Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 19902009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1  

E-Print Network [OSTI]

Executive Summary of the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990­2009 1 n emissions inventory that identifies and quantifies a country's primary anthropogenic1 In 1992, the United the relative contribution of different emission sources and greenhouse gases to climate change. 2 Parties

Little, John B.

2

ARM - Human Causes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gases are not completely bad. The major constituents of the atmosphere, oxygen and nitrogen, do not act in the same way as the greenhouse package of carbon dioxide, methane,...

3

Long-term ice sheetclimate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model  

E-Print Network [OSTI]

with a complex Earth System Model Miren Vizcai´no ? Uwe Mikolajewicz ? Matthias Gro¨ger ? Ernst Maier-Reimer ?-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate climate change Á Meridional overturning circulation Á Earth system modelling Á Sea level 1 Introduction

Winguth, Arne

4

Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.  

SciTech Connect (OSTI)

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin, Ireland

2013-09-01T23:59:59.000Z

5

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

1. Greenhouse Gas Emissions Overview 1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a small increase of 7 MMTCO2e (0.9 percent) in methane (CH4) emissions, and an increase of 8 MMTCO2e (4.9 percent), based on partial data, in emissions of man-made gases with high global warming potentials (high-GWP gases). (Draft estimates for emissions of HFC and PFC

6

E-Print Network 3.0 - anthropogenic radiation sources Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Ts F Equation 1 The largest radiative forcing is due to the anthropogenic greenhouse effect... impact" of an anthropogenic perturbation. This is defined as the difference...

7

E-Print Network 3.0 - anthropogenic organic compounds Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

impossible... and qualitatively, the entire empirical basis for the anthropogenic greenhouse effect, specifically ... Source: Schwartz, Stephen E. - Environmental Chemistry...

8

E-Print Network 3.0 - anthropogenic pollutants combine Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Res., 2007. Mickley, L.J., et al., Effects of future climate change on regional air pollution episodes... . Anthropogenic emissions including greenhouse gases and...

9

E-Print Network 3.0 - anthropogenic interference dangerous Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

change, when the science... .e. (1) anthropogenic emissions and (2) the enhanced greenhouse effect (higher radiative forcing... , the contrast suggests that the natural system is...

10

Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation  

Science Journals Connector (OSTI)

...grasslands and in other natural vegetation, the biomass...European Union South: Cyprus, Greece, Italy...and Mitigate Greenhouse Gas Emissions (CCAFS...Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 ZZQQhy2020...hectares) Scenario Other Natural Vegetation Pasture...

Avery S. Cohn; Aline Mosnier; Petr Havlk; Hugo Valin; Mario Herrero; Erwin Schmid; Michael OHare; Michael Obersteiner

2014-01-01T23:59:59.000Z

11

Greenhouse gas emissions from contrasting beef production systems  

E-Print Network [OSTI]

Agriculture has been reported to contribute a significant amount of greenhouse gases to the atmosphere among other anthropogenic activities. With still more than 870 million people in the world suffering from under-nutrition ...

Ricci, Patricia

2014-06-30T23:59:59.000Z

12

Response of California temperature to regional anthropogenic aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

13

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

14

Greenhouse Gas Basics  

Broader source: Energy.gov [DOE]

Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect."

15

Inadvertent Climate Modification Due to Anthropogenic Lead  

SciTech Connect (OSTI)

The relationship between atmospheric particulate matter and the formation of clouds is among the most uncertain aspects of our current understanding of climate change1. One specific question that remains unanswered is how anthropogenic particulate emissions are affecting the nucleation of ice crystals. Satellites show ice clouds cover more than a third of the globe2 and models suggest that ice nucleation initiates the majority of terrestrial precipitation3. It is therefore not possible to adequately understand either climate change or the global water cycle without understanding ice nucleation. Here we show that lead-containing particles are among the most efficient ice nucleating substances commonly found in the atmosphere. Field observations were conducted with mass spectrometry and electron microscopy at two remote stations on different continents, far removed from local emissions. Laboratory studies within two cloud chambers using controlled experimental conditions support the field data. Because the dominate sources of particulate lead are anthropogenic emissions such as aviation fuel, power generation, smelting, and the re-suspension of residue from tetra-ethyl leaded gasoline4, it is likely that cloud formation and precipitation have been affected when compared to pre-industrial times. A global climate model comparing pre-industrial and anthropogenically perturbed conditions shows that lead-containing particles may be increasing the outgoing longwave radiation by 0.2 to 0.8 W m-2, thereby offsetting a portion of the warming attributed to greenhouse gases1.

Cziczo, Daniel J.; Stetzer, Olaf; Worringen, Annette; Ebert, Martin; Weinbruch, Stephan; Kamphus, M.; Gallavardin, S. J.; Curtius, J.; Borrmann, S.; Froyd, Karl D.; Mertes, S.; Mohler, Ottmar; Lohmann, U.

2009-05-01T23:59:59.000Z

16

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

17

Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Castlevalley Greenhouses Sector Geothermal energy Type Greenhouse Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

18

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

19

Anthropogenic Biomes ver. 1 Anthropogenic biomes represent heterogeneous  

E-Print Network [OSTI]

defined by population density and vegetation cover. The 21 biomes are grouped into six major categoriesAnthropogenic Biomes ver. 1 Africa Anthropogenic biomes represent heterogeneous landscape mosaics: Populated irrigated cropland 34: Populated rainfed cropland 35: Remote croplands 41: Residential rangelands

Columbia University

20

REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING  

E-Print Network [OSTI]

being discussed. Such review allows us to argue that current REDD policy proposals may become levels. The findings of the Fourth Assessment Report (FAR) of the Intergovernmental Panel on Climate of anthropogenic greenhouse gases (GHG) emitted to the atmosphere in order to avoid a dangerous human interference

Watson, Andrew

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Quantifying Greenhouse Gas Emissions from Human Activities: Toward  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location: 90-3122 Local to international control of anthropogenic greenhouse gas (GHG) emissions will require systematic estimation of emissions and independent verification. California, the only state in the US with legislated controls on GHG emissions, is conducting research to enable emissions verification of the mandated emissions reductions (AB-32). The California Energy Commission supports the California Greenhouse Gas Emissions Measurement (CALGEM) project at LBNL. In collaboration with NOAA, CALGEM measures mixing ratios of all significant GHGs at two tall-towers and on aircraft in

22

Chapter 22 Greenhouse Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water vapor (the most abundant GHG) accounts for the largest percentage of the greenhouse effect. However, water vapor concentrations fluctuate regionally, and human activity...

23

Impacts of Atmospheric Anthropogenic Nitrogen on the  

E-Print Network [OSTI]

anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decreaseImpacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean R. A. Duce,1 * J. LaRoche,2 K quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about

Ward, Bess

24

Resources on Greenhouse Gas | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Greenhouse Gases Resources on Greenhouse Gas Resources on Greenhouse Gas Many helpful resources about greenhouse gases (GHG) are available. Also see Contacts. GHG Reporting and...

25

Executive Summary An emissions inventory that identifies and quantifies a country's primary anthropogenic1 sources and sinks of  

E-Print Network [OSTI]

Executive Summary An emissions inventory that identifies and quantifies a country's primary emission sources and greenhouse gases to climate change. In 1992, the United States signed and ratified and make available...national inventories of anthropogenic emissions by sources and removals by sinks

Little, John B.

26

Asia-wide emissions of greenhouse gases  

SciTech Connect (OSTI)

Emissions of principal greenhouse gases (GHGs) from Asia are increasing faster than those from any other continent. This is a result of rapid economic growth, as well as the fact that almost half of the world`s population lives in Asian countries. In this paper, the author provides estimates of emissions of the two principal greenhouse gases, carbon dioxide (CO{sub 2}) and methane (CH{sub 4}), from individual countries and areas. Recent literature has been reviewed for emission estimates for individual sources, such as carbon dioxide from cement manufacture, and methane from rice fields. There are very large uncertainties in many of these estimates, so several estimates are provided, where available. The largest anthropogenic source of CO{sub 2} emissions is the use of fossil fuels. Energy consumption data from 1992 have been used to calculate estimated emissions of CO{sub 2} from this source. In view of the ongoing negotiations to limit future greenhouse gas emissions, estimates of projected CO{sub 2} emissions from the developing countries of Asia are also provided. These are likely to be 3 times their 1986 levels by 2010, under business as usual scenarios. Even with the implementation of energy efficiency measures and fuel switching where feasible, the emissions of CO{sub 2} are likely to double within the same time period.

Siddiqi, T.A. [East-West Center, Honolulu, HI (United States). Program on Environment

1995-11-01T23:59:59.000Z

27

Anthropogenic radionuclides in the environment  

SciTech Connect (OSTI)

Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

Hu, Q; Weng, J; Wang, J

2007-11-15T23:59:59.000Z

28

The Greenhouse Effect without Feedbacks  

E-Print Network [OSTI]

The Greenhouse Effect without Feedbacks #12;Three Pillars Behind Climate Change! #12;1. Global. Greenhouse Gases have been on the increase. #12;3. The Greenhouse effect is a powerful theory that explains! natural greenhouse effect! · an empirical introduction #12;Moral of the story: The doubling of CO2 causes

29

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Hunter Hot Spring Greenhouse Sector Geothermal energy Type Greenhouse Location Springdale, Montana Coordinates 45.738268°, -110.2271387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

30

Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Crook's Greenhouse Sector Geothermal energy Type Greenhouse Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

31

Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Warm Springs Greenhouses Sector Geothermal energy Type Greenhouse Location Banks, Idaho Coordinates 44.0804473°, -116.1240151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

32

Flint Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint Greenhouses Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

33

High Country Rose Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Country Rose Greenhouses Greenhouse Low Temperature Geothermal Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name High Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Facility High Country Rose Greenhouses Sector Geothermal energy Type Greenhouse Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

34

Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Liskey Greenhouses Sector Geothermal energy Type Greenhouse Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

35

Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Greenhouse Greenhouse Low Temperature Geothermal Facility Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Bliss Greenhouse Sector Geothermal energy Type Greenhouse Location Bliss, Idaho Coordinates 42.9268461°, -114.9495057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

36

Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Bigfork Greenhouses Sector Geothermal energy Type Greenhouse Location Bigfork, Montana Coordinates 48.0632864°, -114.0726134° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

37

Wards Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Wards Greenhouses Sector Geothermal energy Type Greenhouse Location Garden Valley, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

38

The Greenhouse Greenhouse Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Greenhouse Greenhouse Low Temperature Geothermal Facility Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name The Greenhouse Greenhouse Low Temperature Geothermal Facility Facility The Greenhouse Sector Geothermal energy Type Greenhouse Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

39

Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Edward's Greenhouses Sector Geothermal energy Type Greenhouse Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

40

Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson Greenhouses Sector Geothermal energy Type Greenhouse Location Ashland, Oregon Coordinates 42.1853257°, -122.6980457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Greenhouse Thermal Environment and Light Control  

Science Journals Connector (OSTI)

Greenhouse thermal environment results from the interactions among ... heating, ventilation, and cooling systems; supplemental lighting; and properties of the greenhouse crop are among the most important. As greenhouse

L. D. Albright

1997-01-01T23:59:59.000Z

42

The Greenhouse Effect Temperature Equilibrium  

E-Print Network [OSTI]

The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all

Walter, Frederick M.

43

2, 289337, 2002 Greenhouse effect  

E-Print Network [OSTI]

ACPD 2, 289­337, 2002 Greenhouse effect and climate stability V. G. Gorshkov and A. M. Makarieva water vapour concentration, dependence of the planetary greenhouse effect on atmospheric water content to dynamic singularities in the physical temperature-dependent behaviour of the greenhouse effect. We

Paris-Sud XI, Université de

44

Space Science : Atmosphere Greenhouse Effect  

E-Print Network [OSTI]

Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

Johnson, Robert E.

45

GLOBAL WARMING THE GREENHOUSE EFFECT  

E-Print Network [OSTI]

GLOBAL WARMING THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz GREENHOUSE EFFECT #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per square meter about it.But nobody does anything about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we

Schwartz, Stephen E.

46

GLOBAL WARMING THE GREENHOUSE EFFECT  

E-Print Network [OSTI]

GLOBAL WARMING THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz September 22, 2004 http://www.ecd.bnl.gov/steve/schwartz.html #12;#12;THE GREENHOUSE EFFECT #12;GLOBAL does anything about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something

Schwartz, Stephen E.

47

Greenhouse Gas Mitigation Planning  

Broader source: Energy.gov [DOE]

The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency.

48

Greenhouse Gases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gases Greenhouse Gases Greenhouse Gases October 7, 2013 - 9:59am Addthis Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Basics: Read an overview of greenhouse gases. Federal Requirements: Look up requirements for agency greenhouse gas management as outlined in Federal initiatives and executive orders. Guidance and Reporting: Find guidance documents and resources for greenhouse gas accounting and reporting. GHG Inventories and Performance: See detailed comprehensive GHG inventories by Federal agency and progress toward achieving Scope 1 and 2 GHG and Scope 3 GHG reduction targets. Mitigation Planning: Learn how Federal agencies can cost-effectively meet their GHG reduction goals.

49

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

50

Evaluate Greenhouse Gas Emissions Profile  

Broader source: Energy.gov [DOE]

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

51

Greenhouse Gases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Learn about: Basics: Read...

52

Greenhouse Gas Guidance and Reporting  

Broader source: Energy.gov [DOE]

Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change.

53

Federal Energy Management Program: Greenhouse Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gases Greenhouse Gases to someone by E-mail Share Federal Energy Management Program: Greenhouse Gases on Facebook Tweet about Federal Energy Management Program: Greenhouse Gases on Twitter Bookmark Federal Energy Management Program: Greenhouse Gases on Google Bookmark Federal Energy Management Program: Greenhouse Gases on Delicious Rank Federal Energy Management Program: Greenhouse Gases on Digg Find More places to share Federal Energy Management Program: Greenhouse Gases on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting Inventories & Performance Mitigation Planning Resources Contacts Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets

54

Voluntary Reporting of Greenhouse Gases  

Reports and Publications (EIA)

The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

2011-01-01T23:59:59.000Z

55

Greenhouse Gases Converted to Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it to fuels and chemicals. Although researchers working toward that goal demonstrated in 1992 such a reaction in the lab, a key outstanding scientific challenge was explaining the details of how the reaction took place - its "mechanism." Why it Matters: An important potential strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it electrochemically to fuels and chemicals. Accomplishments: Computation to explain how carbon dioxide can be converted to small organic molecules with little energy input. The

56

Compilationof Regional to Global Inventoriesof Anthropogenic Emissions  

E-Print Network [OSTI]

Compilationof Regional to Global Inventoriesof Anthropogenic Emissions CarmenM. Benkovitz, Hajime inventories of emissions of the trace species included in the study at the appropriate sectoral, spatial on emissions is also required at high resolution for the design of policies aimed at reducing emissions

57

Guidance on measuring and reporting Greenhouse Gas  

E-Print Network [OSTI]

Guidance on measuring and reporting Greenhouse Gas (GHG) emissions from freight transport This guidance provides clear instructions on calculating the greenhouse gas (GHG) emissions from freight and report your greenhouse gas emissions', by providing more specific information and examples relating

58

NREL: Sustainable NREL - Greenhouse Gas Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Reduction A leader in federal greenhouse gas (GHG) management, NREL has conducted GHG inventories, developed reduction goals, and reported emissions since 2000. NREL...

59

Federal Greenhouse Gas Inventories and Performance | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Greenhouse Gas Inventories and Performance Federal Greenhouse Gas Inventories and Performance The Federal Energy Management Program provides performance data illustrating...

60

ARM - Greenhouse Effect and Global Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Greenhouse Effect and Global Warming The Greenhouse Effect refers to a naturally occurring...

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluate Greenhouse Gas Reduction Strategies  

Broader source: Energy.gov [DOE]

For each major emission source identified in the previous step to evaluate greenhouse gas (GHG) emission profile, Federal agencies should review possible strategies for reducing GHG emissions and determine what assets may benefit from each strategy.

62

Greenhouse Gases and Emissions Trading  

Science Journals Connector (OSTI)

Atmospheric concentrations of carbon dioxide and other greenhouse gases have grown rapidly since the beginning of this century. Unless emissions are controlled, the world could face rapid climate changes, incl...

Alice LeBlanc; Daniel J. Dudek

1993-01-01T23:59:59.000Z

63

Greenhouse Policies and Procedures Dept. of Biology  

E-Print Network [OSTI]

lighting and uses swamp coolers to help maintain temperature. The greenhouse potting shed contains benchGreenhouse Policies and Procedures Dept. of Biology Syracuse University Implemented 1 March 2012 Greenhouse manager: Paul Logue Greenhouse Committee: David Althoff, Heather Coleman, Jason Fridley, Paul

Segraves, Kari A.

64

Ahimsa Media -For Educators -The Greenhouse Effect The Greenhouse Effect: Extension Activity  

E-Print Network [OSTI]

Ahimsa Media - For Educators - The Greenhouse Effect The Greenhouse Effect: Extension Activity. Clean up and restore a natural habitat. http://www.ahimsamedia.com/lessonGreenhouseEffect.htm (1 of 5

Mojzsis, Stephen J.

65

Resources on Greenhouse Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Resources on Greenhouse Gas October 7, 2013 - 2:30pm Addthis Many helpful resources about greenhouse gases (GHG) are available. Also see Contacts. GHG Reporting and Accounting Tools Annual GHG and Sustainability Data Report: Lists resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist agencies with completing comprehensive GHG inventory reporting requirements under Executive Order (E.O.) 13514. General Services Administration (GSA) Carbon Footprint and Green Procurement Tool: Voluntary tool developed by GSA to assist agencies in managing GHGs as required by E.O. 13514. Also see Greenhouse Gas Mitigation Planning Data and Tools.

66

Climate VISION: Greenhouse Gases Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Greenhouse Gases, Global Climate Change, and Energy Emissions of Greenhouse Gases in the United States 2001 [1605(a)] This report, required by Section 1605(a) of the Energy Policy Act of 1992, provides estimates of U.S. emissions of greenhouse gases, as well as information on the methods used to develop the estimates. The estimates are based on activity data and applied emissions factors, not on measured or metered emissions monitoring. Available Energy Footprints Industry NAICS* All Manufacturing Alumina & Aluminum 3313 Cement 327310 Chemicals 325 Fabricated Metals 332 Food and Beverages 311, 312 Forest Products 321, 322 Foundries 3315 Glass & Glass Products, Fiber Glass 3272, 3296 Iron & Steel Mills 331111 Machinery & Equipment 333, 334, 335, 336

67

Anthropogenic soundIntroduction and overview of the ambient and anthropogenic environment  

Science Journals Connector (OSTI)

Interest in anthropogenic sound in the marine environment has been directed at concerns about the effects of sound on marine mammals. However fish make up a far larger and more diverse portion of the oceans than do marine mammals and they hold considerable economic importance internationally. This has led to a growing interest in the effect of anthropogenic sounds on fish in environments ranging from shallow waters near in?shore shipping lanes to the deep sea. Concerns for effects on fish are parallel to those for marine mammals and include issues ranging from the death of individual animals to the potential for behavioral changes that could lead to impacts on the survival of populations or species. While the body of data on the effects of anthropogenic sounds on fish is still small and much of the work is not in the peer?reviewed literature the number of peer?reviewed studies is growing. The purpose of this special session is to provide an overview of what we currently know about the effects of anthropogenic sound on fish help define the major outstanding questions on these effects and to provide the basis for discussion of current and future research in order to help resolve these questions.

2006-01-01T23:59:59.000Z

68

The Greenhouse Effect Does Exist!  

E-Print Network [OSTI]

In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tscheuschner called for this discussion in their paper.

