National Library of Energy BETA

Sample records for anti-lock brakes power

  1. Regenerative braking on bicycles to power LED safety flashers

    E-Print Network [OSTI]

    Collier, Ian M

    2005-01-01

    This work develops a method for capturing some of the kinetic energy ordinarily lost during braking on bicycles to power LED safety flashers. The system is designed to eliminate: (a) battery changing in popular LED flashers, ...

  2. Non-invasive Spoofing Attacks For Anti-lock Braking Systems

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    the proposed ABS spoofer module using industrial ABS sensors and wheel speed decoders, concluding by outlining the implementation and lifetime considerations of an ABS spoofer with real hardware. Keywords: Automotive embedded

  3. Gravity brake

    DOE Patents [OSTI]

    Lujan, Richard E. (Santa Fe, NM)

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  4. Braking system

    DOE Patents [OSTI]

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  5. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBraking

  6. Full Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement VouchersBraking button highlighted Stopped

  7. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, Rama R. (Troy, MI); Mericle, Gerald E. (Mount Clemens, MI)

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  8. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  9. Variable ratio regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  10. Brake System Modeling, Control And Integrated Brake/throttle Switching Phase I

    E-Print Network [OSTI]

    Hedrick, Karl; Et. al.,

    1997-01-01

    and vacuum chambers, the intake manifold, the secondary brake line at the master cylinder and the front brake on the same hydraulic

  11. Brake Defect Causation and Abatement Study (BDCAS)

    E-Print Network [OSTI]

    cost with proper re- pairs being made the first time and reduction in out-of-service vehicles #12; corrective actions and validate true abatement of initial out-of- service causation the FMCSA began the BDCAS brake efficiency data as new brakes are burnished; and where possible, collect brake efficiency data

  12. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  13. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI)

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  14. 194 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 1, JANUARY 2009 PWM Method to Eliminate Power Sources in a

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    unidirectional if the machine is not using regenerative braking. In this paper, these nine power supplies

  15. Braking index of isolated pulsars: open questions and ways forward

    E-Print Network [OSTI]

    Hamil, Oliver

    2015-01-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives which show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of debate, the commonly accepted view is that it arises either through emission of magnetic dipole radiation (MDR) from a rotating magnetized body, through emission of a relativistic particle wind, or via higher order magnetic multipole or gravitational quadrupole radiation. The calculated energy loss by a rotating pulsar is model dependent and leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The theoretical value for braking index is $n = 1, 3, 5$ for wind, MDR, quadrupole radiation respectively. The accepted view is that pulsar braking is strongly dominated by MDR. Highly precise observations of isolated pulsars yield braking index values in the range $1 < n < 2.8$ which are consistently less than the value pred...

  16. ARES NW Power and Conservation Council Presentation

    E-Print Network [OSTI]

    Shortfall of power, due to high demand, energy supplied into the grid by regenerative braking of shuttle

  17. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  18. Multidisciplinary design optimization of an automotive magnetorheological brake design

    E-Print Network [OSTI]

    Park, Edward

    Multidisciplinary design optimization of an automotive magnetorheological brake design Edward J to the elec- tromagnet. Key issues involved in the initial design of the automotive MR brake are presented: Magnetorheological fluid; Automotive brake; Finite element analysis; Computational fluid dynamics; Multidisciplinary

  19. A diagnostic system for air brakes in commercial vehicles 

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar Ram

    2007-09-17

    ............. 14 4 The S-cam foundation brake ....................... 15 5 A schematic of the drum brake ..................... 16 6 A schematic of the experimental setup ................. 24 7 A sectional view of the treadle valve .................. 26 8 A layout... the disc brake and the drum brake. In this dissertation, the main focus will be restricted to air brake systems that use S-cam drum foundation brakes. A. Background and motivation The safety of vehicles operating on the road depends amongst other things...

  20. Svendborg Brakes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy EquipmentSvendborg Brakes Jump to:

  1. TMV Technology Capabilities Brake Stroke Monitor

    E-Print Network [OSTI]

    TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

  2. An engine air-brake integration study

    E-Print Network [OSTI]

    Mulchandani, Hiten

    2011-01-01

    The feasibility of operating an engine air-brake (EAB) integrated with a pylon duct bifurcation in a realistic aircraft engine environment has been analyzed. The EAB uses variable exit guide vanes downstream of a high ...

  3. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  4. Contactless magnetic brake for automotive applications 

    E-Print Network [OSTI]

    Gay, Sebastien Emmanuel

    2009-05-15

    MAGNETIC BRAKE FOR AUTOMOTIVE APPLICATIONS A Dissertation by SEBASTIEN EMMANUEL GAY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2005 Major Subject: Electrical Engineering CONTACTLESS MAGNETIC BRAKE FOR AUTOMOTIVE APPLICATIONS A Dissertation by SEBASTIEN EMMANUEL GAY Submitted to Texas A&M University in partial fulfillment of the requirements...

  5. CMV Brake Wear and Performance Test Little is known about the brake

    E-Print Network [OSTI]

    inspections were due to brake defects. Additionally, brake maintenance and repair present a significant cost as part of an 18-month Field Operational Test. Parameters Being Measured The PBBT machine uses in Data, Statistical Analysis Geo-Spatial Information Tools Defense Transportation Energy Policy Analysis

  6. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, Roy I. (Ypsilanti, MI)

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  7. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, R.I.

    1990-10-16

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  8. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. Design Restrictions Ground clearance Brake components cannot contact

    E-Print Network [OSTI]

    Provancher, William

    of Mechanical Engineering, University of Utah Test Results Heat Test ­ apply pressure to the rotating brake. The truck and brake must be strong but not heavy. · Temperature ­ The brake will generate a lot of heat. The epoxy, wheels and bearings must all be able to withstand high heat. · Testing of Realistic Conditions

  11. Engine brake control in automatic transmission

    SciTech Connect (OSTI)

    Hayasaki, K.; Sugano, K.

    1988-09-13

    This patent describes an engine braking control for a transmission for an automotive vehicle having an engine, the transmission including an input member drivingly coupled to the engine and an output member subject to load from driving wheels of the automotive vehicle, the transmission also including a first rotary member, a second rotary member, a hydraulically operated clutch selectively establishing a drive connection between the first rotary member and the second rotary member, and a one-way clutch arranged in parallel to the hydraulically operated clutch such that when the hydraulically operated clutch is released, the one-way clutch transmits forward torque from the first rotary member to the second rotary member, but interrupts transmission of revers torque to the first rotary member from the second rotary member, the engine braking control comprising: means for providing an engine braking command fluid pressure signal when demanded by a vehicle operator; a valve means for normally discharging hydraulic fluid from the hydraulically operated clutch to deactivate the hydraulically operated clutch, the valve means being fluidly connected to the hydraulically operated clutch, the engine braking command fluid pressure signal providing means and a drain port. The valve means including a valve spool having a first position where the hydraulically operated clutch is allowed to communicate with the drain port to permit discharge of hydraulic fluid therefrom and thus the hydraulically operated clutch is caused to be deactivated and a second position where the hydraulically operated clutch is disconnected from the drain port and allowed to communicate with the engine braking command fluid pressure signal.

  12. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  13. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using...

  14. Energy-Saving Control of an Unstable Valve with a MR Brake QingHui Yuan and Perry Y. Li

    E-Print Network [OSTI]

    Li, Perry Y.

    Energy-Saving Control of an Unstable Valve with a MR Brake QingHui Yuan and Perry Y. Li Abstract controller is then developed to achieve position tracking and energy-saving. Simulation verifies that using. INTRODUCTION Energy-saving is an important issue in fluid power indus- try. The research of energy efficiency

  15. Braking system for use with an arbor of a microscope

    DOE Patents [OSTI]

    Norgren, Duane U. (Orinda, CA)

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  16. Development of Diagnostic Algorithms for Air Brakes in Trucks 

    E-Print Network [OSTI]

    Dhar, Sandeep

    2011-10-21

    In this dissertation, we focus on development of algorithms for estimating the severity of air leakage and for predicting the out-of-adjustment of pushrod in an air brake system of heavy commercial vehicles. The leakage of air from the brake system...

  17. A pressure control scheme for air brakes in commercial vehicles 

    E-Print Network [OSTI]

    Bowlin, Christopher Leland

    2007-04-25

    This research is focused on developing a control scheme for regulating the pressure in the brake chamber of an air brake system found in most commercial vehicles like trucks, tractor-trailers and buses. Such a control scheme can be used...

  18. Braking index of isolated uniformly rotating magnetized pulsars

    E-Print Network [OSTI]

    Hamil, Oliver; Urbanec, Martin; Urbancova, Gabriela

    2015-01-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives which show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of debate in detail, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of $\\Omega$. This relation leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The MDR model predicts $n$ exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of $n$, individually accurate to a few percent or better, in the range 1$ <$ n $ < $ 2.8, which is consi...

  19. Airbus A320 Braking as Predicate-Action Peter B. Ladkin

    E-Print Network [OSTI]

    Ladkin, Peter B.

    to interest us and others in the design of the A320 braking system [FI.93a, FI.93b, FI.93c]. This paper]. The Braking System Design of the A320. The braking system design of the A320 is described in the A320 Flight). The brakes and anti-skid system are described in [FCOM, 1.32.30: Landing Gear: Brakes and Anti

  20. A mathematical model for air brake systems in the presence of leaks 

    E-Print Network [OSTI]

    Ramaratham, Srivatsan

    2008-10-10

    of leaks. Brake systems in trucks are crucial for ensuring the safety of vehicles and passengers on the roadways. Most trucks in the US are equipped with S-cam drum brake systems and they are sensitive to maintenance. Brake defects such as leaks are a major... and schematic of operation. . . . . . . . . . . . . 7 3 A typical drum brake assembly. . . . . . . . . . . . . . . . . . . . . . 8 4 Front and rear brake chambers. . . . . . . . . . . . . . . . . . . . . . 8 5 Automatic slack adjuster construction...

