Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovering clean coal from anthracite culm: Coal Quality Development Center Campaign Report No. 8: Interim report  

Science Conference Proceedings (OSTI)

Recovering Clean Coal from Anthracite Culm contains the results of an investigation into the cleanability of coarse anthracite (termed ''culm'') excavated from a refuse bank in Schuylkill County, Pennsylvania. This characterization consisted of five interrelated efforts: Unprocessed Coarse Culm Characterization, Laboratory Froth Flotation Testing, Impurities Liberation Investigation, Culm-Cleaning Evaluation, and Combustion Characteristics Comparison. Significant cleanability characterization findings were that: although the unprocessed culm is sticky, plastic, and extremely difficult to handle and store, cleaning makes this fuel easy to transport, store, and handle using conventional power plant equipment. In the characterization, cleaning reduced culm dry ash content from 59% to 11% while recovering 50% of the original culm energy content. Part of the cleanability characterizations involved testing of a new pre-cleaning device; a SuperScalper. In these tests it was demonstrated that the SuperScalper can economically increase the capacity of conventional cleaning units in recovering clean coal from anthracite culm. The SuperScalper can save 40% of the capital cost of a new cleaning plant and 30% of its operating cost when used to pre-clean the feed to concentrating tables. The SuperScalper also shows promise as a rough cleaning device to be used in reclaiming bituminous coal refuse for use in fluidized bed combustors, although further studies are needed to evaluate the economics of this application. 8 refs., 20 figs., 31 tabs.

Torak, E.R.; Bhowmick, A.K.; Cavalet, J.R.; Parsons, T.H.

1987-11-01T23:59:59.000Z

2

Comparison of the Potential Impacts of Petroleum Coke and Anthracite Culm Use  

E-Print Network (OSTI)

The primary feedstock for the proposed Gilberton Coal-to-Clean Fuels and Power Project would be low-cost anthracite culm, which is a locally abundant, previously discarded resource that could accommodate fuel requirements during the demonstration period. Culm reserves controlled by WMPI are estimated to be sufficient to supply the proposed facilities for about 15 years, or to supply both the proposed facilities and the existing Gilberton Power Plant for about 11 years. Based on the applicant’s proposal, the facilities would also be capable of using a blend of feedstock containing up to 25% petroleum coke. Petroleum coke is a high-sulfur, high-energy product having the appearance of coal. Oil refineries produce petroleum coke by heating and removing volatile organic compounds (VOCs) from the residue remaining after the refining process. This appendix compares some of the potential impacts of 100 % anthracite culm use with the potential impacts from using a blended feedstock of 75 % anthracite culm and 25 % petroleum coke. Topics considered include carbon dioxide emissions, air emissions of sulfur compounds and toxic substances, solid wastes and byproduct production, and increased truck traffic. Carbon Dioxide (CO2) Emissions Published values for potential CO2 emissions from anthracite and petroleum coke are very similar.

Gilberton Coal-to-clean Fuels

2007-01-01T23:59:59.000Z

3

PURPOSE - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Waste/Other Coal (including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal) RC. tons. 20. 29. ... the Government Accountability Office, ...

4

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

5

Anthracite coal supply for the 1981-1982 winter  

Science Conference Proceedings (OSTI)

This report contains a letter addressed to the Chairman of the Subcommittee on Energy and Mineral Resources in which findings on the potential for anthracite to become an effective component in meeting US energy needs are presented. Some of the problems facing the anthracite industry and consumers in the northeastern states, state and industry actions since the 1980 shortage, and the outlook for the winter of 1982 are addressed. Information was obtained on anthracite exports to foreign countries and to the DOD facilities in the Federal Republic of Germany. Development efforts to use anthracite in industrial boilers and the actions that the state of Pennsylvania has taken to encourage the use of anthracite in municipal buildings are also discussed. (DMC)

Peach, J.D.

1981-09-18T23:59:59.000Z

6

Fine Anthracite Coal Washing Using Spirals  

Science Conference Proceedings (OSTI)

The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

2001-05-31T23:59:59.000Z

7

Health status of anthracite surface coal miners  

Science Conference Proceedings (OSTI)

In 1984-1985, medical examinations consisting of a chest radiograph, spirometry test, and questionnaire on work history, respiratory symptoms, and smoking history were administered to 1,061 white males who were employed at 31 coal cleaning plants and strip coal mines in the anthracite coal region of northeastern Pennsylvania. The prevalence of radiographic evidence of International Labour Office (ILO) category 1 or higher small opacities was 4.5% in 516 men who had never been employed in a dusty job other than in surface coal mining. Among these 516 workers, all 4 cases of ILO radiographic category 2 or 3 rounded opacities and 1 case of large opacities had been employed as a highwall drill operator or helper. The prevalence of category 1 or higher opacities increased with tenure as a highwall drill operator or helper (2.7% for 0 y, 6.5% for 1-9 yr, 25.0% for 10-19 y, and 55.6% for greater than or equal to 20 y drilling). Radiographic evidence of small rounded opacities, dyspnea, and decreases in FEV1.0, FVC, and peak flow were significantly related to tenure at drilling operations after adjusting for age, height, cigarette smoking status, and exposures in dusty jobs other than in surface coal mining. However, tenure in coal cleansing plants and other surface coal mine jobs were not related to significant health effects. The apparent excess prevalence of radiographic small rounded opacities in anthracite surface coal mine drillers suggests that quartz exposures have been increased. Average respirable quartz concentrations at surface coal mine drilling operations should be evaluated to determine whether exposures are within existing standards, and dust exposures should be controlled.

Amandus, H.E.; Petersen, M.R.; Richards, T.B.

1989-03-01T23:59:59.000Z

8

Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants  

Science Conference Proceedings (OSTI)

In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

I. Surez-Ruiz; J.C. Hower; G.A. Thomas [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

2007-01-15T23:59:59.000Z

9

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and ...  

Science Conference Proceedings (OSTI)

Results show: compared with anthracite coal, the ignition and burn out temperatures of biomass char were lower and the combustion characteristics were better ...

10

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network (OSTI)

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

11

Liquefaction of sub-bituminous coal  

SciTech Connect

Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1986-01-01T23:59:59.000Z

12

NETL - Bituminous Baseline Performance and Cost Interactive Tool | Open  

Open Energy Info (EERE)

NETL - Bituminous Baseline Performance and Cost Interactive Tool NETL - Bituminous Baseline Performance and Cost Interactive Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bituminous Baseline Performance and Cost Interactive Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: Bituminous Baseline Performance and Cost Interactive Tool [1] Bituminous Baseline Performance and Cost Interactive Tool The Bituminous Baseline Performance and Cost Interactive Tool illustrates key data from the Cost and Performance Baseline for Fossil Energy Plants - Bituminous Coal and Natural Gas to Electricity report. The tool provides an

14

Manipulation of Electrical Conductivity in Bituminous Coal by CNT ...  

Science Conference Proceedings (OSTI)

In this work, the conductivity of Bituminous coal samples found from Khalaspir coal mine is studied. This coal mine is located in the northern part of Bangladesh.

15

Anthracite R&D needs - CRADA 89-001. Final report  

Science Conference Proceedings (OSTI)

The purpose of this research is to foster the development of one or more high performance, anthracite-fired boiler systems suitable for meeting space heating and hot water requirements of large buildings. The boiler system research would include fuel handling, combustion and heat transfer, ash handling, and control systems.

Bartis, J.T.; Inberman, A.K. [Eos Technologies, Inc., Arlington, VA (United States)

1990-09-01T23:59:59.000Z

16

Co-carbonization of two anthracites with a fat coal or two pitches  

SciTech Connect

The blends of two anthracite powders (YQ and JC) with a fat coal (C4) or a petroleum pitch (PP) or a coal tar pitch (CTP) in different proportions were co-carbonized at 3{sup o}C/min up to 1000{sup o}C in an experimental 1 kg coke oven. Coke yield, coke particulate size, coke micro-strength and coke cracking strength were measured respectively. Coke optical textures were watched under a microscope. The results show that as anthracite proportion increases, coke yields of all blends improve; > 0.8 mm lump coke yields of blends with CTP or PP decline slightly, blends with C4 drop heavily; coke microstrengths do not change sharply, and coke cracking strength of blends with C4 or PP decrease more than blends with CTP. C4 produces fine-grained mosaics, and two anthracites are mainly fusinite and fragments, PP is coarse-grained mosaics, and CTP is chiefly flow or domain textures. Independent optical textures were observed in cokes. There exist evident borders between the two contact optical textures which were produced by different components, and a few phenomena that domain or flow textures penetrating into fusinite appeared in the blends. It seems that CTP is the best adhesives for blending with anthracites for producing high quality cokes.

Shen, J.; Wang, Z.Z. [Taiyuan University of Technology, Taiyuan (China). College of Chemical Engineering & Technology

2006-04-15T23:59:59.000Z

17

Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite.  

E-Print Network (OSTI)

??Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged… (more)

Nyathi, Mhlwazi

2011-01-01T23:59:59.000Z

18

Electric conductivity and aggregation of anthracite and graphite particles in concretes  

Science Conference Proceedings (OSTI)

A statistical model of the electric conductivity of a heterogeneous system based on coal and a binding agent is presented. In this system, a conductive phase appears because of particle aggregation. The model was tested in the systems of anthracite and graphite in cement stone. The consistency between the experimental and calculated electric conductivities with a correlation coefficient higher than 0.9 was found on a linear interpolation of model parameters. It was found that the presence of a surfactant (cetylpyridinium chloride) and a high-molecular-weight compound (polyvinyl acetate) changed the number of particles in anthracite and graphite aggregates to affect the specific conductivity of the heterogeneous system. 9 refs., 5 figs., 1 tab.

E.A. Fanina; A.N. Lopanov [Belgorod State Technological University, Belgorod (Russian Federation)

2009-02-15T23:59:59.000Z

19

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

20

Oxidative decomposition of formaldehyde catalyzed by a bituminous coal  

Science Conference Proceedings (OSTI)

It has been observed that molecular hydrogen is formed during long-term storage of bituminous coals via oxidative decomposition of formaldehyde by coal surface peroxides. This study has investigated the effects of coal quantity, temperature, and water content on the molecular hydrogen formation with a typical American coal (Pittsburgh No. 6). The results indicate that the coal's surface serves as a catalyst in the formation processes of molecular hydrogen. Furthermore, the results also indicate that low temperature emission of molecular hydrogen may possibly be the cause of unexplained explosions in confined spaces containing bituminous coals, for example, underground mines or ship holds. 20 refs., 4 figs., 6 tabs.

Haim Cohen; Uri Green [Ariel University Center in Samaria, Beer Sheva (Israel). Biological Chemistry Department

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Investigation of plasma-aided bituminous coal gasification  

Science Conference Proceedings (OSTI)

This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

2009-04-15T23:59:59.000Z

22

Enhanced Oxidative Reactivity for Anthracite Coal via a Reactive Ball Milling Pretreatment Step  

Science Conference Proceedings (OSTI)

Reactive ball milling in a cyclohexene solvent significantly increases the oxidative reactivity of an anthracite coal, due to the combined effects of particle size reduction, metal introduction, introduction of volatile matter, and changes in carbon structure. Metals introduced during milling can be easily removed via a subsequent demineralization process, and the increased reactivity is retained. Solvent addition alters the morphological changes that occur during pyrolysis and leads to a char with significantly increased reactivity. When the solvent is omitted, similar effects are seen for the milled product, but a significant fraction of the char is resistant to oxidation. 33 refs., 3 figs., 1 tab.

Angela D. Lueking; Apurba Sakti; Dania Alvarez-Fonseca; Nichole Wonderling [Pennsylvania State University, PA (United States). Department of Energy and Mineral Engineering

2009-09-15T23:59:59.000Z

23

Process for removing pyritic sulfur from bituminous coals  

DOE Patents (OSTI)

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

24

Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

25

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

26

Rapid and medium setting high float bituminous emulsions  

SciTech Connect

This patent describes a rapid set high float aqueous bituminous emulsion-comprising bitumen, water, and from about 0.4% to about 0.6%, based on the weight of the emulsion, of an anionic emulsifier comprised of an alkaline solution of a combination of (1) 20% to 80% fatty acids selected from the group consisting of tall oil fatty acids, tallow fatty acids, and mixtures. (2) 20% to 80% of a product of the reaction of the fatty acids with a member of the group consists of acrylic acid, methacrylic acid, fumaric acid, and maleic anhydride.

Schilling, P.; Schreuders, H.G.

1987-06-30T23:59:59.000Z

27

Table A5. Approximate Heat Content of Coal and Coal Coke, 1949 ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... coal obtained from a refuse bank or slurry dam, anthracite culm,

28

Evaluation of an alternative bituminous material as a soil stabilizer  

E-Print Network (OSTI)

Asphalt cements, cutback asphalts, and emulsified asphalts are used as bituminous stabilizing agents in the pavement systems. The emulsified asphalts are increasingly used in lieu of cutback asphalts because of environmental regulations and safety. Consequently, development of a new stabilization material, which is environmentally safe and non-flammable, is desired for replacing cutback asphalts. In this study a petroleum-resin-based (PRB) material was tested to investigate its physical and mechanical characteristics as an alternative bituminous soil stabilizer in terms of replacing the cutback asphalts because the PRB material has been proved an environmentally safe material. Based on various laboratory tests, including an unconfined compressive strength test, a soil suction test, dielectric measurements, a resilient modulus test, and an optical microscopy test, it has been verified that the PRB material affects base-layer waterproofing, but significant strength gain was not found. When mixed with mostly granular base materials, the PRB material coated soil or aggregate particles and decreased the volume of voids, which can be thought as potential water flow channels. Consequently, the PRB material is expected to reduce permeability.

Kim, Yong-Rak

1999-01-01T23:59:59.000Z

29

Organic geochemical evaluations of bituminous rock and coals in Miocene Himmetoglu basin (Bolu, Turkey)  

Science Conference Proceedings (OSTI)

The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount of organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.

Sari, A.; Geze, Y. [Ankara University, Ankara (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

30

Pennsylvania culm power  

Science Conference Proceedings (OSTI)

The hard coal region of Pennsylvania may become a key proving ground for a new generation of fluidized bed boiler systems - or a critical missed opportunity for the promising technology. The outcome is in the hands of the State's Public Utility Commission, which must decide whether to allow independent producers to wheel electricity missile the region. 1 table.

Not Available

1987-09-01T23:59:59.000Z

31

www.eia.gov  

U.S. Energy Information Administration (EIA)

Anthracite kg CO2 / MMBtu Bituminous Sub-bituminous Lignite Electric Power Sector Industrial Coking ... Office of Energy Efficiency and Renewable Energy, ...

32

Dissolution and swelling of bituminous coal in n-methyl-pyrrolidone.  

E-Print Network (OSTI)

??Research detailed herein examined the extraction and swelling of a bituminous coal in the super solvent n-methyl-pyrrolidone. Correlations were developed to describe the extraction and… (more)

Stoffa, Joseph M.

2006-01-01T23:59:59.000Z

33

Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

34

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

35

Table 8.4c Consumption for Electricity Generation by Energy Source ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

36

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

37

www.eia.gov  

U.S. Energy Information Administration (EIA)

Coal includes anthracite, bituminous, subbituminous and lignite coal. ... DOE, Office of Electricity Delivery and Energy Reliability, Form OE-781R, ...

38

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, ...

39

Physical and mechanical properties of bituminous mixtures containing oil shales  

Science Conference Proceedings (OSTI)

Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

Katamine, N.M.

2000-04-01T23:59:59.000Z

40

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal, Smoke, and Death: Bituminous Coal and American Home Heating, 1920-1959  

E-Print Network (OSTI)

Air pollution was severe in many parts of the United States in the first half of the twentieth century. Much of the air pollution was attributable to bituminous coal. This paper uses newly digitized state-month mortality data to estimate the effects of bituminous coal consumption for heating on mortality rates in the U.S. between 1920 and 1959. The use of coal for heating was high until the mid-1940s, and then declined sharply. The switch to cleaner fuels was driven by plausibly exogenous changes in the availability of natural gas, the end of war-related supply restrictions, and a series of coal strikes from 1946-1950. The identification strategy leverages the fact that coal consumption for heating increases during cold weather. Specifically, the mortality effects are identified from differences in the temperature-mortality response functions in state-years with greater coal consumption. Cold weather spells in high coal state-years saw greater increases in the mortality rates than cold weather spells in low coal state-years. Our estimates suggest that reductions in the use of bituminous coal for heating between 1945 and 1959 decreased average annual mortality by 2.2-3.5 percent, January mortality by 3.2-5.1 percent, average annual infant mortality by 1.6-2.8 percent, and January infant mortality by 3.1-4.6 percent. Our estimates are likely to be a lower-bound, since they only capture short-run relationships between coal and mortality. We thank Leila Abu-Orf, Paula Levin, and Katherine Rudolph for excellent research assistance. We are grateful to

Alan Barreca

2012-01-01T23:59:59.000Z

42

Evaluation of fine-particle size catalysts using bituminous and subbituminous coals  

SciTech Connect

The objectives of Sandia`s fine-particle size catalyst testing project are to evaluate and compare the activities of fine-particle size catalysts being developed in DOE/PETC`s Advanced Research Coal Liquefaction Program by using Sandia`s standard coal liquefaction test procedures. The first test procedure uses bituminous coal (DECS-17 Blind Canyon coal), phenanthrene as the reaction solvent, and a factorial experimental design that is used to evaluate catalysts over ranges of temperature, time, and catalyst loading. The best catalyst evaluated to date is West Virginia University`s iron catalyst that was impregnated onto the coal. Current work is aimed at developing a standard test procedure using subbituminous Wyodak coal. Ibis test is being developed using Pacific Northwest Laboratories` 6-line ferrihydrite catalyst and coal samples impregnated with either molybdenum or iron at Argonne National Laboratories. Results of testing catalysts with bituminous coal will be summarized and the development of the subbituminous coal test procedure will be presented.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-06-01T23:59:59.000Z

43

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

44

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

Cobb, J.T. Jr.

1991-08-29T23:59:59.000Z

45

A B  

Gasoline and Diesel Fuel Update (EIA)

oils and diesel) Crude oil and lease condensate Motor gasoline LPG (Ethane, ethylene, propane, propylene, butane, butylene) Natural gas Anthracite Bituminous and subbituminous...

46

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

47

Table 8.2c Electricity Net Generation: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Solar thermal and photovoltaic (PV) energy. 2 Distillate fuel oil ...

48

International Energy Annual 2001 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Office of Energy Markets and End Use U.S. Department of Energy ... Coal includes anthracite, subanthracite, bituminous, subbituminous, lignite, and brown coal.

49

Table 8.5b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Municipal solid waste from biogenic sources, landfill gas, ...

50

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

51

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

52

Comparison of coal and iron requirements between bituminous coal hydrogenation and low temperature carbonization (L. T. C. ) followed by hydrogenation  

SciTech Connect

Plants producing 100,000 tons/yr aviation gasoline and 25,000 tons/yr of liquid petroleum gasoline (L.P.G.) by hydrogenation of coal and 100,000 tons/yr of aviation gasoline, 15,000 tons/yr L.P.G., and 912,000 tons/yr of excess L.T.C. coke by L.T.C. followed by hydrogenation of the L.T.C. tar are considered. Specific data are included on L.T.C., specific data for L.T.C. tar hydrogenation, and total coal requirement for L.T.C. of coal and hydrogenation of the L.T.C. tar. Information is also included on hydrogenation of bituminous coal and iron requirements. Three charts show differences between various bituminous coal conversion processes. The iron requirements for L.T.C. and tar hydrogenation was 100,500 tons and for bituminous coal hydrogenation it was 123,300 tons. An input of 1,480,000 tons of L.T.C. coal was calculated. The power coal requirement for L.T.C. and hydrogenation was 1,612,000 tons. The coal requirement for tar hydrogenation was 482,000 tons and 1,130,000 tons for surplus coke and gas. Therefore about 30% of the total coal was used for aviation gasoline and L.P.G. and about 70% for surplus coke and gas.

