Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liquefaction of sub-bituminous coal  

SciTech Connect

Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1986-01-01T23:59:59.000Z

2

Evaluation of fine-particle size catalysts using bituminous and subbituminous coals  

SciTech Connect

The objectives of Sandia`s fine-particle size catalyst testing project are to evaluate and compare the activities of fine-particle size catalysts being developed in DOE/PETC`s Advanced Research Coal Liquefaction Program by using Sandia`s standard coal liquefaction test procedures. The first test procedure uses bituminous coal (DECS-17 Blind Canyon coal), phenanthrene as the reaction solvent, and a factorial experimental design that is used to evaluate catalysts over ranges of temperature, time, and catalyst loading. The best catalyst evaluated to date is West Virginia University`s iron catalyst that was impregnated onto the coal. Current work is aimed at developing a standard test procedure using subbituminous Wyodak coal. Ibis test is being developed using Pacific Northwest Laboratories` 6-line ferrihydrite catalyst and coal samples impregnated with either molybdenum or iron at Argonne National Laboratories. Results of testing catalysts with bituminous coal will be summarized and the development of the subbituminous coal test procedure will be presented.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-06-01T23:59:59.000Z

3

Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report  

Science Conference Proceedings (OSTI)

Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

1993-03-01T23:59:59.000Z

4

Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

5

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

6

Table 8.4c Consumption for Electricity Generation by Energy Source ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

7

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

8

www.eia.gov  

U.S. Energy Information Administration (EIA)

Coal includes anthracite, bituminous, subbituminous and lignite coal. ... DOE, Office of Electricity Delivery and Energy Reliability, Form OE-781R, ...

9

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, ...

10

www.eia.gov  

U.S. Energy Information Administration (EIA)

Anthracite kg CO2 / MMBtu Bituminous Sub-bituminous Lignite Electric Power Sector Industrial Coking ... Office of Energy Efficiency and Renewable Energy, ...

11

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

12

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

13

A B  

Gasoline and Diesel Fuel Update (EIA)

oils and diesel) Crude oil and lease condensate Motor gasoline LPG (Ethane, ethylene, propane, propylene, butane, butylene) Natural gas Anthracite Bituminous and subbituminous...

14

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

15

Table 8.2c Electricity Net Generation: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Solar thermal and photovoltaic (PV) energy. 2 Distillate fuel oil ...

16

International Energy Annual 2001 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Office of Energy Markets and End Use U.S. Department of Energy ... Coal includes anthracite, subanthracite, bituminous, subbituminous, lignite, and brown coal.

17

Table 8.5b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Municipal solid waste from biogenic sources, landfill gas, ...

18

Recovering clean coal from anthracite culm: Coal Quality Development Center Campaign Report No. 8: Interim report  

Science Conference Proceedings (OSTI)

Recovering Clean Coal from Anthracite Culm contains the results of an investigation into the cleanability of coarse anthracite (termed ''culm'') excavated from a refuse bank in Schuylkill County, Pennsylvania. This characterization consisted of five interrelated efforts: Unprocessed Coarse Culm Characterization, Laboratory Froth Flotation Testing, Impurities Liberation Investigation, Culm-Cleaning Evaluation, and Combustion Characteristics Comparison. Significant cleanability characterization findings were that: although the unprocessed culm is sticky, plastic, and extremely difficult to handle and store, cleaning makes this fuel easy to transport, store, and handle using conventional power plant equipment. In the characterization, cleaning reduced culm dry ash content from 59% to 11% while recovering 50% of the original culm energy content. Part of the cleanability characterizations involved testing of a new pre-cleaning device; a SuperScalper. In these tests it was demonstrated that the SuperScalper can economically increase the capacity of conventional cleaning units in recovering clean coal from anthracite culm. The SuperScalper can save 40% of the capital cost of a new cleaning plant and 30% of its operating cost when used to pre-clean the feed to concentrating tables. The SuperScalper also shows promise as a rough cleaning device to be used in reclaiming bituminous coal refuse for use in fluidized bed combustors, although further studies are needed to evaluate the economics of this application. 8 refs., 20 figs., 31 tabs.

Torak, E.R.; Bhowmick, A.K.; Cavalet, J.R.; Parsons, T.H.

1987-11-01T23:59:59.000Z

19

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1...

20

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

production coal-derived hydrocarbons. Coal is more easily recovered and more widely available than oil shale and

Seth, M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

22

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

of char and gases. The Fischer-Tropsch process is an exampleprocess economics, the Fischer-Tropsch process has not beenevaluations for a Fischer-Tropsch plant in the United

Holten, R.R.

2010-01-01T23:59:59.000Z

23

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

July 22, 1974. Project Western Coal: Conversion of Coal Intoand Gasification of Western Coals", in proceedings of ERDA/Investigators' Conference - Coal Research, Colorado School

Holten, R.R.

2010-01-01T23:59:59.000Z

24

THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

W. S. , "Solvent Treatment of Coal", Mills and Boon, London,of this solvent with the coal structure. When coupled withis indeed quite an unusual coal solvent. REFEREMCES Oele, A.

Grens III., Edward A.