  1. Design considerations for an automotive magnetorheological brake Kerem Karakoc, Edward J. Park *, Afzal Suleman

    E-Print Network [OSTI]

    Park, Edward

    Design considerations for an automotive magnetorheological brake Kerem Karakoc, Edward J. Park *, Afzal Suleman Department of Mechanical Engineering, University of Victoria, P.O. Box 3055, STN CSC February 2008 Available online xxxx Keywords: Mechatronic design Magnetorheological fluid Automotive brake

  2. Modeling the pneumatic relay valve of an s-cam air brake 

    E-Print Network [OSTI]

    Vilayannur Natarajan, Shankar

    2005-08-29

    Statistics indicate that defects in brake system contribute significantly to fatal crashes involving commercial vehicles. Hence there is a need for developing preventive and active safety measures for assessing the performance of an air brake system...

  3. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  4. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  5. Braking the Gas in the beta Pictoris Disk

    E-Print Network [OSTI]

    Fern'andez, R; Wu, Y; Brandeker, Alexis; Fern\\'andez, Rodrigo

    2006-01-01

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in t...

  6. Regenerative braking device with rotationally mounted energy storage means

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  7. Aalborg Universitet Disturbance Control of the Hydraulic Brake in a Wind Turbine

    E-Print Network [OSTI]

    Yang, Zhenyu

    Aalborg Universitet Disturbance Control of the Hydraulic Brake in a Wind Turbine Jepsen, Frank Brake in a Wind Turbine. In Energy Conference and Exhibition (EnergyCon), 2010 IEEE International . (pp from vbn.aau.dk on: juli 07, 2015 #12;Disturbance Control of the Hydraulic Brake in a Wind Turbine

  8. The Chinese brake fern (Pteris vittata L.), native to China, is widely naturalized in

    E-Print Network [OSTI]

    Ma, Lena

    The Chinese brake fern (Pteris vittata L.), native to China, is widely naturalized in many areas and anatomical aspects of Chinese brake fern (Pteris vittata; Pteridaceae) Bhaskar Bondada1, Cong Tu, and Lena Ma-0290, U.S.A.; e-mail: lqma@ifas.ufl.edu). Sur- face structure and anatomical aspects of Chinese brake fern

  9. Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter Juan situation (regenerative braking), the battery voltage goes up, and then the control needs to activate regenerative braking can be avoided #12;with the help of ultracapacitors. Besides, ultracapacitors allow

  10. Emission Factor for Antimony in Brake Abrasion Dusts as One of the

    E-Print Network [OSTI]

    Short, Daniel

    112-8551, Japan, and Akebono Brake Industry, Co., Ltd., 5-4-71 Higashi, Hanyu, Saitama 348-8509, Japan, and shape distributions, automotive brake abrasion dusts were suspected as one of the important sources factor that originates from automotive braking in order to quantitatively evaluate the contribution

  11. Tyre curve estimation in slip-controlled braking

    E-Print Network [OSTI]

    Miller, Jonathan I.; Cebon, David

    2015-06-09

    identifying a Kalman filter observer for vehicle handling dynamics. IMECHE Part D – J. of Auto. Eng. 2006; 220: 1063–1072. 27. Yi J et al. Emergency braking control with an observer-based dynamic tire/road friction model and wheel angular velocity... also used by Shim et al.15, and Hong et al.16 Unsal and Kachroo17 compared an EKF with a sliding mode observer to estimate vehicle velocity, using this estimated velocity with a nominal slip-friction curve to determine the braking force. The authors...

  12. Active Pedestrian Safety by Automatic Braking and Evasive Steering

    E-Print Network [OSTI]

    Gavrila, Dariu M.

    1 Active Pedestrian Safety by Automatic Braking and Evasive Steering C. Keller, T. Dang, H. Fritz of crashes. This paper presents a novel active pedestrian safety system, which combines sensing, situation two complementary approaches for added robustness: motion-based object detection and pedestrian

  13. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    Improvement from Regenerative Braking on the Copper Electriccomponents. The use of regenerative braking can also have aeasier to add regenerative braking capability, particularly

  14. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

  15. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  16. Braking the Gas in the beta Pictoris Disk

    E-Print Network [OSTI]

    Rodrigo Fernández; Alexis Brandeker; Yanqin Wu

    2006-01-11

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the coupled ion fluid, we find the minimum required mass to be $\\approx$ 0.03 $M_\\earth$, consistent with observed upper limits of the hydrogen column density, and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas, but cannot rule out the possibility of its production by falling evaporating bodies near the star. We discuss the implications of this work for observations of gas in other debris disks.

  17. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect (OSTI)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  18. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and 30 mph). Data was collected at 10 Hz. Standard and stepped-pressure performance-based brake tests with brake pressure transducers were performed for each loading condition. The stepped-pressure test included the constant-pressure intervals of brake application at 15, 20, 25, and 30 psi. The PBBT data files included 10 Hz streaming data collected during the testing of each axle. Two weeks of real-world duty cycle (driving and braking) data was also collected at 10 Hz. Initial analysis of the data revealed that the data collected in the field (i.e., day-to-day operations) provided the same information as that obtained from the controlled tests. Analysis of the data collected revealed a strong linear relationship between brake application pressure and deceleration for given GVWs. As anticipated, initial speed was not found to be a significant factor in the deceleration-pressure relationship, unlike GVW. The positive results obtained from this proof of concept test point to the need for further research to expand this concept. A second phase should include testing over a wider range of speeds and include medium brake application pressures in addition to the low pressures tested in this research. Testing on multiple vehicles would also be of value. This future phase should involve testing to determine how degradation of braking performance affects the pressure-deceleration relationship.

  19. Tachyon cosmology, supernovae data and the Big Brake singularity

    E-Print Network [OSTI]

    Z. Keresztes; L. Á. Gergely; V. Gorini; U. Moschella; A. Yu. Kamenshchik

    2009-04-21

    We compare the existing observational data on type Ia Supernovae with the evolutions of the universe predicted by a one-parameter family of tachyon models which we have introduced recently in paper \\cite{we-tach}. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the universe ends up in a new type of soft cosmological singularity dubbed Big Brake. This opens up yet another scenario for the future history of the universe besides the one predicted by the standard $\\Lambda$CDM model.

  20. Adaptive Torque Control of Electro-Rheological Fluid Brakes Used in Active Knee Rehabilitation Devices

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    1 Adaptive Torque Control of Electro-Rheological Fluid Brakes Used in Active Knee Rehabilitation-rheological fluid (ERF) based variable resistance brakes that are used in compact and portable rehabilitation Control, Actuators for Rehabilitation Robotics I. INTRODUCTION Electro-rheological fluids (ERFs

  1. Modeling the pneumatic subsystem of a S-cam air brake system 

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar

    2004-09-30

    The air brake system is one of the critical components in ensuring the safe operation of any commercial vehicle. This work is directed towards the development of a fault-free model of the pneumatic subsystem of the air brake system. This model can...

  2. On The Use of Eddy Current Brakes as Tunable, Fast Turn-On Viscous Dampers For Haptic Rendering

    E-Print Network [OSTI]

    Hayward, Vincent

    On The Use of Eddy Current Brakes as Tunable, Fast Turn-On Viscous Dampers For Haptic RenderingGill University, Montr´eal, Canada ABSTRACT We describe the use of eddy current brakes as fast turn-on, tunable, linear dampers for haptic rendering using a prototype haptic device outfitted with eddy current brakes

  3. A nonextensive view of the stellar braking indices

    E-Print Network [OSTI]

    de Freitas, D B; Soares, B B; Silva, J R P

    2015-01-01

    The present work is based on a description for the angular mometum loss rate due to magnetic braking for main-sequence stars on the relationship between stellar rotation and age. In general, this loss rate denoted by $\\mathrm dJ/\\mathrm dt$ depends on angular velocity $\\Omega$ in the form $\\mathrm dJ/\\mathrm dt\\propto\\Omega^{q}$, where $q$ is a parameter extracted from nonextensive statistical mechanics. Already, in context of stellar rotation, this parameter is greater than unity and it is directly related to the braking index. For $q$ equal to unity, the scenario of saturation of the magnetic field is recovered, otherwise $q$ indicates an unsaturated field. This new approach have been proposed and investigated by de Freitas \\& De Medeiros for unsaturated field stars. In present work, we propose a nonextensive approach for the stellar rotational evolution based on the Reiners \\& Mohanthy model. In this sense, we developed a nonextensive version of Reiners \\& Mohanthy torque and also compare this ...

  4. Evaluation of driver braking performance to an unexpected object in the roadway 

    E-Print Network [OSTI]

    Picha, Dale Louis

    1994-01-01

    ) in 1940, incorporates two components into geometric design, a perception-response time (PRT) component and a braking distance component. Because of the importance of sight distance on highways, previous research has questioned the assumptions of these two...

  5. Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones 

    E-Print Network [OSTI]

    McLean, James Elliott

    2011-10-21

    Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient...

  6. A study of factors affecting foot movement time in a braking maneuver 

    E-Print Network [OSTI]

    Berman, Andrea Helene

    1994-01-01

    The nature of foot movement time (MT) in an actual braking maneuver and in a stationary vehicle was investigated regarding the effects of age and gender of the driver and nature of the stimulus to which the driver was ...