1943-04-21T23:59:59.000Z

53

Stability of the bituminous coal microstructure upon exposure to high pressures of helium  

Science Conference Proceedings (OSTI)

Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 {mu}m. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 {mu}m for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated. 35 refs., 5 figs., 1 tab.

Richard Sakurovs; Andrzej P. Radliski; Yuri B. Melnichenko; Tomas Blach; Gang Cheng; Hartmut Lemmel; Helmut Rauch [CSIRO Energy Technology, Newcastle, NSW (Australia)

2009-09-15T23:59:59.000Z

54

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

55

Pore size distribution and accessible pore size distribution in bituminous coals  

Science Conference Proceedings (OSTI)

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Sakurovs, Richard [ORNL; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

56

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

57

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

58

JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

Dennis Laudal

2008-05-01T23:59:59.000Z

59

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

Science Conference Proceedings (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

60

Microsoft Word - Responses for IRS Notices 2006 24 and 25 May 4 2006.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6-24, Qualifying Advanced Coal Project Program, 6-24, Qualifying Advanced Coal Project Program, IRS Notice 2006-25, Qualifying Gasification Program May 4, 2006 DOE is answering questions related only to DOE certifications. Other questions should be directed to the IRS by calling Doug Kim or Kathy Reed at (202) 622-3110, or by faxing the questions to them at (202) 622-4779. 21. Waste Coal. Is it correct that a low-cost anthracite culm (i.e., culm is defined as coal waste that consists of coal and rock with varying amounts of carbon material remaining after removal of a higher-quality saleable coal) qualifies for clean coal investment tax credits under sections 48A and 48B? Kindly assume that the producer procured the culm from a culm bank (i.e., ubiquitous piles or other depository of culm on

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1...

62

Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report  

Science Conference Proceedings (OSTI)

Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

1993-03-01T23:59:59.000Z

63

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

64

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of preconversion heat soak with coal liquids  

SciTech Connect

A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

1992-07-01T23:59:59.000Z

65

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1992--June 30, 1992  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

66

Anthracite Power & Light | Open Energy Information  

Open Energy Info (EERE)

Power & Light Place Pennsylvania Utility Id 56220 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 -...

67

Definition: Anthracite coal | Open Energy Information  

Open Energy Info (EERE)

for the majority of global production; other producers are Russia, Ukraine, North Korea, Vietnam, the UK, Australia and the US. Total production in 2010 was 670 million tons....

68

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [High temperature soaking coal in coal liquids prior to liquefaction  

SciTech Connect

Soaking coal in coal liquids at 300-400[degrees]C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

1992-10-01T23:59:59.000Z

69

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, July 1, 1992--September 30, 1992  

SciTech Connect

Soaking coal in coal liquids at 300-400{degrees}C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

1992-10-01T23:59:59.000Z

70

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

Science Conference Proceedings (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

71

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

Science Conference Proceedings (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

72

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 2: Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Coal Coal is a mixture of organic mineral material produced by a natural process of growth and decay, or an accumulation of debris both vegetal and mineral with some sorting and stratification. The process is accomplished by chemical, biological, bacteriological and metamorphic action. 1 Forms of Coal Coal is a hydrocarbon that is classified according to the amount of heat it produces. Heat content depends upon the amount of fixed carbon it contains. Rank is the degree of progressive alteration in the transformation from lignite to anthracite. There are four primary ranks of coal: * Anthracite (semi-anthracite, anthracite, and meta-anthracite) * Bituminous (high-volatile, medium-volatile, and low-volatile) * Subbituminous * Lignite (brown coal and lignite)

73

Special precautions for multiple short-delay blasting in coal mines  

SciTech Connect

Special precautions for multiple short-delay blasting of coal in underground mines are presented in this circular to guide safety engineers, shot firers, and coal-mine inspectors. These new safety recommendations are suggested in addition to those normally followed in blasting, as outlined in the Federal Mine Safety Codes for bituminous-coal, lignite, and anthracite mines.

Nagy, J.; Hartmann, I.; Van Dolah, R.W.

1959-01-01T23:59:59.000Z

74

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network (OSTI)

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

75

Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil  

DOE Patents (OSTI)

Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

Rodgers, Billy R. (Concord, TN); Edwards, Michael S. (Knoxville, TN)

1977-01-01T23:59:59.000Z

76

Evaluation of fluorescent lighting systems in various underground coal mines. Final report, May 1975-June 1978  

SciTech Connect

This report describes a variety of coal mining lighting projects that were funded by the Bureau of Mines to obtain underground lighting experience in support of new lighting requirements for underground coal mines. Some of the variables covered were low and high coal, narrow and wide entries, conventional and continuous mining, ac and dc power, bituminous and anthracite coal, machine mounting, and area lighting.

Ketler, A.E.

1979-05-01T23:59:59.000Z

77

THE BEST MEASURE OF A UNIVERSITY IS THECOLLECTIVE  

E-Print Network (OSTI)

Russian government conceived a program for doubling the output of Russian coal #12;v v v n v COAL mines in ocoupy high positions are the Hudson Coal Company, Weston Dodson Company, East Alden Mining Company to the anthracite field. In the mining of bituminous coal, the techniml and exmu- tive skill of its graduates

Napier, Terrence

78

Effects of Anthracite on Pelletization of Hematite Ore  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

79

Deformation behaviour of bitumen and bituminous mixes  

E-Print Network (OSTI)

is the temperature at which a bitumen disc contained in a brass ring under the loading of a steel ball will touch a base plate 25 mm below the ring when the sample temperature is raised at 5oC per minute (BS2000-58, 1983). Chapter 2. Review of previous research...

Ossa, Edgar Alexander

2005-03-15T23:59:59.000Z

80

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

82

Model documentation of the Short-Term Coal Analysis System  

Science Conference Proceedings (OSTI)

The short-term coal analysis system (SCOAL) is used by the Data Analysis and Forecasting Branch (DAFB) as an analytic aid to support preparation of short-term projections of bituminous coal and lignite production at the state level, and anthracite production, domestic imports of coal, and domestic and export demand for US coal at the national level. A description of SCOAL is presented which includes a general overview of the model and its analytical capabilities. (DMC)

Not Available

1983-04-01T23:59:59.000Z

83

Exergetic, thermal, and externalities analyses of a cogeneration plant  

SciTech Connect

A thermodynamic study of an 88.4 MW cogeneration plant located in the United States is presented in this paper. The feedstock for this actual plant is culm, the waste left from anthracite coal mining. Before combustion in circulating fluidized bed boilers, the usable carbon within the culm is separated from the indigenous rock. The rock and ash waste from the combustion process fill adjacent land previously scared by strip mining. Trees and grass are planted in these areas as part of a land reclamation program. Analyses based on the first and second laws of thermodynamics using actual operating data are first presented to acquaint the reader with the plant's components and operation. Using emission and other relevant environmental data from the plant, all externalities study is outlined that estimates the plant's effect on the local population. The results show that the plant's cycle performs with a coefficient of utilization of 29% and all approximate exergetic efficiency of 34.5%. In order to increase these values, recommended improvements to the plant are noted. In addition, the externality costs associated with the estimated SO{sub 2} and NOx discharge from the culm fed plant are lower (85-95%) than those associated with a similarly sized coal fed plant. The plant's cycle efficiencies are lower than those associated with more modern technologies; such as all integrated gas turbine combined cycle. However, given the abundant, inexpensive supply of feedstock located adjacent to the plant and the environmental benefit of removing culm banks, the plant's existing operation is unique from an economical and environmental viewpoint.

Bailey, M.B.; Curtiss, P.; Blanton, P.H.; McBrayer, T.B. [Rochester Institute of Technology, Rochester, NY (United States). Dept. of Mechanical Engineering

2006-02-15T23:59:59.000Z

84

Organic emissions from coal pyrolysis: mutagenic effects. Environ. Health Perspect. 73  

E-Print Network (OSTI)

Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53,um) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous> high volatile bituminous> lignite> anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous>> subbituminous = lignite>> anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production.

Andrew G. Braun; Mary J. Wornat; T Amitava Mitra; Adel F. Sarofimt

1987-01-01T23:59:59.000Z

85

Combustion characterization of coals for industrial applications  

Science Conference Proceedings (OSTI)

The five parent coals ear-marked for this study have been characterized. These coals include (1) a Texas (Wilcox) lignite; (2) a Montana (Rosebud) subbituminous; (4) an Alabama (Black Creek) high volatile bituminous; and (5) a Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The FI is indicative of the ignition temperature of a given fuel on a relative basis. The combustion kinetic parameters (apparent activation energies and frequency factors) of Montana subbituminous and Pennsylvania anthracite chars have also been derived from data obtained in the Drop Tube Furnace System (DTFS). This information depicts the combustion characteristics of these two coal chars. 1 ref., 5 figs., 4 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1982-11-01T23:59:59.000Z

86

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

87

EIS-0357: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0357: Final Environmental Impact Statement Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, Pennsylvania This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project has been selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

88

EIS-0357: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Final Environmental Impact Statement 57: Final Environmental Impact Statement EIS-0357: Final Environmental Impact Statement Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, Pennsylvania This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project has been selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

89

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

90

Predictors of plasticity in bituminous coals. Final technical report  

SciTech Connect

A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

1984-02-01T23:59:59.000Z

91

Updated Costs (June 2011 Basis) for Selected Bituminous Baseline...  

NLE Websites -- All DOE Office Websites (Extended Search)

were also closer in size to the baseline cases. * Cases 1, 2, 13 and 14, Account 8.3 (Condenser and Auxiliaries): The condenser costs were re-calibrated using a series of more...

92

Compilation of air-pollutant emission factors. Volume 1. Stationary point and area sources, Fourth Edition. Supplement B  

Science Conference Proceedings (OSTI)

In the supplement to the Fourth Edition of AP-42, new or revised emissions data are presented for Bituminous And Subbituminous Coal Combustion; Anthracite Coal Combustion; Residential Wood Stoves; Waste Oil Combustion; Refuse Combustion; Sewage Sludge Incineration; Surface Coating; Polyester Resin Plastics Product Fabrication; Soap and Detergents; Grain Elevators and Processing Plants; Lime Manufacturing; Crushed Stone Processing; Western Surface Coal Mining; Wildfires and Prescribed Burning; Unpaved Roads; Aggregate Handling And Storage Piles; Industrial Paved Roads; Industrial Wind Erosion; and Appendix C.3, Silt Analysis Procedures.

Not Available

1988-09-01T23:59:59.000Z

93

Process for producing electrodes from carbonaceous particles and a boron source  

Science Conference Proceedings (OSTI)

A method is described of making an electric arc furnace graphite electrode comprising: (a) calcining a carbonaceous material selected form the group consisting of anthracite coal, bituminous coal, lignites, and nos. 2 and 3 cokes; (b) mixing the calcined carbonaceous material with pitch, a lubricant, and a boron source selected from the group consisting of elemental boron, boron carbide, silicon tetraboride, and iron boride, in an amount such that the boron content is from about 0.1 to about 5.0 percent by weight of the graphite electrode to form a mixture; (c) extruding the mixture into an electrode form; (d) and graphitizing the electrode form to provide a graphite electrode.

Sara, R.V.

1988-09-13T23:59:59.000Z

94

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

95

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

96

Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

97

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

98

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

99

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian .............................................. 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama ................................................... .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .................................... .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .......................................................... .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1

100

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Injury experience in coal mining, 1989  

Science Conference Proceedings (OSTI)

This Mine and Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

Not Available

1990-01-01T23:59:59.000Z

102

Injury experience in coal mining, 1992  

Science Conference Proceedings (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

Reich, R.B.; Hugler, E.C.

1994-05-01T23:59:59.000Z

103

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

104

Supplement a to compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Fifth edition  

Science Conference Proceedings (OSTI)

This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sand and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.

NONE

1996-02-01T23:59:59.000Z

105

Combustion characterization of coals for industrial applications. First quarterly progress report, 1 April 1982-30 June 1982  

SciTech Connect

Three of the five coals ear-marked for this study have been characterized. These coals include (1) A Montana (Rosebud) subbituminous; (2) An Illinois (No. 6) high volatile bituminous; and (3) A Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The (FI) is indicative of the ignition temperature of a given fuel on a relative basis. These analyses yielded information regarding the ASTM classification of the three coals as well as their chemical, physical, and ignitibility characteristics. 1 figure, 2 tables.

Borio, R.W.; Goetz, G.J.; Nsakala ya Nsakala; Patel, R.L.

1982-08-01T23:59:59.000Z

106

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

production coal-derived hydrocarbons. Coal is more easily recovered and more widely available than oil shale and

Seth, M.

2010-01-01T23:59:59.000Z

107

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

Improved coal liquefaction was reinvestigated for the current two-stage process on the basis of the associated molecular nature of coal. Since a significant portion of coal molecules are physically associated as pointed in our recent paper, physical dissolution should be considered. The step-wise, high-temperature soaking is a simple and effective method for coal dissolution. Larger dissolution makes liquefaction severity lower. Broad molecular mass distribution in the associated coal was another important factor. The selective reaction of fractions with high molecular weight isolated after the high-temperature soaking makes gas yield lower. Tests using an autoclave by the concept shown in Figure 5 enabled to more oil and 15-20% less gas yields. It is expected that the procedure will result in great cost reduction in coal liquefaction.

1993-01-01T23:59:59.000Z

108

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

109

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

of char and gases. The Fischer-Tropsch process is an exampleprocess economics, the Fischer-Tropsch process has not beenevaluations for a Fischer-Tropsch plant in the United

Holten, R.R.

2010-01-01T23:59:59.000Z

110

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

July 22, 1974. Project Western Coal: Conversion of Coal Intoand Gasification of Western Coals", in proceedings of ERDA/Investigators' Conference - Coal Research, Colorado School

Holten, R.R.

2010-01-01T23:59:59.000Z

111

THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

W. S. , "Solvent Treatment of Coal", Mills and Boon, London,of this solvent with the coal structure. When coupled withis indeed quite an unusual coal solvent. REFEREMCES Oele, A.

Grens III., Edward A.

2013-01-01T23:59:59.000Z

112

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

I.D I.D XBL 7111- 11389 g. s urn coal iurn REfERENCES 1. W.H. Wiser, Coal Catalysis, Proceedings of the EPRIC. Howard. Chern; (John Wil of Coal Utilization H. H. lowry.

Seth, M.

2010-01-01T23:59:59.000Z

113

Development of coker feeds from aromatic oil and bituminous coal digests.  

E-Print Network (OSTI)

??Kingwood coal has been digested with two coal derived (anthracene oil and carbon black base) and two petroleum derived (slurry oil and Maraflex oil) aromatic… (more)

Clendenin, L. Mitchell.

2004-01-01T23:59:59.000Z

114

Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model  

Science Conference Proceedings (OSTI)

Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

2009-09-15T23:59:59.000Z

115

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

Investigation of Molten-Salt/Organic-Solvent CombinationsAs an alternative to molten salts, inorganic acids are aniii) Investigation of molten-salt/organic- Dee Extraction of

Seth, M.

2010-01-01T23:59:59.000Z

116

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

Liquefaction Chemistry B. Molten Salt Catalysis RationaleUsed Equipment and Procedure Molten Salt a. b. c. Treat~entEquipment and Procedure Molten Salt Treatment a. Equipment

Holten, R.R.

2010-01-01T23:59:59.000Z

117

Stable aqueous suspension of partial oxidation ash, slag and char containing polyethoxylated quaternary ammonium salt surfactant  

SciTech Connect

This patent describes a pumpable aqueous suspension of particulate matter with reduced viscosity and increased resistance to sedimentation. It has a particle size in the range of about 37-2000 microns as produced by quench cooling of scrubbing the hot raw effluent gas stream comprising H/sub 2/+CO at a temperature in the range of about 1700{sup 0}F - 3000{sup 0}F from the partial oxidation of solid carbonaceous fuel selected from the group consisting of anthracite, bituminous, sub-bituminous and lignite coal, coke from coal, petroleum coke, coal liquefaction solid residue, oil shale, tar sands, asphaltic bitumen, and mixtures thereof. Wherein the aqueous suspension comprises water, about 1.0-50.0 weight percent of the particulate matter consisting of a mixture of slag and char, and about 0.1-10.0 weight percent of a polyethoxylated quaternary ammonium salt surfactant of the formula: where R is an alkyl radical selected from the group consisting of coco, tallow, lauryl, oleyl, and octadecyl, and x+y has a value in the range of 2-15.

Najjar, M.S.; Yaghmaie, F.; Sorell, L.S.

1989-08-29T23:59:59.000Z

118

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

Science Conference Proceedings (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

119

Combustion characterization of coals for industrial applications. Final technical report, January 1, 1981-May 29, 1985  

Science Conference Proceedings (OSTI)

In-depth fundamental information was obtained from a two-inch inner diameter laminar flow reactor referred to as the Drop Tube Furnace System (DTFS). This information consists of the following: (1) pyrolysis kinetic characteristics of four coals of various rank (Texas lignite, Montana subbituminous, Alabama high volatile bituminous, and Pennsylvania anthracite); and (2) combustion kinetic studies of chars produced from the foregoing parent coals. A number of standard ASTM and special in-house bench scale tests were also performed on the coals and chars prepared therefrom to characterize their physicochemical properties. The pilot scale (500,000 Btu/hr) Controlled Mixing History Furnace (CMHF) was used to determine the effect of staged combustion on NO/sub x/ emissions control from an overall combustion performance of the Alabama high volatile bituminous coal. The quantitative fundamental data developed from this study indicate significant differences in coal/char chemical, physical, and reactivity characteristics, which should be useful to those interested in modeling coal combustion and pyrolysis processes. These results underscore the fact that coal selection is one of the keys governing a successful coal conversion/utilization process. The combustion kinetic information obtained on the high volatile bituminous coal has been used in conjunction with combustion engineering's proprietary mathematical models to predict the combustion performance of this coal in the Controlled Mixing History Furnace. Comparison of the predicted data with the experimental results shows a virtually one-to-one scale-up from the DTFS to the CMHF. These data should provide vital information to designers in the area of carbon burnout and NO/sub x/ reduction for large scale coal utilization applications. 31 refs., 28 figs., 17 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1985-03-01T23:59:59.000Z

120

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

Science Conference Proceedings (OSTI)

Previous sampling has shown that air pollution control devices can have a significant impact on mercury and other trace elements. For example, selective catalytic reduction (SCR) can substantially increase the percentage of oxidized mercury that can then be removed by a wet flue gas desulfurization (FGD) system. The electrostatic precipitator (ESP) also readily captures most of the trace elements of interest. The emission of these trace elements is then directly related to the overall particulate collect...