2013-01-01T23:59:59.000Z

25

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

I.D I.D XBL 7111- 11389 g. s urn coal iurn REfERENCES 1. W.H. Wiser, Coal Catalysis, Proceedings of the EPRIC. Howard. Chern; (John Wil of Coal Utilization H. H. lowry.

Seth, M.

2010-01-01T23:59:59.000Z

26

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

Investigation of Molten-Salt/Organic-Solvent CombinationsAs an alternative to molten salts, inorganic acids are aniii) Investigation of molten-salt/organic- Dee Extraction of

Seth, M.

2010-01-01T23:59:59.000Z

27

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

Liquefaction Chemistry B. Molten Salt Catalysis RationaleUsed Equipment and Procedure Molten Salt a. b. c. Treat~entEquipment and Procedure Molten Salt Treatment a. Equipment

Holten, R.R.

2010-01-01T23:59:59.000Z

28

Anthracite coal supply for the 1981-1982 winter  

Science Conference Proceedings (OSTI)

This report contains a letter addressed to the Chairman of the Subcommittee on Energy and Mineral Resources in which findings on the potential for anthracite to become an effective component in meeting US energy needs are presented. Some of the problems facing the anthracite industry and consumers in the northeastern states, state and industry actions since the 1980 shortage, and the outlook for the winter of 1982 are addressed. Information was obtained on anthracite exports to foreign countries and to the DOD facilities in the Federal Republic of Germany. Development efforts to use anthracite in industrial boilers and the actions that the state of Pennsylvania has taken to encourage the use of anthracite in municipal buildings are also discussed. (DMC)

Peach, J.D.

1981-09-18T23:59:59.000Z

29

Fine Anthracite Coal Washing Using Spirals  

Science Conference Proceedings (OSTI)

The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

2001-05-31T23:59:59.000Z

30

Health status of anthracite surface coal miners  

Science Conference Proceedings (OSTI)

In 1984-1985, medical examinations consisting of a chest radiograph, spirometry test, and questionnaire on work history, respiratory symptoms, and smoking history were administered to 1,061 white males who were employed at 31 coal cleaning plants and strip coal mines in the anthracite coal region of northeastern Pennsylvania. The prevalence of radiographic evidence of International Labour Office (ILO) category 1 or higher small opacities was 4.5% in 516 men who had never been employed in a dusty job other than in surface coal mining. Among these 516 workers, all 4 cases of ILO radiographic category 2 or 3 rounded opacities and 1 case of large opacities had been employed as a highwall drill operator or helper. The prevalence of category 1 or higher opacities increased with tenure as a highwall drill operator or helper (2.7% for 0 y, 6.5% for 1-9 yr, 25.0% for 10-19 y, and 55.6% for greater than or equal to 20 y drilling). Radiographic evidence of small rounded opacities, dyspnea, and decreases in FEV1.0, FVC, and peak flow were significantly related to tenure at drilling operations after adjusting for age, height, cigarette smoking status, and exposures in dusty jobs other than in surface coal mining. However, tenure in coal cleansing plants and other surface coal mine jobs were not related to significant health effects. The apparent excess prevalence of radiographic small rounded opacities in anthracite surface coal mine drillers suggests that quartz exposures have been increased. Average respirable quartz concentrations at surface coal mine drilling operations should be evaluated to determine whether exposures are within existing standards, and dust exposures should be controlled.

Amandus, H.E.; Petersen, M.R.; Richards, T.B.

1989-03-01T23:59:59.000Z

31

Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants  

Science Conference Proceedings (OSTI)

In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

I. Surez-Ruiz; J.C. Hower; G.A. Thomas [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

2007-01-15T23:59:59.000Z

32

Method for providing improved solid fuels from agglomerated subbituminous coal  

SciTech Connect

A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Pawlak, Wanda (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1989-01-01T23:59:59.000Z

33

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

34

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and ...  

Science Conference Proceedings (OSTI)

Results show: compared with anthracite coal, the ignition and burn out temperatures of biomass char were lower and the combustion characteristics were better ...

35

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network (OSTI)

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

36

NETL - Bituminous Baseline Performance and Cost Interactive Tool | Open  

Open Energy Info (EERE)

NETL - Bituminous Baseline Performance and Cost Interactive Tool NETL - Bituminous Baseline Performance and Cost Interactive Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bituminous Baseline Performance and Cost Interactive Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: Bituminous Baseline Performance and Cost Interactive Tool [1] Bituminous Baseline Performance and Cost Interactive Tool The Bituminous Baseline Performance and Cost Interactive Tool illustrates key data from the Cost and Performance Baseline for Fossil Energy Plants - Bituminous Coal and Natural Gas to Electricity report. The tool provides an

38

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II  

SciTech Connect

Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

2008-10-31T23:59:59.000Z

39

Manipulation of Electrical Conductivity in Bituminous Coal by CNT ...  

Science Conference Proceedings (OSTI)

In this work, the conductivity of Bituminous coal samples found from Khalaspir coal mine is studied. This coal mine is located in the northern part of Bangladesh.