  7. Combined fast valving and braking resistor application to improve transient stability 

    E-Print Network [OSTI]

    Chen, Jen-Yeu Thomas

    1982-01-01

    COMBINED FAST VALVING AND BRAKING RESISTOR APPLICATION TO IMPROVE TRANSIENT STABILITY A Thesis by Submitted to the Graduate College of' Texas A&M University in Partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May... 1982 Major Subjecta Electrical Engineering COMBINED FAST VALVING AND BRAKING RESISTOR APPLICATION TO IMPROVE TRANSIENT STABILITY A Thesis by Approved as to style and content by& herman oY mm ee ad of' De tment Member May 1982 ABSTRACT...

  8. Initial results using Eddy Current Brakes as Fast Turn-on, Programmable Physical Dampers for Haptic Rendering

    E-Print Network [OSTI]

    Hayward, Vincent

    Initial results using Eddy Current Brakes as Fast Turn-on, Programmable Physical Dampers for Haptic Machines McGill University, Montr´eal, Qu´ebec, Canada ABSTRACT We demonstrate the use of eddy current propose an alternate method to create damping in a haptic interface that uses eddy current brakes. 2 EDDY

  9. Energy-Saving Control of an Unstable Valve with a MR Brake QingHui Yuan and Perry Y. Li

    E-Print Network [OSTI]

    Li, Perry Y.

    as a brake does not imply heat reduction. In this paper, we propose a new type of actuator in which a dual lead to heat reduction. In [6], we use a dual-solenoid actuator and design a controller to minimizeEnergy-Saving Control of an Unstable Valve with a MR Brake QingHui Yuan and Perry Y. Li Abstract

  10. System for lubrication of a brake air compressor associated with a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Spencer, J.C.

    1992-10-13

    This patent describes a system for use with a vehicle which includes a turbocharged internal combustion engine having a lubricating system wherein lubricating oil from an engine oil reservoir is circulated within the engine and also to and from an associated brake system air compressor which supplies compressed air for operation of the vehicle air braking system. This patent describes improvement in passing supercharged air to an oil crankcase of the air compressor to cause lubricating oil to drain therefrom and return to the engine oil reservoir.

  11. Adaptation of hybrid five-phase ABS algorithms for experimental validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -lock braking, Hybrid control systems, Limit cycle analysis, Experimental validation, Quarter-car. 1Adaptation of hybrid five-phase ABS algorithms for experimental validation Mathieu Gerard WilliamAnti-lock Braking System (ABS) is the most important active safety system for passenger cars, but unfortunately

  12. Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine 

    E-Print Network [OSTI]

    Kroeger, Timothy H

    2013-09-19

    The brake torque of a direct-injection diesel engine is known to plateau over a range of injection timings. Injection timing affects the engine’s ignition delay and the fractions of fuel which burn in premixed and diffusion modes. Therefore...

  13. ORBITAL AND MASS RATIO EVOLUTION OF PROTOBINARIES DRIVEN BY MAGNETIC BRAKING

    SciTech Connect (OSTI)

    Zhao, Bo; Li, Zhi-Yun

    2013-01-20

    The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not yet fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using an MHD version of the ENZO AMR hydro code, that a magnetic field of the observed strength can drastically change two of the basic quantities that characterize a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar 'seeds' have already formed. We find that in dense cores magnetized to a realistic level, the angular momentum of the material accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing material of low specific angular momentum that accretes preferentially onto the more massive primary star rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found numerically for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio toward unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the traditional circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries, especially with ALMA and JVLA.

  14. Use of an auditory signal in a rear-end collision warning system: effects on braking force and reaction time 

    E-Print Network [OSTI]

    Hopkins, Jennifer Susan

    1995-01-01

    This simulator experiment is a preliminary study examining the effects of different auditory signals on braking force and reaction time in a rear-end collision warning system. A driving simulator was built in which subjects operated a computer...

  15. Nonlinear analysis of time series of vibration data from a friction brake: SSA, PCA, and MFDFA

    E-Print Network [OSTI]

    Nikolay K. Vitanov; Norbert P. Hoffmann; Boris Wernitz

    2014-10-23

    We use the methodology of singular spectrum analysis (SSA), principal component analysis (PCA), and multi-fractal detrended fluctuation analysis (MFDFA), for investigating characteristics of vibration time series data from a friction brake. SSA and PCA are used to study the long time-scale characteristics of the time series. MFDFA is applied for investigating all time scales up to the smallest recorded one. It turns out that the majority of the long time-scale dynamics, that is presumably dominated by the structural dynamics of the brake system, is dominated by very few active dimensions only and can well be understood in terms of low dimensional chaotic attractors. The multi-fractal analysis shows that the fast dynamical processes originating in the friction interface are in turn truly multi-scale in nature.

  16. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    SciTech Connect (OSTI)

    Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA (United States); Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Theoretical Institute for Advanced Research in Astrophysics, Taipei, Taiwan (China)

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  17. Paper Number Sizing and Optimal Operation of a Power Split Hydraulic

    E-Print Network [OSTI]

    Li, Perry Y.

    sector. In hybrid vehicles energy is saved by regenerating kinetic energy while braking, by operating power sources that can directly or indirectly propel the vehicle. A hybrid vehicle saves energy in three as alternative energy storage and electric motors and generators are used to assist the engine in power, is often

  18. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01

    the capture of regenerative braking energy, which willand frequent capture of regenerative braking energy, thethe stack and the regenerative braking energy and provide a

  19. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

    1998-01-01

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  20. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOE Patents [OSTI]

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  1. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85CaliforniaCleanUNITEDNREL

  2. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85CaliforniaCleanUNITEDNRELButton

  3. Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake

    E-Print Network [OSTI]

    Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake Sandia National Laboratories, New Mexico Rocket sled tracks provide a dynamically rich environment acceleration profile, the switch closes to complete a circuit for instrument activation. Preliminary tests

  4. CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control

    E-Print Network [OSTI]

    Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

    2010-01-01

    In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

  5. Legislation & Embedded Fundamental Ambiguities in

    E-Print Network [OSTI]

    Classify These? Fuel injectors Anti-lock brakes Hot water heater control Refrigerator control Home) of the Uniform Commercial Code (aka Article 2), and the ¡ Uniform Computer Information Transactions Act (aka Article 2 (Sales) (other Articles govern wire transfers, cheque payment systems, secured loans, etc

  6. MAGNETIC BRAKING FORMULATION FOR SUN-LIKE STARS: DEPENDENCE ON DIPOLE FIELD STRENGTH AND ROTATION RATE

    SciTech Connect (OSTI)

    Matt, Sean P.; Pinsonneault, Marc H.; Greene, Thomas P. E-mail: kmac@ucar.edu E-mail: thomas.p.greene@nasa.gov

    2012-08-01

    We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.

  7. ACCEPTED AUTHORS' DRAFT, THE FINAL VERSION TO APPEAR IN THE IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 13, NO. 6, 669677, 2008. 1 Eddy Current Brakes for Haptic Interfaces

    E-Print Network [OSTI]

    Hayward, Vincent

    , VOL. 13, NO. 6, 669­677, 2008. 1 Eddy Current Brakes for Haptic Interfaces: Design, Identification describe the design of an eddy current brake for use as programmable viscous damper for haptic interfaces actuators for haptic interfaces. We overview the governing physical relationships, and describe design

  8. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  9. Hydraulic Drivetrain and Regenerative Braking Team 13: Andrew Brown, Karan Desai, Andrew McGrath, Hurst Nuckols, Grant Wilson Adviser: Dr. Andrew Jackson

    E-Print Network [OSTI]

    Carpick, Robert W.

    Hydraulic Drivetrain and Regenerative Braking Team 13: Andrew Brown, Karan Desai, Andrew Mc Pressure Reservior Filter Variable Vane Pump Motor/Pump Hydraulic Accumulators Solenoid Valve Relief Valve Suction Line Since their development in 2006, hydraulic drivetrain systems have gained considerable

  10. Finite element analysis of the effect of up-armouring on the off-road braking and sharp-turn performance

    E-Print Network [OSTI]

    Grujicic, Mica

    Finite element analysis of the effect of up-armouring on the off-road braking and sharp-mobility multi-purpose wheeled vehicle, off-road vehicle performance, finite element modelling and simulations revision for publication on 15 June 2009. DOI: 10.1243/09544070JAUTO1187 Abstract: A comprehensive finite

  11. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  12. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J.

    1995-11-01

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the {open_quotes}reported{close_quotes} failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the {open_quotes}mission time{close_quotes}. In many instances the {open_quotes}mission time{close_quotes} will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular {open_quotes}reoperational check{close_quotes} tests, the {open_quotes}mission time{close_quotes} for standby components is reduced in accordance with the specifics of the operational time table.

  13. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  14. We Brake for Mars Hi! My name is Mike Meacham. I'm an engineer here at the Jet Propulsion Laboratory and

    E-Print Network [OSTI]

    Waliser, Duane E.

    We Brake for Mars Hi! My name is Mike Meacham. I'm an engineer here at the Jet Propulsion a really big parachute. To make these large parachutes you have to test them before you go. You need a way've got to test big here on Earth. You got to be a little crazy sometimes if you want to do crazy things

  15. Journal of Power Sources 210 (2012) 286291 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Arnold, Craig B.

    2012-01-01

    solar and wind sys- tems and regenerative braking in cars. New battery chemistries and control systems

  16. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  17. Microsoft PowerPoint - Advances_Fuller [Compatibility Mode

    Office of Environmental Management (EM)

    to developing rear-end collisions Haptic warning provides short brake pulse which causes drivers to respond faster to imminent rear-end collisions "Always on" at speeds...