2008-08-12T23:59:59.000Z

122

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 Alabama Alaska Arizona Arkansas Colorado Illinois Indiana Kansas Kentucky Total Louisiana Maryland Mississippi Missouri Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Total Tennessee Texas Utah Virginia Washington West Virginia Total Wyoming Appalachian Total Interior Total Western Total East of Miss. River West of Miss. River U.S. Total State / Region Domestic Foreign 19,449 1,398 8,027 4 33,125 31,076 36,379 437 125,333 98,027 27,306 4,257 7,689 3,593 391 41,570 26,473 30,265 23,139 1,920 73,815 2,902 70,913 2,633 44,531 24,519 31,789 2,580 145,321 42,435 102,886 449,638 401,863 149,893 617,595 500,216 669,134 1,169,350 Total East West Anthracite Bituminous Northern Southern 13,425 964 8,027 4 32,326 30,836 36,379 437 121,621 94,315 27,306 4,257 7,277 3,593

123

file://J:\mydocs\Coal\Distribution\2003\distable1.HTML  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2003 and Foreign Distribution of U.S. Coal by State of Origin, 2003 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 16,639 3,902 20,541 Alaska 856 232 1,088 Arizona 12,093 - 12,093 Arkansas 6 - 6 Colorado 34,997 898 35,895 Illinois 31,751 55 31,806 Indiana 35,350 - 35,350 Kansas 154 - 154 Kentucky Total 113,241 906 114,146 East 92,391 890 93,282 West 20,849 15 20,865 Louisiana 3,959 - 3,959 Maryland 4,955 596 5,551 Mississippi 3,739 - 3,739 Missouri 345 - 345 Montana 36,181 541 36,721 New Mexico 27,138 - 27,138 North Dakota 31,077 - 31,077 Ohio 21,770 176 21,945 Oklahoma 1,645 - 1,645 Pennsylvania Total 57,362 3,562 60,924 Anthracite 2,805 68 2,873 Bituminous 54,557 3,494 58,051 Tennessee 2,551 2 2,553 Texas 47,506 8 47,513 Utah 23,276 318 23,594 Virginia 26,000 6,117 32,117 Washington 6,232 - 6,232 West Virginia Total 134,359

124

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

2. World recoverable coal reserves as of January 1, 2009 2. World recoverable coal reserves as of January 1, 2009 billion short tons Recoverable reserves by coal rank Region/country Bituminous and anthracite Subbituminous Lignite Total 2010 production Reserves-to- production ratio (years) World total 445.0 285.9 215.2 946.1 7.954 119 United Statesa 118.4 107.2 33.1 258.6 1.084 238 Russia 54.1 107.4 11.5 173.1 0.359 482 China 68.6 37.1 20.5 126.2 3.506 36 Other non-OECD Europe and Eurasia 42.2 18.9 39.9 100.9 0.325 311 Australia and New Zealand 40.9 2.5 41.4 84.8 0.473 179 India 61.8 0.0 5.0 66.8 0.612 109 OECD Europe 6.2 0.9 54.5 61.6 0.620 99 Africa 34.7 0.2 0.0 34.9 0.286 122 Other non-OECD Asia 3.9 3.9 6.8 14.7 0.508 29 Other Central and South America 7.6 1.0 0.0 8.6 0.085 101

125

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Underground Mining Method, 2012 Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 29. Average Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Continuous 1 Conventional and Other 2 Longwall 3 Total Alabama w - w 107.73 Arkansas w - - w Colorado w - 37.18 w Illinois 48.08 - 59.51 54.18 Indiana 52.94 - - 52.94 Kentucky Total w w - 62.24 Kentucky (East) w w - 79.23 Kentucky (West) 50.18 - - 50.18 Maryland w - - w Montana - - w w New Mexico - - w w Ohio w - w 49.39 Oklahoma w - - w Pennsylvania Total 94.53 w 65.01 w Pennsylvania (Anthracite) w w - 82.71 Pennsylvania (Bituminous) w - w 72.67 Tennessee w - - w Utah w - 34.99

126

Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation  

SciTech Connect

Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

2007-07-01T23:59:59.000Z

127

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Operating Heat Rate for Selected Energy Sources, . Average Operating Heat Rate for Selected Energy Sources, 2002 through 2012 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2002 10,314 10,641 9,533 10,442 2003 10,297 10,610 9,207 10,422 2004 10,331 10,571 8,647 10,428 2005 10,373 10,631 8,551 10,436 2006 10,351 10,809 8,471 10,435 2007 10,375 10,794 8,403 10,489 2008 10,378 11,015 8,305 10,452 2009 10,414 10,923 8,159 10,459 2010 10,415 10,984 8,185 10,452 2011 10,444 10,829 8,152 10,464 2012 10,498 10,991 8,039 10,479 Coal includes anthracite, bituminous, subbituminous and lignite coal. Waste coal and synthetic coal are included starting in 2002. Petroleum includes distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil.

128

table7.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002; 2 Average Prices of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Bituminous and NAICS Coal Subbituminous Coal Petroleum Code(a) Subsector and Industry TOTAL Acetylene Breeze Total Anthracite Coal Lignite Coke Coke Total United States RSE Column Factors: 1.1 2.1 0.6 0.9 0.6 0.9 1.4 0.7 0.9 311 Food 6.42 113.78 0 1.46 W 1.46 0 5.18 0 311221 Wet Corn Milling 3.11 106.84 0 1.32 0 1.32 0 0 0 31131 Sugar 3.14 80.39 0 1.65 W 1.64 0 5.18 0 311421 Fruit and Vegetable Canning 7.09 103.28 0 0 0 0 0 0 0 312 Beverage and Tobacco Products 7.53 123.52 0 2.32 0 2.32 0 0 0 3121 Beverages 7.96 124.83

129

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2001 and Foreign Distribution of U.S. Coal by State of Origin, 2001 State / Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143 Arkansas 13 - 13 Colorado 32,427 894 33,321 Illinois 33,997 285 34,283 Indiana 36,714 - 36,714 Kansas 176 - 176 Kentucky Total 131,546 2,821 134,367 East 107,000 2,707 109,706 West 24,547 114 24,660 Louisiana 3,746 - 3,746 Maryland 4,671 319 4,990 Mississippi 475 - 475 Missouri 366 - 366 Montana 38,459 485 38,944 New Mexico 28,949 - 28,949 North Dakota 30,449 - 30,449 Ohio 25,463 12 25,475 Oklahoma 1,710 - 1,710 Pennsylvania Total 64,392 6,005 70,397 Anthracite 2,852 205 3,057 Bituminous 61,540 5,800 67,340 Tennessee 3,346 28 3,374 Texas 45,019 31 45,050 Utah 24,761 2,144 26,905 Virginia 25,685 7,071 32,756 Washington 4,623 - 4,623 West Virginia Total 144,584

130

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Coal Rank, 2012 Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 31. Average Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Bituminous Subbituminous Lignite Anthracite Total Alabama 106.57 - - - 106.57 Alaska - w - - w Arizona w - - - w Arkansas w - - - w Colorado w w - - 37.54 Illinois 53.08 - - - 53.08 Indiana 52.01 - - - 52.01 Kentucky Total 63.12 - - - 63.12 Kentucky (East) 75.62 - - - 75.62 Kentucky (West) 48.67 - - - 48.67 Louisiana - - w - w Maryland 55.67 - - - 55.67 Mississippi - - w - w Missouri w - - - w Montana w 17.60 w - 18.11 New Mexico w w - - 36.74 North Dakota - - 17.40 - 17.40 Ohio 47.80 - - - 47.80 Oklahoma 59.63 - - - 59.63 Pennsylvania Total 72.57

131

file://C:\Documents%20and%20Settings\ICR\My%20Documents\Coal\Di  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: September 2003 Release Date: September 2003 Next Release Date: Summer 2004 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2002 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 15,552 3,425 18,977 Alaska 847 311 1,158 Arizona 12,971 - 12,971 Arkansas 12 - 12 Colorado 33,904 843 34,748 Illinois 32,719 21 32,740 Indiana 35,391 - 35,391 Kansas 205 - 205 Kentucky Total 123,129 791 123,920 East 98,492 791 99,284 West 24,636 - 24,636 Louisiana 3,810 - 3,810 Maryland 4,632 413 5,044 Mississippi 2,906 - 2,906 Missouri 203 - 203 Montana 37,050 180 37,230 New Mexico 27,555 - 27,555 North Dakota 31,011 - 31,011 Ohio 20,919 68 20,987 Oklahoma 1,394 - 1,394 Pennsylvania Total 59,764 5,530 65,294 Anthracite 2,436 251 2,687 Bituminous 57,328 5,279 62,607 Tennessee 3,229 52 3,281 Texas 45,638 33

132

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

Science Conference Proceedings (OSTI)

By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.

Croft, Gregory D. [University of California, Department of Civil and Environmental Engineering (United States); Patzek, Tad W. [University of Texas, Department of Petroleum and Geosystems Engineering (United States)], E-mail: patzek@mail.utexas.edu

2009-09-15T23:59:59.000Z

133

Model documentation of the Short-Term Coal Analysis System. Volume 2. Model description. [SCOAL  

Science Conference Proceedings (OSTI)

This is the second of three volumes of documentation for the Short-Term Coal Analysis System (SCOAL) developed by the Coal Data Analysis and Forecasting Branch, Office of Coal, Nuclear, Electric, and Alternate Fuels. The principal aim of SCOAL is to project on a quarterly basis the likely contribution of each of the 26 major bituminous coal, lignite, and anthracite producing states to total US production. A secondary objective is to estimate a companion demand-side aggregated by region but disaggregated by end-use sector. In its current use, the two sides are operated in tandem, and serve to cross-validate each other by means of tracking market balances. The purposes of this report are to describe the estimation method, results, and performance evaluation criteria that were deemed relevant in assessing the potential predictive performance of SCOAL's statistically fitted relationships and to discuss the pre- and post-estimation considerations that prevailed over the course of mode development. The single equation parameter estimates, associated significance levels, statistical equation performance measures, and general comments regarding SCOAL's supply and demand side equations are presented.

Not Available

1983-04-01T23:59:59.000Z

134

Injury experience in coal mining, 1991  

Science Conference Proceedings (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

Not Available

1991-12-31T23:59:59.000Z

135

The Effect of Temperature on Dielectric Permitivity and Microwave ...  

Science Conference Proceedings (OSTI)

Dielectric property and microwave absorption property of anthracite were measured ... Effect of Continuous Cooling Rate on Microstructural Transformation of ...

136

Inactivation of OsIRX10 leads to decreased xylan content in ...  

Inactivation of OsIRX10 leads to decreased xylan content in rice culm cell walls and improved ... We subjected destarched AIR samples to hot water ...

137

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 5 - Eastern Bituminous Coal-Fired Power Plant wi th an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8212 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2005-11-28T23:59:59.000Z

138

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 7 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-26T23:59:59.000Z

139

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 4 - Eastern Bituminous Coal-Fired Power Plant wit h an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-31T23:59:59.000Z

140

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 6 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8211 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2006-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1993--June 30, 1993  

DOE Green Energy (OSTI)

This project is focussed on the effective preconversion and liquefaction of coal. One of the main goals of this project was to reduce hydrogen consumption by decreasing the gas yield and increasing the oil yield based on a new structural model of coal. Two factors were critically evaluated during these tasks: (1) maximizing dissolution of associated coal and (2) different reactivity of fractions with different molecular weight. High-temperature soaking at{approximately} 350{degree}C in a coal liquid (recycle oil) was one method for effective dissolution not requiring additional chemicals and/or hydrogen. Two-step soaking at 350{degree}C and 400{degree}C was more effective for maximum dissolution. The addition of a relatively small amount of hydrogen peroxide during soaking slightly enhanced preconversion. Separation of dissolved coal into light and heavy fractions, followed by liquefaction of the heavy fraction, was effective as a means to improve product selectivity. Vacuum distillation was projected for the simple separation method. Cyclohexane extraction was used instead of vacuum distillation since cyclohexane solubles closely resemble the distillable oil fraction. Tests of the suggested procedure inferred a 30% increase in the oil yield and a 15--20% decrease in the gas yield. The effectiveness of the suggested procedure was confirmed from coal/oil ratios (g/ml) of 1/10--{1/2}. Batchwise vacuum distillation was tested, but was not successful due to an inherent problem in resolubilizing pitch samples in coal liquid. Progress this quarter is described.

Not Available

1993-07-01T23:59:59.000Z

142

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Coal Production by Coal-Producing Region and State, 2006 - 2010 2. U.S. Coal Production by Coal-Producing Region and State, 2006 - 2010 (Million Short Tons) Coal-Producing Region and State 2006 2007 2008 2009 2010 Percent Change 2009 - 2010 Appalachia Total 391.2 377.8 390.2 341.4 334.3 -2.1 Alabama 18.8 19.3 20.6 18.8 20.2 7.6 Kentucky, Eastern 93.6 87.1 90.3 74.7 67.4 -9.7 Maryland 5.1 2.3 2.9 2.3 2.5 7.4 Ohio 22.7 22.6 26.3 27.5 27.3 -0.8 Pennsylvania Total 66.0 65.0 65.4 57.9 58.0 0.1 Anthracite 1.5 1.6 1.7 1.7 1.7 0.3 Bituminous 64.5 63.5 63.7 56.2 56.3 0.1 Tennessee 2.8 2.7 2.3 2.0 1.7 -16.1 Virginia 29.7 25.3 24.7 21.0 21.6 2.9 West Virginia Total 152.4 153.5 157.8 137.1 135.6 -1.1 Northern 42.4 42.2 41.1 38.4 41.4 7.9 Southern 110.0 111.3 116.7 98.7 94.2 -4.6

143

Reactivity of heat treated chars  

DOE Green Energy (OSTI)

Reactivities of a number of chars produced from American coals varying in rank from lignite to anthracite have been measured in air, CO/sub 2/, steam and H/sub 2/. The variables chosen for the study were: rank of the parent coal, inorganic matter content, particle size, reaction temperature and pressure as well as heat treatment conditions used during char preparation. In all gasification atmospheres studied, reactivity plots for different chars are essentially of the same general shape and have three distinct regions. The reaction rate first increases slowly with time. The plot then goes through a maximum in slope, followed by a lengthy region of decreasing slope as burn-off approaches 100 percent. The shape of the burn-off curves can be explained on the basis of what is known about the development of porosity and surface area in microporous chars as they undergo gasification. Using an adjustable time parameter, equations have been developed which successfully correlate the reactivity data. Char reactivity decreases, in general, with increase in rank of the parent coal. Reactivities of chars in air, CO/sub 2/ and steam increase over 150-fold in going from a low volatile bituminous to a lignite parent coal; the spread in char reactivities in H/sub 2/ is only 30-fold. Removal of inorganic matter from coal precursors prior to their charring or from chars produced from the raw coals has a marked effect on char reactivity and surface area. Removal of inorganic matter (by acid washing) decreases, in general, reactivity of chars produced from lower rank coals, whereas reactivities of chars derived from higher rank coals increase.

Mahajan, O. P.; Walker, Jr., P. L.

1977-01-01T23:59:59.000Z

144

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

145

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

Unknown

2001-07-01T23:59:59.000Z

146

Emissions of air toxics from coal-fired boilers: Arsenic  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

1994-08-01T23:59:59.000Z

147

Emissions of airborne toxics from coal-fired boilers: Mercury  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

148

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

149

Making Direct Reduced Iron from Millscale Containing Coal by ...  

Science Conference Proceedings (OSTI)

Millscale fines have good microwave heating characteristics, better than anthracite .... Tile Production Using Wastes from Mining Industry of the Mining District ...

150

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... wind, geothermal, biomass and ethanol ... The heat content of anthracite coal consumed in the United States averages 25 million ...

151

CARBON TECHNOLOGY: Session V: Cathode - TMS  

Science Conference Proceedings (OSTI)

ECA (Electrically Calcined Anthracite) is the main raw material for the carbon part of the electrolysis cells. Demand for increased potlife and more efficient ...

152

Glossary | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Account of others (natural gas): ... Note: Since the 1980's, anthracite refuse or mine waste has been used for steam electric power generation.

153

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas utility demand-side management (DSM) program sponsor: A DSM ... refuse bank, slurry dam, and dredge operations except for Pennsylvania anthracite.

154

Materials and Systems  

Science Conference Proceedings (OSTI)

A14: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A15: Purification of Metallurgical Grade ...

155

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 167 Glossary Anthracite: ... the electric department at tariff or other specified rates

156

Evolution of the Thermo-Mechanical Properties of Ramming Paste ...  

Science Conference Proceedings (OSTI)

This anthracite and coal tar pitch mixture bakes during the cell start-up and chemical ... and Air Permeability Through Process Optimization and Coke Blending.

157

Idaho - U.S. Energy Information Administration (EIA) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report ... Power System Outage Task Force, ... com, Stories from PA History, Overview: Mining Anthracite: Nuclear:

158

"Table A42. Average Prices of Purchased Energy Sources by...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonutility(c)","Total","from Utility(b)","from Nonutility(c)","Total","Total","Anthracite","Coal","Lignite","Coal Coke","Breeze","Petroleum Coke","Waste","from...

159

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

dividing total production by total labor hours worked by all mine employees except office workers; beginning in ... 1978 and Coal—Pennsylvania Anthracite 1977; ...

160

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

anthracite, were originally ... in 1998, the calculation also includes office workers. R=Revised. P=Preliminary. NA=Not available. 2 Beginning in 2001, ...

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Exhibitor: SKAMOL  

Science Conference Proceedings (OSTI)

... Carbon Skamol markets two types of ramming pastes based on Electrically Calcined Anthracite (ECA). ... For further information contact one of our offices:.

162

Application of Advanced Microscopy to Elucidate Materials ...  

Science Conference Proceedings (OSTI)

... Office of Energy Efficiency and Renewable Energy and ORNL's ShaRE User ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass ...

163

Poster Session  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... The presentation will report the synthesis of alternative porous materials, ...

164

Designing Advanced Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

165

Recent Progress on the Development of High Performance ...  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

166

Materials for Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

167

Pennsylvania Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Pennsylvania Quick Facts. Pennsylvania was the fourth largest coal-producing State in the Nation in 2011, and the only State producing anthracite coal, which has a ...

168

Multifunctional Molybdenum Back Contacts for CIGS Solar Cells on ...  

Science Conference Proceedings (OSTI)

... and optimized surface morphology while acting as a sodium supply. ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

169

A15: Purification of Metallurgical Grade Silicon by Electron-Beam ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A18: Study on Super Stable All-solid-state Battery at High Temperature.

170

Engineering Point Defects for Charge and Energy Transport in ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

171

Effect of Pore Structure on the Mechanical, Electrical and ...  

Science Conference Proceedings (OSTI)

Anode Properties of MgH2 for All Solid State Lithium Ion Battery ... Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ...

172

Design Guide for Dye-sensitized Solar Cells using ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

173

Thermoelectric Material Design of Half-Heusler (Zr,Ti)NiSn-based ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

174

Nanoscale Thermoelectric Materials and Devices for Energy ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

175

Hierarchical ZnO Nano-tree Growth for High Efficiency Solar Cell  

Science Conference Proceedings (OSTI)

Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char ... Three-Dimensional Nickel Nanoparticle/Graphene Aerogel for Direct Ethanol ...

176

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Rank By Mining Method By Location 200 U.S. Energy Information Administration Annual Energy Review 2011 Anthracite Lignite Subbituminous Coal Subbituminous coal and...

177

www.eia.gov  

U.S. Energy Information Administration (EIA)

peter cave mining co. mine #1 martin 159 1504331 prep plant ... lincoln bank #88 3608106 t j mining inc t j #1 3608128 mt carmel co-gen, inc. mt. carmel co-gen culm ...

178

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 10---Eastern-Bituminous Coal-Fired Power Plant w ith an SCR, ESP and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber – fabric filter (SDA-FF) combination. In this program CONSOL is to determine mercury speciation and removal at 10 coal-fired faci...

2005-11-28T23:59:59.000Z

179

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 3 - Eastern Bituminous Coal-Fired Power Plant Wit h an SCR, ESP, and Wet FGD; Impact of Chloride Addition  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber - fabric filter (SDA-FF) combination. In this program CONSOL is determining mer...

2006-04-26T23:59:59.000Z

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

including lignite and sub-bituminous coal, make up about half of U.S. coal production and reserves. They have lower energy and sulfur contents than bituminous coal, but higher...