Ebel, Jochen

2009-01-01T23:59:59.000Z

69

Anthropogenic sounds ? Potential effects on fish  

Science Journals Connector (OSTI)

There is concern that human?generated sounds may have deleterious effects on fish. This paper will review some of what is currently known about these effects and consider the questions that have to be answered before developing models to enable "prediction" of sound effects on particular fish species. A major restriction is that there are few peer?reviewed data on effects of anthropogenic sources on fish. Extrapolation from these results is further confounded since experiments differ in many ways each of which may alter the resultant impact on fish. For example studies vary in sounds types tested (e.g. pile driving vs. ship noise) signal parameters (intensity number of repetitions) species used fish age etc. Moreover a singularly important issue is that while many of the issues and impact mechanisms are potentially amenable to experimental lab study the ultimate questions regarding the effects of sound on fish behavior need to field based and require long?term observations where behaviour of wild fish is not constrained. Only by observing fish in the wild will we ultimately understand if and how anthropogenic sounds impact fish both during exposure and more importantly for extended periods after the termination of the sound.

Arthur Popper; Svein Lo/kkeborg; Robert McCauley

2008-01-01T23:59:59.000Z

70

Common Sources of Federal Greenhouse Gas Emissions | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Sources of Federal Greenhouse Gas Emissions Common Sources of Federal Greenhouse Gas Emissions Common Sources of Federal Greenhouse Gas Emissions...

71

E-Print Network 3.0 - anthropogenically mediated eutrophication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Proximal Ecosystem Service Summary: Anthropogenic land cover change erosion sediment eutrophication Precipitation RegulationStorm Events Clouds... productivity Color...

72

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

73

Limiting net greenhouse gas emissions in the United States  

SciTech Connect (OSTI)

In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

Bradley, R A; Watts, E C; Williams, E R [eds.] [eds.

1991-09-01T23:59:59.000Z

74

Greenhouse Gas Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

75

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network [OSTI]

climate change/stern_re- view_report.cfm. (2006). RGGI.Greenhouse Gas Initiative (RGGI): An Initia tive of theGreenhouse Gas Initia tive (RGGI). Currently, Connecticut,

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

76

Comparing greenhouse gases for policy purposes  

E-Print Network [OSTI]

In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions of different gases must be compared. The greenhouse warming potential (GWP) index, which is most often ...

Schmalensee, Richard

1993-01-01T23:59:59.000Z

77

Soil Carbon Sequestration and the Greenhouse Effect  

E-Print Network [OSTI]

Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

Archer, Steven R.

78

Greenhouse Gas Program Overview (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

Overview of the Federal Energy Management Program (FEMP) Greenhouse Gas program, including Federal requirements, FEMP services, and contacts.

Not Available

2010-06-01T23:59:59.000Z

79

Review article Automated monitoring of greenhouse crops  

E-Print Network [OSTI]

of the greenhouse. Most of these sensors, such as thermistors and light meters, are reli- able, inexpensive, readilyReview article Automated monitoring of greenhouse crops David L. EHRETa*, Anthony LAUb, Shabtai and continuously detect crop stress, water use, growth and nutrition in greenhouse crops. Some of these techniques

Boyer, Edmond

80

Montenegro Greenhouse Ornamental Production Workshop October 2007  

E-Print Network [OSTI]

in individual (own) cars 10:00 10:15 Break Pauza 10:15 11:00 Greenhouse crop ecology: Light, TemperatureMontenegro Greenhouse Ornamental Production Workshop October 2007 Heiner Lieth Plant Sciences of Montenegro is promotion of the their greenhouse flower production industry. At the time when the program

Lieth, J. Heinrich

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THE GREENHOUSE EFFECT Stephen E. Schwartz  

E-Print Network [OSTI]

THE GREENHOUSE EFFECT Stephen E. Schwartz Science Honor Society Center Moriches High School Center about how this drug affects brain chemistry. #12;#12;THE GREENHOUSE EFFECT #12;Everybody talks about about it. ­ Mark Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something about it. What

Schwartz, Stephen E.

82

THE GREENHOUSE EFFECT Stephen E. Schwartz  

E-Print Network [OSTI]

THE GREENHOUSE EFFECT Stephen E. Schwartz Atmospheric Sciences Division CSSP Lecture July 27, 2005 http://www.ecd.bnl.gov/steve/schwartz.html #12;#12;THE GREENHOUSE EFFECT #12;GLOBAL ENERGY BALANCE Twain­ Mark Twain Now with the greenhouse effect, we ARE doing something about it. What are we doing

Schwartz, Stephen E.

83

Distribution of anthropogenic CO2 in the Pacific Ocean  

E-Print Network [OSTI]

Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

84

Damping of glacial-interglacial cycles from anthropogenic forcing  

E-Print Network [OSTI]

Climate variability over the past million years shows a strong glacial-interglacial cycle of ~100,000 years as a combined result of Milankovitch orbital forcing and climatic resonance. It has been suggested that anthropogenic contributions to radiative forcing may extend the length of the present interglacial, but the effects of anthropogenic forcing on the periodicity of glacial-interglacial cycles has received little attention. Here I demonstrate that moderate anthropogenic forcing can act to damp this 100,000 year cycle and reduce climate variability from orbital forcing. Future changes in solar insolation alone will continue to drive a 100,000 year climate cycle over the next million years, but the presence of anthropogenic warming can force the climate into an ice-free state that only weakly responds to orbital forcing. Sufficiently strong anthropogenic forcing that eliminates the glacial-interglacial cycle may serve as an indication of an epoch transition from the Pleistocene to the Anthropocene.

Haqq-Misra, Jacob

2014-01-01T23:59:59.000Z

85

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

86

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

87

Greenhouse Gas Reductions: SF6  

SciTech Connect (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2012-01-01T23:59:59.000Z

88

E-Print Network 3.0 - anthropogenic vegetation fires Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dust aerosols VOCsDMS ET vegetation Anthropogenic waste byproduct air quality water management... combustionfires Anthropogenic crop production oil byproduct drilling...

89

E-Print Network 3.0 - anthropogenic land-use change Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Non-Proximal Ecosystem Service Summary: Anthropogenic Land Cover Change Wetlandswater management Dams River Engineering Land use impervious surfaces... Anthropogenic land...

90

Danish Greenhouse Gas Reduction Scenarios for 2020  

E-Print Network [OSTI]

.4 ECONOMIC GROWTH 51 2.5 GROWTH IN ENERGY SERVICES 52 2.6 FUEL PRICES 53 2.7 CO2-PRICE 54 2.8 TECHNOLOGY DATADanish Greenhouse Gas Reduction Scenarios for 2020 and 2050 February 2008 Prepared by Ea Energy 54 2.9 ENERGY RESOURCES 55 3 DANISH GREENHOUSE GAS EMISSION 58 3.1 GREENHOUSE GAS SOURCES 58 4

91

THE GREENHOUSE EFFECT Stephen E. Schwartz  

E-Print Network [OSTI]

THE GREENHOUSE EFFECT Stephen E. Schwartz Atmospheric Sciences Division CSSP Lecture July 30, 2002 . . . IS TO PUT TWO PEOPLE IN IT! #12;YOUR FAMILY'S CONTRIBUTION TO THE GREENHOUSE EFFECT 0.8 0.6 0.4 0.2 0.0 CO2 of carbon a year in the form of carbon dioxide. #12;YOUR CONTRIBUTION TO THE GREENHOUSE EFFECT At half

Schwartz, Stephen E.

92

Anthropogenic lead dynamics in the terrestrial and marine environment  

Science Journals Connector (OSTI)

...shown in gure 7, re ect the introduction and phase-out of leaded petrol. Measuring lead concentrations in ice near Camp Century, Greenland, Murozumi et al. (1969) rst observed the Arctic anthropogenic transient, with lead concentrations increas...

2002-01-01T23:59:59.000Z

93

Upper-tropospheric moistening in response to anthropogenic warming  

Science Journals Connector (OSTI)

Upper-tropospheric moistening in response to anthropogenic warming 10.1073/pnas.1409659111 Eui-Seok Chung Brian Soden B. J. Sohn Lei Shi aRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami...

Eui-Seok Chung; Brian Soden; B. J. Sohn; Lei Shi

2014-01-01T23:59:59.000Z

94

Anthropogenic transformation of the biomes, 1700 to 2000  

E-Print Network [OSTI]

before and during the Industrial Revolution, from 1700 to 2000. Location Global. Methods Anthropogenic of the biosphere during the Industrial Revolution resulted about equally from land-use expansion into wildlands

Ellis, Erle C.

95

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

96

Greenhouse Gas Mitigation Planning Data and Tools  

Broader source: Energy.gov [DOE]

These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for:

97

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

98

Greenhouse Gas Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked...

99

Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Greenhouse Gas Vehicle Greenhouse Gas Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Greenhouse Gas Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Greenhouse Gas Labeling Requirement

100

Federal Energy Management Program: Greenhouse Gas Guidance and Reporting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Greenhouse Gas Guidance and Reporting to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on Twitter Bookmark Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on Google Bookmark Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on Delicious Rank Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on Digg Find More places to share Federal Energy Management Program: Greenhouse Gas Guidance and Reporting on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Reporting Requirement to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Reporting Requirement

102

Federal Greenhouse Gas Inventories and Performance  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides links to progress data tables illustrating Federal agency progress in meeting the greenhouse gas (GHG) reduction targets established under Executive Order (E.O.) 13514, as well as the comprehensive greenhouse gas inventories as reported by the Federal agencies.

103

A Novel Paradigm in Greenhouse Gas Mitigation  

E-Print Network [OSTI]

emission [1, 2]. Moreover, water vapor is also a naturally occurring greenhouse gas and accounts for the largest percent- age of the greenhouse effect, between 36% and 66% in terms of radiation absorbance. Water). Yet the radiative importance of water vapor is less than that of CO2, CH4, and N2O, because

Azad, Abdul-Majeed

104

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts This report, Emissions of Greenhouse Gases in the United States 2009, was prepared under the general direction of John Conti, Assistant Administrator for Energy Analysis, and Paul Holtberg, Team Leader, Analysis Integration Team. General questions concerning the content of this report may be directed to the Office of Communications at 202/586-8800. Technical information concerning the content of the report may be obtained from Perry Lindstrom at 202/586-0934 (email, perry.lindstrom@eia.gov). Without the assistance of Science Applications International Corporation (SAIC), this report would not have been possible. In particular we would like to thank Erin Beddingfield, Keith Forbes, Kristin Igusky, Makely Lyon, Michael Mondshine, and Richard Richards. We also wish to acknowledge the

105

Nuclear energy and the greenhouse effect  

Science Journals Connector (OSTI)

The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood, strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, an acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical.

Alvin M. Weinberg

1990-01-01T23:59:59.000Z

106

Wednesday, January 30, 2013 Infrared Trapping the "Greenhouse Effect"  

E-Print Network [OSTI]

Wednesday, January 30, 2013 Infrared Trapping ­ the "Greenhouse Effect" Goals ­ to look is the same as a 1.8 degree F change. #12;Last time - Greenhouse effect demo Selective absorption. Greenhouse

Toohey, Darin W.

107

Idaho National Laboratory's FY13 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INLs GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Kimberly Frerichs

2014-03-01T23:59:59.000Z

108

Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Greenhouse Gas State Greenhouse Gas (GHG) Emissions Reduction Strategy to someone by E-mail Share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Facebook Tweet about Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Twitter Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Google Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Delicious Rank Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Digg Find More places to share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on AddThis.com... More in this section... Federal

109

Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate Change in NEPA Reviews Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and...

110

Federal Register Notice for Life Cycle Greenhouse Gas Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas from the United States (Life Cycle Analysis Greenhouse Gas Report, or LCA GHG Report) and invites the submission of comments. LifecycleGreenhouseGas.pdf More...

111

Estimate Greenhouse Gas Emissions by Building Type | Department...  

Broader source: Energy.gov (indexed) [DOE]

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type YOU ARE HERE Step 2 Starting with the programs contributing the greatest...

112

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

113

Knowledge Partnership for Measuring Air Pollution and Greenhouse...  

Open Energy Info (EERE)

Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia...

114

EIA-Voluntary Reporting of Greenhouse Gases Program - What are...  

U.S. Energy Information Administration (EIA) Indexed Site

gases such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride). The Greenhouse Effect Concentrations of several important greenhouse gases have increased by about 33...

115

The RCP Greenhouse Gas Concentrations and their Extensions from 1765 to 2300  

SciTech Connect (OSTI)

We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We first compiled a suite of observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005). For the 21st century, we start from emissions projected by four different Integrated Assessment Models for 2005-2100. We harmonize these emissions to allow inter-comparability of scenarios and to achieve a smooth transition from historical data. These harmonized emissions are then used to derive future GHG concentrations. We also present the GHG concentrations for one supplementary extension, which illustrates the emissions implications of attempting to go back to ECP4.5 concentration levels after emissions in the 21st century followed RCP6. Corresponding radiative forcing values are also presented for the RCP and ECPs.

Meinshausen, Malte; Smith, Steven J.; Calvin, Katherine V.; Daniel, John S.; Kainuma, M.; Lamarque, J.-F.; Matsumoto, Ken ichi; Montzka, S.; Raper, S.; Riahi, Keywan; Thomson, Allison M.; Velders, G.J.M; Van Vuuren, Detlef

2011-08-01T23:59:59.000Z

116

Federal Energy Management Program: Greenhouse Gas Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

117

Integrated Energy and Greenhouse Gas Management System  

E-Print Network [OSTI]

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed...

Spates, C. N.

2010-01-01T23:59:59.000Z

118

Greenhouse Effect Mitigation Through Photocatalytic Technology  

Science Journals Connector (OSTI)

Climate change is one of the most critical issues facing the world. One of the pillars of the fight against this phenomenon is the mitigation of greenhouse gas (GHG) emissions, CO2 in particular. Although many ac...

Jesusa Rincn; Rafael Camarillo; Fabiola Martnez; Carlos Jimnez; Susana Tostn

2014-01-01T23:59:59.000Z

119

The Greenhouse Effect: Science and Policy  

Science Journals Connector (OSTI)

...allowing the reduction of the airborne fraction, whereas increasing CO2 emissions could increase the airborne fraction and exacerbate the greenhouse...shelves. These clathrates could release vast quantities of methane into...

Stephen H. Schneider

1989-02-10T23:59:59.000Z

120

Greenhouse Gas Inventory and Registry (Iowa)  

Broader source: Energy.gov [DOE]

The Iowa Department of Natural Resources is required to establish a method for collecting emissions estimates from producers of greenhouse gases. Reporting is mandatory for some entities, and the...

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Greenhouse Gas Mitigation Planning for Business Travel  

Broader source: Energy.gov [DOE]

Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3...

122

Greenhouse Gas Mitigation Planning for Buildings  

Broader source: Energy.gov [DOE]

Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion...

123

Voluntary reporting of greenhouse gases, 1995  

SciTech Connect (OSTI)

The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

NONE

1996-07-01T23:59:59.000Z

124

ARM - Lesson Plans: Your Own Greenhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

question, which one is higher? Can you explain why these two temperature records not the same? Can you give a similar example to demonstrate the greenhouse effect in our daily life...

125

Greenhouse Gas Training Program for Inventory and Mitigation Modeling |  

Open Energy Info (EERE)

Greenhouse Gas Training Program for Inventory and Mitigation Modeling Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Agency/Company /Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development planning, -LEDS Resource Type: Case studies/examples, Training materials Website: www.gpstrategiesltd.com/divisions/future-perfect/ Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling[1] Logo: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jointly sponsored by Greenhouse Gas Inventory & Research (GIR) Center of

126

Federal Energy Management Program: Evaluate Greenhouse Gas Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions Profile to someone by E-mail Emissions Profile to someone by E-mail Share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Facebook Tweet about Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Twitter Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Google Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Delicious Rank Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Digg Find More places to share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting

127

Quantification of continual anthropogenic pollutants released in swimming pools  

Science Journals Connector (OSTI)

Abstract Disinfection in swimming pools is often performed by chlorination, However, anthropogenic pollutants from swimmers will react with chlorine and form disinfection by-products (DBPs). \\{DBPs\\} are unwanted from a health point of view, because some are irritating, while others might be carcinogenic. The reduction of anthropogenic pollutants will lead to a reduction in DBPs. This paper investigates the continual release of anthropogenic pollutants by means of controlled sweat experiments in a pool tank during laboratory time-series experiments (LTS experiments) and also during on-site experiments (OS experiments) in a swimming pool. The sweat released during the OS and LTS experiments was very similar. The sweat rate found was 0.10.2L/m2/h at water temperatures below 29C and increased linearly with increasing water temperatures to 0.8L/m2/h at 35C. The continual anthropogenic pollutant release (CAPR) not only consisted of sweat, particles (mainly skin fragments and hair) and micro-organisms, but also sebum (skin lipids) has to be considered. The release of most components can be explained by the composition of sweat. The average release during 30min of exercise is 250mg/bather non-purgeable organic carbon (NPOC), 77.3mg/bather total nitrogen (TN), 37.1mg/bather urea and 10.1mg/bather ammonium. The release of NPOC cannot be explained by the composition of sweat and is most probably a result of sebum release. The average release of other components was 1.31נ109 # particles/bather (250?m), 5.2?g/bather intracellular adenosine triphosphate (cATP) and 9.3נ106 intact cell count/bather (iCC). The pool water temperature was the main parameter to restrain the CAPR. This study showed that a significant amount of the total anthropogenic pollutants release is due to unhygienic behaviour of bathers.

M.G.A. Keuten; M.C.F.M. Peters; H.A.M. Daanen; M.K. de Kreuk; L.C. Rietveld; J.C. van Dijk

2014-01-01T23:59:59.000Z

128

Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California  

E-Print Network [OSTI]

fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BBEmission characteristics of black carbon in anthropogenic and biomass burning plumes over. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over

Jimenez, Jose-Luis

129

E-Print Network 3.0 - anthropogenic impacts multi-proxy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has little impact on the inverse estimates. 3.2. Oceanic Transport of Anthropogenic CO2 25... a relatively small impact on the air-sea flux of anthropogenic CO2 on...

130

Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations  

Science Journals Connector (OSTI)

Multimillennial simulations with a fully coupled climatecarbon cycle model are examined to assess the persistence of the climatic impacts of anthropogenic CO2 emissions. It is found that the time required to absorb anthropogenic CO2 strongly ...

M. Eby; K. Zickfeld; A. Montenegro; D. Archer; K. J. Meissner; A. J. Weaver

2009-05-01T23:59:59.000Z

131

Sustainable Integration of Algal Biodiesel Production with Steam Electric Power Plants for Greenhouse Gas Mitigation  

Science Journals Connector (OSTI)

Because fossil fuel combustion power stations are responsible for over 65% of estimated carbon dioxide (CO2) emissions caused by power generation systems,(1) a major challenge facing this electric power sector is how to reconcile the growing global electricity demand with the increasing urgency to reduce CO2 emissions due to carbon dioxide being the main greenhouse gas (GHG) and, consequently, one of the most important contributors for the increase in anthropogenic climate change and global warming that distorts the ecological balance and environmental sustainability. ... Ng, R. T. L.; Tay, D. H. S.; Ng, D. K. S.Simultaneous process synthesis, heat and power integration in a sustainable integrated biorefinery Energy Fuels. 2012, 26, 7316 7330 ... Integrated biorefinery emerged as noteworthy concept to integrate several conversion technologies to have more flexibility in product generation with energy self-sustained and reduce the overall cost of the process. ...