40

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

and P. Fugassi, Phenanthrene Extraction of Bituminous Coal,Coal Science, Advances in Chemistry Series No. 55, 448 C.Mechanism of High Volatile Coal, Coal Science, Advances in

Dorighi, G.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 2: Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Coal Coal is a mixture of organic mineral material produced by a natural process of growth and decay, or an accumulation of debris both vegetal and mineral with some sorting and stratification. The process is accomplished by chemical, biological, bacteriological and metamorphic action. 1 Forms of Coal Coal is a hydrocarbon that is classified according to the amount of heat it produces. Heat content depends upon the amount of fixed carbon it contains. Rank is the degree of progressive alteration in the transformation from lignite to anthracite. There are four primary ranks of coal: * Anthracite (semi-anthracite, anthracite, and meta-anthracite) * Bituminous (high-volatile, medium-volatile, and low-volatile) * Subbituminous * Lignite (brown coal and lignite)

42

Anthracite R&D needs - CRADA 89-001. Final report  

Science Conference Proceedings (OSTI)

The purpose of this research is to foster the development of one or more high performance, anthracite-fired boiler systems suitable for meeting space heating and hot water requirements of large buildings. The boiler system research would include fuel handling, combustion and heat transfer, ash handling, and control systems.

Bartis, J.T.; Inberman, A.K. [Eos Technologies, Inc., Arlington, VA (United States)

1990-09-01T23:59:59.000Z

43

Co-carbonization of two anthracites with a fat coal or two pitches  

SciTech Connect

The blends of two anthracite powders (YQ and JC) with a fat coal (C4) or a petroleum pitch (PP) or a coal tar pitch (CTP) in different proportions were co-carbonized at 3{sup o}C/min up to 1000{sup o}C in an experimental 1 kg coke oven. Coke yield, coke particulate size, coke micro-strength and coke cracking strength were measured respectively. Coke optical textures were watched under a microscope. The results show that as anthracite proportion increases, coke yields of all blends improve; > 0.8 mm lump coke yields of blends with CTP or PP decline slightly, blends with C4 drop heavily; coke microstrengths do not change sharply, and coke cracking strength of blends with C4 or PP decrease more than blends with CTP. C4 produces fine-grained mosaics, and two anthracites are mainly fusinite and fragments, PP is coarse-grained mosaics, and CTP is chiefly flow or domain textures. Independent optical textures were observed in cokes. There exist evident borders between the two contact optical textures which were produced by different components, and a few phenomena that domain or flow textures penetrating into fusinite appeared in the blends. It seems that CTP is the best adhesives for blending with anthracites for producing high quality cokes.

Shen, J.; Wang, Z.Z. [Taiyuan University of Technology, Taiyuan (China). College of Chemical Engineering & Technology

2006-04-15T23:59:59.000Z

44

Comparison of the Potential Impacts of Petroleum Coke and Anthracite Culm Use  

E-Print Network (OSTI)

The primary feedstock for the proposed Gilberton Coal-to-Clean Fuels and Power Project would be low-cost anthracite culm, which is a locally abundant, previously discarded resource that could accommodate fuel requirements during the demonstration period. Culm reserves controlled by WMPI are estimated to be sufficient to supply the proposed facilities for about 15 years, or to supply both the proposed facilities and the existing Gilberton Power Plant for about 11 years. Based on the applicant’s proposal, the facilities would also be capable of using a blend of feedstock containing up to 25% petroleum coke. Petroleum coke is a high-sulfur, high-energy product having the appearance of coal. Oil refineries produce petroleum coke by heating and removing volatile organic compounds (VOCs) from the residue remaining after the refining process. This appendix compares some of the potential impacts of 100 % anthracite culm use with the potential impacts from using a blended feedstock of 75 % anthracite culm and 25 % petroleum coke. Topics considered include carbon dioxide emissions, air emissions of sulfur compounds and toxic substances, solid wastes and byproduct production, and increased truck traffic. Carbon Dioxide (CO2) Emissions Published values for potential CO2 emissions from anthracite and petroleum coke are very similar.

Gilberton Coal-to-clean Fuels

2007-01-01T23:59:59.000Z

45

Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite.  

E-Print Network (OSTI)

??Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged… (more)

Nyathi, Mhlwazi

2011-01-01T23:59:59.000Z

46

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

47

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

48

Electric conductivity and aggregation of anthracite and graphite particles in concretes  

Science Conference Proceedings (OSTI)

A statistical model of the electric conductivity of a heterogeneous system based on coal and a binding agent is presented. In this system, a conductive phase appears because of particle aggregation. The model was tested in the systems of anthracite and graphite in cement stone. The consistency between the experimental and calculated electric conductivities with a correlation coefficient higher than 0.9 was found on a linear interpolation of model parameters. It was found that the presence of a surfactant (cetylpyridinium chloride) and a high-molecular-weight compound (polyvinyl acetate) changed the number of particles in anthracite and graphite aggregates to affect the specific conductivity of the heterogeneous system. 9 refs., 5 figs., 1 tab.

E.A. Fanina; A.N. Lopanov [Belgorod State Technological University, Belgorod (Russian Federation)

2009-02-15T23:59:59.000Z

49

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

50

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Rank By Mining Method By Location 200 U.S. Energy Information Administration Annual Energy Review 2011 Anthracite Lignite Subbituminous Coal Subbituminous coal and...