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

182

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

183

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

184

DeSouza2012.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition Composition and Structure of Sugarcane Cell Wall Polysaccharides: Implications for Second-Generation Bioethanol Production Amanda P. de Souza & DĂ©bora C. C. Leite & Sivakumar Pattathil & Michael G. Hahn & Marcos S. Buckeridge # Springer Science+Business Media New York 2012 Abstract The structure and fine structure of leaf and culm cell walls of sugarcane plants were analyzed using a com- bination of microscopic, chemical, biochemical, and immu- nological approaches. Fluorescence microscopy revealed that leaves and culm display autofluorescence and lignin distributed differently through different cell types, the for- mer resulting from phenylpropanoids associated with vas- cular bundles and the latter distributed throughout all cell walls in the tissue sections. Polysaccharides in leaf and culm walls are quite similar, but differ in the proportions

185

Guidelines for Manuscript Preparation for Publication in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

cement pyroprocess. The European Cement Research Academy (ECRA) has estimated that modern anthracite- and lignite-fired power plants emit 750 or 950 grams(g) CO 2 kWh,...

186

Winter'04Ash4-5  

NLE Websites -- All DOE Office Websites (Extended Search)

PA In eastern Pennsylvania, there are several pre-act stripping pits in the middle of an anthracite coal basin where active strip and deep mining for coal was practiced since the...

187

Heterojunction Organic Photovoltaics– Nano Morphology Control ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

188

Thermoelectric Properties of Iron Aluminum Alloys  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

189

A2: Corrosion Problems in Heat Recovery for Water Heating  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

190

Highly Efficient Polymer Light-Emitting Diodes Using Graphene ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

191

Electrochemical Performance of LiMn0.5-xNi0.5-xAl2xO2 by ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

192

Materials for Organic Photovoltaic Solar Cells PBTTT and PTB7  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

193

Porous Graphene Nanosheets for Li-ion Battery Anodes  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

194

Molten Salt Electrorefining of Zr-Hf Impure Metal for Nuclear ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

195

A11: Renewable Thermoenergetic Resources in the ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

196

Synthesis, Characterization and Pseudo-Capacitive Performance of ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

197

Study of Electronic Conductivity of LiNi 0.5 Mn 1.5 O 4 Cathode ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

198

Porous Silicon/Carbon Nanocomposite as Anode Materials for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

199

A1: 3D TiO2 Long Nanotube Arrays Manufactured by Anodization of ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

200

Effects of Alloy Microstructure and Manganese Cobaltite Coatings ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Novel LSM/GDC Composite Materials Used as Cathode Supports ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

202

Reaction Mechanism of Hydrogen Storage Materials with High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

203

HIgh Yield Fabrication of Semiconductor Nanoparticles for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

204

Study on Preventing Volume Expansion of Amorphous Si/Sn ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

205

Co3O4/reduced Graphene Oxide Nanocomposites for High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

206

Porous Materials for Fuel Gas Storage  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

207

First-principles Study Using Hybrid-density Functional Theory for the ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

208

Europe and Middle-East International Oil Business: How to Reach ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

209

Activation of TiFe Intermetallics for Hydrogen Storage Using High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

210

Carbon-coated LiFePO4/porous Carbon Composites as Cathode ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

211

Residential coal use: 1982 international solid fuel trade show and conference Atlantic City, New Jersey. [USA; 1974; By state  

Science Conference Proceedings (OSTI)

The US Department of Energy's anthracite and residential coal programs are described. The residential coal effort is an outgrowth and extension of the anthracite program, which has been, and continues to be, involved in promoting increased production and use of anthracite and the restoration of anthracite as a viable economic alternative to soft coals and to imported oil and gas now supplying the Northeast. Since anthracite is a preferred fuel for residential heating, residential coal issues comprise an important part of our anthracite activities. We have commenced a study of residential coal utilization including: overview of the residential coal market; market potential for residential coal use; analysis of the state of technology, economics, constraints to increased use of coal and coal-based fuels in residential markets, and identification of research and development activities which would serve to increase the market potential for coal-fired residential systems. A considerable amount of information is given in this report on residential coal furnaces and coal usage in 1974, prices of heating oils and coal, methods of comparing these fuels (economics), air pollution, safety, wood and wood furnaces, regulations, etc.

Pell, J.

1982-06-01T23:59:59.000Z

212

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 4.16. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, November 2013 Bituminous ...

213

THE CHEMISTRY OF COAL MODEL COMPOUNDS -CLEAVAGE OF ALIPHATIC BRIDGES BETWEEN AROMATIC NUCLEI CATALYSED BY LEWIS ACIDS  

E-Print Network (OSTI)

and Background I. II. III. IV. II. Coal Liquefaction . •Coal Structure • • . Lewis Acid Catalysts. Scope andOrganic Structure of Bituminous Coal", Proceedings, Stanford

Taylor, Newell D.

2011-01-01T23:59:59.000Z

214

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

into the substantial reserves of mid- and high-sulfur bituminous coal in Illinois, Indiana, and western Kentucky and from lignite mines in Texas and Louisiana. Appalachian coal...

215

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2011 Bituminous Subbituminous Lignite Census Division and State Receipts...

216

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

- Lehigh University This project determines the feasibility of using low grade power plant waste heat to dry lignite and sub-bituminous coals before they are burned in...

217

Kansas Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... is the fifth largest natural gas field in the United States. Minor reserves of bituminous coal are found in the Cherokee basin in the southeastern corner of the ...

218

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

... is the fifth largest natural gas field in the United States. Minor reserves of bituminous coal are found in the Cherokee basin in the southeastern corner of the ...

219

New NIST SRMs/RMs  

Science Conference Proceedings (OSTI)

... µmol/mol, and will primarily support power plants aiming to ... This is a list of our most recent ... SRM 2684b Bituminous Coal (Sulfur and Mercury) New ...

2011-02-23T23:59:59.000Z

220

Chemistry-Processing-Microstructure-Property Relationships III  

Science Conference Proceedings (OSTI)

Oct 28, 2009... perpendicular trenches that were correlated with the EBIC data. ... Manipulation of Electrical Conductivity in Bituminous Coal by CNT Doping: ...

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SANS Publications - Current Year and in Press  

Science Conference Proceedings (OSTI)

... distribution in bituminous coals, R. Sakurovs, L. He, YB Melnichenko, AP Radlinski, T. Blach, H. Lemmel, DF Mildner, Intl. J. of Coal Geology, 100, 1, ...

222

NIST CNR SANS Bonze-Hart Perfect Crystal Diffractometer ...  

Science Conference Proceedings (OSTI)

... distribution in bituminous coals, R. Sakurovs, L. He, YB Melnichenko, AP Radlinski, T. Blach, H. Lemmel, DF Mildner, Intl. J. of Coal Geology, 100, 1, ...

223

Combustion kinetics of coal chars in oxygen-enriched ...  

Science Conference Proceedings (OSTI)

... oil re- covery or coal-bed methane applications [1 ... eastern United States bituminous coal blend provided ... These coals were ground and sieved into a ...

2007-03-13T23:59:59.000Z

224

ZINC CHLORIDE-CATALYZED REACTIONS OF OXYGEN- AND SULFUR-CONTAINING COMPOUNDS WITH MODEL STRUCTURES IN COAL  

E-Print Network (OSTI)

H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,Internat. Conf. Bituminous Coal, 3d ConŁ. , 2, 35 (1932);

Mobley, David Paul

2013-01-01T23:59:59.000Z

225

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Industrial Sector by State, July 2013 Bituminous Subbituminous Lignite; Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight

226

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

227

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

+ hide properties that link here Definition:Alternative-fuel vehicle + , Definition:Battery + , Definition:Biofuels + , Definition:Biopower + , Definition:Bituminous coal + ,...

228

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2011 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

229

www.eia.gov  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT

230

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Coke (coal): A solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal from which the volatile constituents are driven off by ...

231

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

232

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period  

E-Print Network (OSTI)

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian of years produced the bituminous coals currently found in southwestern Indiana. Bituminous coals in Indiana currently ranks as the seventh-largest coal-producing state in the nation and has an estimated 17.57 billion

Polly, David

233

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed- system digestion process employing a Carius tube is used to completely oxidize the coal matrix

234

CANDACE L. KAIRIES BEATTY Department of Geoscience  

E-Print Network (OSTI)

sburgh Disserta on: Characteriza on of Precipitates Associated with Bituminous Coal Mine Drainage on of iron hydroxide precipitates associated with coal mine drainage in the bituminous region. T., Kleinmann, R. L. P., Kairies, C. L., and R. W. Nairn (2003) Passive treatment of coal mine

Polly, David

235

How do we create a m re sustainable  

E-Print Network (OSTI)

materials such as coal fly ash and slag, and developing new materials such as geopolymer concrete include bituminous concrete (as- phalt), portland cement concrete, and aggregates and soils. The Cen- ter. In the area of bituminous concrete, Center researchers are developing Warm Mix Asphalt technology applications

236

ALTERNATIVE THERMAL DESTRUCTION PROCESSES FOR HAZARDOUS WASTES  

E-Print Network (OSTI)

·Product Gas 400 2,000 11,300 Natural Gas 15,900 57,700 11,300 Most of these boilers are very small natural gas Distillate oil Natural gas Residual oil Distillate oil Natural gas Bituminous coal Bituminous coal Percent regulations. Candidate thermal processes include industrial processes such as boilers, process heaters, cement

Columbia University

237

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

238

Undergraduate Research Day April 23, 2008, McKeldin Library  

E-Print Network (OSTI)

Culture on the Media's Portrayal of the 1902 Anthracite Coal Strike Elizabeth Ahn, Christopher De, Jessica Lieberman, and Mary Tellers Controversy over Surface Mine Legislation in the Appalachian Region Karen Jo, Hailey Lin, and Louis Wu The Sociology of Coal Extraction: Tragedy to Change Katherine Mann

Johnson, Raymond L.

239

Catalytic coal liquefaction process  

SciTech Connect

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

240

Catalysts for coal liquefaction processes  

SciTech Connect

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, Diwakar (Macungie, PA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

242

Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-1 Chapter 3 Sulphur  

E-Print Network (OSTI)

to anthracite, peat, oil shales etc., sulphur is present in two inorganic forms, being pyritic sulphur (FeS2) ~ 0.2 Auto shredder residue (ASR) ~ 0.3 Petroleum coke, "petcoke" ~ 5 Leather waste 1 - 2 Estonian oil shale ~ 2 OrimulsionTM ~ 4 Black liquor solids ~ 5 #12;Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-5 3

Zevenhoven, Ron

243

Catalysts for coal liquefaction processes  

DOE Patents (OSTI)

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, D.

1986-10-14T23:59:59.000Z

244

Catalytic coal liquefaction process  

DOE Patents (OSTI)

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

245

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

Science Conference Proceedings (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

246

Definition: Coke | Open Energy Information  

Open Energy Info (EERE)

Coke A solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal; used as a fuel and a reducing agent in smelting iron ore in a blast furnace. Coke from...

247

NETL Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

to Revision Notes IGCC and PC fired with Bituminous Coal CF for IGCC 80%, PC 85% 30-Year, Current -Dollar Levelized Cost of Electricity 150MWh 86MWh +73% 4 DOE CCS...

248

Advisory Board Activities This past April we held the second annual  

E-Print Network (OSTI)

Plains also includes mining operations of high-sulfur bituminous coal. The disturbance of these coal of reference condition, nutrient modeling, Mined Land Lake 27 has excellent water quality and few nutrient

Peterson, Blake R.

249

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

handling and preparation Coal is delivered to plant fromcommercial coal gasification plants, such as coal handlingCoal handling & preparation (Area 100) The Utah bituminous coal feedstock for the plant

Lu, Xiaoming

2012-01-01T23:59:59.000Z

250

Effects of blending, staging and furnace temperature on co-firing of coal and biomass-bagasse.  

E-Print Network (OSTI)

??This manuscript reports on emissions generated from laboratory-scale batch combustion of a high-volatile content bituminous coal, sugar-cane bagasse, and blends thereof. The average bulk equivalence… (more)

Arvind, Joshi Kulbhushan

2008-01-01T23:59:59.000Z

251

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer:...

252

Power Plant Validation of the Mercury Speciation Sampling Method  

Science Conference Proceedings (OSTI)

This report presents results for the field validation study of the Ontario Hydro mercury speciation method. The tests were conducted at a Midwestern plant -- designated as Site E-29 -- burning bituminous coal.

1999-04-16T23:59:59.000Z

253

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007. PC Boiler (No SCR) Steam Bag Filter Wet Limestone FGD...

254

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network (OSTI)

to Elec (RDSF) MSW to Elec (Oil) Source Separation *Million~----------- MSW to Elec (Oil) Source Separation(2) *D.C.Oil Bituminous (Incineration) Coal Particulates Sulphur Oxide Carbon Monoxide Hydrocarbon Nitrogen Oxide Source:

Authors, Various

2011-01-01T23:59:59.000Z

255

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

and P. Fugassi, Phenanthrene Extraction of Bituminous Coal,Coal Science, Advances in Chemistry Series No. 55, 448 C.Mechanism of High Volatile Coal, Coal Science, Advances in

Dorighi, G.P.

2010-01-01T23:59:59.000Z

256

FRAGMENTATION OF COAL AND IMPROVED DISPERSION OF LIQUEFACTION CATALYSTS USING IONIC LIQUIDS.  

E-Print Network (OSTI)

??Coal has been utilized for coal-to-liquid fuels and coal-to-chemical industries both historically in South Africa and recently in China. Abundant bituminous and low-rank coal reserves… (more)

Cetiner, Ruveyda

2011-01-01T23:59:59.000Z

257

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

average unit price of electricity and coal used inyear. The weighted average unit price of Bituminous coal,coal, and coke consumed in the steel industry in 2010 is used as the fuel price

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

258

NETL: Advanced NOx Emissions Control: Control Technology - Ultra...  

NLE Websites -- All DOE Office Websites (Extended Search)

bituminous (Pennsylvania Middle Kittanning). No staging will be employed; a stoichiometric ratio range from 1.10 to 1.28 will be tested, with 17% excess air being the target...

259

CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil  

Science Conference Proceedings (OSTI)

The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as ?3? cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

Romanov, V [NETL

2012-10-23T23:59:59.000Z

260

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 NITROGEN #2NITROGEN #2  

E-Print Network (OSTI)

$/ton) Primary measures Low Nox burners ~50 10 ­ 20 110 - 200 Coal reburning ~50 38 ­ 50 360 - 470 Low NOx concentration in CBFC 12 MW CFBC, bituminous coal, air factor 1.212 MW CFBC, bituminous coal, air factor 1NOx emissionsemissions from coal/woodfrom coal/wood coco--firing in CFBCfiring in CFBC 850°C, air factor 1.25850°C, air

Zevenhoven, Ron

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy & Society Toolkit Appendices Toolkit Appendices  

E-Print Network (OSTI)

Bituminous Coal 25.8 25.8 24.4 27.2 Sub-bituminous Coal 26.2 26.2 25.3 27.3 Lignite 27.6 27.6 24.8 31.3 Oil Shale (& Tar Sandsc ) 29.1 29.1 24.6 34 Peat 28.9 28.9 28.4 29.5 Secondary Fuels / Products BKB & Patent

Kammen, Daniel M.

262

Pilot Plant Assessment of Blend Properties and Their Impact on Critical Power Plant Components  

Science Conference Proceedings (OSTI)

Low-sulfur subbituminous coals, currently in demand to meet regulated SO2 emission standards, are very different in composition from bituminous coal and affect many operating characteristics when fired in boilers designed for bituminous coal. This report documents a pilot-scale study of the relative impacts of a subbituminous coal or blend containing subbituminous coal on unit operating characteristics such as mill performance, furnace wall slagging, convective pass fouling, and electrostatic precipitato...

1999-02-02T23:59:59.000Z

263

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

264

Program on Technology Innovation: Assessment of Coal Cleaning for Near-Zero Emissions (NZE)  

Science Conference Proceedings (OSTI)

The goal of this project was to determine if there are pre-combustion coal cleaning technologies, applicable to bituminous coals, that can result in near-zero emissions (NZE). That would imply removing 90% of the sulfur and mercury and reducing the ash content substantially from all Eastern and Midwestern bituminous coals at the mine site. A comprehensive literature search was completed and an annual coal preparation conference was attended to obtain the most recent information regarding coal ...

2012-11-05T23:59:59.000Z

265

Environmental renaissance in Pennsylvania  

Science Conference Proceedings (OSTI)

During centuries of rapid growth of the coal mining industry and expanded development in Pennsylvania, trees were felled, streams were diverted and strip mining caused much environmental damage. All that has now changed. The article gives examples of land and water restoration carried out by organizations such as the Susquehanna River Basin Commission, the West Branch Susquehanna Restoration Coalition and the Anthracite Region Independent Power Producers Association. The Pennsylvania Department of Environmental Protection directs and coordinates environmental projects. 5 photos.

Stevens, J.

2009-07-15T23:59:59.000Z

266

A study of mining-induced seismicity in Czech mines with longwall coal exploitation  

Science Conference Proceedings (OSTI)

A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.

Holub, K. [Academy of Sciences of the Czech Republic, Ostrava (Czech Republic)

2007-01-15T23:59:59.000Z

267

Adsorption of anionic and cationic surface-active agents by natural coals  

SciTech Connect

Adsorption isotherms were measured in terms of isopropyl-, butyl- and pentyl-amine and isopropyl alcohol for gas coals and anthracite. It was shown that the amount of adsorption depends on the type of coal and the structure of the adsorbate molecules. Cationic surfactants tend to be adsorbed better than anionic. The paper calculates the standard reduction in free energy during adsorption of amines by coal. It was found that the amine adsorption process leads to an increase in pH.

Butuzova, L.F.; Isaeva, L.N.; Saranchuk, V.I.

1983-01-01T23:59:59.000Z

268

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

Miller, R.N.

1986-10-14T23:59:59.000Z

269

Military installations  

Science Conference Proceedings (OSTI)

This report has reviewed the use of U.S. coal at DOD installations in West Germany. DOD reported that between April 1, 1988, and December 31, 1988, it had between 306,000 and 419,000 tons of U.S. coal stored in Germany. About two-thirds of that was anthracite coal. GAO visited six coal-handling locations that accounted for 72 to 79 percent of the total U.S. coal between April and December 1988. This report could not verify the official inventory records at five locations - two Air Force and three Army - for several reasons, including a lack of required physical inventories of coal for recent years. DOD's coal consumption data for fiscal year 1988 appeared to be accurate since it matched the data reported on source documents maintained at the installations and their commands. According to reported DOD coal inventory and consumption data, as of September 30, 1988, DOD had enough anthracite coal on hand to satisfy projected demands through at least fiscal year 1993, given that no additional heating plant conversions other than those already approved occur and no additional shipments of coal occur. DOD said that as of September 30, 1988, it facilities in Germany had enough anthracite coal on hand to last a minimum of five years.

Not Available

1990-03-01T23:59:59.000Z

270

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01T23:59:59.000Z

271

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

272

Pilot Evaluation of the Impact of Chloride on Selective Catalytic Reduction (SCR) Mercury Oxidation  

Science Conference Proceedings (OSTI)

This study investigated the effect of blending Powder River Basin (PRB) coal with an Eastern bituminous coal on the speciation of Hg across a selective catalytic reduction (SCR) catalyst. A pilot-scale coal combustor equipped with an SCR reactor for NOx control was used to evaluate the effect of coal blending on improving Hg oxidation across an SCR catalyst. Several parameters such as the ratio of PRB/bituminous coal blend and the concentrations of hydrogen halides (HCl, HBr, and HF) and halogens (Cl2 an...