Csar G. Gutirrez-Arriaga; Medardo Serna-Gonzlez; Jos Mara Ponce-Ortega; Mahmoud M. El-Halwagi

2014-04-18T23:59:59.000Z

132

The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System  

E-Print Network [OSTI]

of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

Fortunat, Joos

133

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions  

E-Print Network [OSTI]

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions The anthropogenic emission of mercury is directly adopted from global mercury emission inventory [Pacyna et al., 2005]. The anthropogenic emissions are shown in annual averaged total mercury emissions. (Unit: µg/m2 /day) 2. Land

Meskhidze, Nicholas

134

Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic eects  

E-Print Network [OSTI]

Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission the remainder. Over 80% of aquatic anthropogenic N2O emissions are from the Northern Hemisphere mid

Seitzinger, Sybil

135

Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Emissions Study to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Emissions Study By October 13, 2013, the Washington Office of Financial Management must

136

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

137

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

Gasoline and Diesel Fuel Update (EIA)

08(96) 08(96) Distribution Category UC-950 Mitigating Greenhouse Gas Emissions: Voluntary Reporting October 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. For More Information Individuals or members of organizations wishing to report reductions in emissions of greenhouse gases under the auspices of the Voluntary Reporting Program can contact the Energy Information Administration (EIA) at: Voluntary Reporting of Greenhouse Gases Energy Information Administration U.S. Department

138

Federal Greenhouse Gas Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements Requirements Federal Greenhouse Gas Requirements October 7, 2013 - 10:02am Addthis Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable

139

Greenhouse Gas Mitigation Planning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Mitigation Planning Greenhouse Gas Mitigation Planning October 7, 2013 - 10:08am Addthis The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency. Learn more about the benefits of portfolio-based planning for GHG mitigation. Also see information about greenhouse gas mitigation planning data and tools. Step-by-Step The GHG mitigation planning process follows six key steps. Click on a step

140

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Voluntary reporting of greenhouse gases 1997  

SciTech Connect (OSTI)

The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

NONE

1999-05-01T23:59:59.000Z

142

Greenhouse Gas Emissions (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(Minnesota) (Minnesota) Greenhouse Gas Emissions (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Climate Policies This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80

143

Greenhouse of the future. Final report  

SciTech Connect (OSTI)

This greenhouse of the future is located at the Center for Regenerative Studies (CRS) at Cal Poly Pomona. The building design was driven by desired environmental conditions. The primary objective was to keep the interior space warm during winter for the breeding of fish and other greenhouse activities, especially in the winter. To do this, a highly insulating envelope was needed. Straw bales provide excellent insulation with an R-value of approximately 50 and also help solve the environmental problems associated with this agricultural waste product. A summary of the construction progress, construction costs and operating costs are included.

Cavin, B. III

1998-07-03T23:59:59.000Z

144

Federal Energy Management Program: Federal Greenhouse Gas Inventories and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventories and Performance to someone by E-mail Inventories and Performance to someone by E-mail Share Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on Facebook Tweet about Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on Twitter Bookmark Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on Google Bookmark Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on Delicious Rank Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on Digg Find More places to share Federal Energy Management Program: Federal Greenhouse Gas Inventories and Performance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

145

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

146

NEWTON: Greenhouse Gas and Heat Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas and Heat Transfer Greenhouse Gas and Heat Transfer Name: Robert Status: teacher Grade: 9-12 Location: AK Country: USA Date: Summer 2013 Question: It would appear from a superficial reading that heat flows out of a greenhouse gas more slowly than heat flows into the same gas. This has to be an incorrect interpretation. It seems more likely that molecules with high heat capacities resist heat transfer-both into and out of such a molecular system. At a molecular level how does heat move out of a hot greenhouse gas? I have seen plots of Cv vs Tempt which indicates that heat moves from translational modes of motion-into rotational modes and finally into modes of vibration. The energy spacing of vibrations is generally grater that rotation which are greater than translation. Could it be that it is this quantization of the energy levels and the difference in energy between such quantum states that is the source of the resistance to heat flow or transfer?

147

Fiscal Year 2010 Greenhouse Gas Inventory  

E-Print Network [OSTI]

Fiscal Year 2010 Greenhouse Gas Inventory OREGON STATE UNIVERSITY #12;OREGON STATE UNIVERSITYGHG UNIVERSITYGHG Report - FY10 3 Acknowledgments Due to the broad scope of this inventory, a large number of people Oil: Amber Sams · Enterprise Rent-A-Car: Davion Reese · First Student: Brian Maxwell · Good Company

Escher, Christine

148

Fiscal Year 2009 Greenhouse Gas Inventory  

E-Print Network [OSTI]

Fiscal Year 2009 Greenhouse Gas Inventory Oregon State University Greg Smith Sustainability Program #12;Acknowledgments Due to the broad scope of this inventory, a large number of people from many - First Student: Brian Maxwell - Carson Oil: Gena Conner Government Organizations - Baker County: Jason

Escher, Christine

149

Measuring and reporting Greenhouse Gas (GHG)  

E-Print Network [OSTI]

Measuring and reporting Greenhouse Gas (GHG) emissions from freight transport Quick reference guide through in measuring and reporting the GHG emissions from your transport operations. You should always use it together with the `full' transport emissions reporting guidance. The transport GHG emissions reporting

150

Estimate Greenhouse Gas Emissions by Building Type  

Broader source: Energy.gov [DOE]

Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type.

151

Proof of the Atmospheric Greenhouse Effect  

E-Print Network [OSTI]

A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

Smith, Arthur P

2008-01-01T23:59:59.000Z

152

Evaluate Greenhouse Gas Reduction Strategies for Buildings  

Broader source: Energy.gov [DOE]

Once key building types and priority sites have been identified, a Federal agency can identify appropriate energy management measures and estimate their impact on each program's building greenhouse gas (GHG) emissions. To support this evaluation, energy managers can use the Buildings GHG Mitigation Worksheet Estimator in tandem with this guidance to estimate of GHG savings and cost.

153

Improving UK greenhouse gas emission estimates using tall tower observations  

E-Print Network [OSTI]

Greenhouse gases in the Earths atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

Howie, James Edward

2014-06-30T23:59:59.000Z

154

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program  

Broader source: Energy.gov [DOE]

When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs.

155

THE GREENHOUSE EFFECT YOUR FAMILY'S CONTRIBUTION TO IT  

E-Print Network [OSTI]

THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz The GREENS MENS Assistant Secretary for Foreign Affairs #12;#12;THE GREENHOUSE EFFECT #12;ATMOSPHERIC RADIATION Energy per

Schwartz, Stephen E.

156

EIA-Voluntary Reporting of Greenhouse Gases Program - Greenhouse Gases and  

U.S. Energy Information Administration (EIA) Indexed Site

Greenhouse Gases and Global Warming Potentials (GWP) Greenhouse Gases and Global Warming Potentials (GWP) Voluntary Reporting of Greenhouse Gases Program Greenhouse Gases and Global Warming Potentials (GWP) (From Appendix E of the instructions to Form EIA-1605) GREENHOUSE GAS NAME GREENHOUSE GAS CODE FORMULA GWP TAR1 AR42 (1) Carbon Dioxide CO2 CO2 1 1 (2) Methane CH4 CH4 23 25 (3) Nitrous Oxide N2O N2O 296 298 (4) Hydroflourocarbons HFC-23 (trifluoromethane) 15 CHF3 12000 14800 HFC-32 (difluoromethane) 16 CH2F2 550 675 HFC-41 (monofluoromethane) 43 CH3F 97 -3 HFC-125 (pentafluoroethane) 17 CHF2CF3 3400 3500 HFC-134 (1,1,2,2-tetrafluoroethane) 44 CHF2CHF2 1100 -3 HFC-134a (1,1,1,2-tetrafluoroethane) 18 CH2FCF3 1300 1430 HFC-143 (1,1,2-trifluorethane) 45 CHF2CH2F 330 -3 HFC-143a (1,1,1-trifluoroethane) 46 CF3CH3 4300 4470 HFC-152 (1,2-difluorethane) 47 CH2FCH2F

157

Urban Options Solar Greenhouse Demonstration Project. Final report  

SciTech Connect (OSTI)

The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

Cipparone, L.

1980-10-15T23:59:59.000Z

158

Falsification Of The Atmospheric CO2 Greenhouse Effects  

E-Print Network [OSTI]

Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3 Contents Abstract 2 1 Introduction 6 1.1 Problem background

Learned, John

159

1. Introduction The atmospheric greenhouse effect is the basic mechanism  

E-Print Network [OSTI]

1. Introduction The atmospheric greenhouse effect is the basic mechanism whereby absorbed solar system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds

160

THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT  

E-Print Network [OSTI]

THE GREENHOUSE EFFECT AND YOUR FAMILY'S CONTRIBUTION TO IT Stephen E. Schwartz Rotary Club of Patchogue November 9, 2005 http://www.ecd.bnl.gov/steve/schwartz.html #12;#12;THE GREENHOUSE EFFECT #12 Now with the greenhouse effect, we ARE doing something about it. What are we doing? #12;370 360 350

Schwartz, Stephen E.

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Greenhouse Gas Management Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

Not Available

2011-11-01T23:59:59.000Z

162

E-Print Network 3.0 - atmospheric greenhouse gases Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to longwave radiation 12;Greenhouse Gases Polyatomic molecules... the greenhouse effect ... Source: Frierson, Dargan - Department of Atmospheric Sciences, University of...

163

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

164

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Stationary Combustion Guidance[1] The Greenhouse Gas Protocol tool for stationary combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

165

Agriculture and Land Use National Greenhouse Gas Inventory Software | Open  

Open Energy Info (EERE)

Agriculture and Land Use National Greenhouse Gas Inventory Software Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas Inventory Software Agency/Company /Organization: Colorado State University Partner: United States Agency for International Development, United States Forest Service, United States Environmental Protection Agency Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.colostate.edu/projects/ghgtool/index.php Cost: Free Agriculture and Land Use National Greenhouse Gas Inventory Software Screenshot References: Agriculture and Land Use National Greenhouse Gas Inventory Software[1]

166

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country Mexico Central America References Greenhouse Emissions Baselines and Reduction Potentials for Buildings[1] Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Screenshot "This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial

167

Greenhouse Gas Emissions for Different Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

168

Determine Largest Mobile Greenhouse Gas Emission Sources  

Broader source: Energy.gov [DOE]

For the purposes of portfolio planning, a Federal agency's first data analysis step is to determine which mobile emissions sources represent the largest contributors to the agency's overall greenhouse gas (GHG) emissions. Agencies can use agency-level data to determine which fleets/locations, which vehicle assets (e.g., fleet vehicles, non-fleet equipment, etc.), and which fuel types are producing the largest amounts of emissions.

169

Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Fuel Economy Vehicle Fuel Economy and Greenhouse Gas Emissions Standards to someone by E-mail Share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Facebook Tweet about Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Twitter Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Google Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Delicious Rank Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Digg Find More places to share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on AddThis.com...

170

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

171

Supplemental photosynthetic lighting for greenhouse tomato production  

SciTech Connect (OSTI)

The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

Godfriaux, B.L.; Wittman, W.K. (Public Service Electric and Gas Co., Newark, NJ (USA)); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. (Rutgers--the State Univ., New Brunswick, NJ (USA). Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. (Rutgers--the State Univ., New Brunswick, NJ (USA). Dept. of Biological and Agricultural Engineering)

1989-12-01T23:59:59.000Z

172

ANTHROPOGENIC FIRES, FOREST RESOURCES, AND LOCAL LIVELIHOODS AT CHYULU HILLS, KENYA.  

E-Print Network [OSTI]

??Anthropogenic fires are rife in rural Africa as people use fire to modify landscapes for their livelihoods. Although burning occurs as a very significant practice (more)

Kamau, Peter Ngugi

2013-01-01T23:59:59.000Z

173

E-Print Network 3.0 - anthropogenic impacts recorded Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

details Summary: reconstruction of anthropogenic N inputs into a Bay Area serpentine ecosystem using tree ring 15 N analysis High... into changes in plant-available N and...

174

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

175

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

176

IPCC Guidelines for National Greenhouse Gas Inventories | Open Energy  

Open Energy Info (EERE)

IPCC Guidelines for National Greenhouse Gas Inventories IPCC Guidelines for National Greenhouse Gas Inventories Jump to: navigation, search Tool Summary Name: IPCC Guidelines for National Greenhouse Gas Inventories Agency/Company /Organization: World Meteorological Organization, United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Guide/manual, Training materials References: 2006 IPCC Guidelines for National Greenhouse Gas Inventories[1] Logo: IPCC Guidelines for National Greenhouse Gas Inventories "The 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 Guidelines) were produced at the invitation of the United Nations Framework Convention on Climate Change(UNFCCC) to update the Revised 1996 Guidelines and associated good practice guidance which provide internationally agreed

177

Managing the National Greenhouse Gas Inventory Process | Open Energy  

Open Energy Info (EERE)

Managing the National Greenhouse Gas Inventory Process Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary Name: Managing the National Greenhouse Gas Inventory Process Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme, Global Environment Facility Topics: GHG inventory Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: ncsp.undp.org/document/managing-national-greenhouse-gas-inventory-proc Managing the National Greenhouse Gas Inventory Process Screenshot References: Managing the National Greenhouse Gas Inventory Process[1] The objective of the handbook is to provide non-AnnexI Parties with a strategic and logical approach to a sustainable inventory process. About "The handbook was developed by United Nations Development Programme with

178

Greenhouse Gas Initiative Scenario Database | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Initiative Scenario Database Greenhouse Gas Initiative Scenario Database Jump to: navigation, search Tool Summary Name: Greenhouse Gas Initiative Scenario Database Agency/Company /Organization: Science for Global Insight Sector: Climate, Energy, Land Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: www.iiasa.ac.at/web-apps/ggi/GgiDb/dsd?Action=htmlpage&page=about Cost: Free References: Greenhouse Gas Initiative Scenario Database[1] The GGI (Greenhouse Gas Initiative) scenario database documents the results of a set of greenhouse gas emission scenarios that were created using the IIASA Integrated Assessment Modeling Framework and previously documented in a special issue of the Technological Forecasting and Social Change.

179

EIA-Voluntary Reporting of Greenhouse Gases Program  

U.S. Energy Information Administration (EIA) Indexed Site

of Greenhouse Gases Program of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects all survey respondents. Please visit the What's New page for full details. What Is the Voluntary Reporting Program? logo Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases Program encourages corporations, government agencies, non-profit organizations, households, and other private and public entities to submit annual reports of their greenhouse gas emissions, emission reductions, and sequestration activities. The Program provides a means for voluntary reporting that is complete, reliable, and consistent. More information on the program...

180

Direct and semi-direct radiative effects of anthropogenic aerosols in the Western United States: Seasonal  

E-Print Network [OSTI]

a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical- transport emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates

Liou, K. N.

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A SLIPPERY SLOPE: HOW MUCH GLOBAL WARMING CONSTITUTES "DANGEROUS ANTHROPOGENIC INTERFERENCE"?  

E-Print Network [OSTI]

A SLIPPERY SLOPE: HOW MUCH GLOBAL WARMING CONSTITUTES "DANGEROUS ANTHROPOGENIC INTERFERENCE on the global warming that can be tolerated without risking dangerous anthropogenic interference with climate. I" mainly as a metaphor for the danger posed by global warming. So I changed "Hell" to "disaster." What

Hansen, James E.

182

Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United Jeffrey MacAdam Sigler  

E-Print Network [OSTI]

Abstract Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United States impact may depend on the emission rate. Anthropogenic Hg emissions in the United States are poorly characterized. Natural Hg emissions are poorly understood worldwide, due to lack of data or measurement systems

Lee, Xuhui

183

Anthropogenic forcing dominates sea level rise since 1850 S. Jevrejeva,1  

E-Print Network [OSTI]

Anthropogenic forcing dominates sea level rise since 1850 S. Jevrejeva,1 A. Grinsted,2 and J. C October 2009. [1] The rate of sea level rise and its causes are topics of active debate. Here we use 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25

Binford, Michael W.

184

On the meaning of feedback parameter, transient climate response, and the greenhouse effect: Basic considerations and the discussion of uncertainties  

E-Print Network [OSTI]

In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the ...

Kramm, Gerhard

2010-01-01T23:59:59.000Z

185

Greenhouse Gas Management Institute (GHGMI) | Open Energy Information  

Open Energy Info (EERE)

Institute (GHGMI) Institute (GHGMI) Jump to: navigation, search Logo: Greenhouse Gas Management Institute (GHGMI) Name Greenhouse Gas Management Institute (GHGMI) Address Washington, D.C. Place Washington, District of Columbia Phone number 1-888-778-1972 Website http://ghginstitute.org/housek References http://ghginstitute.org/housekeeping/contact-us/ No information has been entered for this organization. Add Organization The Greenhouse Gas Management Institute (GHGMI) was founded in response to the growing demand for qualified greenhouse gas (GHG) professionals. Just as engineering and financial accounting rely on certified professionals, GHG emissions management requires a highly competent and ethical professional class to undertake measurement, reporting, auditing, and

186

Melozi Greenhouse Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Greenhouse Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Greenhouse Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

188

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

189

The Greenhouse Gases, Regulated Emissions, and Energy Use in...  

Open Energy Info (EERE)

of a variety of vehicle, fuel, and technology choices. Overview Measures the petroleum displacement and greenhouse gas emissions of medium and heavy-duty vehicles and...

190

Argonne researchers create more accurate model for greenhouse...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation in southeast Alaska. Photo by Travis S.Flickr. (Click image to enlarge) Argonne researchers create more accurate model for greenhouse gases from peatlands By Louise...

191

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy Savers [EERE]

greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program...

192

CEQ Issues Revised Draft Guidance on Consideration of Greenhouse...  

Office of Environmental Management (EM)

Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews CEQ Issues Revised Draft Guidance on Consideration of...

193

EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...  

Gasoline and Diesel Fuel Update (EIA)

AP-42 Volume 2 mobile sources Global Warming Potentials The Intergovernmental Panel on Climate Change (IPCC) revised GWPs for certain greenhouse gases in 2007 for the Fourth...

194

Greenhouse Gas Guidance and Reporting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Federal Guidance Read the White House Council on Environmental Quality's...

195

Life Cycle Boundaries and Greenhouse Gas Emissions from Beef Cattle.  

E-Print Network [OSTI]

??Beef cattle are estimated to directly contribute 26% of U.S. agricultural greenhouse gas (GHG) emissions, and future climate change policy may target reducing these emissions. (more)

Dudley, Quentin M

2012-01-01T23:59:59.000Z

196

Greenhouse Gas Emissions from Aviation and Marine Transportation...  

Open Energy Info (EERE)

Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org...

197

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability ................................................................................................................................. 6 1.2. GHG EMISSION SOURCES .............................................................................................................. 7 1.3. REPORTED GHG EMISSIONS

Brownstone, Rob

198

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability. GHG INVENTORY DESIGN .............................................................................. 6 ................................................................................................................................. 6 2.2. GHG EMISSION SOURCES

Brownstone, Rob

199

Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...  

Energy Savers [EERE]

(NHTSA) jointly announced a proposal to establish national standards for greenhouse gas (GHG) emissions and Corporate Average Fuel Economy (CAFE). The standards would apply to...

200

The Greenhouse Gas Protocol Initiative: Measurement and Estimation...  

Open Energy Info (EERE)

Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of...

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advancing Development and Greenhouse Gas Reductions in Vietnams...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity for Low Emission Development Strategies EE energy efficiency FIT feed-in tariff GHG greenhouse gas GIS geographical information system GIZ Deutsche Gesellschaft fr...

202

Annual Greenhouse Gas and Sustainability Data Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

agency-aggregated data necessary for calculating scope 1, 2, and 3 greenhouse gas (GHG) emissions in the commonly used, native units of energy consumption and fugitive...

203

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion AgencyCompany Organization: World Resources...

204

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings  

Broader source: Energy.gov [DOE]

After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings.

205

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources AgencyCompany Organization: World Resources...

206

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...  