51

Oxidative decomposition of formaldehyde catalyzed by a bituminous coal  

Science Conference Proceedings (OSTI)

It has been observed that molecular hydrogen is formed during long-term storage of bituminous coals via oxidative decomposition of formaldehyde by coal surface peroxides. This study has investigated the effects of coal quantity, temperature, and water content on the molecular hydrogen formation with a typical American coal (Pittsburgh No. 6). The results indicate that the coal's surface serves as a catalyst in the formation processes of molecular hydrogen. Furthermore, the results also indicate that low temperature emission of molecular hydrogen may possibly be the cause of unexplained explosions in confined spaces containing bituminous coals, for example, underground mines or ship holds. 20 refs., 4 figs., 6 tabs.

Haim Cohen; Uri Green [Ariel University Center in Samaria, Beer Sheva (Israel). Biological Chemistry Department

2009-05-15T23:59:59.000Z

52

Investigation of plasma-aided bituminous coal gasification  

Science Conference Proceedings (OSTI)

This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

2009-04-15T23:59:59.000Z

53

Process for removing pyritic sulfur from bituminous coals  

DOE Patents (OSTI)

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

54

Enhanced Oxidative Reactivity for Anthracite Coal via a Reactive Ball Milling Pretreatment Step  

Science Conference Proceedings (OSTI)

Reactive ball milling in a cyclohexene solvent significantly increases the oxidative reactivity of an anthracite coal, due to the combined effects of particle size reduction, metal introduction, introduction of volatile matter, and changes in carbon structure. Metals introduced during milling can be easily removed via a subsequent demineralization process, and the increased reactivity is retained. Solvent addition alters the morphological changes that occur during pyrolysis and leads to a char with significantly increased reactivity. When the solvent is omitted, similar effects are seen for the milled product, but a significant fraction of the char is resistant to oxidation. 33 refs., 3 figs., 1 tab.

Angela D. Lueking; Apurba Sakti; Dania Alvarez-Fonseca; Nichole Wonderling [Pennsylvania State University, PA (United States). Department of Energy and Mineral Engineering

2009-09-15T23:59:59.000Z

55

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

56

Liquefaction of calcium-containing subbituminous coals and coals of lower rank  

DOE Patents (OSTI)

An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

Brunson, Roy J. (Baytown, TX)

1979-01-01T23:59:59.000Z

57

Combustion characterization of coals for industrial applications  

Science Conference Proceedings (OSTI)

The five parent coals ear-marked for this study have been characterized. These coals include (1) a Texas (Wilcox) lignite; (2) a Montana (Rosebud) subbituminous; (4) an Alabama (Black Creek) high volatile bituminous; and (5) a Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The FI is indicative of the ignition temperature of a given fuel on a relative basis. The combustion kinetic parameters (apparent activation energies and frequency factors) of Montana subbituminous and Pennsylvania anthracite chars have also been derived from data obtained in the Drop Tube Furnace System (DTFS). This information depicts the combustion characteristics of these two coal chars. 1 ref., 5 figs., 4 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1982-11-01T23:59:59.000Z

58

Liquefaction of calcium-containing subbituminous coals and coals of lower rank  

DOE Patents (OSTI)

A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

Gorbaty, Martin L. (Sanwood, NJ); Taunton, John W. (Seabrook, TX)

1980-01-01T23:59:59.000Z

59

Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal  

SciTech Connect

Physicochemical properties of the charcoal arising from pyrolysis of sugarcane bagasse at 600{sup o}C and 800{sup o}C were determined to evaluate potentialities for specific end uses. The charcoals were found fairly adequate as solid bio-fuels. Their quality was comparable to charcoals obtained from some other agro-industrial by-products, reportedly proposed as substitutes of wood-based ones. Surface properties of the charcoal generated at the higher temperature indicated that it is reasonably suited for potential use as low-cost rough adsorbent, soil amender, and/or for further upgrading to activated carbon. Moreover, kinetic measurements for pyrolysis of the sugarcane bagasse individually and mixed with an Argentinean subbituminous coal in equal proportions were conducted by thermogravimetry for the range 25 -900{sup o}C. Data modeling accounting for variations in the activation energy with process evolution provided a proper description of pyrolysis and co-pyrolysis over the entire temperature range.

Bonelli, P.R.; Buonomo, E.L.; Cukierman, A.L. [University of Buenos Aires, Buenos Aires (Argentina)

2007-07-01T23:59:59.000Z

60

Rapid and medium setting high float bituminous emulsions  

SciTech Connect

This patent describes a rapid set high float aqueous bituminous emulsion-comprising bitumen, water, and from about 0.4% to about 0.6%, based on the weight of the emulsion, of an anionic emulsifier comprised of an alkaline solution of a combination of (1) 20% to 80% fatty acids selected from the group consisting of tall oil fatty acids, tallow fatty acids, and mixtures. (2) 20% to 80% of a product of the reaction of the fatty acids with a member of the group consists of acrylic acid, methacrylic acid, fumaric acid, and maleic anhydride.

Schilling, P.; Schreuders, H.G.