2008-03-19T23:59:59.000Z

273

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

274

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ÂşF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

275

Two Stage Liquefaction With Illinois 6 Coal: Volume 2: Run 248  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 248 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run began on 8 February 1985 and continued through 5 May 1985. A total of 170 tons of Illinois No. 6 bituminous coal was fed in 1,904 hours of operation. The primary run objectives included the demonstration of unit and system operability for bituminous coal with the low-contact time (LCT) reactor in place at the thermal liquefaction unit (TLU) in both the Double Integrated T...

1991-03-01T23:59:59.000Z

276

Two Stage Liquefaction With Illinois 6 Coal: Volume 3: Run 250  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 250 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was demonstration of unit and system operability for bituminous coal in the Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode of operation. In CC-ITSL the products from the thermal (first stage) reactor are sent directly ...

1991-03-01T23:59:59.000Z

277

Influence of process changes on PCDD/Fs produced in an iron ore sintering plant  

Science Conference Proceedings (OSTI)

This study investigated the influence of different charge typologies and additives on the PCDD/Fs amount produced and on the congener profiles in an iron ore sintering plant. Many tests were carried out combining different typologies of charge (iron materials) and solid fuel ('coke breeze' or 'anthracite') with or without the use of urea. The PCDD/Fs produced ranged from 1.2 to 22.7 {mu} g I-TEQ/ton of agglomerate, whereas the PCDD/Fs released to the ambient air ranged from 0.10 to 1.92 ng I-TEQ/Nm{sup 3} because of cleaning in an electrostatic precipitator (ESP) and a Wetfine scrubber (WS). A more homogeneous charge with a higher amount of fine particles charge appeared to produce a lower PCDD/Fs concentration due to a better combustion but this hypothesis needs further investigations on charges having different dimension particles. Only a synergitic action of urea and anthracite was able to reduce the high PCDD/Fs content due to the bad combustion of the more inhomogeneous charge with a lower amount of fine particles. The congener profile was a typical combustion process fingerprint because the PCDFs predominated, the highly chlorinated congeners (HeptaCDD and OctaCDD) prevailed in PCDDs, whereas in PCDFs the profile was more varied; 1,2,3,4,6,7,8-HeptaCDF was the main contributor to the total concentration while 2,3,4,7,8-PentaCDF was the main contributor to the I-TEQ concentration. Whereas all the parameters under scrutiny influenced strongly the amount of PCDD/Fs produced, they affected only slightly the fingerprint of PCDD/Fs. In all cases studied, the reduction obtained using urea, anthracite, or the more homogeneous charge with a higher amount of fine particles was slightly greater on the higher chlorinated congeners in respect to the lower ones.

Guerriero, E.; Bianchini, M.; Gigliucci, P.F.; Guarnieri, A.; Mosca, S.; Rossetti, G.; Varde, M.; Rotatori, M. [CNR, Monterotondo (Italy)

2009-01-15T23:59:59.000Z

278

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

279

"Table A42. Average Prices of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Units)" ,,,,,"Noncombustible Energy Sources",,,,,,,,,,,,,,,,,,"Combustible Energy Sources" ,,,,,,,,,,,,,,,"Solids",,,,,,,,,,"Gases",,,,,,,,,"Liquids" " "," ",," "," ",,,,," "," "," "," "," "," "," ",,,"Wood","Wood Residues",,,,,,,,,,,,,,,,,,,," " " "," ",,"Electricity","Electricity","Electricity","Steam","Steam","Steam","Industrial",," ","Bituminous and"," ",," ",,,"Harvested","and Byproducts","Wood and",,"Natural Gas",,,,,,,"Total Diesel Fuel",,,,,"Motor Gasoline",,,,," "

280

Transuranic contaminated waste form characterization and data base  

Science Conference Proceedings (OSTI)

This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

Kniazewycz, B.G.; McArthur, W.C.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 Relative Standard Errors for Table 7.1;" 7.1 Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

282

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

283

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

284

Erroneous coal maturity assessment caused by low temperature oxidation  

E-Print Network (OSTI)

Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

Paris-Sud XI, Université de

285

Thermal dissolution of brown and hard coals with the addition of natural and organosilicon compounds  

Science Conference Proceedings (OSTI)

The addition of activators (natural compounds and their mixtures with organo-silicates) was found to double the yield of liquid products from the thermal solvent extraction of Kansk-Achinsk brown coal, and increase by 20% the yield from Kuzbass bituminous coal. High concentrations of sulphur in the natural additives reduced the extractability of the coal.

Vol-Ehpshtein, A.B.; Gorlov, E.G.; Shataeva, T.A.; Shpil'berg, M.B.

1983-01-01T23:59:59.000Z

286

0 2 4 6 8 10 12 14 Effective Stress(MPa)  

E-Print Network (OSTI)

and Transport Properties of Low-Rank Coal, PRB, WY: Implications for Carbon Sequestration on the mechanical and flow properties of sub-bituminous coal from the Powder River Basin, Wyoming. Lab measurements were conducted on one-inch diameter core samples of coal under hydrostatic

Stanford University

287

Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration  

E-Print Network (OSTI)

and shipped back to the coal mine on the coal train's return trip. The synthesis of other commercially, and methane from coal are readily available at coal-fired electrical generating stations. Generation of thermogenic methane from coal begins in the higher ranks of the high-volatile bituminous coals, and at about

Spiteri, Raymond J.

288

Undergraduate Research Symposium focusing on  

E-Print Network (OSTI)

-Petersen Faculty Mentor: Dan Bain There are many abandoned bituminous coal mines in southwestern Pennsylvania. Some environmental impacts from production. Synthesizing Chemical Data for Acidic Mine Drainage Author: Hannah Fried of these mines generate and discharge acidic water contaminated with a variety of metals into local surface

Sibille, Etienne

289

Chinese Journal of Chemical Engineering, 20(2) 389--399 (2012) Recent Advances in Flame Tomography*  

E-Print Network (OSTI)

-fuel combustion, co-firing biomass with coal and fluid- ized bed combustion. Flame characteristics under to be the main source of energy in many countries in the years to come. Coal-fired power stations are burning an in- creasingly varied range of fuels and fuel blends, in- cluding sub-bituminous and lower volatile

Yan, Yong

290

Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite  

E-Print Network (OSTI)

characteristics. Vitrinite reflectance is also significant in the characterisation of coal blends employed in temperature (off-line pyrolysis in an open-medium system) on a monomaceralic coal (low rank and pure vitrinite­ chemical processes that occur in vitrinite of bituminous coal rank. Of special interest is the information

Paris-Sud XI, Université de

291

Proceedings of ASME Turbo Expo 2010 June 14-18, 2010, Glasgow, Scotland  

E-Print Network (OSTI)

GASIFIER-BASED COAL IGCC WITH CO2 CAPTURE: PARTIAL WATER QUENCH VS. NOVEL WATER-GAS SHIFT Thomas Kreutz feeding into the gasifier. All plants in this work use bituminous coal; a forth- coming study addresses for high levels of CO2 capture. In this regard, dry feed gasifiers are at a disadvantage relative to coal

292

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

293

Alternative and innovative transport modes for moving US steam-coal exports to the Asian Pacific Basin  

Science Conference Proceedings (OSTI)

The United States is well positioned to play an expanding role in meeting the energy demands of the Asian Pacific Basin (APB). US coal reserves, among the world's largest, contain vast amounts of surface-mineable coal in the West in addition to significant volumes in the Midwest and East. However, high inland-transportation costs and the relatively low calorific value of some Western coals have recently resulted in delivered prices exceeding those of the world market -- maintaining the United States as a marginal supplier in a market that now receives one-third of worldwide steam-coal exports. This study describes alternatives that might reduce these delivered costs, emphasizing transport modes for four regions and mentioning blending for a fifth: (1) subbituminous coals of the Powder River Basin (Wyoming and Montana), (2) bituminous coals of central Utah and Colorado, (3) bituminous and subbituminous coals of the Four Corners Region (where Utah, Colorado, New Mexico, and Arizona meet), (4) bituminous and subbituminous coals of Alaska, and (5) bituminous coals of the Illinois Basin (Illinois, Indiana, and western Kentucky). It investigates innovative rail and ocean transport modes, coal-slurry pipelines, coal blends, and unconventional transport modes like overland conveyors and intermodal containers. It compares delivered prices under various scenarios, combining different transportation alternatives. 142 refs., 28 figs., 38 tabs.

Szpunar, C.B.; Kenkeremath, L.D.; Traczyk, P.A.; Brolick, H.J.; Heller, J.N.; Uttmark, G.F.

1989-11-01T23:59:59.000Z

294

Polymerized crumb rubber modified mixtures in Minnesota. Final report, 1991-1993  

SciTech Connect

The objectives of the research program were to: (1) Define asphalt-rubber interactions; (2) Conduct a preliminary assessment of both laboratory tests and the resulting mixture properties of crumb rubber modified bituminous (CRM) mixtures; (3) Evaluate both the fundamental properties and field performance of CRM mixtures.

Newcomb, D.E.; Stroup-Gardiner, M.; Kim, J.R.; Allen, B.; Wattenhoffer-Spry, J.

1994-01-01T23:59:59.000Z

295

TTUS FP&C Design & Building Standards Division 7 Thermal & Moisture Protection  

E-Print Network (OSTI)

TTUS FP&C Design & Building Standards Division 7 ­ Thermal & Moisture Protection Division for this project. Exterior Insulation and Finish Systems (EIFS) are not allowed without permission from the TTUS & Building Standards Division 7 ­ Thermal & Moisture Protection Bituminous Waterproofing Surfaces

Gelfond, Michael

296

Assessment of NOx Reduction Potential from Combustion Modifications at Illinois Power -- Baldwin Unit 1  

Science Conference Proceedings (OSTI)

Cyclone boilers have recently become regulated with respect to NOx emissions due to the adoption of Title IV -- Group 2 NOx emission limits for cyclones of 0.86 lb/MBtu. This project explored the NOx reduction potential of cyclone biasing on a bituminous coal-fired cyclone boiler.

1998-06-24T23:59:59.000Z

297

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

298

Glossary | Open Energy Information  

Open Energy Info (EERE)

Glossary Glossary Jump to: navigation, search Dictionary.png Glossary Add.png Add a Definition 2 2-M Probe Survey A Acoustic Logs Acoustic Televiewer Active Seismic Techniques Active Sensors Adaptive Protection Adequacy Adjacent Balancing Authority Advanced Interrupting Switch Advanced Metering Infrastructure Advanced Metering Infrastructure (Ami) / Smart Meters Advanced Transmission Applications Adverse Reliability Impact Aerial Photography Aeromagnetic Survey Air Cooling Airborne Gravity Survey Airborne Gravity Survey Algae Algae fuel Alternating current Alternative-fuel vehicle Alternator Altitude Correction Factor Ampere Analytical Modeling Ancillary Service Ancillary Services Revenue Angle of incidence Anode Anthracite coal Anti-Aliasing Filter Area Control Error Arranged Interchange Artesian Well

299

Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 6, July 1, 1991--September 30, 1991  

SciTech Connect

Under the auspices of the Department of Energy and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; and in processes to provide deeply-cleaned coal. Since the inception of the project, we have: developed formulations for stabilizing wet filter cake into a granular free flowing material (Mulled Coal); applied the formulation to wet cake from a variety of coal sources ranging from anthracite to subbituminous coal; evaluated effects of moisture loss on mull properties; and developed design concepts for equipment for preparing the Mulled Coal and converting it into Coal Water Fuel.

1991-11-01T23:59:59.000Z

300

Demonstrated reserve base of coal in the United States on January 1, 1980  

Science Conference Proceedings (OSTI)

This is the second in a series of annual summaries on minable coal in the United States, pursuant to the power plant and industrial fuel use act. The demonstrated reserve base of coal in the United States on January 1, 1980 by area, rank, and potential method of mining is given. Reserve data are given by state and by type of coal (anthracite, bithiminous, subbituminous, and lignite). An introduction, summary, and a glossary of selected coal classification terms is also included. The appendix provides the demonstrated reserve base adjustments and related notions by state. References are also included. Coal reserves for 1979 are given for comparison. 7 figures, 6 tables.

Not Available

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E  

Science Conference Proceedings (OSTI)

In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids.

Not Available

1992-10-01T23:59:59.000Z

302

Create a Consortium and Develop Premium Carbon Products from Coal  

DOE Green Energy (OSTI)

The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

2006-01-01T23:59:59.000Z

303

Determination of electrical resistivity of dry coke beds  

SciTech Connect

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

304

Microsoft PowerPoint - ACC032503_V2_1.PPT  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council Mercury & Multi- Emissions Compliance: Strategies & Tactics March 26-27, 2003 Charlotte, NC Thomas J. Feeley, III National Energy Technology Laboratory TJF_ACC_March2003 Presentation Outline * Regulatory drivers * Program objectives * Current program * Future plans TJF_ACC_March2003 Power Plant Mercury Emissions Coal Plants Emit ~ 48 tons/year NETL Boiler Database 0 2 4 6 8 10 0 10 20 30 Lignite SubB Bituminous Lignite SubB Bituminous Total US Hg Emissions (tons per year) 0 10 20 30 0 2 4 6 8 10 Hg Emission Rate (lb per TBtu) TJF_ACC_March2003 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: Dec. 2007 Clean Power Act of 2003 * Re-introduced in Senate (S.

305

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: August 2011 Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2% Natural Gas Price, Henry Hub -6% -9% Bituminous Coal Stocks -14% -14% Subbituminous Coal Stocks -10% -17% Heat wave drives record demand and wholesale prices in Texas A prolonged August heat wave in Texas stressed available generating capacity and produced very high wholesale prices in the Electric

306

Gasification Â… Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

307

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

308

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

309

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

310

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

311

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

312

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

313

Effects of coal interaction with supercritical CO{sub 2}: physical structure  

Science Conference Proceedings (OSTI)

It is known that polar solvents swell coal, break hydrogen-bonds in the macromolecular structure, and enhance coal liquefaction efficiencies. The effects of drying, interaction with supercritical CO{sub 2} and degassing on the physical structure of coal have been studied using gas sorption technique and a scanning electron microscope (SEM). Both drying and interaction with supercritical CO{sub 2} drastically change the micropore and mesopore surface area, absolute volume, and volume distribution in both bituminous coal and lignite. Degassing removes debris in the pore space which allows for better analysis of the changes in the morphology that were induced by drying and exposure to supercritical CO{sub 2}. SEM reveals that interaction of bituminous coal with supercritical CO{sub 2} results in an abundance of carbon structures similar to the maceral collinite.

Gathitu, B.B.; Chen, W.Y.; McClure, M. [University of Mississippi, University, MS (United States). Dept. of Chemical Engineering

2009-05-15T23:59:59.000Z

314

Pelletizing lignite  

DOE Patents (OSTI)

Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

Goksel, Mehmet A. (Houghton, MI)

1983-11-01T23:59:59.000Z

315

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

316

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

Science Conference Proceedings (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

317

Recommended guidelines for solid fuel use in cement plants  

Science Conference Proceedings (OSTI)

Pulverized solid fuel use at cement plants in North America is universal and includes bituminous and sub-bituminous coal, petroleum coke, and any combination of these materials. Provided are guidelines for the safe use of pulverized solid fuel systems in cement plants, including discussion of the National Fire Protection Association and FM Global fire and explosion prevention standards. Addressed are fire and explosion hazards related to solid fuel use in the cement industry, fuel handling and fuel system descriptions, engineering design theory, kiln system operations, electrical equipment, instrumentation and safety interlock issues, maintenance and training, and a brief review of code issues. New technology on fire and explosion prevention including deflagration venting is also presented.

Young, G.L.; Jayaraman, H.; Tseng, H. (and others)

2007-07-01T23:59:59.000Z

318

RSE Table N8.1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" 1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,," "

319

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2006;" 2 Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

320

Table 7.2 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002;" 2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Effects on Catalyst Life and Deactivation Database  

Science Conference Proceedings (OSTI)

This report provides case studies and catalyst performance supplemental data to aid EPRI members in the management of Selective Catalytic Reduction (SCR) installations, particularly as related to the firing of both PRB and bituminous coals. The report discusses the primary deactivation mechanisms, along with analytical techniques to help members identify the primary modes of deactivation in their specific catalyst fleet. In addition, it offers benchmark data about the deactivation rates expected dependin...

2009-12-18T23:59:59.000Z

322

Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky  

SciTech Connect

The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

1983-09-01T23:59:59.000Z

323

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2006;" Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

324

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2010;" 2 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" ,,,,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

325

Table N8.2. Average Prices of Purchased Energy Sources, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Purchased Energy Sources, 1998;" 2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

326

Table 7.1 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2002;" Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

327

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 Average Prices of Purchased Energy Sources, 2010;" 7.1 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

328

Coal plasticity at high heating rates and temperatures  

SciTech Connect

Effects of coal type on coal plasticity are investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, are studied. Different indices and structural data of a coal are shown to affect its plastic behavior. A coal-specific parameter incorporating the effects of labile bridges, oxygen, and hydrogen on plasticity has been used to successfully correlate measured values of maximum plasticity (i.e. minimum apparent viscosity) at elevated temperature with coal type.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1992-01-01T23:59:59.000Z

329

Pyrolysis process and apparatus  

DOE Patents (OSTI)

This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

Lee, Chang-Kuei (Sewell, NJ)

1983-01-01T23:59:59.000Z

330

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

331

Coal switch helps New York plants stay competitive  

Science Conference Proceedings (OSTI)

NRG Energy bought the Dunlook and Huntley Generating Stations in 1999 from Niagara Mohawk Power Corp. and has since then invested millions of dollars in converting them from bituminous coal to low sulphur Powder River Basin coal, combustion tuning and routine maintenance to help provide reliable stable-priced electricity to New York. The plants have reduced NOx, SO{sub 2} and particulate emissions. 1 photo.

Blankinship, S.

2009-04-15T23:59:59.000Z

332

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

333

Powder River Basin Coal Supply and Suitability: EPRI Report Series on Low-Sulfur Coal Supplies  

Science Conference Proceedings (OSTI)

Utility use of subbituminous coals from the Powder River Basin is expected to increase 100 million tons by the year 2000, with much of the growth coming from units designed for high-sulfur bituminous coal. This report addresses whether Powder River Basin coal suppliers will be able to command a premium for their product and documents the recent and rapid improvements utilities have made in using subbituminous coals.

1992-12-01T23:59:59.000Z

334

Program on Technology Innovation: Feasibility of Laser-Induced Breakdown Spectroscopy for Fuel Analysis—Phase II  

Science Conference Proceedings (OSTI)

In the first phase of this project, researchers evaluated the capabilities of laser-induced breakdown spectroscopy (LIBS) for fuel characterization in gasification applications. A LIBS system was assembled and optimized to identify and measure the elemental spectra from the following gasifier feedstocks: bituminous coal, lignite coal, and petroleum coke, including three blends of coal and pet coke as well as coal treated with limestone. Laboratory LIBS data were acquired and processed using artificial ne...

2011-12-30T23:59:59.000Z

335

Long-Term Testing of Protective Coatings and Claddings at Allegheny Energy Supply Hatfield's Ferry #2 Boiler  

Science Conference Proceedings (OSTI)

Excessive waterwall corrosion due to the presence of iron sulfide (FeS) deposits was discovered in an Allegheny Energy Supply boiler firing eastern bituminous coal and retrofitted with a low-nitrogen oxide (NOx) cell burner (LNCB) system. Weld overlays with a high chromium (Cr) content reduced corrosion rates to tolerable levels. This report summarizes EPRI's long-term service tests of various coatings and weld overlays in the company's Hatfield's Ferry #2 boiler.