Open Energy Info (EERE)

Land Focus Area Renewable Energy, Agriculture, Forestry, Greenhouse Gas, Land Use Topics GHG inventory, Low emission development planning, -LEDS, Policiesdeployment programs...

207

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source.

208

Air Emmissions Trading Program/Regional Greenhouse Gas Initiative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Environmental Services Air Resources Division The New Hampshire Regional Greenhouse Gas Initiative is a carbon dioxide emissions budget trading program. The program includes...

209

Lightning Dock KGRA, New Mexico's Largest Geothermal Greenhouse...  

Open Energy Info (EERE)

Largest Geothermal Greenhouse, Largest Aquaculture Facility, and First Binary Electrical Power Plant. Geo-Heat Center Bulletin. 23:37-41. Related Geothermal Exploration Activities...

210

The Greenhouse Gas Protocol Initiative: Allocation of Emissions...  

Open Energy Info (EERE)

Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of...

211

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany Organization: Board on Atmospheric Sciences and Climate Sector: Energy, Land...

212

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings  

Broader source: Energy.gov [DOE]

When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts.

213

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

214

Energy Efficiency and Greenhouse Gases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy efficiency and reduce greenhouse gas emissions through a measurable reduction of energy intensity. Energy efficiency evaluations and initiatives are implemented on the...

215

Analysis of U.S. Greenhouse Gas Tax Proposals  

E-Print Network [OSTI]

The U.S. Congress is considering a set of bills designed to limit the nations greenhouse gas (GHG)

Metcalf, Gilbert E.

216

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmenta...  

Open Energy Info (EERE)

Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods AgencyCompany...

217

South Africa - Greenhouse Gas Emission Baselines and Reduction...  

Open Energy Info (EERE)

Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings AgencyCompany Organization...

218

Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...  

Open Energy Info (EERE)

Website http:www.ens.dksitesens.dk Program Start 2011 Country Ethiopia Eastern Africa References National Greenhouse Gas Emissions Baseline Scenarios: Learning from...

219

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov [DOE]

For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey.

220

Federal Agency Progress Toward Greenhouse Gas Reduction Targets  

Broader source: Energy.gov [DOE]

Excel spreadsheet shows overall government and federal agency reductions in scope 1 and 2 greenhouse gas (GHG) emissions and in indirect scope 3 GHG emissions categories.

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mitigating greenhouse gas emissions: Voluntary reporting  

SciTech Connect (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

222

Use of radiometric emanation method in the characterization of anthropogenic glass analogue for vitrification of nuclear waste  

Science Journals Connector (OSTI)

Anthropogenic analogues can serve as a valuable source of information about long-term behaviour of materials to be used in the nuclear waste repositories. The use of anthropogenic analogues can ... cement, concre...

V. Balek; . Palgyi; V. Havlov

2013-03-01T23:59:59.000Z

223

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network [OSTI]

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

224

INTRODUCTION Greenhouse Gas Emissions in an Urban Environment  

E-Print Network [OSTI]

INTRODUCTION Greenhouse Gas Emissions in an Urban Environment L. Pollard,1 M. Sampson,1 M. Palta,1 M. Bernstein,2 T. Combs,1 X. Dong,1 S. Earl,2 N. Grimm, R. Hale, A. Handler, C. Kochert, J. Mc) are less well understood. Cities are potential hot spots for greenhouse gas (GHG) production. We sought

Hall, Sharon J.

225

A tutorial on global atmospheric energetics and the greenhouse effect  

Science Journals Connector (OSTI)

Basic concepts of climate modeling are reviewed. Starting with a simple energy?balance model problems associated with calculating the greenhouse effect are introduced. Radiation transfer calculations in multi?year models and the contributions of water vapor and clouds in the greenhouse effect are discussed. (AIP)

Thomas P. Ackerman

1992-01-01T23:59:59.000Z

226

The Costs of Greenhouse Gas Mitigation with Induced Technological Change  

E-Print Network [OSTI]

The Costs of Greenhouse Gas Mitigation with Induced Technological Change: A Meta of Greenhouse Gas Mitigation with Induced Technological Change: A Meta-Analysis of Estimates in the Literature and overlapping choices of assumptions. The purpose of the study is to use regression and related analyses

Watson, Andrew

227

Tomato Fruit Antioxidants in Relation to Salinity and Greenhouse Climate  

Science Journals Connector (OSTI)

Tomato Fruit Antioxidants in Relation to Salinity and Greenhouse Climate ... Blocks were positioned to account for experimental error due to minor light gradients in the greenhouse. ... Tomato extracts (15 ?L injection) were eluted with a methanol/MTBE gradient over an 80 min run. ...

David L. Ehret; Kevin Usher; Tom Helmer; Glenn Block; Dan Steinke; Brenda Frey; Tallie Kuang; Moussa Diarra

2013-01-14T23:59:59.000Z

228

Effect of air density variations on greenhouse temperature model  

Science Journals Connector (OSTI)

Basically, a greenhouse temperature model is determined based on the balances of mass and energy. In most of the available models, the air density is considered constant. This fact limits the model because of the natural existing relationship between ... Keywords: Air density, Greenhouse, Humidity, Nonlinear systems, Temperature

Javier Leal Iga; Jorge Leal Iga; Carlos Leal Iga; Ramiro Ayala Flores

2008-05-01T23:59:59.000Z

229

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network [OSTI]

% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs.S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;CenterTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

230

MODELING PHOTOSYNTHESIS OF HETEROGENEOUS ROSE CROP CANOPIES IN THE GREENHOUSE  

E-Print Network [OSTI]

MODELING PHOTOSYNTHESIS OF HETEROGENEOUS ROSE CROP CANOPIES IN THE GREENHOUSE Soo-Hyung Kim and J. Heinrich Lieth Department of Environmental Horticulture University of California Davis, CA 95616-8587, USA training system ("bent canopy") is widely used in greenhouse rose production. The bent canopy consists

Lieth, J. Heinrich

231

Satellite measurements of the clear-sky greenhouse effect from  

E-Print Network [OSTI]

LETTERS Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone HELEN M of 0.48±0.14 W m-2 between 45 S and 45 N. This estimate of the clear-sky greenhouse effect from

Waliser, Duane E.

232

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

233

Information about the Greenhouse Gas Emission Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

234

Energy Efficency and Greenhouse Gas Connection  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency and Carbon Emissions Efficiency and Carbon Emissions Efficiency and Carbon Emissions Energy use for various services has a number of impacts on the environment. Energy combustion by-products include SOx, NOx, and precursors of ground-level ozone. Another combustion by-product is CO2 (carbon dioxide). CO2, a greenhouse gas, has been identified as a potential major contributor to global climate change. Climate_Change.jpg (6885 bytes) The carbon emissions from energy use depend on a number of factors: The level of demand for energy services; The service energy intensity (energy requirement per unit of service); The mix of energy sources for the service; The carbon content of the energy sources. Electricity and district energy both derive from other forms of energy. For these two sources, the mix of fuels used in their production is an additional factor in carbon emissions.

235

FETC Programs for Reducing Greenhouse Gas Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Energy Technology Center Federal Energy Technology Center Pittsburgh, Pennsylvania Morgantown, West Virginia FETC's Customer Service Line: (800) 553-7681 FETC's Homepage: http://www.fetc.doe.gov/ DOE/FETC-98/1058 (DE98002029) FETC Programs for Reducing Greenhouse Gas Emissions John A. Ruether February 1998 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

236

New Evidence of an Enhanced Greenhouse Effect  

E-Print Network [OSTI]

The state of earth's climate is constrained by well-known physical principles such as energy balance and the conservation of energy. Increased greenhouse gas concentrations affect the atmospheric optical depth, and physical consistency implies that changes in the energy transfer in terms of infra-red light must be compensated by other means of energy flow. Here, a simple heuristic and comprehensive model is used to interpret new aspects of real-world data. It is shown that trends in tropospheric overturning activity and the estimated altitude where earth's bulk heat loss should place are two independent indicators of climate change. There has been increased vertical overturning in the middle and upper parts of the troposphere since 1995 on a global scale. Greater overturning compensates for reduced radiative energy transfer associated with increased optical depth. An increased optical depth is also expected to raise the altitude from where planetary bulk heat loss takes place according to the heuristic model,...

Benestad, Rasmus E

2011-01-01T23:59:59.000Z

237

E-Print Network 3.0 - anthropogenic methane emissions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

regional assessments... and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed... predictions of methane emissions from easily...

238

Greenhouse Gas Mitigation Planning for Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings October 7, 2013 - 10:29am Addthis Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion sources; Scope 2 from indirect electricity, heat, or steam purchases; and Scope 3 emissions from transmission and distribution losses. Also see Use Renewable Energy in Buildings for Greenhouse Gas Mitigation. Step 1: Assess Agency Size Changes Step 2: Evaluate Emissions Profile Step 3: Evaluate Reduction Strategies Step 4: Estimate Implementation Costs Step 5: Prioritize Strategies Helpful Data and Tools See GHG planning data and tools for buildings.

239

Global Research Alliance on Agricultural Greenhouse Gases | Open Energy  

Open Energy Info (EERE)

Global Research Alliance on Agricultural Greenhouse Gases Global Research Alliance on Agricultural Greenhouse Gases Jump to: navigation, search Name Global Research Alliance on Agricultural Greenhouse Gases Agency/Company /Organization United States Department of Agriculture Sector Land Focus Area Agriculture Topics GHG inventory, Policies/deployment programs Resource Type Guide/manual, Lessons learned/best practices Website http://globalresearchalliance. References Global Research Alliance on Agricultural Greenhouse Gases [1] Background "The Alliance is a bottom-up network, founded on the voluntary, collaborative efforts of countries. It will coordinate research on agricultural greenhouse gas emission reductions by linking up existing and new research efforts across a range of sub-sectors and work areas. It will

240

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:23am Addthis Once Federal sites have been screened for viability of different renewable energy resources to evaluate emissions profile, the next step is to establish what renewable energy resources developed at which particular sites would have the greatest impact on the agency's overall greenhouse gas (GHG) emissions goals. It is important to consider that some types of renewable energy generation could impact not only Scope 1 and 2 GHG goals, but also Scope 3 goals through avoided transmission and distribution losses. Estimate Greenhouse Gas Reduction Potential It is important to note that solar systems can have the greatest reduction

242

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Refrigerant Guide[1] The Greenhouse Gas Protocol tool for refrigeration is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

243

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Climate Focus Area: - Central Plant, Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: CHP Guidance v1.0[1] The Greenhouse Gas Protocol tool for allocation of GHG emissions from a combined heat and power (CHP) plant is a free Excel spreadsheet calculator

244

Finalize Historic National Program to Reduce Greenhouse Gases and Improve  

Open Energy Info (EERE)

Finalize Historic National Program to Reduce Greenhouse Gases and Improve Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Agency/Company /Organization: EPA and NHTSA Focus Area: Standards - Incentives - Policies - Regulations Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.epa.gov/oms/climate/regulations/420f10014.pdf This document establish a national program consisting of new standards for model year 2012 through 2016 light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. EPA is finalizing the first-ever national greenhouse gas (GHG) emissions standards under the

245

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

246

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

247

Navigating the Numbers: Greenhouse Gas Data and International Climate  

Open Energy Info (EERE)

Navigating the Numbers: Greenhouse Gas Data and International Climate Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory, Policies/deployment programs Resource Type: Publications Website: pdf.wri.org/navigating_numbers.pdf References: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy[1] Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies implications of the data for international cooperation on global climate change. Emissions are assessed within the broader socioeconomic context faced by countries,

248

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: GHG Uncertainty Guide[1] The Greenhouse Gas Protocol Uncertainty Tool is designed to facilitate a quantitative and qualitative estimation of uncertainty associated with a

249

South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country South Africa UN Region Southern Africa References South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings[1] South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Screenshot "This report aims to provide: a summary quantification of the influence of buildings on climate

250

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program |  

Broader source: Energy.gov (indexed) [DOE]

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program October 7, 2013 - 10:48am Addthis When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs. Using the total buildings energy use by program, these emissions profile can be calculated using the Federal Energy Management Program's Annual GHG and Sustainability Data Report site. In the example below, Agency ABC should focus on Programs B and C first because together they represent over 80% of building emissions. Agencies

251

Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reporting Guidance, Greenhouse Gas Reporting Guidance, Seeks Public Comment Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks Public Comment March 22, 2005 - 10:54am Addthis Program Will Ensure Greater Accuracy & Completeness WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today asked for further public comment on its revised guidelines for voluntary reporting of greenhouse gas emissions, sequestration and emission reductions. The program was established by section 1605(b) of the Energy Policy Act of 1992 and will help fulfill President George W. Bush's directive that DOE enhance its voluntary reporting program to reduce overall greenhouse gas emissions while improving the accuracy, verifiability and completeness of emissions data reported to the Federal Government.

252

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Electricity Heat, and Steam Purchase Guidance v1.2[1] The Greenhouse Gas Protocol tool for purchased electricity is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

253

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

254

Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public  

E-Print Network [OSTI]

Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations ABSTRACT This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types

255

Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?  

SciTech Connect (OSTI)

Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

2013-09-01T23:59:59.000Z

256

Idaho National Laboratorys Greenhouse Gas FY08 Baseline  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

257

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into  

E-Print Network [OSTI]

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

Paris-Sud XI, Université de

258

LCA of a tomato crop in a multi-tunnel greenhouse in Almeria  

Science Journals Connector (OSTI)

In terms of greenhouse management, there are differences between cold and ... are due to energy consumption for heating and lighting, greenhouse production in southern countries with a warm...

Marta Torrellas; Assumpci Antn

2012-08-01T23:59:59.000Z

259

Urban Options Solar Greenhouse Project. Semi-annual technical progress report  

SciTech Connect (OSTI)

The design changes and construction of the Urban Options Solar Greenhouse are described. The greenhouse performance and horticultural and educational activities are discussed. (MHR)

Cipparone, L.

1980-03-13T23:59:59.000Z

260

E-Print Network 3.0 - aqueous greenhouse species Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4... Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors... to zero, the atmospheric greenhouse conjecture is...

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft Word - NEPA SECARB Anthropogenic Final EA 2.24.2011.docx  

Broader source: Energy.gov (indexed) [DOE]

85 85 ENVIRONMENTAL ASSESSMENT For The Southeast Regional Carbon Sequestration Partnership Phase III Anthropogenic Test Project U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY March 2011 U.S. Department of Energy SECARB Phase III Anthropogenic Test National Energy Technology Laboratory Final Environmental Assessment i March 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award No. DE-FC26-05NT42590. U.S. Department of Energy SECARB Phase III Anthropogenic Test National Energy Technology Laboratory Final Environmental Assessment ii March 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Southeast Regional Carbon Sequestration Partnership Phase III Anthropogenic Test

262

Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 18542010  

Science Journals Connector (OSTI)

It is now broadly accepted that anthropogenic climate change presents a serious threat to the health, prosperity, and stability of human communities,...2007; World Bank 2012b; Hoeppe 2011; Busby 2007). The intern...

Richard Heede

2014-01-01T23:59:59.000Z

263

Anthropogenic Disturbance of Western Gray Whale Behavior Off Sakhalin Island, Russia  

E-Print Network [OSTI]

. Spatial, temporal, environmental, and acoustic (pulse and/or continuous) sound levels and non-sound related anthropogenic variables were included as explanatory variables to examine their influence on movement and respiration response variables...

Gailey, Glenn Andrew

2013-05-14T23:59:59.000Z

264

If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?  

Science Journals Connector (OSTI)

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall ...

Andrew H. MacDougall; Michael Eby; Andrew J. Weaver

2013-12-01T23:59:59.000Z

265

Anthropogenic Carbon Dioxide Emissions and Ocean Acidification: The Potential Impacts on Ocean Biodiversity  

Science Journals Connector (OSTI)

Most of the focus in recent years on the potential impacts of rising levels of carbon dioxide in the atmosphere linked to anthropogenic activities ... oceans as a consequence of the influx of carbon dioxide absor...

William C. G. Burns

2008-01-01T23:59:59.000Z

266

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model  

E-Print Network [OSTI]

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model Uwe earth system model con- sisting of an atmospheric general circulation model, an ocean general

Winguth, Arne

267

Understanding the Anthropogenically Forced Change of Equatorial Pacific Trade Winds in Coupled Climate Models  

Science Journals Connector (OSTI)

Understanding the change of equatorial Pacific trade winds is pivotal for understanding the global mean temperature change and the El NioSouthern Oscillation (ENSO) property change. The weakening of the Walker circulation due to anthropogenic ...

Baoqiang Xiang; Bin Wang; Juan Li; Ming Zhao; June-Yi Lee

2014-11-01T23:59:59.000Z

268

Climatic effects of 19502050 changes in US anthropogenic aerosols Part 2: Climate response  

E-Print Network [OSTI]

We investigate the climate response to changing US anthropogenic aerosol sources over the 19502050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent ...

Leibensperger, Eric Michael

269

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

270

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

271

EIA-Voluntary Reporting of Greenhouse Gases Program - Reporting Guidelines  

U.S. Energy Information Administration (EIA) Indexed Site

Reporting Guidelines Reporting Guidelines Voluntary Reporting of Greenhouse Gases Program Reporting Guidelines The purpose of the guidelines is to establish the procedures and requirements for filing voluntary reports, and to ensure that the annual reports of greenhouse gas emissions, emission reductions, and sequestration activities submitted by corporations, government agencies, non-profit organizations, households, and other private and public entities to submit are complete, reliable, and consistent. Over time, it is anticipated that these reports will provide a reliable record of the contributions reporting entities have made toward reducing their greenhouse gas emissions. General Guidelines General Guidelines Technical Guidelines Technical Guidelines Appendices to the Technical Guidelines:

272

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

273

Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Greenhouse Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

274

Energy Efficiency and Greenhouse Gases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team incorporates requirements for energy efficiency and reductions in greenhouse gases, and it advocates conserving environmental resources and improving operational capabilities and mission sustainability. Scope The team evaluates how to maintain and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner. The

275

Global warming description using Daisyworld model with greenhouse gases  

Science Journals Connector (OSTI)

Abstract Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon.

Susana L.D. Paiva; Marcelo A. Savi; Flavio M. Viola; Albino J.K. Leiroz

2014-01-01T23:59:59.000Z

276

California's new mandatory greenhouse gas reporting regulation  

SciTech Connect (OSTI)

Beginning in early 2009, approximately 1000 California businesses will begin reporting their greenhouse gas (GHG) emissions based on the requirements of a new regulation adopted by the California Air Resources Board (CARB) in December 2007. California's mandatory GHG reporting regulation is the first rule adopted as a requirement of the Global Warming Solutions Act of 2006, passed by the California Legislature as Assembly Bill 32 (AB 32; Nunez, Chapter 488, Statutes of 2006) and signed by Governor Arnold Schwarzenegger in September 2006. The regulation is the first of its kind in the United States to require facilities to report annual GHG emissions. In general, all facilities subject to reporting are required to report their on-site stationary source combustion emissions of CO{sub 2}, nitrous oxide (N{sub 2}O), and methane (CH{sub 4}). Some industrial sectors, such as cement producers and oil refineries, also must report their process emissions, which occur from chemical or other noncombustion activities. Fugitive emissions from facilities are required to be reported when specified in the regulation. Sulfur hexafluoride (SF{sub 6}) and hydrofluorocarbon (HFC) use is prevalent in electricity facilities and must be reported. CO{sub 2} emissions from biomass-derived fuels must be separately identified during reporting, and reporters must also provide their consumption of purchased or acquired electricity and thermal energy; these requirements will assist facilities in evaluating changes in their fossil fuel carbon footprints. 1 tab.