1987-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of an alternative bituminous material as a soil stabilizer  

E-Print Network (OSTI)

Asphalt cements, cutback asphalts, and emulsified asphalts are used as bituminous stabilizing agents in the pavement systems. The emulsified asphalts are increasingly used in lieu of cutback asphalts because of environmental regulations and safety. Consequently, development of a new stabilization material, which is environmentally safe and non-flammable, is desired for replacing cutback asphalts. In this study a petroleum-resin-based (PRB) material was tested to investigate its physical and mechanical characteristics as an alternative bituminous soil stabilizer in terms of replacing the cutback asphalts because the PRB material has been proved an environmentally safe material. Based on various laboratory tests, including an unconfined compressive strength test, a soil suction test, dielectric measurements, a resilient modulus test, and an optical microscopy test, it has been verified that the PRB material affects base-layer waterproofing, but significant strength gain was not found. When mixed with mostly granular base materials, the PRB material coated soil or aggregate particles and decreased the volume of voids, which can be thought as potential water flow channels. Consequently, the PRB material is expected to reduce permeability.

Kim, Yong-Rak

1999-01-01T23:59:59.000Z

62

Organic geochemical evaluations of bituminous rock and coals in Miocene Himmetoglu basin (Bolu, Turkey)  

Science Conference Proceedings (OSTI)

The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount of organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.

Sari, A.; Geze, Y. [Ankara University, Ankara (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

63

Pore size distribution and accessible pore size distribution in bituminous coals  

Science Conference Proceedings (OSTI)

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Sakurovs, Richard [ORNL; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

64

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

65

Dissolution and swelling of bituminous coal in n-methyl-pyrrolidone.  

E-Print Network (OSTI)

??Research detailed herein examined the extraction and swelling of a bituminous coal in the super solvent n-methyl-pyrrolidone. Correlations were developed to describe the extraction and… (more)

Stoffa, Joseph M.

2006-01-01T23:59:59.000Z

66

Physical and mechanical properties of bituminous mixtures containing oil shales  

Science Conference Proceedings (OSTI)

Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

Katamine, N.M.

2000-04-01T23:59:59.000Z

67

Organic emissions from coal pyrolysis: mutagenic effects. Environ. Health Perspect. 73  

E-Print Network (OSTI)

Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53,um) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous> high volatile bituminous> lignite> anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous>> subbituminous = lignite>> anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production.

Andrew G. Braun; Mary J. Wornat; T Amitava Mitra; Adel F. Sarofimt

1987-01-01T23:59:59.000Z

68

Compilation of air-pollutant emission factors. Volume 1. Stationary point and area sources, Fourth Edition. Supplement B  

Science Conference Proceedings (OSTI)

In the supplement to the Fourth Edition of AP-42, new or revised emissions data are presented for Bituminous And Subbituminous Coal Combustion; Anthracite Coal Combustion; Residential Wood Stoves; Waste Oil Combustion; Refuse Combustion; Sewage Sludge Incineration; Surface Coating; Polyester Resin Plastics Product Fabrication; Soap and Detergents; Grain Elevators and Processing Plants; Lime Manufacturing; Crushed Stone Processing; Western Surface Coal Mining; Wildfires and Prescribed Burning; Unpaved Roads; Aggregate Handling And Storage Piles; Industrial Paved Roads; Industrial Wind Erosion; and Appendix C.3, Silt Analysis Procedures.

Not Available

1988-09-01T23:59:59.000Z

69

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

70

Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas  

Science Conference Proceedings (OSTI)

Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

Ye Zhuang; Stanley J. Miller [University of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center

2006-05-15T23:59:59.000Z

71

Coal, Smoke, and Death: Bituminous Coal and American Home Heating, 1920-1959  

E-Print Network (OSTI)

Air pollution was severe in many parts of the United States in the first half of the twentieth century. Much of the air pollution was attributable to bituminous coal. This paper uses newly digitized state-month mortality data to estimate the effects of bituminous coal consumption for heating on mortality rates in the U.S. between 1920 and 1959. The use of coal for heating was high until the mid-1940s, and then declined sharply. The switch to cleaner fuels was driven by plausibly exogenous changes in the availability of natural gas, the end of war-related supply restrictions, and a series of coal strikes from 1946-1950. The identification strategy leverages the fact that coal consumption for heating increases during cold weather. Specifically, the mortality effects are identified from differences in the temperature-mortality response functions in state-years with greater coal consumption. Cold weather spells in high coal state-years saw greater increases in the mortality rates than cold weather spells in low coal state-years. Our estimates suggest that reductions in the use of bituminous coal for heating between 1945 and 1959 decreased average annual mortality by 2.2-3.5 percent, January mortality by 3.2-5.1 percent, average annual infant mortality by 1.6-2.8 percent, and January infant mortality by 3.1-4.6 percent. Our estimates are likely to be a lower-bound, since they only capture short-run relationships between coal and mortality. We thank Leila Abu-Orf, Paula Levin, and Katherine Rudolph for excellent research assistance. We are grateful to

Alan Barreca

2012-01-01T23:59:59.000Z

72

The mobile phase in coals: Its nature and modes of release: Final report: Part 1, Structural inferences from dry catalytic hydrogenation of a subbituminous coal  

DOE Green Energy (OSTI)

In a study to provide insight into the two component structural model of coal and the mechanisms of coal liquefaction, an approach was adopted in which a subbituminous coal was reacted with hydrogen in the presence of an impregnated molybdenum sulphide catalyst and in the absence of solvent. Reactions were conducted at temperatures between 300 and 400/sup 0/C and for reaction times up to 180 min. The composition and yields of gaseous products, chloroform-soluble liquids and insoluble residues were followed as a function of the reaction conditions by means of different analytical and characterization techniques: gas chromatography; /sup 1/H NMR; elemental analysis; FTIR; solvent swelling in pyridine. 105 refs., 20 figs., 12 tabs.