  18. This paper presents a new actuation approach which combines the use of brakes, springs and mini motors to

    E-Print Network [OSTI]

    and mini motors to produce a safer and more energy efficient way to drive haptic devices. The applications which can only be powered by limited energy sources such as small batteries. This work also addresses Introduction The continuing emergence of computer haptics for train- ing, industrial and entertainment

  19. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  20. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  1. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  2. QM Power

    Broader source: Energy.gov [DOE]

    QM Power’s Q-Sync™ is an innovative, highly efficient and cost effective motor technology. Utilizing DoE SBIR funding, QM Power has developed advanced Q-Sync fan motor technology for 9-12 watt commercial refrigeration fan applications and is launching its first product lines targeting both new and existing commercial refrigeration equipment. For this project, QM Power will team with Oak Ridge National Labs, market leading OEMs, subject matter experts, end users, retrofit contractors and utilities to install and demonstrate approximately 10,000 high efficiency Q-Sync fan motors in over 50 grocery sites throughout the US.

  3. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  4. Upper and lower limits on the Crab pulsar's astrophysical parameters set from gravitational wave observations by LIGO: braking index and energy considerations

    E-Print Network [OSTI]

    Giovanni Santostasi

    2008-07-16

    The Laser Interferometer Gravitational Observatory (LIGO) has recently reached the end of its fifth science run (S5), having collected more than a year worth of data. Analysis of the data is still ongoing but a positive detection of gravitational waves, while possible, is not realistically expected for most likely sources. This is particularly true for what concerns gravitational waves from known pulsars. In fact, even under the most optimistic (and not very realistic) assumption that all the pulsar's observed spin-down is due to gravitational waves, the gravitational wave strain at earth from all the known isolated pulsars (with the only notable exception of the Crab pulsar) would not be strong enough to be detectable by existing detectors. By August 2006, LIGO had produced enough data for a coherent integration capable to extract signal from noise that was weaker than the one expected from the Crab pulsar's spin-down limit. No signal was detected, but beating the spin-down limit is a considerable achievement for the LIGO Scientific Collaboration (LSC). It is customary to translate the upper limit on strain from a pulsar into a more astrophysically significant upper limit on ellipticity. Once the spin-down limit has been beaten, it is possible to release the constraint that all the spin-down is due to gravitational wave emission. A more complete model with diverse braking mechanisms can be used to set limits on several astrophysical parameters of the pulsar. This paper shows possible values of such parameters for the Crab pulsar given the current limit on gravitational waves from this neutron star.

  5. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  6. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

  7. Design Principles of a flywheel Regenerative Braking System (f-RBS) for Formula SAE type racecar and system testing on a Virtual Test Rig modeled on MSC ADAMS

    E-Print Network [OSTI]

    Pochiraju, Anirudh

    2012-08-31

    to these advantages, flywheels are being used for Energy storage in various applications some of which are: 1. Uninterrupted Power Supply (UPS) systems [5, 18]. 2. Grid energy systems like the Beacon Flywheel Power Storage Plant in Stephentown, New York [19]. 3... for Uninterrupted Power Supply (UPS) systems, grid power storage requirements and pulse power requirements. In comparison, the application of FES in the field of transportation has been more of a recent phenomenon. Safety issues with rotating steel flywheels...

  8. Performance of Networked Control Systems under Sporadic Feedback

    E-Print Network [OSTI]

    Lemmon, Michael

    Regenerative Braking power inverter storage Micro-Grid Renewable Generation PHEV Smart Grid - Distributed

  9. SOC/SIP for energy management Bernard COURTOIS

    E-Print Network [OSTI]

    Boyer, Edmond

    consumption with stop-start, with the use of electrical power for acceleration, with regenerative braking

  10. Nuclear Power 

    E-Print Network [OSTI]

    2010-01-01

    be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems...

  11. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  12. Low Power Design Low PowerLow Power

    E-Print Network [OSTI]

    Pedram, Massoud

    Low Power Design USC/LPCAD Page 1 USCUSC Low PowerLow Power CADCAD MassoudMassoud PedramPedram High-Level Design Challenges and Solutions for Low Power Systems Massoud Pedram University of Southern California Department of EE-Systems Los Angeles CA 90089-256 Email: massoud@zugros.usc.edu USCUSC Low PowerLow Power

  13. Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem

    E-Print Network [OSTI]

    Sean Matt; Ralph E. Pudritz

    2005-10-03

    We compare the angular momentum extracted by a wind from a pre-main-sequence star to the torques arising from the interaction between the star and its Keplerian accretion disk. We find that the wind alone can counteract the spin-up torque from mass accretion, solving the mystery of why accreting pre-main-sequence stars are observed to spin at less than 10% of break-up speed, provided that the mass outflow rate in the stellar winds is ~10% of the accretion rate. We suggest that such massive winds will be driven by some fraction $\\epsilon$ of the accretion power. For observationally constrained typical parameters of classical T-Tauri stars, $\\epsilon$ needs to be between a few and a few tens of percent. In this scenario, efficient braking of the star will terminate simultaneously with accretion, as is usually assumed to explain the rotation velocities of stars in young clusters.

  14. Power inverters

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  15. Power Recovery 

    E-Print Network [OSTI]

    Murray, F.

    1986-01-01

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation...)' The pressure ~ecompression term(~2) k~l, is used in the equat10n in a manner 1 which reduces the power recovery as calculated by the first term of the equation. From a practical view a decompression ra~~y ~0.3 is a good screening point. Note...

  16. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, BySoft Solar Power

  17. Yakama Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single| National1958,1CaseYakama Power May

  18. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits of FES »Power

  19. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  20. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  1. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  2. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Energy Savers [EERE]

    consume? Higher efficiency power supplies reduce energy consumption, thus cutting your electricity bill. They reduce power consumption, helping your electric utility meet peak...

  3. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  4. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

  5. Magnets and Power Supplies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power...

  6. Interpreting Territory and Power

    E-Print Network [OSTI]

    Bevir, Mark

    2010-01-01

    Press, 1960). Bulpitt, Territory and Power, p. 57.Bulpitt, Territory and Power, p. 61-62.Bulpitt, Territory and Power, p. 63. Bulpitt, Territory and

  7. Power Simulator for Smartphones

    E-Print Network [OSTI]

    Gkolemis, Nikolaos

    2013-01-01

    Kim M. , Woo S. , “Accurate GPU Power Estimation forMobile Device Power Profiling”, IEEE ICCE (2013),http://Kumar S. , John L. , “Power Modeling of SDRAMs”, University

  8. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  9. PowerPoint Presentation

    Office of Environmental Management (EM)

    to these monitors to handle brief power outages, but future plans include providing site emergency power to these monitors for extended power outages Equipment to be added...

  10. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  11. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    electric power generating plant, and the distributionrequired on the power-generating plant and not on the vehi-in either power-generating plants or combustion engines,

  12. Northwest, the Bonneville Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    causing a protective shutdown that created cascading power outages across the regional power grid. Power outages like these are much more than an inconvenience to consumers....

  13. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  14. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  15. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr (Montgomery Village, MD)

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  16. Electric power 2007

    SciTech Connect (OSTI)

    2007-07-01

    Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  18. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    Energy Requirements for Electric Cars and Their Impact on Power Generation andof energy resource utilization for electric power generationElectric automobile energy consumption. Effect of electric automobiles on the electric power generation

  19. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  20. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  1. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  2. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement (Agreement) between the BC Hydro and Power uthority (BCH) and the Bonneville Power Administration (BP A), jointly the Parties, which BA for accounting purposes is...

  3. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 (Revised 060914) United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue Portland, OR 97232 Bonneville Power Administration's 2014...

  4. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development...

  5. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01

    Power ampli?er (PA)2x2 Chapter 5 Power Combining5.1 Wilkinson Power Combiner . . . . . . . . . . . .

  6. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Karnataka Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power...

  7. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This...

  8. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of...

  9. Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars

    E-Print Network [OSTI]

    Deepto Chakrabarty; Edward H. Morgan; Michael P. Muno; Duncan K. Galloway; Rudy Wijnands; Michiel van der Klis; Craig B. Markwardt

    2003-07-01

    Millisecond pulsars are neutron stars (NSs) that are thought to have been spun-up by mass accretion from a stellar companion. It is unknown whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many NSs that are accreting from a companion exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond brightness oscillations during bursts from ten NSs (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here, we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting NSs, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most NS models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.

  10. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    authorities, independent power producers, power marketers,Power Marketers Independent Power Producers Independent

  11. Power Series Introduction

    E-Print Network [OSTI]

    Vickers, James

    Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

  12. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  13. Hybrid Power Test Bed

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This document describes efforts by the National Renewable Energy Laboratory to simulate hybrid power systems. Hybrid power systems combine multiple power sources such as wind turbines, photovoltaic (PV) arrays, diesel generators, and battery storage systems. They typically are used in remote areas, away from major electric grids. The Hybrid Power Test Bed is designed to assist the U.S. wind industry in developing and testing hybrid power generation systems. Test bed capabilities, features, and equipment are described.

  14. EDITED BY CAROLINE ASH CREDITS(TOPTOBOTTOM):BURMANNETAL.;MATZELETAL.

    E-Print Network [OSTI]

    Leake, Mark C.

