70% at their rated lifetime (which was usually 25,000 hours). Given the methods used for this investigation—most notably continuous operation—the results should not be interpreted as indicative of a lamp’s performance in a typical environment. Likewise, these results are not directly relatable to manufacturer lifetime claims. This report is best used to understand the variation in LED product performance, compare the robustness of LED lamps and benchmark conventional lamps, and understand the characteristics of lumen and chromaticity change. A key takeaway is that the long-term performance of LED lamps can vary greatly from model to model (i.e., the technology is not homogenous), although the lamp-to-lamp consistency within a given model is relatively good. Further, operation of LED lamps in an enclosed luminaire (or otherwise in high ambient temperatures), can induce parametric failure of LEDs much earlier than their rated lifetime; manufacturer warnings about such conditions should be followed if performance degradation is unacceptable.
Component Overpressure Growth and Characterization of High Resistivity...
Office of Scientific and Technical Information (OSTI)
States Language: English Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BRIDGMAN METHOD; CHARGE TRANSPORT; CRYSTAL GROWTH; RADIATION DETECTORS Word...
Low-temperature plasma-deposited silicon epitaxial films: Growth...
Office of Scientific and Technical Information (OSTI)
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...
Indonesia-Strengthening Planning Capacity for Low Carbon Growth...
in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...
Philippines-Strengthening Planning Capacity for Low Carbon Growth...
in Developing Asia Jump to: navigation, search Name Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...
Strengthening Planning Capacity for Low Carbon Growth in Developing...
Asia - Thailand Jump to: navigation, search Name Thailand-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...
Fatigue crack growth behavior of Ti-1100 at elevated temperature
Maxwell, D.C.; Nicholas, T.
1995-12-31
Effects of temperature, frequency, and cycles with superimposed hold times are evaluated in Ti-1100 in order to study the complex creep-fatigue-environment interactions in this material. Crack growth rate tests conducted at cyclic loading frequency of 1.0 Hz show that raising the temperature from 593 to 650 C has only a slightly detrimental effect on crack growth rate, although these temperatures produce growth rates significantly higher than at room temperature. From constant {Delta}K tests, the effects of temperature at constant frequency show a minimum crack growth rate at 250 C. From the minimum crack growth rate at 250 C, the crack growth rate increases linearly with temperature. Increases in frequency at constant temperatures of 593 and 650 C produce a continuous decrease in growth rate in going from 0.001 to 1.0 Hz, although the behavior is primarily cycle dependent in this region. Tests at 1.0 Hz with superimposed hold times from 1 to 1,000 s are used to evaluate creep-fatigue-environment interactions. Hold times at maximum load are found to initially decrease and then increase the cyclic crack growth rate with increasing duration. This is attributed to crack-tip blunting during short hold times and environmental degradation at long hold times. Hold times at minimum load show no change in growth rates, indicating that there is no net environmental degradation to the bulk material beyond that experienced during the baseline 1 Hz cycling.
Communication Growth in Minimally Verbal Children with Autism
Mucchetti, Charlotte A.
2013-01-01
Adaptive intervention for communication in minimally verbalK. & Kasari, C. (2013). Communication growth in minimallysubstitutes different communication (e.g. first says “want”,
Thermodynamic and kinetic control of the lateral Si wire growth
Dedyulin, Sergey N. Goncharova, Lyudmila V.
2014-03-24
Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ?5 ML of C, lateral growth can be achieved in the range of temperatures, T?=?450–650?°C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.
Amplified Demand for Solar Trackers to Boost Market Growth in...
Amplified Demand for Solar Trackers to Boost Market Growth in Middle East and Africa Home > Groups > Solar Permitting Roadmap Development Wayne31jan's picture Submitted by...
Centrality Fingerprints for Power Grid Network Growth Models
Gurfinkel, Aleks Jacob; Rikvold, Per Arne
2015-01-01
In our previous work, we have shown that many of the properties of the Florida power grid are reproduced by deterministic network growth models based on the minimization of energy dissipation $E_\\mathrm{diss}$. As there is no $a~ priori$ best $E_\\mathrm{diss}$ minimizing growth model, we here present a tool, called the "centrality fingerprint," for probing the behavior of different growth models. The centrality fingerprints are comparisons of the current flow into/out of the network with the values of various centrality measures calculated at every step of the growth process. Finally, we discuss applications to the Maryland power grid.
CVD Growth of Carbon Nanotubes Directly on Nickel Substrate
Du, Chunsheng; Pan, Ning
2005-01-01
growth, carbon nanotubes, nickel substrates 1. Introductionto directly grow carbon nanotubes on nickel substrate underof the carbon nanotubes The nickel substrates were directly
Low Carbon Green Growth: Integrated Policy Approach to Climate...
Low Carbon Green Growth: Integrated Policy Approach to Climate Change for Asia-Pacific Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon...
Atomistic mechanisms for bilayer growth of graphene on metal...
Office of Scientific and Technical Information (OSTI)
Atomistic mechanisms for bilayer growth of graphene on metal substrates This content will become publicly available on January 8, 2016 Prev Next Title: Atomistic mechanisms...
Before the Subcommittee on Economic Growth, Job Creation and...
Job Creation and Regulatory Affairs - House Committee on Oversight and Governmant Reform Before the Subcommittee on Economic Growth, Job Creation and Regulatory Affairs -...
On Better Understanding Dilute Void Growth in Ductile Metals
Kostka, Tim
2010-01-01
and growth of damage in a dual-phase steel observed by X-rayWeck et al. , 2007], dual-phase steel [Maire et al. , 2008],
Modelling and Analysis of Phase Variation in Bacterial Colony Growth
Gilbert, David
Modelling and Analysis of Phase Variation in Bacterial Colony Growth Ovidiu P^arvu1 , David Gilbert, Brandenburg University of Technology monika.heiner@informatik.tu-cottbus.de 3 Harbin Institute of Technology case study, namely phase variation patterning in bacterial colony growth, forming circular colonies
From"Green Growth"to sound policies: An overview*
Growth" to sound policies: An overview Richard Schmalensee ,1 Massachusetts Institute of TechnologyFrom"Green Growth"to sound policies: An overview* Richard Schmalensee *Reprinted from Energy Change Postal Address: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge
Dynamic Limit Growth Indices in Discrete Time Tomasz R. Bielecki
Heller, Barbara
Dynamic Limit Growth Indices in Discrete Time Tomasz R. Bielecki 1 bielecki@iit.edu Igor Cialenco 1, Illinois Institute of Technology, Chicago, 60616 IL, USA 2 Institute of Mathematics, Jagiellonian propose a new class of mappings, called Dynamic Limit Growth Indices, that are designed to measure