Terrer, M.T.; Derbyshire, F.J.

1986-12-01T23:59:59.000Z

73

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

74

PURPOSE - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Waste/Other Coal (including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal) RC. tons. 20. 29. ... the Government Accountability Office, ...

75

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

76

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

77

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2011 Bituminous Subbituminous Lignite Census Division and State Receipts...

78

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

- Lehigh University This project determines the feasibility of using low grade power plant waste heat to dry lignite and sub-bituminous coals before they are burned in...

79

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Industrial Sector by State, July 2013 Bituminous Subbituminous Lignite; Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight

80

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2011 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of coal and iron requirements between bituminous coal hydrogenation and low temperature carbonization (L. T. C. ) followed by hydrogenation  

SciTech Connect

Plants producing 100,000 tons/yr aviation gasoline and 25,000 tons/yr of liquid petroleum gasoline (L.P.G.) by hydrogenation of coal and 100,000 tons/yr of aviation gasoline, 15,000 tons/yr L.P.G., and 912,000 tons/yr of excess L.T.C. coke by L.T.C. followed by hydrogenation of the L.T.C. tar are considered. Specific data are included on L.T.C., specific data for L.T.C. tar hydrogenation, and total coal requirement for L.T.C. of coal and hydrogenation of the L.T.C. tar. Information is also included on hydrogenation of bituminous coal and iron requirements. Three charts show differences between various bituminous coal conversion processes. The iron requirements for L.T.C. and tar hydrogenation was 100,500 tons and for bituminous coal hydrogenation it was 123,300 tons. An input of 1,480,000 tons of L.T.C. coal was calculated. The power coal requirement for L.T.C. and hydrogenation was 1,612,000 tons. The coal requirement for tar hydrogenation was 482,000 tons and 1,130,000 tons for surplus coke and gas. Therefore about 30% of the total coal was used for aviation gasoline and L.P.G. and about 70% for surplus coke and gas.

1943-04-21T23:59:59.000Z

82

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian .............................................. 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama ................................................... .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .................................... .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .......................................................... .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1

83

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately

84

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

85

Supplement a to compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Fifth edition  

Science Conference Proceedings (OSTI)

This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sand and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.

NONE

1996-02-01T23:59:59.000Z

86

Combustion characterization of coals for industrial applications. First quarterly progress report, 1 April 1982-30 June 1982  

SciTech Connect

Three of the five coals ear-marked for this study have been characterized. These coals include (1) A Montana (Rosebud) subbituminous; (2) An Illinois (No. 6) high volatile bituminous; and (3) A Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The (FI) is indicative of the ignition temperature of a given fuel on a relative basis. These analyses yielded information regarding the ASTM classification of the three coals as well as their chemical, physical, and ignitibility characteristics. 1 figure, 2 tables.

Borio, R.W.; Goetz, G.J.; Nsakala ya Nsakala; Patel, R.L.

1982-08-01T23:59:59.000Z

87

Stability of the bituminous coal microstructure upon exposure to high pressures of helium  

Science Conference Proceedings (OSTI)

Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 {mu}m. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 {mu}m for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated. 35 refs., 5 figs., 1 tab.

Richard Sakurovs; Andrzej P. Radliski; Yuri B. Melnichenko; Tomas Blach; Gang Cheng; Hartmut Lemmel; Helmut Rauch [CSIRO Energy Technology, Newcastle, NSW (Australia)

2009-09-15T23:59:59.000Z

88

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

including lignite and sub-bituminous coal, make up about half of U.S. coal production and reserves. They have lower energy and sulfur contents than bituminous coal, but higher...

89

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

90

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

91

Design and economics of a plant to convert western subbituminous coal to SNG (substitute natural gas) using KRW (KRW Energy Systems Inc. ) gasifiers. Topical report (Final) May 1985-January 1986  

SciTech Connect

A first-pass design and cost estimate indicates that the levelized constant-dollar cost of gas for a 125 billion Btu/day plant to convert western subbituminous coal to substitute natural gas (SNG) using KRW gasifiers is $4.70/MMBtu. Process development allowances (PDA) increase the gas cost to $5.09/MMBtu. The levelized constant-dollar gas cost for a scaled-up 250 billion Btu/day plant is estimated at $4.17/MMBtu, indicating that smaller plants can be constructed with less capital risk while producing methane at only slightly higher costs.

Smith, J.T.; Hanny, D.J.; Smelser, S.C.