Patrick Gaffney; Doug Thompson; Richard Bode [California Air Resources Board, CA (United States)

2008-11-15T23:59:59.000Z

277

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

278

Greenhouse Gas Guidance and Reporting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guidance and Guidance and Reporting Greenhouse Gas Guidance and Reporting October 7, 2013 - 10:05am Addthis Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Federal Guidance Read the White House Council on Environmental Quality's (CEQ), Federal Greenhouse Gas Accounting and Reporting Guidance, and associated Technical Support Document. Accounting and Reporting Resources Visit the FedCenter Greenhouse Gas Inventory Reporting website to find the following resources and tools to help complete GHG inventory reporting requirements under Executive Order 13514: FEMP and CEQ Reporting Resources: Core documents for Federal GHG reporting Checklist: Step-by-step introduction to GHG accounting

279

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Broader source: Energy.gov (indexed) [DOE]

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

280

Cove Hot Spring Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Cove Hot Spring Sector Geothermal energy Type Greenhouse Location Cove, Oregon Coordinates 45.2965256°, -117.8079872° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Regional Inventory Protocol (GRIP) Website Greenhouse Gas Regional Inventory Protocol (GRIP) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Regional Inventory Protocol (GRIP) Website Focus Area: Other Crosscutting Topics: Potentials & Scenarios Website: www.getagriponemissions.com/index-cycle.html Equivalent URI: cleanenergysolutions.org/content/greenhouse-gas-regional-inventory-pro Language: English Policies: Deployment Programs DeploymentPrograms: "Lead by Example" is not in the list of possible values (Audit Programs, Demonstration & Implementation, Green Power/Voluntary RE Purchase, High Performance Buildings, Industry Codes & Standards, Project Development, Public Tenders, Procurement, & Lead Examples, Public-Private Partnerships, Retrofits, Ride Share, Bike Share, etc., Technical Assistance, Training & Education, Voluntary Appliance & Equipment Labeling, Voluntary Industry Agreements) for this property.

282

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility Canyon Bloomers, Inc Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

283

Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility Facility Doc Cambell's Post Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

284

Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas  

Open Energy Info (EERE)

Measuring Air Pollution and Greenhouse Gas Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Agency/Company /Organization Clean Air Asia Partner World Bank Development Grant Facility (DGF), Asian Development Bank (ADB), the German Development Cooperation (GiZ), Energy Foundation, Institute for Global Environmental Strategies (IGES), Institute for Transport Policy Studies (ITPS), Institute for Transportation and Development Policy (ITDP), Transport Research Laboratory (TRL), United Nations Centre for Regional Development (UNCRD), Veolia Energy Sector Climate, Energy, Land Focus Area Greenhouse Gas, Transportation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, Low emission development planning, -LEDS, -NAMA, -TNA, Pathways analysis, Policies/deployment programs

285

Cal Flint Floral Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cal Flint Floral Greenhouse Low Temperature Geothermal Facility Cal Flint Floral Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cal Flint Floral Greenhouse Low Temperature Geothermal Facility Facility Cal Flint Floral Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

286

Determine Largest Mobile Greenhouse Gas Emission Sources | Department of  

Broader source: Energy.gov (indexed) [DOE]

Largest Mobile Greenhouse Gas Emission Sources Largest Mobile Greenhouse Gas Emission Sources Determine Largest Mobile Greenhouse Gas Emission Sources October 7, 2013 - 11:39am Addthis YOU ARE HERE Step 2 For the purposes of portfolio planning, a Federal agency's first data analysis step is to determine which mobile emissions sources represent the largest contributors to the agency's overall greenhouse gas (GHG) emissions. Agencies can use agency-level data to determine which fleets/locations, which vehicle assets (e.g., fleet vehicles, non-fleet equipment, etc.), and which fuel types are producing the largest amounts of emissions. Based on this analysis, the agency can better define which mitigation strategies will be most effective. For instance, if a single fleet comprises over half of the agency's vehicle and equipment emissions, the

287

Determine Employee Commuting Incentives and Barriers for Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Determine Employee Commuting Incentives and Barriers for Greenhouse Determine Employee Commuting Incentives and Barriers for Greenhouse Gas Profile Determine Employee Commuting Incentives and Barriers for Greenhouse Gas Profile October 7, 2013 - 2:23pm Addthis YOU ARE HERE Step 2 Finally, when evaluating a greenhouse gas (GHG) profile, it is important to consider what specific incentives would most influence an employee's decision to adopt an alternative to single-occupancy vehicle commuting and what employees perceive as major barriers to using certain alternatives. Agencies must determine whether they can influence commute behavior changes with the strategies described in the following section. To illustrate, survey data from Worksite B2 in Figure 1 below summarize the reasons why employees drive alone and factors that would motivate them to

288

Milgro Nursery, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Nursery, Inc Greenhouse Low Temperature Geothermal Facility Nursery, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Milgro Nursery, Inc Greenhouse Low Temperature Geothermal Facility Facility Milgro Nursery, Inc Sector Geothermal energy Type Greenhouse Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

289

Assess Potential Changes in Business Travel that Impact Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Changes in Business Travel that Impact Greenhouse Changes in Business Travel that Impact Greenhouse Gas Emissions Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions October 7, 2013 - 1:22pm Addthis YOU ARE HERE Step 1 For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction. Conditions that may contribute to a significant increase or decrease in the agency's business travel, beyond specific efforts to reduce business travel demand, include: Significant changes in the agency's budget Addition or completion of major program activities that require

290

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:27am Addthis At this point in the analysis for using renewable energy in buildings, after estimating costs to implement strategies, there should be a list of sites and promising renewable energy technologies. The next step in the analysis is to prioritize those sites and technologies to achieve cost-effective reductions in greenhouse (GHG) emissions. In prioritizing the locations for cost-effective renewable energy project development, start with the sites that have the: Best resources Best financial incentives Highest energy rates. These factors are the most important for determining the economic viability

291

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Broader source: Energy.gov (indexed) [DOE]

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

292

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot Springs Sector Geothermal energy Type Greenhouse Location Weiser, Idaho Coordinates 44.2509976°, -116.9693327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

293

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions |  

Open Energy Info (EERE)

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Jump to: navigation, search Tool Summary Name: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Agency/Company /Organization: World Bank Sector: Energy Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.p2pays.org/ref/22/21739.pdf References: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions[1] Summary "Rigor in baselines It's important to establish the right degree of rigor in baselining. Overly lax baselines will threaten the system's credibility and usefulness, and shift rents from high quality providers to low quality providers of offsets. Overly stringent baselines will discourage valid projects and

294

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions By Patti Wieser April 25, 2011 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. In an effort to respond to President Obama's call to reduce greenhouse gas emissions by 28 percent by the year 2020, researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have identified ways to cut emissions that will allow the facility to exceed that goal - a decade early. Staff members at the laboratory, where scientists are finding ways to produce fusion energy, have trimmed the facility's greenhouse gas emissions

295

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

296

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

297

DOE Strengthens Public Registry to Track Greenhouse Gas Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Public Registry to Track Greenhouse Gas Emissions Public Registry to Track Greenhouse Gas Emissions DOE Strengthens Public Registry to Track Greenhouse Gas Emissions April 17, 2006 - 10:20am Addthis Announces Revised Guidelines for U.S. Companies to Report and Register Reductions WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced revised guidelines for the department's Voluntary Greenhouse Gas Reporting Program, known as "1605 (b)" that encourage broader reporting of emissions and sequestration by utilities, and industries, as well as small businesses and institutions. The revised guidelines strengthen the existing public registry for emissions and sequestration data and introduce new methods for U.S. businesses and institutions to calculate entity-wide emission reductions that contribute to the President's goal of substantially

298

Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Preventorium Greenhouse Low Temperature Geothermal Facility Preventorium Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend Preventorium Sector Geothermal energy Type Greenhouse Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

299

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453°, -106.926575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

300

Nakashima Nurseries Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Nakashima Nurseries Greenhouse Low Temperature Geothermal Facility Nakashima Nurseries Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Nakashima Nurseries Greenhouse Low Temperature Geothermal Facility Facility Nakashima Nurseries Sector Geothermal energy Type Greenhouse Location Coachella, California Coordinates 33.6803003°, -116.173894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Express Farms Greenhouse Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Express Farms Greenhouse Low Temperature Geothermal Facility Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms Sector Geothermal energy Type Greenhouse Location Marsing, Idaho Coordinates 43.5454359°, -116.8131958° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

302

Greenhouse Gas Services AES GE EFS | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Services AES GE EFS Greenhouse Gas Services AES GE EFS Jump to: navigation, search Name Greenhouse Gas Services (AES/GE EFS) Place Arlington, Virginia Zip 22203-4168 Product Develop and invest in a range of projects that reduce greenhouse gas emissions that produce verified GHG credits. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Prioritize Greenhouse Gas Mitigation Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies October 7, 2013 - 10:20am Addthis Once a Federal agency understands what greenhouse gas (GHG) reductions are feasible and at what cost, proposed GHG reduction activities may be prioritized. While it may be useful for personnel responsible for managing GHG emissions to prioritize actions within emission categories-for example, prioritizing building emission reduction measures-prioritization should also occur across all major emission Scope 1 and 2 emission sources and all Scope 3 emission sources. Guidance on prioritizing strategies for specific emission sources includes: Buildings Vehicles and mobile equipment Business travel Employee commuting. Prioritizing actions across fleet, facility, and fugitive sources will

304

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business  

Broader source: Energy.gov (indexed) [DOE]

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel October 7, 2013 - 1:27pm Addthis YOU ARE HERE Step 2 To evaluate a greenhouse gas (GHG) emissions profile, most of the information required to support air travel demand management is currently available through Federal agency-level travel information systems, such as GovTrip. However, that information may not be distributed to programs, regional offices, and sites, which are in the best position to evaluate opportunities to reduce travel. Considerations that may help the agency determine the level at which data should be collected and analyzed include: Where are budgets and policies regarding travel made and modified?

305

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:45am Addthis YOU ARE HERE Step 2 Strategic planning for greenhouse gas (GHG) mitigation in buildings requires an understanding of a Federal agency's buildings portfolio, including which programs, building types, and sites contribute the most to the agency's emissions. The data described in Table 1 below will support this type of analysis. It is recommended that this information be collected at the agency and program level. Programs refer to major operating units within the agency where there is a significant degree of autonomy in planning and decision-making. In many cases, the type of data required for portfolio planning may already

306

Identify Employee Commuting Clusters for Greenhouse Gas Profile |  

Broader source: Energy.gov (indexed) [DOE]

Identify Employee Commuting Clusters for Greenhouse Gas Profile Identify Employee Commuting Clusters for Greenhouse Gas Profile Identify Employee Commuting Clusters for Greenhouse Gas Profile October 7, 2013 - 1:53pm Addthis YOU ARE HERE: Step 2 For evaluating a greenhouse gas profile for employee commuting, use survey data on employee home location and arrival/departure times to identify geographic areas to target for vanpool and carpool ride-matching efforts. Those who live in close proximity or en route to the workplace and with similar hours may be clustered to determine which locations might represent the best candidates for ride-share matching. As illustrated in Figure 1, areas with higher concentrations of employees that live farther from the worksite might be good candidate locations for targeted carpool and vanpool

307

Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt Brothers Floral Greenhouse Low Temperature Geothermal Facility Facility Hunt Brothers Floral Sector Geothermal energy Type Greenhouse Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

Greenhouse Gas Mitigation Planning Data and Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools October 7, 2013 - 10:27am Addthis These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for: Buildings Vehicles and mobile equipment Business travel Employee commuting. Buildings Table 1 features data and tools to help with GHG mitigation planning for buildings. Table 1. GHG Mitigation Planning Data and Tools for Buildings Data or Tool Source Description Planning Use Buildings GHG Mitigation Worksheet Estimator Federal Energy Management Program (FEMP) Estimates savings and costs from GHG reduction strategies Evaluate GHG Reduction Strategies Estimate Costs to Implement GHG Reduction Strategies

309

Greenhouse Gas Inventory Development in Asia | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Inventory Development in Asia Greenhouse Gas Inventory Development in Asia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Inventory Development in Asia Agency/Company /Organization: Center for Global Environmental Research Sector: Energy, Land Topics: GHG inventory Resource Type: Guide/manual, Lessons learned/best practices Website: www.nies.go.jp/gaiyo/media_kit/9.WGIA_I067.pdf Country: Cambodia, China, India, Indonesia, Japan, South Korea, Laos, Malaysia, Mongolia, Philippines, Thailand, Vietnam South-Eastern Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, South-Eastern Asia, Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia Greenhouse Gas Inventory Development in Asia Screenshot

310

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

Gasoline and Diesel Fuel Update (EIA)

A1. Notes and Sources A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Errata (Cambridge, UK: Cambridge University Press, 2008), website http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1_Errata_2008-12-01.pdf. Table 2. U.S. greenhouse gas intensity and related factors, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the

311

Greenhouse Gas Mitigation Planning for Employee Commuting | Department of  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting October 7, 2013 - 1:39pm Addthis Employee commuting is the single largest source of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. The establishment of Federal telework and transportation coordination programs over the past decade creates a strong foundation for commute behavior change. However few agencies have achieved substantial commuting emissions reductions from their fiscal year 2008 baseline inventories. Effective planning for aggressive commute reductions starts with the location of agency facilities. Facility siting and design decisions should be made with public transportation access in mind to make it easier for

312

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Donlay Ranch Hot Spring Sector Geothermal energy Type Greenhouse Location Boise County, Idaho Coordinates 43.9604787°, -115.8563106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

313

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

314

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation |  

Broader source: Energy.gov (indexed) [DOE]

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation October 7, 2013 - 11:13am Addthis After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be considered as an option for meeting the agency's GHG reduction goals. Renewable energy can reduce emissions in all three GHG emission scopes by displacing conventional fossil fuel use. The focus of this guidance is prioritizing on-site renewable energy projects that will best support GHG reduction goals. It is intended to provide a high-level screening approach for on-site renewable energy projects to support agency- or program-level portfolio planning. General

315

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Potential and Cost-Effectiveness Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:58am Addthis YOU ARE HERE: Step 3 After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies. Table 1. Framework for Identifying Optimal Vehicle Acquisition Strategies Step Summary Purpose PLAN and COLLECT 1 Determine vehicle acquisition requirements Establish a structured Vehicle Allocation Matrix (VAM) to determine the numbers and types of vehicles required to accomplish your fleet's mission

316

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental  

Open Energy Info (EERE)

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy, Land Focus Area: Industry Topics: Market analysis, Policies/deployment programs, Background analysis Resource Type: Publications Website: www.iisd.org/pdf/2009/bali_2_copenhagen_egs.pdf References: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods[1] Background "As part of a suite of activities under the From Bali to Copenhagen project, IISD's work on low-carbon goods has focused on trying to measure the actual potential climate gains from what's now on the table in the WTO

317

Establish Building Locations for Greenhouse Gas Mitigation | Department of  

Broader source: Energy.gov (indexed) [DOE]

Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation October 7, 2013 - 10:53am Addthis YOU ARE HERE Step 2 After estimating greenhouse gas (GHG) emissions by building type, building location is an important consideration in evaluating the relevance of energy-saving strategies due to variations in heating and cooling needs, and the GHG reduction potential due to variability of emissions factors across regions of the grid. If site-level energy use estimates are available for each of the program's key building types, the program can identify building locations with the greatest emission reduction potential by using the benchmarking approach. Locations with the worst energy performance relative to the benchmark are

318

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Broader source: Energy.gov (indexed) [DOE]

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

319

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov (indexed) [DOE]

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting October 7, 2013 - 1:47pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey. The default survey methodology in the Federal GHG Accounting Guidance is designed to collect the minimum data for emissions calculations. Additional information may be necessary to determine which trip reduction strategies are best suited for specific employee populations. The optional questions in the advanced survey methodology or data gathered through an agency-defined employee commute survey can provide this understanding.

320

Turkey - Analyzing Greenhouse Gas Mitigation Issues | Open Energy  

Open Energy Info (EERE)

Turkey - Analyzing Greenhouse Gas Mitigation Issues Turkey - Analyzing Greenhouse Gas Mitigation Issues Jump to: navigation, search Logo: Turkey - Analyzing Greenhouse Gas Mitigation Issues Name Turkey - Analyzing Greenhouse Gas Mitigation Issues Agency/Company /Organization Argonne National Laboratory Partner Turkish Ministry of Energy and Natural Resources, Turkish Electricity Transmission-Generation Company Sector Energy Focus Area Energy Efficiency Topics Background analysis Website http://www.dis.anl.gov/pubs/39 Country Turkey Western Asia References http://www.dis.anl.gov/pubs/39156.pdf Abstract CEEESA trained a team of experts from Turkey's Ministry of Energy and Natural Resources (MENR) and the Turkish Electricity Transmission-Generation Company (TEAS) to use various ENPEP modules. CEEESA trained a team of experts from Turkey's Ministry of Energy and

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Milgro No. 3 Greenhouse Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Milgro No. 3 Greenhouse Low Temperature Geothermal Facility Facility Milgro No. 3 Sector Geothermal energy Type Greenhouse Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

322

Old Wright Well Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Wright Well Greenhouse Low Temperature Geothermal Facility Wright Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Old Wright Well Greenhouse Low Temperature Geothermal Facility Facility Old Wright Well Sector Geothermal energy Type Greenhouse Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

323

Impacts of greenhouse gas mitigation policies on agricultural land  

E-Print Network [OSTI]

Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

324

The Role of Wood Material for Greenhouse Gas Mitigation  

Science Journals Connector (OSTI)

Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse...2 mitigation. We also formulate som...

L. Gustavsson; R. Madlener; H.-F. Hoen

2006-09-01T23:59:59.000Z

325

Energy Efficiency and Emerging Markets for Greenhouse Gas Trading  

E-Print Network [OSTI]

an important economic input into the generation of electricity in the United States. The commoditization of the Greenhouse Gases will likely develop in a similar fashion but on a global scale, becoming another economic input into electricity generation...

Ferguson, M.

326

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

327

Central issues in the negotiations on limiting greenhouse warming  

E-Print Network [OSTI]

The three central questions in the international negotiations on greenhouse warming are: (1) How much global warming should be tolerated? (2) How much responsibility for past emissions should be assigned to present ...

Eckaus, Richard S.

1992-01-01T23:59:59.000Z

328

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network [OSTI]

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

329

Greenhouse Gas Mitigation Planning for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Fleets, non-fleet vehicles, aircraft, ships, and mobile equipment contribute to a large percentage of the Federal government's comprehensive Scope 1 and 2 greenhouse gas (GHG) emissions inventory.

330

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation  

Broader source: Energy.gov [DOE]

After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be...

331

Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned  

SciTech Connect (OSTI)

The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

Carpenter, A.; Hotchkiss, E.; Kandt, A.

2013-02-01T23:59:59.000Z

332

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

333

Opportunities to reduce greenhouse gas emissions from households in Nigeria  

Science Journals Connector (OSTI)

Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas (GHG) emissions through its consumption...2) emissions from kerosene combustion for lighting

O. Adeoti; S. O. Osho

2012-02-01T23:59:59.000Z

334

Introduction: U.S. Manufacturing Energy Use and Greenhouse Gas...  

Energy Savers [EERE]

data collected from the EIA Annual Energy Review 2009 EIA 2010a. 2 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis process heaters, boilers, and power...

335

Suitability of Non-Energy Greenhouse Gases for Emissions Trading  

Science Journals Connector (OSTI)

This paper assesses the suitability of different sources of non-energy greenhouse gases for emissions trading. Different forms of emissions trading are defined and criteria for determining whether a source is sui...

Erik Haites; Angelo Proestos

2000-01-01T23:59:59.000Z

336

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting...  

Broader source: Energy.gov (indexed) [DOE]

The Department would like to fund projects that will lead to a jet fuel with lifecycle greenhouse gas emissions less than or equal to conventional petroleum-based jet fuel...