    , such as in regenerative braking in hybrid cars. For very small power requirements, capaci- tors have not been competitive

  15. Power the world's powers the world's economy.

    E-Print Network [OSTI]

    Power the world's economy BUSINESS #12;powers the world's economy. Put yourself in the driver. · A buyer, merchandiser, planner or manager in a retail operation. · The manager of a restaurant or food materials firm. · A marketer promoting a business, nonprofit organization or public agency. · A small

  16. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  17. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    The idea of using fuel cells as a high-efficiency source offuel cell) E V; 6094 W·h/kga Theoretical References Specific Power 27-25 W/kg Power Density 12-35 W/1 Efficiency

  18. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  19. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  1. Power Converters for Accelerators

    E-Print Network [OSTI]

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  2. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Power-Factor Compensation

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    and inductors as well as power elec- tronic converters, such as active filters and flexible ac transmission- tures the energy-transmission efficiency for a given load. The standard approach to improving the power of nonsinusoidal signals in energy networks at all power levels. An unfortunate consequence of the inclu- sion

  4. Metagenomics Smart power grid

    E-Print Network [OSTI]

    Metagenomics Smart power grid The new weapons workhorse Laser on Mars LOS ALAMOS SCIENCE'll read about a unique collaboration to create a "smart" power grid to accommodate an increasing, and plans to modify an enzyme to grow renewable biofuels and mitigate carbon emissions from power plants

  5. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  6. Superconducting Power Generation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-02-20

    The superconducting ac generator has the greatest potential for large-scale commercial application of superconductivity that can benefit the public. Electric power is a vital ingredient of modern society, and generation may be considered to be the vital ingredient of a power system. This articles gives background, and an insight into the physics and engineering of superconducting power generation.

  7. Power transaction issues in deregulated power systems 

    E-Print Network [OSTI]

    Roycourt, Henrik

    2000-01-01

    is to review the power flow problem and the newly emerging concept of Available Transfer Capability (ATC) / Total Transfer Capability (TTC). Secondly, it aims at reviewing and implementing in the Matlab environment a technique for tracing the contributions...

  8. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector...

  9. Using government purchasing power to reduce equipment standby power

    E-Print Network [OSTI]

    Harris, Jeffrey; Meier, Alan; Bartholomew, Emily; Thomas, Alison; Glickman, Joan; Ware, Michelle

    2003-01-01

    or external power supply, other specifications, and purchasethe consumer to purchase extra power strips and extensionan internal standby power function, shall purchase Although

  10. Active Power Controls from Wind Power: Bridging the Gaps | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control...

  11. Multimegawatt space power reactors

    SciTech Connect (OSTI)

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  12. Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars

    E-Print Network [OSTI]

    Chakraborty, D; Muno, M P; Galloway, D K; Wijnands, R; Van der Klis, M; Markwardt, C B; Chakrabarty, Deepto; Morgan, Edward H.; Muno, Michael P.; Galloway, Duncan K.; Wijnands, Rudy; Klis, Michiel van der; Markwardt, Craig B.

    2003-01-01

    Millisecond pulsars are neutron stars (NSs) that are thought to have been spun-up by mass accretion from a stellar companion. It is unknown whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many NSs that are accreting from a companion exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond brightness oscillations during bursts from ten NSs (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here, we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting NSs, corroborating earlier evidence. The distributio...

  13. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  14. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  15. EPA Green Power Leadership Awards

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) Green Power Leadership Awards recognize exceptional achievement among EPA Green Power Partners and among green power suppliers.

  16. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-Print Network [OSTI]

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power on range of thermal and hydro power plant reaction times. This work suggests that power and energy

  17. Primus Power's Flow Battery Powered by $11 Million in Private...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Primus Power's Flow Battery Powered by 11 Million in Private Investment Primus Power's Flow Battery Powered by 11 Million in Private Investment June 14, 2011 - 10:00am Addthis...

  18. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  19. PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS

    E-Print Network [OSTI]

    Li, Perry Y.

    PASSIVE CONTROL OF FLUID POWERED HUMAN POWER AMPLIFIERS Perry Y. Li and Venkat Durbha Center is proposed for the control of fluid powered human power amplifiers. Human power amplifiers are mechanical human power amplifier interacts with the human opeartor and other environments passively

  20. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  1. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofof Energy ElectricPower North

  2. DC Power Distribution Systems 

    E-Print Network [OSTI]

    Savage, P.

    2012-01-01

    - A FLEXIBLE ALTERNATIVE ..OR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT In an increasingly competitive operating environment, utilities must... place greater emphasis on developing programs that benefit the customer while at the same time benefiting the utility. Economy Surplus Power (ESP) is such a program. ESP offers industrial customers attractively priced power supply arrangements based...

  3. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  4. Optimizing Power Factor Correction 

    E-Print Network [OSTI]

    Phillips, R. K.; Burmeister, L. C.

    1986-01-01

    FACTOR CORRECTION Robert K. Phillips and Louis C. Burmeister, Mechanical Engineering, University of Kansas, Lawrence, KS The optimal investment for power factor correcting capacitors for Kansas Power and Light Company large power contract customers... consumer of electricity were made for demands of 200, 400, 800, 1,600, 3,200, and 6,400 k\\~ and monthly energy consumption periods of 100, 150, 200, 300, 400, and 500 hours for several capacitor purchase and installation costs. The results...

  5. Interleaved power converter

    DOE Patents [OSTI]

    Zhu, Lizhi (Canton, MI)

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  6. Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    from regenerative braking, or with scarce power capacity for fast acceleration. The experimental HEV to accept energy from regenerative braking. For this reason, hybrid systems use an auxiliary energy system

  7. 614 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 2, APRIL 2006 Energy-Management System for a Hybrid Electric

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    with a poor ability to recover energy from a regenerative braking, or with a scarce power capacity for a fast batteries, are unable to accept energy from the regen- erative braking. For this reason, these vehicles may

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  9. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  10. Electric Power Monthly

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Monthly Data for June 2015 | Release Date: August 26, 2015 | Next Release: September 24, 2015 | full report | Re-release date: August 28, 2015 | Revision Previous...

  11. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  13. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  14. Green Power Offer (Maine)

    Broader source: Energy.gov [DOE]

    This chapter establishes requirements, standards and procedures and a competitive bidding process to implement the green power offer program. The program is designed to make renewable energy...

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARAGON) * Performed comparisons between results using eigenvalue difference and pin power RMS difference Contributors Andrew Godfrey Fausto Franceschini Scott Palmtag Julie...

  16. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    R. P. Allison, "High Water Recovery with Electrodialysis12] GE Power & Water, "Electrodialysis Reversal (EDR)," 02ARABIA," in The Value of Water in the 21st Century, San

  17. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O&M Costs (Column AZ) Present Value of Periodic Capital Replacement Cost (Column BA) Power System Transmission System Coincident Factor (Column BB) Distribution System...

  18. Power Systems Past Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loop and its six associated substations. An upgrade of the INL loop, designed by Power Systems personnel, was completed in 1997. This project consists of transmission line...

  19. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The two options considered in the early design in Phase II were similar in their heat transfer and power generation components, but different in their kinematic lower...

  20. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  1. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    done using photovoltaic systems or by a photoelectrochemicalprocess. Of course, photovoltaic systems convert sunlightwill be powered by the photovoltaic system. Also, a typical

  3. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  5. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and terms and conditions and anyall notifications to listed customers of sale of Hydro Power Peaking, Peaking Energy and Supplemental Peaking Energy that have been increased,...

  6. Municipal Electric Power (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

  7. PowerPoint Presentation

    Office of Environmental Management (EM)

    the public's investment in wind technologies to improve the performance and lower the cost of wind power. TARGETS: * Reduce vehicle petroleum use by 1 billion gallonsyear by...

  8. FUTURE POWER GRID INITIATIVE Future Power Grid

    E-Print Network [OSTI]

    of all 16 machines damped quickly ­ improved frequency performance » AGC ensures tie line power flows on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science and develop the technologies

  9. TS Wind Power Developers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy EquipmentSvendborg BrakesO GreenTMETS Wind

  10. Metagenomics Smart power grid

    E-Print Network [OSTI]

    Metagenomics Smart power grid The new weapons workhorse Laser on Mars LOS ALAMOS SCIENCE'll read about a unique collaboration to create a "smart" power grid to accommodate an increasing, TECHNOLOGY, AND ENGINEERING 2 8 14 Dynamic Vision DARHT FULFILLS ITS DESTINY Solar Smart Grid in the Atomic

  11. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    Solar Energy Center USA, Blythe, CA Solar electric power plant,Solar Wind Total Northwest Imports Southwest Imports Total Energy System Table 1.18: Largest PV Power PlantsPlants……………………………………………………32 Table 1.19: Solar Desalination Systems…………………………………………………34 Table 1.20: Energy

  13. Fusion Power Deployment

    SciTech Connect (OSTI)

    J.A. Schmidt; J.M. Ogden

    2002-02-06

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  14. Bulk Power Transmission Study 

    E-Print Network [OSTI]

    John, T.

    1988-01-01

    are relatively small and cannot afford the cost of a high voltage interconnect, and yet their characteristics match a baseload need. The ability to wheel power to a utility that needs base load power from a distribution level interconnection is essential...

  15. Definition of Power Converters

    E-Print Network [OSTI]

    Bordry, F

    2015-01-01

    The paper is intended to introduce power conversion principles and to define common terms in the domain. The concept s of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commuta tion are introduced and discussedd.