1986-01-01T23:59:59.000Z

92

Pilot Plant Assessment of Blend Properties and Their Impact on Critical Power Plant Components  

Science Conference Proceedings (OSTI)

Low-sulfur subbituminous coals, currently in demand to meet regulated SO2 emission standards, are very different in composition from bituminous coal and affect many operating characteristics when fired in boilers designed for bituminous coal. This report documents a pilot-scale study of the relative impacts of a subbituminous coal or blend containing subbituminous coal on unit operating characteristics such as mill performance, furnace wall slagging, convective pass fouling, and electrostatic precipitato...

1999-02-02T23:59:59.000Z

93

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

94

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

95

Stable aqueous suspension of partial oxidation ash, slag and char containing polyethoxylated quaternary ammonium salt surfactant  

SciTech Connect

This patent describes a pumpable aqueous suspension of particulate matter with reduced viscosity and increased resistance to sedimentation. It has a particle size in the range of about 37-2000 microns as produced by quench cooling of scrubbing the hot raw effluent gas stream comprising H/sub 2/+CO at a temperature in the range of about 1700{sup 0}F - 3000{sup 0}F from the partial oxidation of solid carbonaceous fuel selected from the group consisting of anthracite, bituminous, sub-bituminous and lignite coal, coke from coal, petroleum coke, coal liquefaction solid residue, oil shale, tar sands, asphaltic bitumen, and mixtures thereof. Wherein the aqueous suspension comprises water, about 1.0-50.0 weight percent of the particulate matter consisting of a mixture of slag and char, and about 0.1-10.0 weight percent of a polyethoxylated quaternary ammonium salt surfactant of the formula: where R is an alkyl radical selected from the group consisting of coco, tallow, lauryl, oleyl, and octadecyl, and x+y has a value in the range of 2-15.

Najjar, M.S.; Yaghmaie, F.; Sorell, L.S.

1989-08-29T23:59:59.000Z

96

JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

Dennis Laudal

2008-05-01T23:59:59.000Z

97

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

Science Conference Proceedings (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

98

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

99

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of preconversion heat soak with coal liquids  

SciTech Connect

A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

1992-07-01T23:59:59.000Z

100

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1992--June 30, 1992  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combustion characterization of coals for industrial applications. Final technical report, January 1, 1981-May 29, 1985  

Science Conference Proceedings (OSTI)

In-depth fundamental information was obtained from a two-inch inner diameter laminar flow reactor referred to as the Drop Tube Furnace System (DTFS). This information consists of the following: (1) pyrolysis kinetic characteristics of four coals of various rank (Texas lignite, Montana subbituminous, Alabama high volatile bituminous, and Pennsylvania anthracite); and (2) combustion kinetic studies of chars produced from the foregoing parent coals. A number of standard ASTM and special in-house bench scale tests were also performed on the coals and chars prepared therefrom to characterize their physicochemical properties. The pilot scale (500,000 Btu/hr) Controlled Mixing History Furnace (CMHF) was used to determine the effect of staged combustion on NO/sub x/ emissions control from an overall combustion performance of the Alabama high volatile bituminous coal. The quantitative fundamental data developed from this study indicate significant differences in coal/char chemical, physical, and reactivity characteristics, which should be useful to those interested in modeling coal combustion and pyrolysis processes. These results underscore the fact that coal selection is one of the keys governing a successful coal conversion/utilization process. The combustion kinetic information obtained on the high volatile bituminous coal has been used in conjunction with combustion engineering's proprietary mathematical models to predict the combustion performance of this coal in the Controlled Mixing History Furnace. Comparison of the predicted data with the experimental results shows a virtually one-to-one scale-up from the DTFS to the CMHF. These data should provide vital information to designers in the area of carbon burnout and NO/sub x/ reduction for large scale coal utilization applications. 31 refs., 28 figs., 17 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1985-03-01T23:59:59.000Z

102

Preparation for upgrading western subbituminous coal  

SciTech Connect

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

103

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

2. World recoverable coal reserves as of January 1, 2009 2. World recoverable coal reserves as of January 1, 2009 billion short tons Recoverable reserves by coal rank Region/country Bituminous and anthracite Subbituminous Lignite Total 2010 production Reserves-to- production ratio (years) World total 445.0 285.9 215.2 946.1 7.954 119 United Statesa 118.4 107.2 33.1 258.6 1.084 238 Russia 54.1 107.4 11.5 173.1 0.359 482 China 68.6 37.1 20.5 126.2 3.506 36 Other non-OECD Europe and Eurasia 42.2 18.9 39.9 100.9 0.325 311 Australia and New Zealand 40.9 2.5 41.4 84.8 0.473 179 India 61.8 0.0 5.0 66.8 0.612 109 OECD Europe 6.2 0.9 54.5 61.6 0.620 99 Africa 34.7 0.2 0.0 34.9 0.286 122 Other non-OECD Asia 3.9 3.9 6.8 14.7 0.508 29 Other Central and South America 7.6 1.0 0.0 8.6 0.085 101

104

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Coal Rank, 2012 Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 31. Average Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Bituminous Subbituminous Lignite Anthracite Total Alabama 106.57 - - - 106.57 Alaska - w - - w Arizona w - - - w Arkansas w - - - w Colorado w w - - 37.54 Illinois 53.08 - - - 53.08 Indiana 52.01 - - - 52.01 Kentucky Total 63.12 - - - 63.12 Kentucky (East) 75.62 - - - 75.62 Kentucky (West) 48.67 - - - 48.67 Louisiana - - w - w Maryland 55.67 - - - 55.67 Mississippi - - w - w Missouri w - - - w Montana w 17.60 w - 18.11 New Mexico w w - - 36.74 North Dakota - - 17.40 - 17.40 Ohio 47.80 - - - 47.80 Oklahoma 59.63 - - - 59.63 Pennsylvania Total 72.57

105

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

Science Conference Proceedings (OSTI)

By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.