337

Milgro No. 2 Greenhouse Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Milgro No. 2 Greenhouse Low Temperature Geothermal Facility Milgro No. 2 Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Milgro No. 2 Greenhouse Low Temperature Geothermal Facility Facility Milgro No. 2 Sector Geothermal energy Type Greenhouse Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

338

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

339

Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile |  

Broader source: Energy.gov (indexed) [DOE]

Establish Employee Commuting Behavior Baseline for Greenhouse Gas Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile October 7, 2013 - 1:49pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile, once employee commuting survey data are collected and priority worksites have been identified, the survey responses should be analyzed for each major worksite to establish a behavior baseline. Depending on the agency's size and where it places accountability for GHG commuting emissions reduction goals, it may be to most appropriate to have individual programs or operating units assess their own employee commute data. Exceptions should be made when programs share facilities. For example, at a headquarters office building, a single program may take

340

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings October 7, 2013 - 11:16am Addthis After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings. When using renewable energy in buildings, the approach for evaluating GHG emissions involves evaluating the renewable energy resource potential and determining what type of renewable energy technology to use in a building. To help determine renewable energy resource potential at a site, see FEMP's information on Renewable Energy Resource Maps and Screening Tools. Also see Renewable Energy Project Planning and Implementation.

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

342

Countryman Well Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Countryman Well Greenhouse Low Temperature Geothermal Facility Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman Well Sector Geothermal energy Type Greenhouse Location Lander, Wyoming Coordinates 42.833014°, -108.7306725° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

343

Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using  

Broader source: Energy.gov (indexed) [DOE]

Assess Potential Agency Size Changes to Reduce Greenhouse Gases Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using Renewable Energy in Buildings Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using Renewable Energy in Buildings October 7, 2013 - 11:15am Addthis To support planning for using renewable energy to reduce greenhouse gas (GHG) emissions at the Federal agency or program-level, it is important to consider what changes to the agencies building or land-holding portfolio may have on opportunities for renewable energy. Changes to consider include: Addition of new buildings or sites to the agencies portfolio Major renovations to existing buildings Office moves into or out of agency-owned or leased space. As is the case with planning energy efficiency measures, planning for renewable energy in new construction can be more cost-effective than

344

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions October 7, 2013 - 11:46am Addthis YOU ARE HERE: Step 2 As Federal agencies work to identify opportunities for right-sizing the fleet and replacing inefficient vehicles with new, efficient, and/or alternatively fueled models to reduce greenhouse gas (GHG) emissions, they should flag potential mission constraints associated with vehicle usage. This may involve further data collection to understand the mission considerations associated with individual vehicles. For instance, in Figure 1, Vehicle 004 appears to be underutilized, having both a low user-to-vehicle ratio and a relatively low time in use per day. However,

345

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

346

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Broader source: Energy.gov (indexed) [DOE]

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

347

Analysis of greenhouse gases trading system using conversations among stakeholders  

Science Journals Connector (OSTI)

Greenhouse gas (GHG) reduction agreement makes up the targeted reduction of a legally binding GHG for each country or region. It enables us to buy and sell some GHG with other countries; it is the GHG trading system. But now, some free riders, ... Keywords: GHG emissions, GHG trading systems, MAS, agent-based modelling, agent-based systems, consumer behaviour, emissions reduction, free riders, genetic algorithms, global warming, greenhouse gases, multi-agent simulation, multi-agent systems

Setsuya Kurahashi; Masato Ohori

2010-08-01T23:59:59.000Z

348

Climate response of the South Asian monsoon system to anthropogenic aerosols  

SciTech Connect (OSTI)

The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-07-13T23:59:59.000Z

349

Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)  

SciTech Connect (OSTI)

Presentation describing transportation scenarios for meeting the 2050 DOE goal of reducing greenhouse gases by 80%.

Melaina, M.; Webster, K.

2009-10-28T23:59:59.000Z

350

Analysis of air pollution and greenhouse gases  

SciTech Connect (OSTI)

The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

Benkovitz, C.M.

1992-03-01T23:59:59.000Z

351

"GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP"  

U.S. Energy Information Administration (EIA) Indexed Site

Greenhouse Gases and Global Warming Potentials (GWP)" Greenhouse Gases and Global Warming Potentials (GWP)" "(From Appendix E of the instructions to Form EIA-1605)" "GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP" ,,,"TAR1","AR42" "(1) Carbon Dioxide","CO2","CO2",1,1 "(2) Methane","CH4","CH4",23,25 "(3) Nitrous Oxide","N2O","N2O",296,298 "(4) Hydroflourocarbons" "HFC-23 (trifluoromethane)",15,"CHF3",12000,14800 "HFC-32 (difluoromethane)",16,"CH2F2",550,675 "HFC-41 (monofluoromethane)",43,"CH3F",97,92 "HFC-125 (pentafluoroethane)",17,"CHF2CF3",3400,3500

352

Sources and reservoirs of anthropogenic iodine-129 in western New York  

Science Journals Connector (OSTI)

Large quantities of iodine-129 have been released during nuclear weapons testing, and from nuclear power and fuel reprocessing plants. The distribution of this isotope was investigated in 110 surface water and soil samples from western New York (where several potential point sources are located) and other areas of North America, to evaluate its sources, transport pathways, and reservoirs. Elevated 129I concentrations associated with a former reprocessing facility at West Valley, NY, can be tracked to Lakes Erie and Ontario via site drainage, and for over 200 km via atmospheric transport, while only a negligible signal is associated with active power plants in the area. The results point to local reprocessing as the major source of 129I in western New York, while bomb fallout constitutes less than 0.5% of the signal. Surface soil is the dominant reservoir for anthropogenic 129I in this region. Across North America, 129I concentrations are lower than in western New York, although still significantly higher than expected weapons fallout. Reprocessing releases are currently seen to be the major source for elevated 129I concentrations on a global scale, in contrast to previous suggestions that most anthropogenic 129I was still derived from weapons fallout. Concentrations of 129I and iodine in surface reservoirs are generally found to be uncorrelated, implying that natural iodine and anthropogenic 129I are not yet in equilibrium. The results suggest that anthropogenic 129I is cycled between the atmosphere-soil-vegetation systems more rapidly than natural, pre-anthropogenic iodine.

Usha Rao; Udo Fehn

1999-01-01T23:59:59.000Z

353

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect (OSTI)

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

354

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Title Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Publication Type Journal Article Year of Publication 2012 Authors Newman, Sally, Seongeun Jeong, Marc L. Fischer, Xiaomei Xu, Christine L. Haman, Barry Lefer, Sergio Alvarez, Bernhard Rappenglueck, Eric A. Kort, Arlyn E. Andrews, Jeffrey Peischl, Kevin R. Gurney, Charles E. Miller, and Yuk L. Yung Journal Atmospheric Chemistry and Physics Volume 13 Pagination 4359-4372 Abstract Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

355

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

356

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided  

Open Energy Info (EERE)

Greenhouse Gas Emissions through Avoided Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Agency/Company /Organization Government of Costa Rica, Peace with Nature Sector Land Focus Area Forestry Topics Co-benefits assessment, Implementation, Policies/deployment programs, Resource assessment, Background analysis Resource Type Publications Website http://www.paxnatura.org/pax_n Country Costa Rica UN Region Latin America and the Caribbean References Costa Rica[1] Overview References ↑ "Costa Rica" Retrieved from

357

Benchmarking Building Performance & the Australian Building Greenhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

358

EIA - Emissions of Greenhouse Gases in the United States 2009  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses by sector were obtained from the January 2011 Monthly Energy Review (MER). In keeping with current international practice, this report presents data on greenhouse gas emissions in million metric tons carbon dioxide equivalent. The data can be converted to carbon equivalent units by

359

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

360

EIA-Voluntary Reporting of Greenhouse Gases Program - Why Report  

U.S. Energy Information Administration (EIA) Indexed Site

Why Report Why Report Voluntary Reporting of Greenhouse Gases Program Why Report What Is the Purpose of Form EIA-1605? Form EIA-1605 provides the means for the voluntary reporting of greenhouse gas emissions, reductions, and sequestration under Section 1605(b) of the Energy Policy Act of 1992. The purpose of the Voluntary Reporting Program is to encourage corporations, government agencies, non-profit organizations, households, and other private and public entities to submit annual reports of their greenhouse gas emissions, emission reductions, and sequestration activities. Form EIA-1605 provides a means for voluntary reporting that is complete, reliable, and consistent. How Will My Entity Benefit From Reporting? There are a number of ways for your entity to benefit from reporting, including:

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PPPL wins Department of Energy award for reducing greenhouse gases |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL wins Department of Energy award for reducing greenhouse gases PPPL wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Facebook Like Google Plus One PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon dioxide. PPPL reduced leaks of SF6 by 65 percent over three years - reducing overall greenhouse gas emissions by 48 percent between 2008 and 2011. (Photo by Elle Starkman/PPPL Office of Communications) PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon

362

Establish Internal Greenhouse Gas Emission Reduction Targets | Department  

Broader source: Energy.gov (indexed) [DOE]

Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets October 7, 2013 - 10:24am Addthis Question to Answer What are appropriate GHG emission reduction targets for specific agency programs and sites? Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions. As illustrated in the figure below, two sites may have equal potential to reduce GHG emissions. But a site expecting significant mission-related growth prior to the 2020 target year may have a lower reduction target

363

PPPL Wins Department of Energy Award For Reducing Greenhouse Gases |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wins Department of Energy Award For Reducing Greenhouse Gases Wins Department of Energy Award For Reducing Greenhouse Gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. The U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has received a federal Sustainability Award for reducing overall greenhouse gas emissions 48 percent since 2008 - far exceeding the U.S. government's goal of a 28 percent reduction. Members of the PPPL staff were among the 20 recipients of the Sustainability Awards in a ceremony in Washington, D.C., on Thursday, Sept.

364

Assess Site Factors That Affect Employee Commuting Options for Greenhouse  

Broader source: Energy.gov (indexed) [DOE]

Assess Site Factors That Affect Employee Commuting Options for Assess Site Factors That Affect Employee Commuting Options for Greenhouse Gas Profile Assess Site Factors That Affect Employee Commuting Options for Greenhouse Gas Profile October 7, 2013 - 1:52pm Addthis YOU ARE HERE: Step 2 After establishing an employee commuting behavior baseline for evaluating a greenhouse gas (GHG) profile, analyze the specific characteristics of the agency's major worksites to help determine which alternative commute methods and work arrangements are viable and what types of strategies may be most effective for promoting those alternatives. It is recommended that worksite-level data collection focus on worksites with the: Largest number of employees, or clusters of worksites with large employee populations in an area with diverse commuting infrastructure

365

Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation  

Broader source: Energy.gov (indexed) [DOE]

Strategies to Reduce Business Travel for Greenhouse Gas Strategies to Reduce Business Travel for Greenhouse Gas Mitigation Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation October 7, 2013 - 1:34pm Addthis YOU ARE HERE The tables below illustrate some of the more common strategies that can enable employees to travel less and travel more efficiently for business. The "Purpose of Travel" analysis in the previous step can be used with the guidance below to help determine what type of trips may be most appropriately substituted with each business travel alternative. Table 1. Strategies that Enable Employees to Travel Less Business Travel Strategy Best Potential Application Best Practices Web meetings/webinars, including option for video Purpose of travel: training, conferences.

366

Voluntary Reporting of Greenhouse Gases Program - Electricity Factors  

U.S. Energy Information Administration (EIA) Indexed Site

Voluntary Reporting Program > Coefficients Voluntary Reporting Program > Coefficients Voluntary Reporting of Greenhouse Gases Program (Voluntary Reporting of Greenhouse Gases Program Fuel Carbon Dioxide Emission Coefficients) Voluntary Reporting of Greenhouse Gases Program Fuel Emission Coefficients Table 1: Carbon Dioxide Emission Factors for Stationary Combustion Table 2: Carbon Dioxide Emission Factors for Transportation Fuels Table 3: Generic Methane and Nitrous Oxide Emission Factors for Stationary Fuel Combustion Table 4: Specific Methane and Nitrous Oxide Emission Factors for Biogenic Fuel Sources Table 5: Methane and Nitrous Oxide Emissions Factors for Highway Vehicles Table 6: Methane and Nitrous Oxide Emission Factors for Alternative Fuel Vehicles Table 7: Methane and Nitrous Oxide Emission Factors for Non-Highway Mobile Combustion

367

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

368

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

369

Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) | Open  

Open Energy Info (EERE)

Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Jump to: navigation, search Tool Summary Name: Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Agency/Company /Organization: International Institute for Applied Systems Analysis (IIASA) Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Website Complexity/Ease of Use: Not Available Website: gains.iiasa.ac.at/index.php/home-page/241-on-line-access-to-gains Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia

370

Emissions of greenhouse gases in the United States 1997  

SciTech Connect (OSTI)

This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

NONE

1998-10-01T23:59:59.000Z

371

Optimal control strategy for greenhouse lettuce: Incorporating supplemental lighting  

Science Journals Connector (OSTI)

Lettuce constitutes an important part of greenhouse production and much research has been devoted to investigating appropriate control strategies for that crop. In particular, recent studies have been concerned with avoiding high nitrate content of the harvested crop. This paper supplements previous studies by developing optimal control rules for the application of artificial light (when justified). It utilizes an existing lettuce model, Nicolet, in conjunction with a simple greenhouse model, to explore the control possibilities for hydroponic greenhouses where plant spacing is constant and marketing is limited by quota. Optimal control theory is used to solve the problem. It is shown that the optimal policy for the control of temperature and nitrate supply is unaffected by adding light control. Supplemental lighting starts when the crop coverage of the ground reaches a certain level and then increases continuously up to the installed capacity, if justified. Numerical simulations are used to illustrate this behaviour.

Ilya Ioslovich

2009-01-01T23:59:59.000Z

372

Chico Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Greenhouse Location Pray, Montana Coordinates 45.3802143°, -110.6815999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

373

Federal Greenhouse Gas Inventories and Performance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inventories and Performance Inventories and Performance Federal Greenhouse Gas Inventories and Performance October 7, 2013 - 10:07am Addthis The Federal Energy Management Program (FEMP) provides links to progress data tables illustrating Federal agency progress in meeting the greenhouse gas (GHG) reduction targets established under Executive Order (E.O.) 13514, as well as the comprehensive greenhouse gas inventories as reported by the Federal agencies: Federal GHG Requirements Overview E.O. 13514 required Federal agencies to set individual targets for reduction of combined Scope 1 and 2 GHG emissions in FY 2020 compared to FY 2008. When all agency targets are combined, the overall target for the entire Federal Government is a 28% reduction in FY 2020 compared to FY 2008. GHG emissions from certain

374

Energy Information Administration--Energy and Greenhouse Gas Analysis  

U.S. Energy Information Administration (EIA) Indexed Site

and Greenhouse Gas Analysis and Greenhouse Gas Analysis Energy and Greenhouse Gas Analysis Posted Date: October 1999 Page Last Modified: August 2007 This section contains analysis covering all sectors of the United States and issues related to the energy use, energy efficiency, and carbon emission indicators. New analysis will be added to the web site as they become available. All Sectors / Residential / Commercial / Manufacturing / Transportation All Sectors United States Energy Usage and Efficiency: Measuring Changes Over Time, increasing emphasis has been placed on energy efficiency as a vital component of the United States' energy strategy. This was evident with the passing of the Energy Policy Act of 1992 (EPACT) [1]. EPACT promotes energy-efficiency programs such as building energy-efficiency standards,

375

SciTech Connect: "Greenhouse Effect"  

Office of Scientific and Technical Information (OSTI)

Greenhouse Effect" Find Greenhouse Effect" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

376

Portfolio Manager Technical Reference: Greenhouse Gas Emissions | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Emissions Greenhouse Gas Emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

377

Capture of green-house carbon dioxide in Portland cement  

SciTech Connect (OSTI)

A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

1993-12-31T23:59:59.000Z

378

Biofuels and Greenhouse Gas Emissions: Green or Red?  

Science Journals Connector (OSTI)

Biofuels and Greenhouse Gas Emissions: Green or Red? ... Although it is widely recognized that cellulosic feedstocks have a much lower environmental footprint, the U.S. Environmental Protection Agency (EPA) recently adjusted the congressionally mandated 2010 100 million gallon yr?1 cellulosic biofuel mandate to 6.5 million gallons, a ?95% reduction, based on the lack of progress in bringing cellulosic biofuels to the marketplace. ... Converting rain forest, peatland, savanna, or grassland to produce food crop-based biofuels in Brazil, southeast Asia, and the US creates a biofuel C debt by releasing 17-420 times more CO2 than the annual greenhouse gas (GHG) redns. ...

Mark O. Barnett

2010-06-16T23:59:59.000Z

379

Net?exchange analysis of the Earth greenhouse effect increase  

Science Journals Connector (OSTI)

In this paper we propose an analysis of the greenhouse effect on the basis of a net?exchange formulation for clear sky atmospheres. This formulation allows access to exchanges beetwen the differents elements of the atmosphere (gas layers the ground and space). When the greenhouse gas concentration increases we first use a simple configuration to analyse the variations of analytic monochromatic net exchange rates. The same type of analysis is then applied to the Earth atmosphere for a clear?sky middle latitude summer configuration with an increase in water vapour of 20% at all altitudes.

Nicolas Meilhac; Jean?Louis Dufresne; Vincent Eymet; Richard Fournier

2009-01-01T23:59:59.000Z

380

Cogeneration Leads to Major Aquaculture and Greenhouse Development in Canada  

E-Print Network [OSTI]

research and devefopment project which will see the supplemental heat re qui red by t he surface heat ed greenhouse cohvert ed from propane gas to cogeneraled ste m. Based on the pricing model outlined in Section 4.1, the cost of heating the greenhouse... with cogen erated steam from the nearby coal fired power sta tion is $1.62/MBTU. (Coa! @ $Z.18/MBTU.) This compares to $15.57 for self generated propane heat, or a difference of $13.95/MBTU. By splitting this difference, the s Ie price of cogenerated...

Mercer, J.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting October 7, 2013 - 2:25pm Addthis YOU ARE HERE Step 3 This section will help agencies to determine the most visible alternatives to single occupancy vehicle (SOV) commuting at the agencies major worksites establish the number of employees that may reasonably switch to non-SOV methods and estimate the resulting impact greenhouse gas (GHG) emissions at their worksites. Learn how to: Identify relevant alternatives and supporting strategies Evaluate potential adoption of alternatives Estimate the GHG emission impact Identify Employee Commuting Alternatives Alternative employee commuting approaches for Federal agency consideration include both alternative travel methods and alternative work arrangements.

382

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use  

E-Print Network [OSTI]

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet,*, Eric Apel, Daven K. Henze,§ Jason Hill, Julian D. Marshall, Hanwant B-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long

Mlllet, Dylan B.

383

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol  

E-Print Network [OSTI]

S1 Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet*,1 , Eric Apel2 , Daven K. Henze3 , Jason Hill1 , Julian D. Marshall1 INFORMATION Supporting Information contains a total of 12 pages, 1 table, and 7 figures. 1. AIRBORNE ETHANOL

Mlllet, Dylan B.

384

Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis  

Science Journals Connector (OSTI)

...Walsh 2006 Urban effects on native avifauna: a review. Landscape Urban Plan. 74, 46-69. ( doi:10.1016/j.physletb...Hatch, L. T. , and A. J. Wright 2007 A brief review of anthropogenic sound in the oceans. Int. J...