2000-09-15T23:59:59.000Z

336

Two Stage Liquefaction With Illinois 6 Coal: Volume 1: Run 247  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 247 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was to obtain performance data for the TSL system and the individual process units with particular emphasis on hydrotreating catalyst performance. Secondary objectives were to demonstrate operability for the system and the respective ...

1991-03-01T23:59:59.000Z

337

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

338

Measurement of Sorption-Induced Strain  

SciTech Connect

Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

Eric P. Robertson; Richard L. Christiansen

2005-05-01T23:59:59.000Z

339

Evaluation of fine-particle size catalysts using standard test procedures  

SciTech Connect

The goal of this project is to evaluate and compare the activities/selectivities of fine-particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Liquefaction Program by using standard coal liquefaction activity test procedures. Since bituminous and subbituminous coals have significantly different properties, it is feasible that catalysts may perform differently with these coal types. Because all previous testing has been done with the DECS-17 Blind Canyon bituminous coal, it is important to develop the capability of evaluating catalysts using a subbituminous coal. Initial efforts towards developing a subbituminous coal test are aimed at comparing the reactivities of the Wyodak subbituminous coal and the Blind Canyon bituminous coal. Therefore, the same factorial experimental design was used with the Wyodak coal as was used previously with the Blind Canyon coal. In addition, PNL`s 6-line ferrihydrite catalyst precursor was used in the development of the Wyodak coal test procedure because this catalyst is the best powder catalyst found to date in Sandia`s tests with Blind Canyon coal. Results show that Blind Canyon coal yields higher DHP amounts in the reaction products and higher tetrahydrofuran conversions at the higher severity conditions. Wyodak coal gives higher heptane conversions and higher gas yields for all conditions tested.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-07-01T23:59:59.000Z

340

The release of iron during coal combustion. Milestone report  

Science Conference Proceedings (OSTI)

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

342

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

343

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

344

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

345

Categorical Exclusion Determinations: Los Alamos Site Office | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos Site Office Los Alamos Site Office Categorical Exclusion Determinations: Los Alamos Site Office Categorical Exclusion Determinations issued by Los Alamos Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD July 16, 2013 Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office November 30, 2012 CX-009798: Categorical Exclusion Determination Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office November 30, 2012 CX-009524: Categorical Exclusion Determination Foreign Location Source Recovery - Fiscal Year 2013

346

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 16, 2013 Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office July 16, 2013 CX-010582: Categorical Exclusion Determination Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration July 16, 2013 CX-010581: Categorical Exclusion Determination Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration July 16, 2013 CX-010858: Categorical Exclusion Determination Demolition of the 745-N Excess Equipment Pad CX(s) Applied: B1.23

347

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

348

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 22070 of 28,905 results. 61 - 22070 of 28,905 results. Download CX-010875: Categorical Exclusion Determination Routine Maintenance and Custodial Services August 2013 to August 2014 CX(s) Applied: B1.3 Date: 08/28/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office http://energy.gov/nepa/downloads/cx-010875-categorical-exclusion-determination Event FWP Event Mound- Miamisburg, OH FWP Event Mound - Miamisburg, OH http://energy.gov/hss/events/fwp-event-mound-miamisburg-oh-3 Download Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office http://energy.gov/nepa/downloads/anthracitetotal-orangeblack

349

Process for solvent refining of coal using a denitrogenated and dephenolated solvent  

DOE Green Energy (OSTI)

A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1984-01-01T23:59:59.000Z

350

Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995  

Science Conference Proceedings (OSTI)

ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

NONE

1998-12-31T23:59:59.000Z

351

Stable slurries of solid carbonaceous fuel and water  

Science Conference Proceedings (OSTI)

This patent describes a pumpable slurry of solid carbonaceous fuel and water with reduced viscosity and sedimentation rate for use as feed to a partial oxidation gas generator for the production of raw synthesis gas, reducing gas, or fuel gas by reacting in the gas generator with a free-oxygen containing gas. The slurry comprises about 50 to 75 weight percent of high rank comminuted solid carbonaceous fuel having 5.0 weight percent or below of organically combined oxygen wherein the solid carbonaceous fuel is selected from the group consisting of anthracite coal, petroleum coke, coal liquefaction solid residue, asphaltic bitumen, and mixtures thereof; and about 0.001 to 0.100 parts by weight of a surfactant for each part by weight of the solid carbonaceous fuel.

Yaghmaie, F.; McKeon, R.J.

1988-06-07T23:59:59.000Z

352

Hydrocarbon-oil encapsulate bubble flotation of fine coal. Technical progress report for the twelfth quarter, July 1--September 30, 1993  

Science Conference Proceedings (OSTI)

Two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal. Five different coal samples were used in the column flotation test program. They are Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 seam coals, which correspond to anthracite-, low volatile-, medium volatile-, and high volatile-seam coals, respectively. In this quarterly report, the test results for the Upper Freeport seam coal and Pittsburgh No. 8 seam coal are reported.

Peng, F.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mineral Processing Engineering

1993-12-31T23:59:59.000Z

353

B  

U.S. Energy Information Administration (EIA) Indexed Site

B B l a c k H i l l s R e g io n Northern Anthracite Field S o u t h e r n A n t h r a c i t e F i e l d E. Middle Anthracite F ield Rhode Island Meta-Anthrac ite Terling ua Coal Field Coos Bay Coal Field Turtle Montain Coal Field North Central Coal Region San Juan Basin G u l f C o a s t C o a l R e g i o n Ft. Union Coal Re gion (Willist on Basin) Northern Appalachian Ba sin Powder Rive r Ba sin Uinta Basin Cheroke e P la tform Ce nt ra l Appalachian Ba sin Gr ea te r Gr ee n Ri ve r Ba si n T e r t i a r y L a k e B e d s R e g i o n Arkom a Ba sin Pic eance Ba sin Big Horn Ba sin Wind River Ba sin R a to n B as in Black Mesa Basin Taylorville Basin D e e p R i v e r B a s i n N. & Mid. Park Basins C u l p e p p e r B a s in Ha nna -Carbon Ba sin J a c k s o n H o le C o a l F ie ld He nr y Mo u nta ins Co al F iel d Rock Creek Coal Field Glacier Coal Field Goshen Hole Coal Field D a n R i v e r - D a n v i l l e B a s i n Goose Creek Field

354

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01T23:59:59.000Z

355

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

John W. Rich

2003-06-01T23:59:59.000Z

356

Gasification of New Zealand coals: a comparative simulation study  

Science Conference Proceedings (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

357

Corrosion-proofing armored power cables  

Science Conference Proceedings (OSTI)

A study of 89 power cables that were buried in soils containing a high salt content is discussed. The study was conducted to determine the corrosion behavior of armored power cables. It was found that an outer protective covering made of bitumin and cable strands does not protect the armor jacket sufficiently against soil corrosion. It is recommended, therefore, that steel armor protection be discontinued for the protection of power cable jackets and that the armor should not be connected to the jacket with copper wire in the couplers.

Munits, N.M.

1983-05-01T23:59:59.000Z

358

Short-delay blasting in underground coal mines. Information Circular/1986  

SciTech Connect

The Bureau of Mines has conducted research to determine whether the total elapsed delay time for blasting bituminous coal in underground mines could be safely expanded beyond the present 500-ms limitation without igniting a methane or methane-coal dust atmosphere. The results indicated that the increase of total delay from 500 to 1,000 ms had no detectable effect on safety relative to incendivity as long as permissible practices were observed in all other aspects. Research was also conducted to evaluate the safety of 18-in hole spacing for delay blasting in coal relative to misfires.

Mainiero, R.J.; Verakis, H.C.

1986-01-01T23:59:59.000Z

359

Impacts of Texas Lignite Coal on SCR Catalyst Life and Performance: Field Data from TXU's Martin Lake Plant  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems are being broadly applied to power generating units fired with Power River Basin (PRB) and bituminous coals and natural gas. To develop an understanding of the potential deactivation and erosion of SCR catalyst in Texas-lignite-fired units, an in-situ mini SCR reactor was used to test two types of catalyst at TXU Energy's Martin Lake Unit 3. Prior to this test program, no long-term test data on the effects of Texas lignite on SCR catalyst life and performance e...

2003-12-11T23:59:59.000Z

360

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

362

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

363

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

364

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

Science Conference Proceedings (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

365

Assessment of solid-waste characteristics and control technology for oil-shale retorting. Final report for September 1983-February 1985  

SciTech Connect

The report presents information on oil-shale deposits in the eastern and western parts of the United States, their geological subdivisions, locations, tonnage, and physical and chemical characteristics. Characteristics of solid and liquid wastes produced from various oil-shale-processing technologies and control methods are presented. Also included are results from an experimental study to construct liners and covers for disposal of spent shale. A compilation of available data on the auto-ignition potential of raw and spent shales indicates a similarity between raw-shale fines and bituminous coals.

Agarwal, A.K.

1986-05-01T23:59:59.000Z

366

Effect of coal rank and process conditions on temperature distribution in a liquefaction reactor  

SciTech Connect

The temperature distribution in a liquefaction reactor in the integrated TSL process is studied. The effects of gas and slurry superficial velocities, process solvent characteristics, reactor length, and catalyst sulfiding agent on the exotherm and temperature difference in the reactor are studied. A substantial temperature difference is observed with subbituminous coal as compared with bituminous coal, at comparable reactor conditions. Some of the factors that are believed to have contributed to the large exotherm and temperature difference in the reactor are slow kinetics and high reaction heat for subbituminous coal conversion and pyrrhotite catalysis.

Nalitham, R.V.; Moniz, M.

1986-04-01T23:59:59.000Z

367

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

368

Ignition Rate Measurement of Laser-Ignited Coals  

SciTech Connect

We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

John C. Chen; Vinayak Kabadi

1997-10-31T23:59:59.000Z

369

Wyoming geo-notes No. 2  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

370

Emissions mitigation of blended coals through systems optimization  

Science Conference Proceedings (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

371

Prairie State begins development work  

SciTech Connect

Lively Grove will be a state-of-the-art super section mine which will supply 6.7 million tons of bituminous coal per annum to a 1,600 MWS supercritical plant which is expected to begin generation electricity in 2011/2012. The projected cost of Prairie State Energy Campus is over $4 billion. The power plant will be 15% more efficient that similar sized plants and could be a model plant for the industry. The article describes the development plans which are 10% complete. 2 photos.

Buchsbaum, L.

2008-12-15T23:59:59.000Z

372

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

Large-scale combustion tests with caking bituminous coal has stopped. This stoppage has come about due to limitations in current funding available to continue large scale research and development activities at Riley's Commercial Burner Test Facility (CBTF) of the PC Preheat technology. The CBTF was secured and decommissioned in the previous quarter; work this quarter has focused on disposition of PC Preheat experimental equipment at the CBTF as well as methods for disposal of about 100 tons of residual PRB test coal in storage. GTI was granted a no-cost time extension through September 2005; a final report is due in December 2005.

Bruce Bryan; Joseph Rabovitser; Serguei Nester; Stan Wohadlo

2005-06-30T23:59:59.000Z

373

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

374

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

375

Fuel Flexibility in Gasification  

DOE Green Energy (OSTI)

In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visi

McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K. (U.S. DOE National Energy Technology Laboratory); Lui, Alain P.; Batton, William A. (Parsons Infrastructure and Technology Group, Inc.)

2001-11-06T23:59:59.000Z

376

Supercritical plants to come online in 2009  

Science Conference Proceedings (OSTI)

A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

Spring, N.

2009-07-15T23:59:59.000Z

377

Combustion Optimization at Allegheny Energy's Armstrong Power Station  

Science Conference Proceedings (OSTI)

Individual air and coal flow measurement instruments have been installed on Allegheny Energy's Armstrong Station with a goal to balance the individual burner air to fuel ratios to minimize NOx, reduce the LOI level in the ash and improve heat rate. These signals are also being incorporated into the NOx optimization package, ULTRAMAX (R). Armstrong Station is a 180 MW front wall boiler burning a low sulfur eastern bituminous coal. Twelve Foster Wheeler IFS low NOx burners are fed by two ball mills, three ...

2000-06-21T23:59:59.000Z

378

System studies guiding fossil energy RD & D  

Science Conference Proceedings (OSTI)

The article describes the following recently completed studies, all of which may be accessed on NETL's website: http://netl.doe.gov/energy-analyses/ref-shelf.html: Cost and performance baseline for fossil energy power plants - volume 1: bituminous coal and natural gas to electricity (May 2007); Increasing security and reducing carbon emissions of the US transportation sector: a transformational role for coal with biomass (August 2007); Industrial size gasification for syngas, substitute natural gas, and power production (April 2007); and Carbon dioxide capture from existing coal-fired power plants (December 2006). 2 figs.

NONE

2007-12-31T23:59:59.000Z

379

Pilot-Scale Evaluation of Mercury Oxidation Across SCR Catalysts  

Science Conference Proceedings (OSTI)

Measurements were conducted to evaluate the mercury chemical reactions using a pilot-scale SCR operating on flue gas slipstream from an eastern bituminous (~1.75% sulfur, ~750 ppm Cl) coal-fired power plant. Tests were conducted by the Western Kentucky University (WKU) to evaluate the impact of flue gas constituents (HCl, Cl2, SO2, SO3, NH3:NOx) as well as two commercially-available SCR catalysts. The results and data were reviewed by Reaction Engineering International, who prepared this technical update...

2005-12-23T23:59:59.000Z

380

Fusibility and sintering characteristics of ash  

Science Conference Proceedings (OSTI)

The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. Prior to 2010, no power generating units firing Texas lignite were equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a two-phase program at the Sandow Station, located near Rockdale, Texas. The test pro...

2010-09-06T23:59:59.000Z

382

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. To date, no power generating units firing Texas lignite are equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a one-year program to test a plate-type catalyst at the Sandow Station, located near Rockdal...

2009-06-30T23:59:59.000Z

383

Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence  

SciTech Connect

Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

1989-09-01T23:59:59.000Z

384

Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases  

SciTech Connect

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

2006-05-15T23:59:59.000Z

385

Analysis of photographic records of coal pyrolysis. Final report  

SciTech Connect

Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

Dodoo, J.N.D.

1991-10-01T23:59:59.000Z

386

Nitration of polynuclear aromatic hydrocarbons in coal combustors and exhaust streams. Quarterly report, July 1, 1992--September 30, 1992  

SciTech Connect

Our efforts quarter were directed at preparing PAH samples at well-controlled extents of secondary pyrolysis. The same operating conditions used in the past were implemented this quarter to prepare PAH samples at well-controlled extents of secondary pyrolysis from a Pit. {number_sign}8 hvA bituminous coal. The new data are in excellent agreement with the old. Both ultimate yield values and soot percentages at particular furnace temperatures from these data sets am within experimental uncertainties. PAH samples have now been prepared to cover extents of conversion of coal tar into soot from 35--80 %. Additional runs during primary devolatilization have yielded PAH samples that cover nearly the full range of this process as well. Hence, all PAH samples from the Pit. {number_sign}8 coal sample are in hand. We also began to collect the analogous PAH samples from a subituminous coal. Efforts at sample analysis focused on testing and modification of the gravity-flow column chromatography procedure using actual tar samples. Extra samples collected during combustion experiments using the Pit. {number_sign}8 bituminous coal were used to refine the preparation technique. Solvent volumes were adjusted to optimize sample separation, and additional tests were conducted to determine the reproducibility of the fractionation and recovery. Further refinement in the experimental methodology allowed 80% recovery of the coal tar samples to be reproducibly achieved.

Yu, L.; Dadamio, J.; Hildemann, L.; Niska, S.

1993-02-01T23:59:59.000Z

387

Analysis of photographic records of coal pyrolysis  

SciTech Connect

Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

Dodoo, J.N.D.

1991-10-01T23:59:59.000Z

388

Nitration of polynuclear aromatic hydrocarbons in coal combustors and exhaust streams  

SciTech Connect

Our efforts quarter were directed at preparing PAH samples at well-controlled extents of secondary pyrolysis. The same operating conditions used in the past were implemented this quarter to prepare PAH samples at well-controlled extents of secondary pyrolysis from a Pit. [number sign]8 hvA bituminous coal. The new data are in excellent agreement with the old. Both ultimate yield values and soot percentages at particular furnace temperatures from these data sets am within experimental uncertainties. PAH samples have now been prepared to cover extents of conversion of coal tar into soot from 35--80 %. Additional runs during primary devolatilization have yielded PAH samples that cover nearly the full range of this process as well. Hence, all PAH samples from the Pit. [number sign]8 coal sample are in hand. We also began to collect the analogous PAH samples from a subituminous coal. Efforts at sample analysis focused on testing and modification of the gravity-flow column chromatography procedure using actual tar samples. Extra samples collected during combustion experiments using the Pit. [number sign]8 bituminous coal were used to refine the preparation technique. Solvent volumes were adjusted to optimize sample separation, and additional tests were conducted to determine the reproducibility of the fractionation and recovery. Further refinement in the experimental methodology allowed 80% recovery of the coal tar samples to be reproducibly achieved.

Yu, L.; Dadamio, J.; Hildemann, L.; Niska, S.

1993-02-01T23:59:59.000Z

389

Elemental characterization of LL-MA radioactive waste packages with the associated particle technique  

Science Conference Proceedings (OSTI)

The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R and D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages with analytical methods and with non-destructive nuclear measurements. This paper concerns fast neutron interrogation with the associated particle technique (APT), which brings 3D information about the waste material composition. The characterization of volume elements filled with iron, water, aluminium, and PVC in bituminized and fibre concrete LL-MA waste packages has been investigated with MCNP [1] and MODAR data analysis software [2]. APT provides usable information about major elements presents in the volumes of interest. However, neutron scattering on hydrogen nuclei spreads the tagged neutron beam out of the targeted volume towards surrounding materials, reducing spatial selectivity. Simulation shows that small less than 1 L targets can be characterised up to the half-radius of a 225 L bituminized drum, the matrix of which is very rich in hydrogen. Deeper characterization in concrete is possible but limited by counting statistics due to photon attenuation in this dense matrix and, unless large inspection volumes are considered, by the lack of spatial selectivity of the tagged neutron beam due to neutron scattering. (authors)

Perot, B.; Carasco, C.; Toure, M.; El Kanawati, W.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

2011-07-01T23:59:59.000Z

390

Pilot plant assessment of blend properties and their impact on critical power plant components  

Science Conference Proceedings (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

391

Coal plasticity at high heating rates and temperatures  

SciTech Connect

The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

Darivakis, G.S.; Peters, W.A.; Howard, J.B.

1990-01-01T23:59:59.000Z

392

Coal plasticity at high heating rates and temperatures. First technical progress report for the fourth quarter 1989  

SciTech Connect

The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

Darivakis, G.S.; Peters, W.A.; Howard, J.B.

1990-01-01T23:59:59.000Z

393

Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988  

DOE Green Energy (OSTI)

We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

Schulz, J.G.; Porowski, E.N.; Straub, A.M.