  16. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100 public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear

  17. The Icelandic Power Situation

    E-Print Network [OSTI]

    Karlsson, Brynjar

    #12;The Icelandic Power Situation #12;Iceland generates the most electricity in Europe per capita plants and customers 52 MWh per capita #12;Electrical usage in Iceland Low cost reliable and renewable energy attracts power intensive industry to Iceland Households use only 5% 90% of district heating

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. Power module assembly

    DOE Patents [OSTI]

    Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  20. Master Thesis High torque, high impact braking

    E-Print Network [OSTI]

    Daraio, Chiara

    to add a break in each actuated joint, so it is not necesary to wasted energy during the stoped time to any sort of actuator, e.g., hidraulic, electric, . . . Even though they have been deeply studied

  1. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    2013-11-19

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  2. Power Capture (PowCap) Board for Non Intrusive Load Monitoring and Power Line Communication Exploration and Development

    E-Print Network [OSTI]

    Balakrishnan, Vikram

    2013-01-01

    3 Power Line Communication . . . . . . . . . . .Power . . . . . . . . . . . . . . . . . . . . . . . . . . .The Power Capture Board. . . . . . . . . . .

  3. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  4. The Power of Non-Uniform Wireless Power

    E-Print Network [OSTI]

    The Power of Non-Uniform Wireless Power ETH Zurich ­ Distributed Computing Group Magnus M-To-Interference-Plus-Noise Ratio (SINR) Formula Minimum signal- to-interference ratio Power level of sender u Path-loss exponent Noise Distance between two nodes Received signal power from sender Received signal power from all other

  5. SMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER

    E-Print Network [OSTI]

    Bargh, John A.

    (2003) recently proposed that power, as a fundamental dimension of human inter- action, affectsSMITH AND BARGHNONCONSCIOUS EFFECTS OF POWER NONCONSCIOUS EFFECTS OF POWER ON BASIC APPROACH to the approach/inhibition theory of power (Keltner, Gruenfeld, & Anderson, 2003), having power should

  6. FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to bear on the challenges of the power grid Therefore, a community resource is needed to enable needed

  7. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  8. Foucault's Ethics of Power

    E-Print Network [OSTI]

    Wolf, Kirk

    Foucault's Ethics of Power Kirk Wolf Delia College 1. I n t r o d u c t i o n Since Foucaull 's death in 19K4, his interpreters have generally located his importance in his genealogical critiques and in his phi­ losophy ofpower. On the one hand... critiques and his views on power remains a matter of dispute, for Foucault neither expressly states a program of critique, nor clearly articulates an account of power. The pur­ pose of this paper, then, is to establish the relationship between...

  9. Salazar on private power

    SciTech Connect (OSTI)

    Anderson, J.

    1995-02-01

    The Philipines power market, considered one of the more mature markets in Asia, continues to expand with economic growth. Independent power producers will find opportunities in the next few years as new additions are required. Currently, the government is encouraging private investment and is awaiting feedback from financiers as it considers eliminating its government guarantee. In a recent interview, the Honorable Mariano S. Salazar, secretary of energy, with the Philippines` Department of Energy, discussed the regulatory structure, encouragement of private power and his country`s capital needs.

  10. Powering | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½ UniversityPowerSaverPowering

  11. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  12. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  13. POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC

    E-Print Network [OSTI]

    POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

  14. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible gauges, gas sensors. Light-emitting diodes (LED's) Power amplifiers for cell phones Indium Gallium #12

  15. How Power is Lost: Illusions of Alliance Among the Powerful

    E-Print Network [OSTI]

    Brion, Sebastien

    2010-01-01

    P. M. (1964). Exchange and power in social life. New York:Press. Boeker, W. (1992). Power and managerial dismissal -J. F. Dovidio (Eds. ), Power, Dominance, and Non-verbal

  16. How Power is Lost: Illusions of Alliance Among the Powerful

    E-Print Network [OSTI]

    Brion, Sebastien

    2010-01-01

    The authors found that power led individuals to cheat moreaddress the extent to which power led to overestimations ofthe extent to which power led to illusions of alliance, an

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Machine shop * LH lab * Power systems and computer shop * Diagnostics setup lab * Welding shop 5 Year 513-514 2003 Some C-Mod Specific Instrumentation * 360 TF joint...

  18. Mesofluidic magnetohydrodynamic power generation

    E-Print Network [OSTI]

    Fucetola, Jay J

    2012-01-01

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  19. Power Quality Implications 

    E-Print Network [OSTI]

    Hilson, D.

    1989-01-01

    Electric utilities in the United States spend in excess of one billion dollars annually to maintain or improve the quality of electric power supplied to their customers. Yet, an increasing and alarming number of complaints are being voiced...

  20. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  1. Power Factor Improvement 

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01

    and disadvantages of various locations in the electrical network are described including the cost of installation and network capacity improvement. Sizing of capacitors is also covered. Finally, some case studies involving power factor improvement are presented...

  2. PowerPoint Presentation

    Office of Environmental Management (EM)

    and Guy Sliker * NGK - Hiroyuke Abe * EPRI funders (Con Edison, CPS Energy, HECO, Hydro One, NYISO, SDG&E, and TVA) 3 2009 Electric Power Research Institute, Inc. All...

  3. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  4. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cable & conductor into 2,000 ft coiled tubing World first high power laser hardware (optics package & fiber connector) tested to >5,000 psi Achieving target requires "world...

  5. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  6. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before PF 100142 0.70 or 70% After PF 100105 0.95 or 95% PB References: B.C. Hydro. Power Factor. The GEM Series. October 1989. Commonwealth Sprague Capacitor, Inc....

  7. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  8. PowerPoint Presentation

    Office of Environmental Management (EM)

    "Online Sensor Calibration Assessment in Nuclear Power Systems," Invited paper, IEEE I&M Magazine 16(3):32-37, 2013. doi: 10.1109MIM.2013.6521132 "Advanced algorithms...

  9. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  10. Kenneth W. Powers

    Broader source: Energy.gov [DOE]

    Kenneth W. Powers, a member of the Senior Executive Service, is the Associate Administrator for Management and Budget.  As Associate Administrator, he is responsible for managing NNSA’s...

  11. PowerOptions RFP

    Broader source: Energy.gov [DOE]

    PowerOptions seeks proposals from qualified and experienced renewable energy project developers interested in providing renewable energy and Renewable Energy Credit (RECs) generated from renewable energy projects located in or deliverable to the ISO-NE.

  12. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    As a Power System Dispatcher, you will be working in the Operations Center in Springfield, Missouri as part of the Division of Scheduling & Operations, Office of Corporate Operations. You will...

  13. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  14. PowerPoint Presentation

    Energy Savers [EERE]

    to revolutionize the energy efficiency of electric power control and conversion 27 50% Lower Cost Using 75% Less Energy And reuse or recycle >95% of the material Objective Develop...

  15. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  16. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  17. Glucose-powered neuroelectronics

    E-Print Network [OSTI]

    Rapoport, Benjamin Isaac

    2011-01-01

    A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

  18. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In reply refer to: PGPO Renata Kurschner Director, Generation Resource Management BC Hydro and Power Authority 691 1 Southpoint Drive, El5 Burnaby, B.C., Canada V3N 4 x 8 Dear...

  19. Renewable Power Procurement Policy

    Broader source: Energy.gov [DOE]

    New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

  20. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  1. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  2. Lease of Power Privilege Flowchart: Lease of Power Privilege...

    Open Energy Info (EERE)

    Lease of Power Privilege Flowchart: Lease of Power Privilege Contract through End of Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  3. Microsoft PowerPoint - Vicksburg District Federal Power Projects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

  4. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Energy Savers [EERE]

    for steadily building its renewable energy portfolio in an effort to support its members' green power initiatives. More than a decade ago, OMPA became the first commercial power...

  5. Index Terms --Smart grid; power engineering education; power engineering curriculum; power engineering re-

    E-Print Network [OSTI]

    1 Index Terms -- Smart grid; power engineering education; power engineering curriculum; power engineering re- sources; power engineering workforce. Abstract -- A widely supported effort to modernize the United States power system has led to an engineering initiative va- riously known as `smart grid

  6. Studies in Power Quality Success 

    E-Print Network [OSTI]

    Laan, B. A.

    2000-01-01

    The California Energy Commission is actively supporting research and development to improve power quality. Poor power quality can result in productivity losses and compromise safety. Dealing with power quality problems when they arise can solve...

  7. Execution Version POWER PURCHASE AGREEMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ") and BLUEWATER WIND DELAWARE LLC ("Seller") June 23, 2008 #12;Execution Version POWER PURCHASE AGREEMENT TableExecution Version POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 40 3

  8. Power network analysis and optimization

    E-Print Network [OSTI]

    Zhang, Wanping

    2009-01-01

    and J. N. Kozhaya, “Fast power grid simulation,” in Proc.C. Chen, “Efficient large-scale power grid analysis based onare connected between power grid nodes and the ground. Time-

  9. Power network analysis and optimization

    E-Print Network [OSTI]

    Zhang, Wanping

    2009-01-01

    chip power supply network optimization using multigrid-basedchip decoupling capacitor optimization for high- performanceSapatnekar, “Analysis and optimization of structured power/

  10. Power System Dispatcher (Technical Writer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Reliability and Balancing...

  11. Supervisory Physical Scientist (Power Operations)

    Broader source: Energy.gov [DOE]

    This position is located in Duty Scheduling (PGSD), Generation Scheduling (PGS), Power Services (P), Bonneville Power Administration. Duty Scheduling provides 24-hour coverage of the real-time...

  12. QM Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT OBJECTIVE QM Power's Q-Sync(tm) is an innovative, highly efficient and cost effective motor technology. Utilizing DoE SBIR funding, QM Power has developed...

  13. Automating power supply checkout

    SciTech Connect (OSTI)

    Laster, J.; Bruno, D.; D'Ottavio, T.; Drozd, J.; Marr, G.; Mi, C.