2010-01-01T23:59:59.000Z

385

Lead isotopes in sediments of the Loire River (France): natural versus anthropogenic origin  

E-Print Network [OSTI]

Lead isotopes in sediments of the Loire River (France): natural versus anthropogenic origin Philippe Négrel Emmanuelle Petelet-Giraud BRGM, Orléans, France Sediments along the Loire River (central France) were investigated by means of lead isotopes determined on the labile sediment fraction, or acid

Paris-Sud XI, Université de

386

CHARACTERIZING THE INFLUENCE OF ANTHROPOGENIC EMISSIONS AND TRANSPORT VARIABILITY ON SULFATE AEROSOL CONCENTRATIONS AT MAUNA  

E-Print Network [OSTI]

CONCENTRATIONS AT MAUNA LOA OBSERVATORY Sulfate aerosol in the atmosphere has substantial impacts on human health confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N

Pierce, Jeffrey

387

SEDIMENTS, SEC 4 SEDIMENT-ECOLOGY INTERACTIONS POSITION PAPER Anthropogenic pollutants affect ecosystem services  

E-Print Network [OSTI]

SEDIMENTS, SEC 4 · SEDIMENT-ECOLOGY INTERACTIONS · POSITION PAPER Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a "triad plus x" approach Sabine Ulrike Gerbersdorf November 2010 /Accepted: 24 April 2011 # Springer-Verlag 2011 Abstract Purpose Freshwater sediments

Cirpka, Olaf Arie

388

Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models  

Science Journals Connector (OSTI)

We assess the uptake, transport and storage of oceanic anthropogenic carbon and heat over the period 1861 to 2005 in a new set of coupled carbon-climate Earth System models conducted for the fifth Coupled Model Intercomparison Project (CMIP5), ...

Thomas L. Frlicher; Jorge L. Sarmiento; David J. Paynter; John P. Dunne; John P. Krasting; Michael Winton

389

Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s  

Science Journals Connector (OSTI)

...exhibit a similar trend: a large decrease during...reservoirs occurs on a large scale. The connection...Asia has become the largest contributor of anthropogenic...19, 56) from one borehole at depths of 15, 25...into the borehole after drilling to the sampling depth...

Xavier Fan; Christophe P. Ferrari; Aurlien Dommergue; Mary R. Albert; Mark Battle; Jeff Severinghaus; Laurent Arnaud; Jean-Marc Barnola; Warren Cairns; Carlo Barbante; Claude Boutron

2009-01-01T23:59:59.000Z

390

A white paper on Effects of Anthropogenic Pollution on the Atmospheric  

E-Print Network [OSTI]

1 A white paper on Effects of Anthropogenic Pollution on the Atmospheric Chemistry of the Tropical Brazilian Partner Organizations National Institute for Amazonian Research (INPA)1 The Large-Scale Biosphere-Atmosphere by the atmospheric oxidation of trace gases to low volatility compounds (Chen et al. 2009). These products can

391

Lability of groundwater DON from pristine vs. anthropogenically influenced systems on Cape Cod, Massachusetts  

E-Print Network [OSTI]

that the composition and lability of DON varies with the land use history of its source. We collected groundwater from of bacterial productivity (0.16 µmol C L-1 day-1 ), and the highest productivity per cell. The Washburn Island 1991). Anthropogenic sources of nitrogen, such as fertilizer, wastewater disposal, and the fossil fuel

Vallino, Joseph J.

392

California's Greenhouse Gas Policies: How Do They Add Up?  

E-Print Network [OSTI]

regulations, aimed, for instance, at altering electricity fuel choice, household energy use, and automotive California is implementing a broad portfolio of regulations aimed at reducing greenhouse gas emissions. However, many of these policies, if undertaken without the cooperation of neighboring states may result

Sadoulet, Elisabeth

393

Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)  

E-Print Network [OSTI]

production can increase animal productivity, yield renewable energy (CH4 capture from manure storage), and improve air quality. Over the longer term, renewable energy from agricultural biomass offers greatCenter for Greenhouse Gas Mitigation through Natural Resource Management (CGGM) NREL Scientists

MacDonald, Lee

394

U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World  

E-Print Network [OSTI]

U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

McCarl, Bruce A.

395

Performance analysis of greenhouses with integrated photovoltaic modules  

Science Journals Connector (OSTI)

Thanks to the DM 19.02.2007, Italian government supported the development and the expansion of solar photovoltaic in Italy. The feed-in tariff had a great success, and like in Spain and Germany big size photovoltaic plants have been built, especially ... Keywords: PV modules, TRNSYS 16 simulation, solar greenhouse

Maurizio Carlini; Mauro Villarini; Stefano Esposto; Milena Bernardi

2010-03-01T23:59:59.000Z

396

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network [OSTI]

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado-1712 As demand for electricity increases, investments into new generation capacity from renewable,CaliforniaandtherestoftheWestCoastoftheUnited States started to experience severe shortages of electricity. Investments

Kammen, Daniel M.

397

Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions  

E-Print Network [OSTI]

and energy infrastructure. The graduate projects, fully funded by the National Oceanic and Atmospheric greenhouse gas emissions. Samples of guiding questions as part of the projects include: � What can explain; (3) demonstrated computer skills (e.g., Linux, R, Matlab, Fortran, GIS); (4) excellent oral

Lin, John Chun-Han

398

OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.  

SciTech Connect (OSTI)

This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

FTHENAKIS,V.

2001-12-01T23:59:59.000Z

399

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory  

E-Print Network [OSTI]

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory Summary Queen's University completes annual GHG inventories as part of the ongoing commitment to reduce GHG emissions and address climate in 2010. This is the fourth inventory report. This inventory report accounts for GHG emissions from

Abolmaesumi, Purang

400

Evaluate Greenhouse Gas Emissions Profile for Employee Commuting  

Broader source: Energy.gov [DOE]

To fulfill annual reporting requirements under Executive Order 13514, Federal agencies must estimate the total commute miles traveled by employees using each transportation method. While these data are rolled up to the agency level for reporting purposes, effective planning for commuter greenhouse gas (GHG) emission reductions requires an understanding of employee commute behavior at the worksite level.

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network [OSTI]

6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Status June 4, 2013 Gillian Charles A few clarifications This presentation and ½ Valmy coal plants) 2 #12;6/5/2013 2 GHG Emissions by Economic Sector in the Pacific Northwest (2010

402

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network [OSTI]

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Outlook June 4, 2013 Steven Simmons CO2 Emission Outlook for the Pacific NW (ID MW Centralia 1 Centralia WA 1972 2020 730 MW Centralia 2 Centralia WA 1973 2025 730 MW 5 GHG Emission

403

Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Reducing petroleum consumption is the principal means to reduce greenhouse gas (GHG) emissions from vehicles and mobile equipment. Each agency has the flexibility to evaluate a variety of options to ensure its strategy best fits the mission and makeup of its fleets.

404

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more than 100 life cycle assessments (LCAs) have been conducted and published for a variety of utility-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

405

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings  

Broader source: Energy.gov [DOE]

Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type.

406

UK emissions of the greenhouse gas nitrous oxide  

Science Journals Connector (OSTI)

...other land use, (v) waste, and (vi) other sources...forestry (LULUCF) and waste are similarly proportioned...8 per cent and manure storage systems for 6 per cent...is reported here from long-term monitoring of greenhouse...are still not enough long-term datasets to provide the...

2012-01-01T23:59:59.000Z

407

An Assessment of Greenhouse Gas Emissions-Weighted  

E-Print Network [OSTI]

Economic Analysis ­ Greenhouse Gas Emissions Prepared by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai`i And University of Hawai`i Economic Research, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

408

Most people now understand the necessity to reduce greenhouse  

E-Print Network [OSTI]

? Reducing your authority's per capita carbon emissions can require costly planning, engagement, recording in the community to pledge energy-saving actions to help them reach their carbon reduction ambition greenhouse gas emissions (GHG). Action by Local Authorities will be criticalinachievingthe

Everest, Graham R

409

Determining Air Quality and Greenhouse Gas Impacts of  

E-Print Network [OSTI]

Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen

Dabdub, Donald

410

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

411

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

412

E-Print Network 3.0 - analysing comparable greenhouse Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Climate and Planets http:icp.giss.nasa.gov The Role of the Atmosphere and Greenhouse Effect in Summary: http:icp.giss.nasa.gov The Role of the Atmosphere and Greenhouse...

413

Understanding and managing leakage in forestbased greenhousegasmitigation projects  

Science Journals Connector (OSTI)

...greenhouse-gas emissions in an area...only produce greenhouse-gas (GHG) bene...reduce GHG emissions. The leakage...mitigation (energy, transportation...emissions-reducing activities...be inversely related (notably in...

2002-01-01T23:59:59.000Z

414

Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production  

SciTech Connect (OSTI)

Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

D. Craig Cooper; Gerald Sehlke

2012-01-01T23:59:59.000Z

415

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Renewable Energy Sources in Aviation, Imperial College London. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

416

Global Warming Is Driven by Anthropogenic Emissions: A Time Series Analysis Approach  

Science Journals Connector (OSTI)

The solar influence on global climate is nonstationary. Processes such as the Schwabe and Gleissberg cycles of the Sun, or the many intrinsic atmospheric oscillation modes, yield a complex pattern of interaction with multiple time scales. In addition, emissions of greenhouse gases, aerosols, or volcanic dust perturb the dynamics of this coupled system to different and still uncertain extents. Here we show, using two independent driving force reconstruction techniques, that the combined effect of greenhouse gases and aerosol emissions has been the main external driver of global climate during the past decades.

Pablo F. Verdes

2007-07-24T23:59:59.000Z

417

STEPA Solar Chemical Process to End Anthropogenic Global Warming. II: Experimental Results  

Science Journals Connector (OSTI)

Alternative chemical processes are needed to decrease the level of atmospheric greenhouse gases. ... STEP provides a different pathway for solar energy conversion, at high efficiency, and is capable of proactively removing carbon dioxide and also generating a range of useful chemicals without greenhouse gas emission. ... The second, termed Hy-STEP (on the right), does not separate sunlight and instead directs sunlight to heating the electrolysis, and the electrical energy for electrolysis is generated by a separate source (such as by photovoltaic, solar thermal electric, wind turbine, hydro, nuclear, or fossil fuel generated electronic charge). ...

Stuart Licht; Baohui Wang; Hongjun Wu

2011-05-19T23:59:59.000Z

418

Energy and Greenhouse Gas Profiles of Polyhydroxybutyrates Derived from Corn Grain: A Life Cycle Perspective  

Science Journals Connector (OSTI)

Energy and Greenhouse Gas Profiles of Polyhydroxybutyrates Derived from Corn Grain: A Life Cycle Perspective ... Polyhydroxybutyrates derived from corn grain could reduced nonrenewable energy consumption and greenhouse gas emissions compared to petroleum-based polymer. ... Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. ...

Seungdo Kim; Bruce E. Dale

2008-09-18T23:59:59.000Z

419

U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)  

Reports and Publications (EIA)

On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

2005-01-01T23:59:59.000Z

420

Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering  

E-Print Network [OSTI]

Greenhouse is unheated and un-air- conditioned. There is no supplemental lighting at this time. AdditionalPainter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network [OSTI]

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

422

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-Print Network [OSTI]

back into space. However, greenhouse gases will not let all the infrared light pass throughWhat are greenhouse gases? Many chemical compounds in the atmosphere act as greenhouse gases the land and oceans. The warmed Earth releases this heat in the form of infrared light (longwave radiation

423

On the scattering-greenhouse effect of CO2 ice clouds  

E-Print Network [OSTI]

On the scattering-greenhouse effect of CO2 ice clouds R. T. Pierrehumbert C. Erlick Department in J. Atmos. Sci. #12;Scattering Greenhouse Effect on Early Mars Page 2 Abstract We offer some remarks on the greenhouse effect due to high clouds which reflect thermal infrared radiation, but do not absorb or emit it

Pierrehumbert, Raymond

424

Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1  

E-Print Network [OSTI]

Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1 Reto A. Ruedy,1 Ron L to the presentday global greenhouse effect are among the most misquoted statistics in public discussions of climate though the magnitude of the total greenhouse effect is significantly larger than the initial radiative

425

Teaching Energy Balance using Round Numbers: A Quantitative Approach to the Greenhouse Effect and Global Warming  

E-Print Network [OSTI]

Teaching Energy Balance using Round Numbers: A Quantitative Approach to the Greenhouse Effect, 2003 Abstract The idea of energy balance used to explain the greenhouse effect and global warming and astronomy curricula. The idea of energy balance is used to explain the greenhouse effect and global warming

Blais, Brian

426

mARUS37, 207--213 (1979) Ammonia Photolysisand the Greenhouse Effect in the  

E-Print Network [OSTI]

mARUS37, 207--213 (1979) Ammonia Photolysisand the Greenhouse Effect in the Primordial Atmosphere mixing ratio of am- monia of 10-5 or greater would provide a sufficient greenhouse effect to keep of longwave radiation NH3 could pro- duce a substantial "greenhouse effect" and maintain a surface temperature

Atreya, Sushil

427

Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City  

SciTech Connect (OSTI)

This study reports on heterogeneous ice nucleation activity of predominantly organic (or coated with organic material) anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (Tp), relative humidity (RH), nucleation mode, and particle chemical composition which is influenced by photochemical atmospheric aging. Particle analyses included computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to most laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The results suggest a new precedent for the potential impact of organic particles on ice cloud formation and climate.

Knopf, D.A.; Wang, B.; Laskin, A.; Moffet, R.C.; Gilles, M.K.

2010-06-20T23:59:59.000Z

428

Is There Still Time to Avoid `Dangerous Anthropogenic Interference' with Global Climate?*#  

E-Print Network [OSTI]

growth of greenhouse gas emissions is slowed in the first quarter of this century, primarily via, and then reduced via advanced energy technologies that yield a cleaner atmosphere as well as a stable climate of the Holocene, a period of relatively stable climate that has existed for more than 10,000 years. Further

Hansen, James E.

429

On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead  

Science Journals Connector (OSTI)

...consumption of natural gas from 1970 to 2005...to the plate. The natural and social science...unsw.edu.au/news/2007/Bali...Future greenhouse gas and local pollutant...Diego, 9500 Gilman Drive, La Jolla, CA...metabolism Conservation of Natural Resources methods...

V. Ramanathan; Y. Feng

2008-01-01T23:59:59.000Z

430

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect (OSTI)

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

431

Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols  

SciTech Connect (OSTI)

Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80E but decreases east of it.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-09-25T23:59:59.000Z

432

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

433

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Keith Paustian (keithp@nrel.colostate.edu; 970-491-1547) Natural Resource Ecology Laboratory Colorado State University Ft. Collins, CO 80523 Bruce Babcock (babcock@iastate.edu; 515-294-6785) Cathy Kling (ckling@iastate.edu; 515-294-5767) Center for Agriculture and Rural Development Iowa State University Ames, IA 50011-1070 Jerry Hatfield (hatfield@nstl.gov; 515-294-5723) USDA - National Soil Tilth Laboratory Ames, IA 50011 Rattan Lal (lal.1@osu.edu; 614-292-9069) School of Natural Resources The Ohio State University Columbus, OH 43210-1085 Bruce McCarl (mccarl@tamu.edu; 979-845-1706) Department of Agricultural Economics Texas A&M University College Station, TX 77843-2124 Sandy McLaughlin (un4@ornl.gov; 865-574-7358)

434

Greenhouse Gas Inventory Development Toolkit | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Inventory Development Toolkit Greenhouse Gas Inventory Development Toolkit Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

435

Assess Potential Agency Size Changes that Impact Greenhouse Gases from  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Assess Potential Agency Size Changes that Impact Greenhouse Gases from Vehicles and Mobile Equipment October 7, 2013 - 11:31am Addthis YOU ARE HERE Step 1 Planned changes in a Federal agency's size, missions, transportation needs, and vehicle inventory all impact the strategic portfolio planning efforts that target greenhouse gas (GHG) emissions mitigation for vehicles and mobile equipment. Under Section 142 of the Energy Independence and Security Act (EISA) and Section 8 of Executive Order (E.O.) 13514, agencies are required to develop a plan that will reduce fleet GHG emissions to meet Federally mandated petroleum reduction and alternative fuel increase targets. Agencies can use these plans as a basis for determining potential changes in fleet size and

436

EIA-Voluntary Reporting of Greenhouse Gases Program - Getting Started  

U.S. Energy Information Administration (EIA) Indexed Site

Getting Started Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form EIA-1605 may seem daunting at first, even for entities that have reported under the original program. That's why EIA has developed the Getting Started page to help entities take a systematic approach to reporting their emissions and reductions. The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters familiarize themselves with the specific requirements for reporting their entity's inventory and reductions by answering the questions embodied in the 10 steps below. In addition, EIA has prepared the interactive Getting Started tool to help reporters determine what parts of Form EIA-1605 they need to complete. Getting Started Tool Getting Started PDF Tables

437

Evaluate Greenhouse Gas Reduction Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Strategies Reduction Strategies Evaluate Greenhouse Gas Reduction Strategies October 7, 2013 - 10:16am Addthis For each major emission source identified in the previous step to evaluate greenhouse gas (GHG) emission profile, Federal agencies should review possible strategies for reducing GHG emissions and determine what assets may benefit from each strategy. This guidance describes technologies, policies, practices, and other strategies for reducing GHG emissions from each major emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. It also helps users determine what strategies are applicable to their facilities, employees, or other assets, and estimate the GHG emissions that may be avoided if they are adopted. For example, a facility manager may

438

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

439

Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Vehicles and Mobile Equipment Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:48am Addthis YOU ARE HERE: Step 3 Reducing petroleum consumption is the principal means to reduce greenhouse gas (GHG) emissions from vehicles and mobile equipment. Each agency has the flexibility to evaluate a variety of options to ensure its strategy best fits the mission and makeup of its fleets. The purpose of this evaluation is to: Identify strategies that will best encourage the reduction of petroleum use in Federal vehicles Estimate the GHG reduction potential and cost effectiveness of these strategies. Next Step After evaluating GHG reduction strategies, the next step in the GHG mitigation planning for vehicles and mobile equipment is to estimate the

440

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - Greenhouse Gas Emissions - High-GWP gases  

Gasoline and Diesel Fuel Update (EIA)

5. High-GWP gases 5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA Vintaging Model. Emissions from manufacturing and utilities are derived by the EPA from a mix of public and proprietary data, including from the EPA's voluntary emission reduction partnership programs. For this year's EIA inventory, 2008 values for HFC-23 from HCFC-22

442

Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Employee Commuting Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:29pm Addthis YOU ARE HERE Step 5 Proposed programs to reduce employee commute greenhouse gas (GHG) emissions should be prioritized at individual worksites and across agency worksites to help the agency understand what actions and worksites are most critical to reaching its goal. This section aims to help the employee transportation coordinators (ETCs) and telework coordinators to understand what commute reduction programs will yield the greatest "bang-for-the-buck" and what level of GHG reductions a site or program can achieve get with available resources. Criteria may include: GHG emission reduction potential by the 2020 target date Cost effectiveness ($ invested per MTCO2e avoided)

443

Assess Potential Agency Size Changes that Impact Greenhouse Gases from  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Assess Potential Agency Size Changes that Impact Greenhouse Gases from Employee Commuting October 7, 2013 - 1:42pm Addthis YOU ARE HERE Step 1 For employee commuting, it is important to account for any planned or expected changes in a Federal agency's size when estimating the greenhouse gas (GHG) reduction potential for different operating units or worksites. Considerations include: Are employment levels expected to change in the next decade at specific facilities or agency-wide? Are there any planned facility moves at major worksites? Employee commute coordinators may want to engage human resources and strategic planners in this effort to establish likely changes in employment numbers. Facility planners may be engaged to understand changes in commutes

444

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

445

Evaluate Greenhouse Gas Reduction Strategies for Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Evaluate Greenhouse Gas Reduction Strategies for Buildings October 7, 2013 - 11:00am Addthis YOU ARE HERE: Step 3 Once key building types and priority sites have been identified, a Federal agency can identify appropriate energy management measures and estimate their impact on each program's building greenhouse gas (GHG) emissions. To support this evaluation, energy managers can use the Buildings GHG Mitigation Worksheet Estimator in tandem with this guidance to estimate of GHG savings and cost. Figure 1 - An image of an organizational-type flowchart. A rectangle labeled 'Program' has a line pointing to a rectangle labeled 'Building Type.' 'Building Type' has a lines pointing to rectangles labeled 'Site Ranked Overall #1,' 'Site Ranked Overall #2,' and 'Site Ranked Overall #3.'