1988-05-01T23:59:59.000Z

394

Preliminary Field Evaluation of Mercury Control Using Combustion Modifications  

Science Conference Proceedings (OSTI)

In this project EER conducted a preliminary field evaluation of the integrated approach for mercury (Hg) and NO{sub x} control. The approach enhanced the 'naturally occurring' Hg capture by fly ash through combustion optimization, increasing carbon in ash content, and lowering ESP temperature. The evaluation took place in Green Station Units 1 and 2 located near Henderson, Kentucky and operated by Western Kentucky Energy. Units 1 and 2 are equipped with cold-side ESPs and wet scrubbers. Green Station Units 1 and 2 typically fire two types of fuel: a bituminous coal and a blend of bituminous coals based on availability. Testing of Hg emissions in Unit 2 without reburning system in operation and at minimum OFA demonstrated that efficiencies of Hg reduction downstream of the ESP were 30-40%. Testing also demonstrated that OFA system operation at 22% air resulted in 10% incremental increase in Hg removal efficiency at the ESP outlet. About 80% of Hg in flue gas at ESP outlet was present in the oxidized form. Testing of Hg emissions under reburning conditions showed that Hg emissions decreased with LOI increase and ESP temperature decrease. Testing demonstrated that maximum Hg reduction downstream of ESP was 40-45% at ESP temperatures higher than 300 F and 60-80% at ESP temperatures lower than 300 F. The program objective to demonstrate 80% Hg removal at the ESP outlet has been met.

V. Lissianski; P. Maly; T. Marquez

2005-01-22T23:59:59.000Z

395

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advance coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less then 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. North Dakota and Texas lignite chars were slightly more reactive than a Wyoming subbituminous coal char and eight to ten times more reactive than an Illinois bituminous coal char. Pure and mineral (trona nd nahcolite) alkali carbonates and recycled ash from K/sub 2/CO/sub 3/-catalyzed steam gasification tests substantially improved low-rank coal steam gasification rates. The reactivities obtained using trona and nahcolite to catalyze the steam gasification were the highest, at nearly 3.5 times those without catalysts.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-01-01T23:59:59.000Z

396

Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987  

Science Conference Proceedings (OSTI)

The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.

1987-10-15T23:59:59.000Z

397

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

Science Conference Proceedings (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

398

Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows  

DOE Green Energy (OSTI)

Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

Broadhead, R.F.; Potter, P.E.

1980-11-01T23:59:59.000Z

399

Detecting moving fires on coal conveyors  

SciTech Connect

To comply with certain elements of the Clean Air Act Amendments of 1990, a number of utilities operating coal fired power plants have switched to low-rank bituminous and semi-bituminous coals as an alternative to other fuels like natural gas. Power plants firing and handling this variety of coal may be extremely prone to fires nd explosions as the coal is conveyed from storage on to the boilers due to a phenomenon known as spontaneous combustion. The American Society of Testing for Materials ranks coals by their tendency to oxidize. The lower the coal`s rank, the greater its tendency to absorb oxygen and, consequently, the greater its tendency to spontaneously combust. This unique property creates a new type of fire and explosion hazard not previously experienced by many coal-fired plants. Fires involving coal crushers, storage silos, conveyors, bunkers and pulverizer mills generally occur as a result of two ignition sources: spontaneous combustion (self-heating) of coal and frictional heating of the coal`s conveyance system.

NONE

1995-09-01T23:59:59.000Z

400

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

Gary Blythe; MariJon Owens

2007-12-01T23:59:59.000Z

402

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Coal Production by State and Mining Method, 2012 Underground Coal Production by State and Mining Method, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 3. Underground Coal Production by State and Mining Method, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State and Region 1 Continuous 2 Conventional and Other 3 Longwall 4 Total Alabama 139 20 12,410 12,570 Arkansas 96 - - 96 Colorado 757 - 22,889 23,646 Illinois 18,969 - 23,868 42,837 Indiana 15,565 - - 15,565 Kentucky Total 56,179 2,018 - 58,198 Kentucky (East) 22,090 2,010 - 24,100 Kentucky (West) 34,089 9 - 34,098 Maryland 797 - - 797 Montana - - 5,708 5,708 New Mexico - - 4,960 4,960 Ohio 3,903 7 14,214 18,125 Oklahoma 349 - - 349 Pennsylvania Total 11,367 52 33,623 45,041 Pennsylvania (Anthracite)

403

Opportunities for coal to methanol conversion  

DOE Green Energy (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

404

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 Coal Mining Productivity 7 Coal Mining Productivity Total, 1949-2011 By Mining Method, 2011 By Location, 2011 By Mining Method, 1 1949-2011 By Region and Mining Method, 2011 210 U.S. Energy Information Administration / Annual Energy Review 2011 Mississippi 1 For 1979 forward, includes all coal; prior to 1979, excludes anthracite. Note: Beginning in 2001, surface mining includes a small amount of refuse recovery. Source: Table 7.7. 2.68 15.98 East of the West of the 0 5 10 15 20 Short Tons per Employee Hour 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 Short Tons per Employee Hour Mississippi 2.76 8.86 Underground Surface 0 3 6 9 12 Short Tons per Employee Hour 1950 1960 1970 1980 1990 2000 2010 0 3 6 9 12 Short Tons per Employee Hour 2.52 3.03 5.54 19.34 Underground Surface Underground Surface 0 6 12 18 24 Short Tons

405

Table 7.1 Average Prices of Purchased Energy Sources, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2010; Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar Manufacturing 5.02 0.31 0.00 53.34 236.66 3114 Fruit and Vegetable Preserving and Specialty Foods 9.78 0.27 0.00 90.59 0.00 3115 Dairy Products 11.21 0.10 0.00 103.12 0.00 3116 Animal Slaughtering and Processing

406

Investigation of the rank dependence of tar evolution  

SciTech Connect

The objectives of this study are to develop an improved understanding of the process of coal tar evolution, its relationship to the structural characteristics of the parent coal, and the dependence of the chemical and physical properties of the tar products on the conditions of devolatilization. Data from this study are expected to allow hypothesis testing and refinements of coal devolatilization models relevant to the pulverized coal combustion process. The program is divided into seven major technical areas: tar evolution rates in rapid heating conditions; molecular weight and vapor pressure characteristics of tars; chemical structure and calorific values of tars; influence of interphase mass transport phenomena; gas phase secondary reactions of primary'' tars; parent coal nitrogen evolution during devolatilization; and model hypothesis testing. A range of coal ranks, from a Texas lignite to a Pennsylvania anthracite, are employed in the investigation. In addition, a high temperature polymer, a polyimide, is utilized as an additional reference case. The polyimide serves as a truly polymeric reference material for examining the nitrogen evolution behavior of coal. The samples are subjected to elemental composition determination, infrared absorbance characteristics, calorific value, high temperature ash analysis, and maceral composition. Consideration is being given to NMR analysis as well as tetrahydrofuran (THF) solubility. Results are discussed. 4 refs., 27 figs., 4 tabs.

Freihaut, J.D.; Proscia, W.M.

1990-01-01T23:59:59.000Z

407

Investigation of the rank dependence of tar evolution  

SciTech Connect

The objective of this study are to develop an improved understanding of the process of coal tar evolution, its relationship to the structural characteristics of the parent coal, and the dependence of the chemical and physical properties of the tar products on the conditions of devolatilization. Data from this study are expected to allow hypothesis testing and refinements of coal devolatilization models relevant to the pulverized coal combustion process. A range of coal ranks, from a Texas lignite to a Pennsylvania anthracite, are employed in the investigation. In addition, a high temperature polymer, a polyimide, is utilized as an additional reference case. The polyimide serves as a truly polymeric reference material for examining the nitrogen evolution behavior of coal. The samples are subjected to elemental composition determination, infrared absorbance characterization, calorific value measurement, high temperature ash analysis, and maceral composition. Potential tar yields are determined by long hold time heated grid investigations of each coal at a final temperature and heating rate observed to maximize tar yields for the reference coal. Relative tar evolution kinetic behavior is determined by zero hold time heated grid investigations of each coal. 4 refs., 13 figs., 2 tabs.

Freihaut, J.D.; Proscia, W.M.

1990-01-01T23:59:59.000Z

408

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

409

Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development  

SciTech Connect

A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

1980-12-01T23:59:59.000Z

410

Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds  

Science Conference Proceedings (OSTI)

Performance estimates for the UCC2, IGTP1, and IGTP2 chars were made for a typical utility PFBC boiler having nominal characteristics similar to those of the American Electric Power 75 MW(e) Tidd PFBC demonstration facility. Table 2 summarizes the assumed boiler operating conditions input to the PFBC simulation code. Input fuel parameters for the chars and reference fuels were determined from their standard ASTM analyses (Table 1) and the results of the bench-scale characterization tests at B&W`s Alliance Research Center. The required characterization information for the reference fuels was available from the B&W data base, and the combustion reactivity information for the mild-gasification chars was generated in the pressurized bench-scale reactor as described earlier. Note that the combustion reactivity parameters for Beulah lignite are those previously measured at low-pressure conditions. It was necessary to use the previous values as the new parameters could not be accurately measured in the pressurized bench-scale facility. Based on very limited measurements of particle size attrition in paste-type feed systems, it was assumed that all of the fuels (including the chars) would have a very small (essentially negligible) degree of attrition in the feed system. Char devolatilization parameters were assumed to be equal to those of anthracite because of the very low levels of volatiles present in UCC2, IGTP1, and IGTP2. Major fuel input parameters and higher heating values are summarized in Table 3.

Daw, C.S.

1993-03-01T23:59:59.000Z

411

Coal distribution, January-September 1986  

Science Conference Proceedings (OSTI)

US coal producers and distributors shipped 665.3 million short tons of coal to domestic and foreign destinations from January through September 1986, 2.8 million short tons more than the amount shipped during the same time period of 1985. Nearly all (99.9%) of the coal that was produced and purchased during the first 9 months of 1986 was shipped. In contrast, shipments exceeded production and purchases by 1.6 million short tons during the comparable period of 1985 as producers and distributors drew from their stockpiles to help meet the demand. During January through September 1986: (1) Coal production was 0.7% higher and coal shipments were 0.4% higher than during the same time period of 1985. (2) Producers and distributors held stockpiles of 33.7 million short tons on September 30, 1986, 1.8% more than their stocks at the end of 1985. (3) Shipments for export were 7.8% less than they were 1 year earlier. (4) Domestic shipments to electric utilities and other industrial plants were higher while those to coke plants were lower, compared to the same time period of 1985. This issue contained a review article on Pennsylvania anthracite. 6 figs., 33 tabs.

Not Available

1987-01-06T23:59:59.000Z

412

Optimization of the process of plasma ignition of coal  

Science Conference Proceedings (OSTI)

Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

Peregudov, V.S. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

413

Rate of coal devolatilization in iron and steelmaking processes  

Science Conference Proceedings (OSTI)

The devolatilization of coal particles under ironmaking and steelmaking conditions was studied. A new experimental technique was developed to measure the rates of devolatilization. A unique method was used to prepare coal particles based on thick coal bands rich in a given maceral group. Experiments with these single particles gave good reproducibility. The rates of devolatilization for all coal types from low to high rank coals were measured in the gaseous atmosphere and within the slag phase. Real time x-ray images were taken for high volatile, low volatile and anthracite coals devolatilizing in a molten smelting slag. The rate in terms of percentage devolatilization were relatively independent of coal type and a small function of furnace temperature at high heating rates and temperatures studied. The rates depended on particle size and heating rates. The results were consistent with internal transport controlled processes primarily heat transfer. Furthermore the rates were the same in the gas and slag phase which is consistent with heat transfer control.

Sampaio, R.S.; Rio Doce, C.V. do; Fruehan, R.J.; Ozturk, B. (Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Iron and Steel Making Research)

1991-01-01T23:59:59.000Z

414

Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: coal, heavy petroleum fractions, and asphaltenes  

E-Print Network (OSTI)

The coexistence of a large variety of molecular species (i.e., aromatic, cycloaliphatic and aliphatic) in several astrophysical environments suggests that unidentified IR emission (UIE) occurs from small solid particles containing a mix of aromatic and aliphatic structures (e.g., coal, petroleum, etc.), renewing the astronomical interest on this type of materials. A series of heavy petroleum fractions namely DAE, RAE, BQ-1, and asphaltenes derived from BQ-1 were used together with anthracite coal and bitumen as model compounds in matching the band pattern of the emission features of proto-planetary nebulae (PPNe). All the model materials were examined in the mid-infrared (2.5-16.7 um) and for the first time in the far-infrared (16.7-200 um), and the IR bands were compared with the UIE from PPNe. The best match of the PPNe band pattern is offered by the BQ-1 heavy aromatic oil fraction and by its asphaltenes fraction. Particularly interesting is the ability of BQ-1 to match the band pattern of the aromatic-ali...

Cataldo, F; Manchado, A

2012-01-01T23:59:59.000Z

415

Iron and manganese removal from a groundwater supply  

SciTech Connect

The treatment options and planning techniques used by the town of Castle Rock (Colorado) for a new water treatment facility are described. Castle Rock officials assessed the available treatment options for dissolved iron and manganese removal and selected potassium permanganate as the primary oxidant to be followed by manganese greensand. A backup prechlorination system for oxidation was also installed. In addition, to prevent excess headloss buildup in the manganese greensand filter media, an anthracite carbon cap was used as the top filter medium for precipitate removal. It is recommended that a treatability study be performed to determine individual design criteria to allow for specific site conditions. The town also assessed the capital and operation and maintenance costs for both treatment at individual well fields and a centralized location for treatment of a cluster of well fields. The results indicate that it is more economical to provide centralized water treatment even though there are capital costs associated with piping raw water from the individual well fields to the central facility. 3 refs.

Lorenz, W.; Seifert, K.; Kasch, O.K. (Arber Richard P. Associates, Inc., Denver, CO (USA))

1988-11-01T23:59:59.000Z

416

Enzymantic Conversion of Coal to Liquid Fuels  

DOE Green Energy (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

417

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

418

 

U.S. Energy Information Administration (EIA) Indexed Site

Origin and Method of Transportation, 2006 Origin and Method of Transportation, 2006 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to

419

Getting Energized  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Energized Elementary School Curriculum Created by the National Renewable Energy Laboratory (NREL) Click on the links below to take you to the Chapter heading: Materials list Activity Guide Energy Sources Energy Uses/Limits Energy Conversion Energy Conservation Energy for the Future Student Assessments Student Evaluation Getting Energized Equipment and Materials List Item/Activity Number Activity 1 Butane Lighter Coal (Bituminous) Amount Where to find 1-Demo Discount /Grocery (Target, Wal-mart, Kmart or similar) 1-Demo **See next line http://www.sciencekit.com/category.asp?c=365904 Cost $6.95 (Prices may change) Electrical Appliance 1-Demo Teacher Energy Source Posters & Puzzles Pieces 8-Display **See next line http://www.nef1.org/Merchant2/merchant.mv?Screen=CTGY&Category_Code=P

420

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

422

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

September 2011 | Release Date: Nov. 21, September 2011 | Release Date: Nov. 21, 2011 | Next Release Date: Dec. 21, 2011  | Re-Release Date: November 28, 2012 (correction) Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation

423

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: November 2011 Electric Power Sector Coal Stocks: November 2011 Stocks As discussed in this month's feature story, electric power sector coal stocks continued to replenish after the summer burn in November, though stockpile levels remain below 2010 and 2009 levels. All coal stockpile levels declined from November 2010, with bituminous coal stockpile levels 9 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants dropped slightly from last month and remained below levels seen in November of 2010 or 2009. While

424

NETL: Gasification Systems - Power Systems Development Facility (PSDF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Development Facility (PSDF) Power Systems Development Facility (PSDF) Project No.: DE-FC21-90MC25140 Power Systems Development Facility (PSDF) Project ID: DE-FC21-90MC25140 NETL Contact: Morgan Mosser (304) 285-4723 Organization: Southern Company Services, Inc. - Birmingham, AL Project Timeline: Start: 09/14/1990 End: 01/31/2009 Power Systems Development Facility The objectives of the work at the Power Systems Development Facility (PSDF) are two-fold; development of the Transport Gasifier for a wide range of US coals from high sodium lignite to Midwestern bituminous and provide a test platform to test various critical components that are likely to appear in future advanced coal-based power facilities producing power and fuels such as hydrogen with zero emissions. With regard to the development of the

425

NETL: Mercury Emissions Control Technologies - Field Demonstration of  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Demonstration of Enhanced Sorbent Injection for Mercury Control Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM will test their proprietary activated carbon-based sorbent which promotes oxidation and capture of mercury via preparation with chemical additives. ALSTOM proposes to test the sorbents at three utilities burning different coals, PacificCorpÂ’s Dave Johnston (PRB), Basin ElectricÂ’s Leland Olds (North Dakota Lignite) and Reliant EnergyÂ’s Portland Unit (bituminous). Other project partners include Energy and Environmental Research Center, North Dakota Industrial Commission and Minnkota Power who will be a non-host utility participant. Upon completion of this two year project, ALSTOM will demonstrate the capability of controlling mercury emissions from units equipped with electrostatic precipitators, a configuration representing approximately 75% of the existing units.

426

Method of making water gas  

SciTech Connect

The process of manufacturing water gas by alternate air and steam blasting is discussed. The process consists in providing two separate fuel beds of bituminous fuel in two intercommunicating water-gas generators; hot air blasting from the top part of the fuel bed in one generator to the top portion of the other fuel bed in the second generator; and blasting from the bottom part of the fuel bed in the first generator to the bottom part of the fuel bed in the second generator. By evolving volatile matter in the fuel bed in the first generator, and introducing secondary air between the fuel beds to burn the volatile matter and thereby facilitate the carbonization of raw fuel and to store heat in the fuel bed in the second generator, generation of water gas by steam blasting the heated fuel beds will result.

Evans, O.B.

1931-06-02T23:59:59.000Z

427

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 732 0.87 10.5 41 0.09 2.0 0 -- -- Connecticut 0 -- -- 41 0.09 2.0 0 -- -- Maine 32 0.80 7.0 0 -- -- 0 -- -- Massachusetts 700 0.88 10.7 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

428

CO2 Sequestration Potential of Texas Low-Rank Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

429

 

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Consumer, Origin and Method of Transportation, 2007 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A

430

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to determine the mode of transportation from the synfuel plant to the electric generating

431

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

432

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

433

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

434

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: Commercial Gasifiers: Fixed (Moving) Bed Gasifiers Gasifier: Commercial Gasifiers: Fixed (Moving) Bed Gasifiers Lurgi Dry-Ash Gasifier Lurgi GmbH first developed Lurgi dry-ash gasification technology in the early 1930s to produce what was still known as town gas, in one of the first practical applications of gasification. The first commercial plant based on this technology was built in 1936. In the 1950s, Lurgi and Ruhrgas further developed the technology to handle bituminous coals in addition to the traditional lignite feedstock. Lurgi dry-ash gasification technology has since been used worldwide to produce synthesis gas (syngas), and is the basis of such major projects as the Sasol synfuel plants in South Africa, and the Great Plains Synfuels Plant in North Dakota. An estimated 150 Lurgi gasifiers are in operation today, mainly in South Africa, China and the United States (North Dakota).