    2011-03-28

    Power Supply checkout is a necessary, pre-beam, time-critical function. At odds are the desire to decrease the amount of time to perform the checkout while at the same time maximizing the number and types of checks that can be performed and analyzing the results quickly (in case any problems exist that must be addressed). Controls and Power Supply Group personnel have worked together to develop tools to accomplish these goals. Power Supply checkouts are now accomplished in a time-frame of hours rather than days, reducing the number of person-hours needed to accomplish the checkout and making the system available more quickly for beam development. The goal of the Collider-Accelerator Department (CAD) at Brookhaven National Laboratory is to provide experimenters with collisions of heavy-ions and polarized protons. The Relativistic Heavy-Ion Collider (RHIC) magnets are controlled by 100's of varying types of power supplies. There is a concentrated effort to perform routine maintenance on the supplies during shutdown periods. There is an effort at RHIC to streamline the time needed for system checkout in order to quickly arrive at a period of beam operations for RHIC. This time-critical period is when the checkout of the power supplies is performed as the RHIC ring becomes cold and the supplies are connected to their physical magnets. The checkout process is used to identify problems in voltage and current regulation by examining data signals related to each for problems in settling and regulation (ripple).

  14. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  15. Electronic power conditioning for dynamic power conversion in high-power space systems 

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01

    power conversion allows for improved methods of power conditioning. A block diagram of one such system that uses dynamic power conversion is shown in Fig. 4. The blocks labeled Energy Source, Primary Heat Rejection, snd User's Load are the same...ELECTRONIC POWER CONDITIONING FOR DYNAMIC POWER CONVERSION IN HIGH ? POWER SPACE SYSTEMS A Thesis by JAMES MICHAEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  16. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  17. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  18. ZEBRA plus ultracapacitors: A good match for energy efficient EVs Juan Dixon, Micah Ortzar, Eduardo Arcos and Ian Nakashima.

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    to be improved for fast acceleration and good regenerative braking. With this purpose in mind, an ultra capacitor of batteries show reduced acceleration and reduced regenerative braking capability. One example of this kind be observed, the ZEBRA does not have a good specific power for braking and acceleration [2]. To improve

  19. DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    regenerative braking, or with scarce power capacity for fast acceleration. The ratings of the ultracapacitor, regenerative braking is disconnected from the main computer of the traction drive system, and the battery", "Regenerative Braking". 1. Introduction Throughout the years hybrid vehicles have proofed themselves the shorter

  20. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department are needed to determine the location of these on-chip power supplies and decoupling capacitors. In this paper, the optimal location of the power supplies and decoupling capacitors is determined for different size

  1. Running Head: TESTOSTERONE AND POWER Testosterone and power

    E-Print Network [OSTI]

    Schultheiss, Oliver C.

    Running Head: TESTOSTERONE AND POWER Testosterone and power Steven J. Stanton and Oliver C. Schultheiss University of Michigan, Ann Arbor, MI, USA To appear in: K. Dowding (Ed.), Encyclopedia of power-647-9440, email: stantons@umich.edu #12;Testosterone and power 2 Across many studies in humans, two functional

  2. Preventing power outages Power system contingency analysis on the GPU

    E-Print Network [OSTI]

    Vuik, Kees

    problem. Moreover, the power system has to keep functioning properly even when a transmission line failsPreventing power outages Power system contingency analysis on the GPU To provide electricity generators, nuclear power plants, wind turbines, etc.) and a network of lines and cables to transmit

  3. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  4. Powered protrusion cutter

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2010-03-09

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  5. Power converter connection configuration

    DOE Patents [OSTI]

    Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  7. Qualification for PowerInsight accuracy of power measurements.

    SciTech Connect (OSTI)

    DeBonis, David; Laros, James H.,; Pedretti, Kevin Thomas Tauke

    2013-11-01

    Accuracy of component based power measuring devices forms a necessary basis for research in the area of power-e cient and power-aware computing. The accuracy of these devices must be quanti ed within a reasonable tolerance. This study focuses on PowerInsight, an out- of-band embedded measuring device which takes readings of power rails on compute nodes within a HPC system in realtime. We quantify how well the device performs in comparison to a digital oscilloscope as well as PowerMon2. We show that the accuracy is within a 6% deviation on measurements under reasonable load.

  8. Cut Your Power Bills 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1979-01-01

    CUT YOUR POWER BILLS Ralph W. Greenwood Manager, Electric Po\\yer & Steam Supply Union Carbide Corporation INTRODUCTION Electric power bills can often be reduced by careful attention to the inter-relationship between your plant operations... of work and determines the amount of fuel the utility must burn. One kW equals 3413 BTU. ~ hr. Before we analyze how a rate interacts with a customer's load profile, we need to see how a rate is con structed. Rate Design Custome~ Demand and Energy...

  9. RF power generation

    E-Print Network [OSTI]

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  10. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  11. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  12. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRail betweenProtectionCurrentJobPower-Rates

  13. Power Prepay Next Steps:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - te ch.orgPower Plant

  14. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01

    ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM “PREMIUM POWER”Assessment of Combined Heat and Power Premium Power1 The Pacific Region Combined Heat and Power Application

  15. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  16. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  17. Power Systems Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical support and assistance on complicated Power System electrical, electronic and control systems. Knowledge of AC Power, power conversion, DC circuits, motors, power...

  18. Adaptive architectures for peak power management

    E-Print Network [OSTI]

    Kontorinis, Vasileios

    2013-01-01

    targeted at the average power), saving wall power. Realisticassociated costs like wall-power cost, cooling, and powertranslates to reduced wall power costs, that is lower elec-

  19. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  20. Hierarchical Adaptive Dynamic Power Management

    E-Print Network [OSTI]

    Chen, Yuanzhu Peter

    life by switching devices to lower-power modes when there is a reduced demand for service. Static power (MDPs). The power manager then switches online among these policies to accommodate the stochastic mode-switching rate of the nonstationary request process. Index Terms--Low-power design, hierarchical modeling

  1. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  2. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    SciTech Connect (OSTI)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  3. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  4. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  5. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  6. Capacity Demand Power (GW)

    E-Print Network [OSTI]

    California at Davis, University of

    Capacity Demand Power (GW) Hour of the Day The "Dip" Electricity Demand in Electricity Demand Every weekday, Japan's electricity use dips about 6 GW at 12 but it also shows that: · Behavior affects naHonal electricity use in unexpected ways

  7. Pig Poop Power

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-04-11

    Broadcast Transcript: What could be more fitting in the Year of the Pig than to turn to the pig for power? And that's what is happening here in South Korea. In an effort to develop environmentally friendly, renewable energy sources, the South...

  8. About sponsorship Fusion power

    E-Print Network [OSTI]

    About sponsorship Fusion power Nuclear ambitions Jun 30th 2005 From The Economist print edition project to build a nuclear-fusion reactor came a step closer to reality when politicians agreed it should century, fusion advocates have claimed that achieving commercial nuclear fusion is 30 years away

  9. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  10. Wireless adiabatic power transfer

    E-Print Network [OSTI]

    A. A. Rangelov; H. Suchowski; Y. Silberberg; N. V. Vitanov

    2010-10-30

    We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  11. Bottle Rock Power Corporation

    E-Print Network [OSTI]

    Power Plant and Steamfield during suspended operations of the geothermal facility in accordance). That Order was extended to DWR and that extension expired on 26 April 2001. On 30 May 2001, the CEC approved for calendar years 2001, 2002, and 2003. The BRPC has also submitted the requisite annual reports for those

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to EN Board April 24, 2014 1 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Energy Northwest and Bonneville Power Recent Pricing On April 9 th , Energy Northwest...

  13. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  14. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  15. The powers of deconfinement

    SciTech Connect (OSTI)

    Megias,E.; Ruiz Arriola, E.; Megias, E.; Salcedo, L.L.

    2008-07-07

    The trace anomaly of gluodynamics encodes the breakdown of classical scale invariance due to interactions around the deconfinement phase transition. While it is expected that at high temperatures perturbation theory becomes applicable we show that current lattice calculations are far from the perturbative regime and are dominated instead by inverse even power corrections in the temperature, while the total perturbative contribution is estimated to be extremely small and compatible with zero within error bars. We provide an interpretation in terms of dimension-two gluon condensate of the dimensionally reduced theory which value agrees with a similar analysis of power corrections from available lattice data for the renormalized Polyakov loop and the heavy quark-antiquark free energy in the deconfined phase of QCD [1,2].

  16. Switching power supply

    DOE Patents [OSTI]

    Mihalka, A.M.

    1984-06-05

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  17. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  18. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  19. Combustion powered linear actuator

    DOE Patents [OSTI]

    Fischer, Gary J. (Albuquerque, NM)

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  20. Powering Mars Rovers

    ScienceCinema (OSTI)

    Stewert, Robin;

    2013-05-28

    INL scientists are doing their best to help solve our energy problems here on Earth. But did you know the lab is playing a key role in the exploration of other worlds, too? Meet INL Engineer Robin Stewart helps build and test generators that power NASA missions to Pluto and Mars. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory.

  1. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  2. Stirling engine power control

    DOE Patents [OSTI]

    Fraser, James P. (Scotia, NY)

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.

  6. PowerPoint Presentation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofof Energy ElectricPower

  7. PowerPoint Presentation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofof Energy ElectricPowerUniversity

  8. Electric Power Monthly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic Electric Field

  9. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  10. Powerful glow discharge excilamp

    DOE Patents [OSTI]

    Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  11. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  12. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Us Offices May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu,...

  13. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as ...