446

How Portfolio Manager calculates greenhouse gas emissions | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Portfolio Manager calculates greenhouse gas emissions How Portfolio Manager calculates greenhouse gas emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

447

Federal Energy Management Program: Federal Greenhouse Gas Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable energy generation projects

448

Evaluate Greenhouse Gas Emissions Profile for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Evaluate Greenhouse Gas Emissions Profile for Employee Commuting October 7, 2013 - 1:44pm Addthis YOU ARE HERE Step 2 To fulfill annual reporting requirements under Executive Order 13514, Federal agencies must estimate the total commute miles traveled by employees using each transportation method. While these data are rolled up to the agency level for reporting purposes, effective planning for commuter greenhouse gas (GHG) emission reductions requires an understanding of employee commute behavior at the worksite level. For agencies with hundreds or thousands of worksites across the country, worksite level analysis may not be feasible for all locations. It is recommended that agencies focus initial analysis on the largest worksites or clusters of worksites in major metropolitan areas with similar commuting

449

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

450

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Emissions Emissions Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions October 7, 2013 - 10:12am Addthis Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. Such changes could represent either an additional significant hurdle to overcome or a significant reduction in the effort required to drive emissions down-in the absence of any direct GHG mitigation reduction strategies. This will help each organization establish its "business as usual" emission profile in 2020, the year agencies are expected to meet their Scope 1 and 2 and Scope 3 GHG emission-reduction goals.

451

Greenhouse Gas Mitigation Planning for Business Travel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Greenhouse Gas Mitigation Planning for Business Travel October 7, 2013 - 1:20pm Addthis Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3 emissions, but represents about 20% of Scope 3 emissions for the Federal sector as whole. While other emissions categories have been the focus of efficiency improvements for several years, few agencies have been actively planning to manage business travel for GHG reduction purposes. Travel management due to budgetary constraints has typically been more common for Federal agencies in the past. Because air travel emissions are the biggest source of travel emissions for most agencies, this guidance focuses on planning for

452

Can alternative car fuels reduce greenhouse gas emissions?  

Science Journals Connector (OSTI)

There has been controversy in the published literature regarding the scope for alternative fuels to reduce greenhouse gas emissions in passenger transport. This paper aims to resolve this question in an Australian context, and, where possible, to calculate the costs of emission reductions. Fossil-fuel-based alternatives give either marginal or uncertain reductions. Ethanol from sugar cane, the most promising biomass fuel, has high costs per tonne of CO2 reduction, and, when other trace gases are considered, shows no definite improvement over petrol. Electric vehicles, if deployed today in Australia, would exacerbate greenhouse warming. Only if an alternative new energy source such as wind power generated 15% or more of total electricity would emission reductions occur compared to equivalent petrol-fuelled cars.

P. Moriarty

1994-01-01T23:59:59.000Z

453

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:13pm Addthis YOU ARE HERE: Step 4 Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy. The costs to reduce GHG emissions can vary greatly from cost-free behavior modification to the high-cost of purchasing zero-emission battery electric vehicles and associated fueling infrastructure. This section provides an overview of the costs and savings to consider when planning for mobile source emissions reductions, including efforts to: Reduce vehicle miles traveled

454

Evaluate Greenhouse Gas Emissions Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Emissions Profile Emissions Profile Evaluate Greenhouse Gas Emissions Profile October 7, 2013 - 10:14am Addthis Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement: Buildings Vehicles and mobile equipment Business travel Employee commuting. While the data required for annual GHG reporting are sufficient to establish an agency's overall emission inventory, these data are not typically enough information for effectively managing emissions. A detailed, bottom-up assessment can provide the foundation for much more robust Strategic Sustainability Performance Plans. Because detailed analyses of all assets can be time-intensive, strategic planning helps the

455

DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse  

Broader source: Energy.gov (indexed) [DOE]

Industry Proposals for Feasibility Study to Produce Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants April 13, 2006 - 10:19am Addthis WASHINGTON, DC - In support of President Bush's Advanced Energy Initiative (AEI), Secretary of Energy Samuel W. Bodman today announced that the U.S. Department of Energy (DOE) will allocate up to $1.6 million this year to fund industry studies on the best ways to utilize energy from existing commercial nuclear reactors for production of hydrogen in a safe and environmentally-sound manner. DOE is seeking industry proposals for these Federal Financial Assistance Awards, worth up to 80 percent of the total

456

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Vehicles and Mobile Equipment Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:32am Addthis YOU ARE HERE Step 2 To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

457

Prioritize Greenhouse Gas Mitigation Strategies for Buildings | Department  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Prioritize Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:10am Addthis YOU ARE HERE: Step 5 After evaluating the cost to implement energy-savings measures and the greenhouse gas (GHG) reduction potential for buildings, the program or site may prioritize implementation of those measures using criteria of importance to the Federal agency. The Buildings GHG Mitigation Estimator summarizes energy savings and costs by program, site, building type, and mitigation measure. This can help users at different levels of the organization understand where the largest GHG reduction potential lies, and which mitigation measures are most common across programs and sites and then plan investments accordingly. Criteria for prioritization will vary by agency but may include:

458

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Vehicles and Mobile Equipment Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:19pm Addthis YOU ARE HERE: Step 5 In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure,

459

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Title Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Publication Type Report Year of Publication 2012 Authors Kong, Lingbo, Ali Hasanbeigi, and Lynn K. Price Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory Keywords emerging technologies, energy efficiency, ghg, Low Emission & Efficient Industry, pulp and paper Abstract The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2)emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry's absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry's mid- and long-term climate change mitigation strategies. This report describes the industry's processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry's energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

460

Research on Greenhouse-Gas-Induced Climate Change  

SciTech Connect (OSTI)

During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

Schlesinger, M. E.

2001-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007  

E-Print Network [OSTI]

The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

462

Evaluate Greenhouse Gas Emissions Profile for Business Travel  

Broader source: Energy.gov [DOE]

Developing a Federal agency's business travel greenhouse gas (GHG) emissions profile first involves getting a better understanding of the nature and patterns of travel within the organization. Not all travel can be avoided or effectively substituted with information technology solutions. By understanding where people are traveling by air, the purpose of travel, and what parts of the organization travel most frequently, the agency will be in a better position to develop solutions and program-level targets.

463

Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules  

SciTech Connect (OSTI)

Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

Go, Clark Kendrick C.; Maquiling, Joel T. [Department of Physics, Ateneo de Manila University, Katipunan Avenue, Quezon City (Philippines)

2010-07-28T23:59:59.000Z

464

Biological control of Rhizoctonia solani in greenhouse bedding plant production  

E-Print Network [OSTI]

of Comm!ttee) (Robert E. Pettit) (Member) (David id. Reed) (Member) "7~+ (Grant Yest) (Head of. Depart tment) Deceriber 1983 ABSTRACT Biological control of Rhizoctonia solani in greenhouse bedding plant production. IDecember 1983) John... iviichael Brown B. S, East Texas State University. Chairman of Advisory Committee: Dr . A . E . Nightingale . Isolates of Trichoderma harzianum, T. hamatum, and Gliocladium spp. capable of inhibiting the growth of Rhizoctonia solani, which may cause...

Brown, John Michael

1983-01-01T23:59:59.000Z

465

Simple model of photo acoustic system for greenhouse effect  

E-Print Network [OSTI]

The simple theoretical basis for photo acoustic (PA) system for studying infrared absorption properties of greenhouse gases is constructed. The amplitude of sound observed in PA depends on the modulation frequency of light pulse. Its dependence can be explained by our simple model. According to this model, sound signal has higher harmonics. The theory and experiment are compared in third and fifth harmonics by spectrum analysis. The theory has the analogy with electric circuits. This analogy helps students for understanding the PA system.

Fukuhara, Akiko; Ogawa, Naohisa

2010-01-01T23:59:59.000Z

466

Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting  

Broader source: Energy.gov [DOE]

Proposed programs to reduce employee commute greenhouse gas (GHG) emissions should be prioritized at individual worksites and across agency worksites to help the agency understand what actions and worksites are most critical to reaching its goal. This section aims to help the employee transportation coordinators (ETCs) and telework coordinators to understand what commute reduction programs will yield the greatest "bang-for-the-buck" and what level of GHG reductions a site or program can achieve get with available resources.

467

Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting  

Broader source: Energy.gov [DOE]

This section will help agencies to determine the most visible alternatives to single occupancy vehicle (SOV) commuting at the agencies major worksites establish the number of employees that may reasonably switch to non-SOV methods and estimate the resulting impact greenhouse gas (GHG) emissions at their worksites. Learn how to: Identify relevant alternatives and supporting strategies Evaluate potential adoption of alternatives Estimate the GHG emission impact

468

Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Vehicle Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on AddThis.com... More in this section... Federal

469

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Broader source: Energy.gov (indexed) [DOE]

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

470

Greenhouse gas emissions control by economic incentives: Survey and analysis  

SciTech Connect (OSTI)

This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

South, D.W.; Kosobud, R.F.; Quinn, K.G.

1991-01-01T23:59:59.000Z

471

Greenhouse gas emissions control by economic incentives: Survey and analysis  

SciTech Connect (OSTI)

This paper presents a survey of issues and concerns raised in recent literature on the application of market-based approaches to greenhouse effect policy with an emphasis on tradeable emission permits. The potential advantages of decentralized decision-making -- cost-effectiveness or allocation efficiency, stimulation of innovations, and political feasibility are discussed. The potential difficulties of data recording, monitoring, enforcement, and of creating viable emission permit contracts and markets are examined. Special attention is given to the problem of designing a greenhouse effect policy that is cost-effective over time, a problem that has been given little attention to date. Proposals to reduce or stabilize greenhouse gas emission (especially CO{sub 2}) in the short run require high carbon tax rates or permit prices and impose heavy adjustment costs on the fossil fuel industry. A more cost-effective time path of permit prices is proposed that achieves the same long-run climate change stabilization goals. 21 refs., 3 figs.

South, D.W.; Kosobud, R.F.; Quinn, K.G.

1991-12-31T23:59:59.000Z

472

Indonesia Greenhouse Gas Abatement Cost Curve | Open Energy Information  

Open Energy Info (EERE)

Indonesia Greenhouse Gas Abatement Cost Curve Indonesia Greenhouse Gas Abatement Cost Curve Jump to: navigation, search Tool Summary Name: Indonesia Greenhouse Gas Abatement Cost Curve Agency/Company /Organization: Government of Indonesia Topics: Baseline projection, GHG inventory, Co-benefits assessment, Background analysis Resource Type: Software/modeling tools Website: www.dnpi.go.id/report/DNPI-Media-Kit/reports/indonesia-ghg_abatement_c Country: Indonesia UN Region: South-Eastern Asia Coordinates: -0.789275°, 113.921327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-0.789275,"lon":113.921327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

EIA-Voluntary Reporting of Greenhouse Gases Program - What's New  

U.S. Energy Information Administration (EIA) Indexed Site

Environment > Voluntary Reporting Program > What's New Environment > Voluntary Reporting Program > What's New Voluntary Reporting of Greenhouse Gases Program What's New Voluntary Reporting of Greenhouse Gases Program Suspended May 2011 The U.S. Energy Information Administration (EIA) Voluntary Reporting of Greenhouse Gases ("1605(b)") Program has been suspended. The suspension is due to recent reductions in budget appropriations and is effective immediately. Survey respondents may still submit data to the 1605(b) Program using the program's Workbook Form via EIA's Secure File Transfer mechanism. However, EIA will not be able to process and review submitted data or offer respondent support on the submitted data. Should a respondant submit data under the current collection cycle to EIA, the data will be retained in our electronic records. If the 1605(b) Program resumes normal operations, your submitted data will be reviewed and processed at that time. You will be notified in the future if the 1605(b) Program resumes normal operation. If you have any questions, please contact the survey manager, Paul McArdle, at paul.mcardle@eia.gov

474

Determination of the risk associated with the natural and anthropogenic radionuclides from the soil of Skardu in Central Karakoram  

Science Journals Connector (OSTI)

......235U (0.72 % of uranium), 232Th (100 % of...The mass fraction of uranium, thorium and potassium...24Na and others). Depleted uranium is another anthropogenic...hepatic, bone and kidney cancers and leukaemia. It is......

Manzoor Ali; Mohammad Wasim; Sajid Iqbal; Mohammad Arif; Farhan Saif

2013-09-01T23:59:59.000Z

475

Evolution of Anthropogenic Pb and Pb isotopes in the deep North Atlantic Ocean and the Indian Ocean  

E-Print Network [OSTI]

Pb and Pb isotopes in the ocean have varied on decadal to centennial time scales due to anthropogenic Pb inputs. Thus, tracing the temporal variation of Pb and Pb isotopes in the ocean provides information on the major ...

Lee, Jong-Mi, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

476

The effect of anthropogenic development on sediment loading to bays on St. John, U.S. Virgin Islands  

E-Print Network [OSTI]

In order to assess the impact of anthropogenic development on sediment delivery rates to bays on St. John, U.S.V.I., I developed a sediment loading prediction model. Based on the modified universal soil loss equation, this ...

McCreery, Helen F

2007-01-01T23:59:59.000Z

477

Laboratory-determined concentration factors and elimination rates of some anthropogenic radionuclides in marine vertebrates and invertebrates. Final report  

SciTech Connect (OSTI)

Literature is reviewed and summarized with regard to concentration factor values and biological elimination rates determined in laboratory experiments for several anthropogenic radionuclides. Comparison is made with concentration factors measured in situ in the marine environment.

Harrison, F.L.

1985-07-01T23:59:59.000Z

478

Determination of the risk associated with the natural and anthropogenic radionuclides from the soil of Skardu in Central Karakoram  

Science Journals Connector (OSTI)

......235U (0.72 % of uranium), 232Th (100 % of...The mass fraction of uranium, thorium and potassium...24Na and others). Depleted uranium is another anthropogenic...inhalation can cause several health diseases such as chronic......

Manzoor Ali; Mohammad Wasim; Sajid Iqbal; Mohammad Arif; Farhan Saif

2013-09-01T23:59:59.000Z

479

A greenhouse-gas information system monitoring and validating emissions reporting and mitigation  

SciTech Connect (OSTI)

Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

2011-09-26T23:59:59.000Z

480

Idaho National Laboratorys FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthropogenic human-caused greenhouse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

3.0 GROWTH FACILITY SPACE REQUESTS Prospective users of the greenhouses or growth chambers are encouraged to  

E-Print Network [OSTI]

for greenhouse and growth chamber specifications, including space, lighting and fees. Greenhouse and Growth Chamber Space Inventory Greenhouse and Growth Chamber Lighting Inventory #12;Hourly Rate Service Charges3.0 GROWTH FACILITY SPACE REQUESTS Prospective users of the greenhouses or growth chambers

Pawlowski, Wojtek

482

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

483

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005  

Open Energy Info (EERE)

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model [1] NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model This model calculates the 2005 national average life cycle greenhouse gas emissions for petroleum-based fuels sold or distributed in the United

484

Chena Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Chena Hot Springs Chena Hot Springs Sector Geothermal energy Type Greenhouse Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

485

Circle Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Circle Hot Springs Circle Hot Springs Sector Geothermal energy Type Greenhouse Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

486

Greenhouse Gas Emission Evaluation of the GTL Pathway  

Science Journals Connector (OSTI)

The influence of coproduct credit methods on the GTL GHG emissions results using substitution methodology is estimated to afford the Well-to-Wheels (WTW) greenhouse gas (GHG) intensity of GTL Diesel. ... A common approach in LCA and net energy analysis, known as the system expansion method (also known as the substitution or displacement method) credits saved energy and emissions burdens to coproducts associated with the products displaced in the market. ... Normal ParaffinsWorld Markets 20002010; Colin A. Houston & Associates, Inc. (CAHA): Aiken, SC. ...

Grant S. Forman; Tristan E. Hahn; Scott D. Jensen

2011-09-22T23:59:59.000Z

487

Climate change : enhanced : recent reductions in China's greenhouse gas emissions.  

SciTech Connect (OSTI)

Using the most recent energy and other statistical data, we have estimated the annual trends in China's greenhouse gas emissions for the period 1990 to 2000. The authors of this Policy Forum calculate that CO2 emissions declined by 7.3% between 1996 and 2000, while CH4 emissions declined by 2.2% between 1997 and 2000. These reductions were due to a combination of energy reforms, economic restructuring, forestry policies, and economic slowdown. The effects of these emission changes on global mean temperatures are estimated and compared with the effects of concurrent changes in two aerosol species, sulfate and black carbon.

Streets, D. G.; Jiang, K.; Hu, X.; Sinton, J. E.; Zhang, X.-Q.; Xu, D.; Jacobson, M. Z.; Hansen, J. E.; Decision and Information Sciences; Energy Research Inst.; LBNL; Chinese Academy of Forestry; Stanford Univ.; NASA Goddard Inst. for Space Studies

2001-11-30T23:59:59.000Z

488

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

SciTech Connect (OSTI)

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

489

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings  

Broader source: Energy.gov [DOE]

Strategic planning for greenhouse gas (GHG) mitigation in buildings requires an understanding of a Federal agency's buildings portfolio, including which programs, building types, and sites contribute the most to the agency's emissions. The data described in Table 1 below will support this type of analysis. It is recommended that this information be collected at the agency and program level. Programs refer to major operating units within the agency where there is a significant degree of autonomy in planning and decision-making. In many cases, the type of data required for portfolio planning may already be collected under various Federal and agency-specific reporting requirements.

490

Prospects for geothermal commercialization in the greenhouse industry  

SciTech Connect (OSTI)

A number of areas considered directly relevant to a particular greenhouse firm's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

Bressler, S.E.; Hanemann, W.M.

1980-03-01T23:59:59.000Z

491

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

492

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network [OSTI]

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

493

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network [OSTI]

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

494

GREENHOUSE GAS (GHG) INVENTORY REPORT 20112012 Office of Sustainability September 2012  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20112012 Office of Sustainability ................................................................................................................................. 7 1.2. GHG EMISSION SOURCES .............................................................................................................. 8 1.3. REPORTED GHG EMISSIONS

Brownstone, Rob

495

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Data needs for greenhouse gas (GHG) mitigation planning related to Federal agency vehicles and mobile equipment can be described in terms of five key categories.

496

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies  

Broader source: Energy.gov [DOE]

To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

497

SPICY: towards automated phenotyping of large pepper plants in the greenhouse  

E-Print Network [OSTI]

, Biometris Dieleman, Anja; Wageningen UR, Greenhouse Horticulture Bink, Marco; Wageningen UR, Biometris internal structures. Different recording techniques can be used, ranging from affordable8 visible-light

Glasbey, Chris

498

Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases  

Broader source: Energy.gov [DOE]

For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

499

E-Print Network 3.0 - air pollution greenhouse Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution greenhouse Page: << < 1 2 3 4 5 > >> 1 Syllabus for EK 335: Introduction to...

500

E-Print Network 3.0 - aggressive city greenhouse-gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

noted earlier, the majority of aviation emissions... a significant impact on the greenhouse effect.29 Concern regarding ... Source: George Mason University, Center for Air...