435

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

436

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring and Modeling Sorption- Induced Coal Strain Eric P. Robertson, Idaho National Laboratory Richard L. Christiansen, Colorado School of Mines FOURTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/NETL May 2-5, 2005 Abstract Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With

437

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: September 2011 Highlights: September 2011 Cooler temperatures drove down retail sales of electricity in the Southeast compared to September 2010. Fossil steam generation decreased in much of the United States, except in the ERCOT portion of Texas where total generation increased from September, 2010. Bituminous coal stocks dropped 18% from September 2010. Key Indicators Sept. 2011 % Change from Sept. 2010 Total Net Generation (Thousand MWh) 336,264 -3% Residential Retail Price (cents/Kwh) 12.26 2% Retail Sales (Thousand MWh) 324,357 -1% Cooling Degree-Days 184 -6% Natural Gas Price, Henry Hub ($/mmBtu) 4.04 0% Coal Stocks (Thousand Tons) 144,439 -11% Coal Consumption (Thousand Tons) 76,765 -3% Natural Gas Consumption (Mcf) 702,589 -2% Nuclear Outages (MW) 9,227 70%

438

IR-2003-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Relations Office Washington, D.C. Media Contact: 202.622.4000 Relations Office Washington, D.C. Media Contact: 202.622.4000 www.IRS.gov/newsroom Public Contact: 800.829.1040 $1 BILLION IN TAX CREDITS ALLOCATED TO CLEAN COAL PROJECTS IR-2006-184, Nov. 30, 2006 WASHINGTON - The Internal Revenue Service announced that it has allocated nearly $1 billion of tax credits to nine planned clean coal projects. The Energy Policy Act of 2005 authorized $1.65 billion in tax credits for clean coal projects. The Act allocated $800 million of credits to integrated gasification combined cycle (IGCC) projects, $500 million to non-IGCC advanced coal electricity generation projects and $350 million to gasification projects. The $800 million allocated to IGCC projects is required to be allocated in relatively equal amounts among bituminous coal,

439

Definition: Tar Sands | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Tar Sands Jump to: navigation, search Dictionary.png Tar Sands A resource, found in particular abundance in Canada, where viscous petroleum is mixed in with a layer of sand, clay, and water. The form of petroleum is often referred to as "bitumen". The resource has only recently been considered part of the world's oil reserves View on Wikipedia Wikipedia Definition Oil sands, tar sands or, more technically, bituminous sands, are a type of unconventional petroleum deposit. The oil sands are loose sand or partially consolidated sandstone containing naturally occurring mixtures of sand, clay, and water, saturated with a dense and extremely viscous form of petroleum technically referred to as bitumen (or colloquially tar due to

440

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer: Concurrent Technology Corporation Customer Name Contract No.:001000045 Dept. No.: H050 H050 Project No.:0601CTC4 ©Year Mitretek Systems ©M Falls Church, Virginia ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

442

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

443

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 353 2.20 7.7 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 353 2.20 7.7 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

444

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

445

NETL: Mercury Emissions Control Technologies - Evaluation of Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Control Strategies to Effectively Meet 70 - 90% Evaluation of Control Strategies to Effectively Meet 70 - 90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR The overall objective of this project is to assess the potential for significant mercury control, between 50 and 90% above baseline, by sorbent injection for the challenging technical process configuration at Public Service of New Hampshire Company Merrimack Station Unit No. 2. The primary emphasis of this project is to evaluate the performance of mercury sorbent injection, but the effect of co-benefits from SO3 mitigation on mercury control will also be explored. Also in this program the performance capabilities of mercury measurement techniques in challenging flue-gas environment will be assessed and the impact of activated carbon injection on fly ash disposal options will be investigated.

446

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Tools Bibliography Gasification Plant Databases - National Energy Technology Laboratory 2009 Corporate Responsibility Report - Air Products 5th International Symposium on Gas Cleaning at High Temperatures A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry (Princeton University Energy Group - Dec 2006) A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal, Volume 1 (Oct 2008) A Review of Air Separation Technologies and their Integration with Energy Conversion Processes - A. Smith, Fuel Processing Technology (2000) About Gasification - Clean-energy.us Acid Gas Removal - The Linde Group (Nov 2011) Advanced Gasification Systems Development - S.P. Fusselman, K.M. Sprouse, A.K. Darby, J. Tennant and G.J. Stiegel, International Pittsburgh Coal Conference (Sept 2005)

447

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

August 2011 | Release Date: October 25, August 2011 | Release Date: October 25, 2011 | Next Release Date: November 21, 2011 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2%

448

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

449

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

450

NMR imaging of anomalous solvent transport in macromolecular materials  

SciTech Connect

Systems in which a change in state accompanies solvent transport, exhibits a sharp solvent front that penetrates the sample like a shock wave; such behavior is called case II transport to distinguish it from Fickian transport. This occurs in macromolecule/solvent systems such as bituminous coals swollen in pyridine; the only requirement for case II behavior is a glassy state in the dry state, crossing over to a rubbery state during solvent uptake. A sharply defined solvent front and a constant front velocity are present. Case II behavior are related to relative magnitudes of characteristic diffusion times and molecular relaxation times. An experimental study of case II transport of methanol in polyethylmethacrylate and pyridine in coal using optical and NMR imaging techniques is reported in this paper.

Cody, G.D.; Botto, R.E.

1993-08-01T23:59:59.000Z

451

Surface modified coals for enhanced catalyst dispersion and liquefaction. Semiannual progress report, September 1, 1995--February 29, 1996  

SciTech Connect

The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal liquefaction have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum uptake from solution. The results show that DDAB created positively charged sites on the coal and increased molybdenum loading compared to the original coal. In contrast, SDS rendered the coal surface negative and reduced molybdenum uptake. The results show that efficient loading of molybdenum catalyst onto coal can be achieved by pretreatment of the coal with dodecyl dimethyl ethyl ammonium bromide.

Abotsi, G.M.K.

1996-10-01T23:59:59.000Z

452

Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980  

DOE Green Energy (OSTI)

Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability products of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence

Rao, P.D.; Wolff, E.N.

1981-05-01T23:59:59.000Z

453

LIMB Demonstration Project Extension. Quarterly report no. 5, May, June and July 1988  

SciTech Connect

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

454

LIMB Demonstration Project Extension  

Science Conference Proceedings (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

455

LIMB Demonstration Project Extension  

Science Conference Proceedings (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

456

LIMB Demonstration Project Extension. Quarterly report No. 6, August--October, 1988  

Science Conference Proceedings (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

457

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

458

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL  

Science Conference Proceedings (OSTI)

This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

Sharon Sjostrom

2002-02-22T23:59:59.000Z

459

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

460

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Encoal mild coal gasification project: Final design modifications report  

Science Conference Proceedings (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

462

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

463

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

Large-scale combustion tests with caking bituminous coal has stopped. This stoppage has come about due to limitations in current funding available to continue large scale research and development activities at Riley Power's Commercial Burner Test Facility (CBTF) of the PC Preheat technology. The CBTF was secured and decommissioned in the previous quarter; work this quarter work completed the securing the proper disposition of all PC Preheat experimental equipment at the PSCF and CBTF and completing negotiations with AES Westover (a power plant in Johnson City, New York) to accept 130 tons of residual PRB test coal in storage. The coal transport to Westover occurred at the end of August. GTI was granted a no-cost time extension through September 2005; immediate efforts are focused on completing a draft final report, which is due in October 31, 2005 and the final report in December.

Joseph Rabovitser; Serguei Nester; Stan Wohadlo

2005-09-30T23:59:59.000Z

464

Converting syncrudes to transportation fuels: Appendix 1  

DOE Green Energy (OSTI)

Syncrudes derived from oil shale and those produced in direct coal liquefaction processes can be converted to transportation fuels using modern commercial hydroprocessing technology. Upgrading routes typically consist of hydrogen addition and removal of heteroatom and inorganic impurities. This paper reviews refining routes and discusses the properties of finished transportation fuel products (gasoline, jet fuel, diesel) produced from syncrudes. Fuels produced from bituminous coal, subbituminous coal, and lignite are contrasted with those produced from oil shale and petroleum. Transportation fuels from shale oil resemble those from waxy petroleum crudes. Upgraded products from liquids made in H-Coal, EDS, and SRC-II direct coal liquefaction processes are low in paraffin content and consist mainly of cyclic hydrocarbons. As a result, the latter have some unusual and desirable properties for transportation fuels. 14 refs., 8 figs., 8 tabs.

Sullivan, R.F.; O'Rear, D.J.; Frumkin, H.A.

1981-01-01T23:59:59.000Z

465

Assessment of black liquor recovery boilers  

DOE Green Energy (OSTI)

In the paper making industry, pulpwood chips are digested and cooked to provide the pulp going to the refining and paper mills. Black liquor residue, containing the dissolved lignin binder from the chips, with a concentration of 12 to 16% solids, is further concentrated to 62 to 65% solids and mixed with salt cake, Sodium Sulfate (Na/sub 2/SO/sub 4/). The resulting concentrate of black liquor serves both as a fuel for generating steam in the boiler and also as the mother liquid from which other process liquors are recovered and recycled. Because the black liquor fuel contains high alkali concentrations, 18.3% sodium, 3.6% sulfur, an amount typical of midwestern bituminous coal, and measurable amounts of silica, iron oxides and other species, the black liquor boiler experience was reviewed for application to MHD boiler technology.

Not Available

1979-05-01T23:59:59.000Z

466

Direct liquefaction proof-of-concept program  

DOE Green Energy (OSTI)

The POC Bench Option Project (PB-Series) is geared to evaluate different novel processing concepts in catalytic direct coal liquefaction and coprocessing of organic wastes such as plastics, heavy resids, waste oils, and ligno-cellulose wastes with coal. The new ideas being explored in this program include using novel dispersed slurry catalysts and combinations of dispersed and supported catalysts (hybrid mode), and coprocessing of coal with waste plastics, low quality resids, waste oils, and ligno-cellulosic wastes, etc. The primary objective of bench run PB-07 was to study the impact of dispersed catalyst composition and loading upon the direct liquefaction performance of a high volatile bituminous Illinois No. 6 coal. The run was carried out for 20 operating days (including the four days used for the production of O-6 bottoms material for West Virginia University), spanning over five process conditions. Results are reported.

Comolli, A.G.; Zhou, P.Z.; Lee, T.L.K.; Hu, J.; Karolkiewicz, W.F.; Popper, G.

1997-12-01T23:59:59.000Z

467

Charging of coal powder particles in dense phase pneumatic conveying system at low pressure  

Science Conference Proceedings (OSTI)

A non-contact measurement method, namely an electrostatic probe, for particle charging characteristics determination is introduced in the paper. Using the probe, the charging trends of the pulverized bituminous coal in a dense phase pneumatic conveying system at low pressure were investigated for gas superficial velocities in a range of 6-10 m/s and particle concentrations in a range of 128-230 kg/m{sup 3}. The observations indicated that increasing the coal particles concentration leads to an increase in charge level of the pulverized coal particles and then a decrease, and a peak of the charge level is experienced in the range of 150-160 kg/m{sup 3}. The charges carried by the coal particles increase with the increase of gas superficial velocity in the pipeline, and then reach saturation values.

Xu, C.L.; Tang, G.H.; Wang, S.M. [Southeast University, Nanjing (China). School of Energy & Environment

2009-04-15T23:59:59.000Z

468

Investigation of a technique for sulfur reduction of mild gasification char. [Quarterly] report, December 1, 1991--February 29, 1992  

DOE Green Energy (OSTI)

The object of this program is to investigate the desulfurization of mild gasification char using H{sub 2}CH{sub 4} mixtures in a laboratory-scale experimental study. Mild gasification is a coal conversion technique which produces solid, liquid, and gaseous co-products. Char is the major co-product, about 60% of the dry coal yield. Form coke for steelmaking and foundries presents the best potential high-value markets for chars from eastern bituminous coals. Conventional metallurgical cokes generally contain about 1 wt% or less sulfur. Mild gasification char from high-sulfur Illinois coals must be upgraded to meet these criteria. One method to accomplish this is desulfurization with reducing gases derived from the mild gasification co-product gases. Because form coke has a market value up to $200/ton, it can accommodate desulfurization costs and still be economically attractive. The desulfurization can be performed either on the granular char or on formed-briquettes.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States)

1992-08-01T23:59:59.000Z

469

Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)  

DOE Green Energy (OSTI)

Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

White, M.

1996-01-01T23:59:59.000Z

470

Predicting extents of mercury oxidation in coal-derived flue gases  

SciTech Connect

The extent of Hg oxidation determines the portion of Hg in the flue gas from a coal-fired power station that can be removed in SO{sub 2} scrubbers. This article evaluates predicted extents of Hg oxidation from a detailed chemical reaction mechanism, emphasizing the data from 1 and 29 MW pilotscale furnaces for diverse coal types. The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O{sub 2}, H{sub 2}O, HCl), emissions (NOx, SOx, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl{sub 2} and CaCl{sub 2} injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl. 33 refs., 4 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

471

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes  

SciTech Connect

The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)

1994-07-01T23:59:59.000Z

472

Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering  

SciTech Connect

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD{sub 4}, in four bituminous coals in the range of pore sizes between {approx}10 {angstrom} and {approx}5 {micro}m. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD{sub 4}, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD{sub 4} varied from {approx}13 to {approx}36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO{sub 2} and CD{sub 4} were conducted as a function of the pressure in the range of 1-400 bar. The neutron scattering intensity from small pores with radii less than 35 {angstrom} in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO{sub 2} and supercritical methane in small pores.

He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Sakurovs, Richard [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

473

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report for the period ending March 31, 1986  

SciTech Connect

The principal goal of coal char-steam gasification research at the University of North Dakota Energy Research Center (UNDERC) is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process, thereby simplifying operation and improving process economics. The study included evaluations of temperature and catalyst loading effects, coal and catalyst screening, and determinations of the apparent activation energies of the steam gasification reaction. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

474

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report  

Science Conference Proceedings (OSTI)

The principal goal of coal char-steam gasification research is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Reaction conditions for these tests were based on the results of earlier work at UNDERC in which product gases from fixed-bed, atmospheric pressure, steam gasification at temperatures of 700/sup 0/ to 750/sup 0/C were found to contain 63 to 65 mole % hydrogen, with the remainder being carbon dioxide, carbon monoxide, and less than 1 mole % methane. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results of this study showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring, alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

475

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advanced coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less than 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. Uncatalyzed lignites and a subbituminous coal were found to be eight to ten times more reactive with steam at 700/sup 0/ to 800/sup 0/C than an Illinois bituminous coal. This relationship, within this narrow temperature range, is important as this is the range that thermodynamically favors the production of hydrogen from steam gasification at atmospheric pressure. The reactivity of the uncatalyzed coals increased 3 to 4 times with an increase in steam gasification temperature from 700/sup 0/ to 800/sup 0/C. For the catalyzed coals during steam gasification: Reactivity increased approximately 2 times over the 700/sup 0/ to 800/sup 0/C temperature range for low-rank coals catalyzed with potassium carbonate. Sodium carbonate was found to be as effective a catalyst as potassium carbonate for the steam gasification of low-rank coal chars on a mass loading basis; and naturally occurring mineral sources of sodium carbonates/bicarbonates, trona and nahcolite, are as effective in catalyzing low-rank coal steam gasification as the pure carbonates. 18 refs., 6 figs., 2 tabs.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-04-01T23:59:59.000Z

476

Power Systems Development Facility Gasification Test Campaign TC24  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

477

Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

Not Available

1990-01-01T23:59:59.000Z

478

Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990  

SciTech Connect

The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

Not Available

1990-12-31T23:59:59.000Z

479

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

480

Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC  

SciTech Connect

Oxy-fuel technology uses effectively pure oxygen for fossil fuel combustion in order to obtain a highly concentrated CO{sub 2} stream, suitable for direct compression and sequestration. It is an effective technology to reduce greenhouse gas emissions to the atmosphere from large point sources such as power generation plants. Oxy-fuel FBC technology has the combined advantage of producing high CO{sub 2} concentration flue gas and allowing excellent fuel flexibility. In addition, with external cooling of the recirculated solids, the flue gas recirculation ratio can be reduced. CETC-Ottawa has carried out oxy-fuel fluidized bed combustion with flue gas recirculation on its modified mini-CFBC. The mini-CFBC has an internal diameter of 100 mm and internal height of 5000 mm. Both bituminous and sub-bituminous coals were fired. Limestone was premixed with coal and fed to the mini-CFBC. Recirculated solids were cooled in the return leg of the mini-CFBC. The bed temperature was controlled at about 850{sup o}C, while the oxygen concentration in the primary gas was about 25% and in the secondary gas was about 50%. With flue gas recycle, the CO{sub 2} concentration in the flue gas reached 82-90%. Sulfur capture efficiency and CO and NOx concentrations were also measured and were all at acceptable levels. The transition from air firing to oxy-fuel firing was a fast and relatively smooth process, and operation of the mini-CFBC under oxy-fuel firing conditions was similar to that of air firing. 15 refs., 4 figs., 3 tabs.

L. Jia; Y. Tan; C. Wang; E.J. Anthony [Natural Resources Canada, Ottawa, ON (Canada)

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite culm bituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mulled coal - a beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 11, October 1, 1992--December 31, 1992  

SciTech Connect

Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. Since the inception of the project, the authors have: developed formulations to stabilize wet filter cake into a granular free flowing material (Mulled Coal); applied the formulation to wet cake from a variety of coal sources ranging from anthracite to subbituminous coal; evaluated effects of moisture loss on mull properties; developed design concepts for equipment for preparing the Mulled Coal and converting it into Coal Water Fuel; obtained storage and handling system design data for the granular coal; completed the 74-day aging study on various mull formulations to determine the effects of time and exposure on mull properties; demonstrated the continuous production of mulled coal from wet filter cake; performed atomization studies on Mulled Coal and CWF prepared from Mulled Coal; developed a standardized set of empirical tests to evaluate handling characteristics of various mull formulations; completed integrated, continuous mulling process circuit design. During this report period they have completed coal aging studies; plant design is being reviewed; and final report preparation has begun.

1993-01-01T23:59:59.000Z

482

Wood power - its potential in our energy crisis  

Science Conference Proceedings (OSTI)

Wood is meeting about 2% of total U.S. energy needs and may eventually supply up to 7% of our nation's energy. Many forms of direct combustion equipment are available for residential heating and range from supplemental wood-burning stoves to complete house-heating multi-fuel furnaces. A recent survey conducted in New York indicated that one-third of the people contacted used wood for home heating. The total amount of fuelwood used in New York State in 1978 amounted to 1,716,000 standard cords. A Wisconsin study indicates that more than 1.2 million cords of firewood were burned by Wisconsin households during the 1979-80 heating season. A Pennsylvania survey indicated that 22% of single family households used wood for home heating. Corning Glass Works recently conducted a wood-burning stove market survey and found that 18% of all U.S. households own wood-burning stoves. On the basis of cost per unit of heat, wood heat is cheaper than its next closest commonly available rival (fuel oil) and is also cheaper than anthracite coal and electricity. Industrial wood-burning furnaces are commonly incorporated into boiler systems. Nearly 1700 wood-fired boiler systems are in operation in the United States. The economic value of a wood fuel will depend on its heating value and moisture content. For an indsutry considering use of densified wood for fuel, there is a question of whether the added expense is justified by increased ease of handling and improved burning efficiency. Where high sulfur emissions from coal are a problem, burning sulfur-free pellets in combination with coal may be a solution. In Maine a $3 million pellet-making plant is producing 600 tons of pellets per day. Nationally, the overall generating capacity of all known electrical generating plants using wood and wood derived fuels is about 4500 megawatts. Wood can be processed to produce liquid fuels and other chemicals.

Johnson, W.W.

1982-01-01T23:59:59.000Z

483

Predicting the devolatilization behavior of any coal from its ultimate analysis  

Science Conference Proceedings (OSTI)

FLASHCHAIN has been developed to predict yields and product characteristics from any coal for any operating conditions. This evaluation demonstrates the model`s utility for the usual situation where the ultimate analysis is the only sample-specific information available. It also identifies the key reaction centers in coal as its structural components called labile bridges. Their elemental compositions are grossly different than the analogous whole-coal properties, showing much stronger rank dependences and a much higher degree of sample-to-sample variability. In light of these findings, it is inconceivable that bride conversion rates are rank-independent. Parameters in the rate law for bridge conversion in FLASHCHAIN are now explicitly related to the elemental compositions of bridges. The (O/C){sub B} ratios are the best regression variable for the rate constants because oxygen is the most effective promoter of pyrolytic decompositions. The (O/H){sub B} rates are best for the selectivity coefficient between scission and condensation into char links because oxygen promotes crosslinking but hydrogen addition to broken bridge fragments stabilizes them. These extensions are ev