  14. Magnetic machines and power electronics for power MEMS applications

    E-Print Network [OSTI]

    Das, Sauparna, 1979-

    2005-01-01

    This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

  15. Role of nuclear power in the Philippine power development program

    SciTech Connect (OSTI)

    Aleta, C.R.

    1994-12-31

    The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

  16. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  17. New Technologies Power Wearable Devices through Body Power or...

    Open Energy Info (EERE)

    New Technologies Power Wearable Devices through Body Power or the Environment Home > Groups > No Battery Wearables WikiSysop's picture Submitted by WikiSysop(15) Member 12 August,...

  18. POWERFUL AND POWERLESS: POWER RELATIONS IN SATYAJIT RAY'S FILMS

    E-Print Network [OSTI]

    Banerjee, Deb Kumar

    2009-12-17

    . The films are examined within the framework of Foucault's conception of power. Different roles and interpretations of power relationships between humans through kingship, class, caste, religion, gender, technology and knowledge are analyzed in the thesis...

  19. Contingency Analysis of Power System using Power Flow

    E-Print Network [OSTI]

    Lavaei, Javad

    and to minimize customer outages. i II. Motivation The security of a power grid into account. The other common causes of faults are weather related.0 ­ Typical Causes of Faults iii Source: Richard Brown. Electric Power Distribution

  20. Transmission rights and market power on electric power networks

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01

    We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

  1. SaskPower Small Power Producers Program (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

  2. EIS-0131: Initial Northwest Power Act Power Sales Contracts

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration prepared this EIS to analyze the environmental impact of power sales and residential exchange contracts and to explore if there is a need to seek changes to these contracts.

  3. High Power Coax Window

    SciTech Connect (OSTI)

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  4. Minimize oil field power consumption

    SciTech Connect (OSTI)

    Harris, B.; Ennis, P.

    1999-08-01

    Though electric power is a major operating cost of oil production, few producers have systematically evaluated their power consumption for ways to be more efficient. There is significant money to be saved by doing so, and now is a good time to make an evaluation because new power options are at hand. They range from small turbo generators that can run on casing head gas and power one or two lift pumps, to rebuilt major turbines and ram-jet powered generators that can be set in a multi-well field and deliver power at bargain prices. Power industry deregulation is also underway. Opportunities for more advantageous power contracts from competitive sources are not far off. This two-part series covers power efficiency and power options. This article reviews steps you can take to evaluate the efficiency of your power use and go about improving it. Part 2 will discuss opportunities for use of distributed power and changes you can expect from decentralized power.

  5. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  6. Virtualizing Power Cords by Wireless Power Transmission and Energy Harvesting

    E-Print Network [OSTI]

    Tentzeris, Manos

    existing wireless power transfer scheme, this method can deliver electric power over a wide range, there is a general need to remove the electrical cords from rooms at low cost. If the wireless communication different methods. The first approach routes electric power by wireless transfer on two-dimensional surfaces

  7. Power Consumption Prediction and Power-Aware Packing in Consolidated

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    prediction and enforcement of appropriate limits on power consumption--power budgets--within the data center-term energy consumption within that level and 2) a sustained budget to capture any restrictions on sustained as the well-being of our environ- ment. Trends from such platforms suggest that the power consumption in data

  8. Introduction The electric power grid and electric power

    E-Print Network [OSTI]

    Introduction The electric power grid and electric power industry are undergoing a dramatic transforma- tion. By linking information technologies with the electric power grid--to provide "electricity the standards process that will allow the many pieces of "the world's largest and most complex machine" to work

  9. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  10. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  11. Reading File Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reading File Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621 POWER SERVICES In reply refer to: PG-5 Ms. Renata Kurschner Director, Generation Resource...

  12. Power from the Fuel Cell

    E-Print Network [OSTI]

    Lipman, Timothy E.

    2000-01-01

    Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productPower from the Fuel Cell BY TIMOTHY E. LIPMAN A U T O M O B

  13. Automotive Power Generation and Control

    E-Print Network [OSTI]

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  14. Recover Power with Hydraulic Motors 

    E-Print Network [OSTI]

    Brennan, J. R.

    1982-01-01

    Anywhere liquid pressure is reduced across a throttling device, there is a potential application for a hydraulic power recovery motor (HPRM). Cost of power makes HPRM's attractive with recoveries as small as 25 hp on a continuous basis. When...

  15. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  16. Vermont Power Exchange, a power broker for QF sales

    SciTech Connect (OSTI)

    Schuyler, S.A.

    1988-01-01

    A power broker to handle QF sales - this is the unique approach taken by the Vermont Public Service Board to implement the Federal PURPA rules. In 1983, the Vermont Public Service Board used its rule making power to create a central purchasing agent which would buy power from QFs and redistribute it to the state's retail electric companies. This function is performed by Vermont Power Exchange, Inc., which is a private company which operates the system under contract with the Board. The result of this approach is the pooling of power from QFs for distribution to the state's retail electric utilities.

  17. Environmental Assessment for power marketing policy for Southwestern Power Administration

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

  18. SCALE DRAM subsystem power analysis

    E-Print Network [OSTI]

    Bhalodia, Vimal

    2005-01-01

    To address the needs of the next generation of low-power systems, DDR2 SDRAM offers a number of low-power modes with various performance and power consumption tradeoffs. The SCALE DRAM Subsystem is an energy-aware DRAM ...

  19. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  20. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing OF ST. LUCIE-2 at FLORIDA POWER & LIGHT COMPANY · Robert E. Uhrig 1974-1986 ­ Vice President, Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  1. Introduction What is power electronics?

    E-Print Network [OSTI]

    Knobloch,Jürgen

    in Pressman, Billings and Morey [3]. Our design example ­ a switch mode power supply We look at the basic [4]. Switching power supplies, and isolated converters in particular, are extensively explained structure of a switching single phase AC/DC power supply, shown in Figure 1. A rectified AC voltage

  2. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  3. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  4. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  5. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A., E-mail: rangelov@phys.uni-sofia.bg [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Suchowski, H.; Silberberg, Y. [Department of Physics of Complex System, Weizmann Institute of Science, Rehovot 76100 (Israel); Vitanov, N.V. [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria)

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  6. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' Success OpensTRA51429 Vol.Jungle |

  7. Enabling Wind Power Nationwide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal RegisterEditableWind Power Nationwide May

  8. Northwest, the Bonneville Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseum LobbyThousandNorthern NewHydro

  9. Sandia Energy - Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationary PowerTara

  10. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top ScientificTechnologies | Blandineinitiates PowerAbout

  11. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top ScientificTechnologies | Blandineinitiates PowerAbout

  12. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth SitePower North America RFIIn 2007

  13. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth SitePower North AmericaFleet Card

  14. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth SitePower North AmericaFleet

  15. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,anEnergyDepartmentSystems IntegrationPower Purchase

  16. Power Supply Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,anEnergyDepartmentSystems IntegrationPower

  17. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. TemperatureThousand CubicArchived FOIA Requests by Year

  18. SOUTHWESTERN POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small AngleSNL&BAMn

  19. Safer nuclear power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember 2,Requirements OSafer

  20. River of Power (1987)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page

  1. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot SoConcentrating

  2. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot

  3. POWER SALES AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los ANot sure how to9GLENELG13PM-I0978

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite) /

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite)

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite)e x a s

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite)e x a

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite)e x

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor (onsite)e

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor position with

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor position

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor the U.S.

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor the U.S.

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor the

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor theAccelerator

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor CONTACT: The

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor CONTACT: The

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor CONTACT:

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor CONTACT:Julian

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractor

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractorNational

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - teSubcontractorNationalE-01

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A Year in Review

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A Year in

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A Year innew

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A Year innewSurface

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A Year

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A YearHeight (km)

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A YearHeight

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS A

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like to hear

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like to

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like toSAM *

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like toSAM

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like toSAMc

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like toSAMcin

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd like

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd likeAerosol

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'd

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS AWe'dInterannual

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARS

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm of

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm ofa New

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm ofa

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm0 0.1 0.2

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm0 0.1

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce Storm0

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIce

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceand Status Report

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceand Status

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceand Status

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceand StatusSIRTA,

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceand

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceandDerived from

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceandDerived

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD RADARSIceandDerivedCloud

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUD

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27 August 2007,

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27 August

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27 AugustAnthony

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27CPWG

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein, 27CPWGAerosol

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim Ali Bharmal,

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim Ali

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim AliRT codes

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim AliRT

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim AliRTLori

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,Nazim

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,NazimRobin Hogan

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,NazimRobin

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,NazimRobinthe SWS

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA. Klein,NazimRobinthe

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein Lawrence Livermore

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein Lawrence

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein LawrenceR outine A

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein LawrenceR outine

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein LawrenceR

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein LawrenceRbetween

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein LawrenceRbetweenAVP

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.Klein

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.KleinAircraft Workshop

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.KleinAircraft

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.KleinAircraftHIAPER Cloud

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv -CLOUDA.KleinAircraftHIAPER

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water & Electric Board

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water & Electric

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water & ElectricOregon

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water &

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water &CONSISTENT

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene Water

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm: BPA

  1. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm: BPASECTOR

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm:

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm:Update and

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm:Update

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene WaterBrainstorm:UpdateSales

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugene

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamily Weatherization

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamily

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow Income

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow IncomeLife of a

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow IncomeLife of

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow IncomeLife

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow IncomeLifeAgency

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLow

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLowRefinancing of

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLowRefinancing

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLowRefinancingOctober

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pvEugeneFamilyLowRefinancingOctober6

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w wINDIA: Short- andEnvironmental20 W

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w wINDIA: Short- andEnvironmental20 WCAS -