Croft, Gregory D. [University of California, Department of Civil and Environmental Engineering (United States); Patzek, Tad W. [University of Texas, Department of Petroleum and Geosystems Engineering (United States)], E-mail: patzek@mail.utexas.edu

2009-09-15T23:59:59.000Z

106

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Operating Heat Rate for Selected Energy Sources, . Average Operating Heat Rate for Selected Energy Sources, 2002 through 2012 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2002 10,314 10,641 9,533 10,442 2003 10,297 10,610 9,207 10,422 2004 10,331 10,571 8,647 10,428 2005 10,373 10,631 8,551 10,436 2006 10,351 10,809 8,471 10,435 2007 10,375 10,794 8,403 10,489 2008 10,378 11,015 8,305 10,452 2009 10,414 10,923 8,159 10,459 2010 10,415 10,984 8,185 10,452 2011 10,444 10,829 8,152 10,464 2012 10,498 10,991 8,039 10,479 Coal includes anthracite, bituminous, subbituminous and lignite coal. Waste coal and synthetic coal are included starting in 2002. Petroleum includes distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil.

107

table7.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002; 2 Average Prices of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Bituminous and NAICS Coal Subbituminous Coal Petroleum Code(a) Subsector and Industry TOTAL Acetylene Breeze Total Anthracite Coal Lignite Coke Coke Total United States RSE Column Factors: 1.1 2.1 0.6 0.9 0.6 0.9 1.4 0.7 0.9 311 Food 6.42 113.78 0 1.46 W 1.46 0 5.18 0 311221 Wet Corn Milling 3.11 106.84 0 1.32 0 1.32 0 0 0 31131 Sugar 3.14 80.39 0 1.65 W 1.64 0 5.18 0 311421 Fruit and Vegetable Canning 7.09 103.28 0 0 0 0 0 0 0 312 Beverage and Tobacco Products 7.53 123.52 0 2.32 0 2.32 0 0 0 3121 Beverages 7.96 124.83

108

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

109

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed- system digestion process employing a Carius tube is used to completely oxidize the coal matrix

110

Anthracite Power & Light | Open Energy Information  

Open Energy Info (EERE)

Power & Light Place Pennsylvania Utility Id 56220 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 -...

111

Definition: Anthracite coal | Open Energy Information  

Open Energy Info (EERE)

for the majority of global production; other producers are Russia, Ukraine, North Korea, Vietnam, the UK, Australia and the US. Total production in 2010 was 670 million tons....

112

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [High temperature soaking coal in coal liquids prior to liquefaction  

SciTech Connect

Soaking coal in coal liquids at 300-400[degrees]C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

1992-10-01T23:59:59.000Z

113

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, July 1, 1992--September 30, 1992  

SciTech Connect

Soaking coal in coal liquids at 300-400{degrees}C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

1992-10-01T23:59:59.000Z

114

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

Science Conference Proceedings (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

115

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

Science Conference Proceedings (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

116

Powder River Basin Coal Supply and Suitability: EPRI Report Series on Low-Sulfur Coal Supplies  

Science Conference Proceedings (OSTI)

Utility use of subbituminous coals from the Powder River Basin is expected to increase 100 million tons by the year 2000, with much of the growth coming from units designed for high-sulfur bituminous coal. This report addresses whether Powder River Basin coal suppliers will be able to command a premium for their product and documents the recent and rapid improvements utilities have made in using subbituminous coals.

1992-12-01T23:59:59.000Z

117

Emissions of air toxics from coal-fired boilers: Arsenic  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

1994-08-01T23:59:59.000Z

118

Emissions of airborne toxics from coal-fired boilers: Mercury  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

119

CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil  

Science Conference Proceedings (OSTI)

The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as ?3? cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

Romanov, V [NETL

2012-10-23T23:59:59.000Z

120

Energy & Society Toolkit Appendices Toolkit Appendices  

E-Print Network (OSTI)

Bituminous Coal 25.8 25.8 24.4 27.2 Sub-bituminous Coal 26.2 26.2 25.3 27.3 Lignite 27.6 27.6 24.8 31.3 Oil Shale (& Tar Sandsc ) 29.1 29.1 24.6 34 Peat 28.9 28.9 28.4 29.5 Secondary Fuels / Products BKB & Patent

Kammen, Daniel M.

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

122

Special precautions for multiple short-delay blasting in coal mines  

SciTech Connect

Special precautions for multiple short-delay blasting of coal in underground mines are presented in this circular to guide safety engineers, shot firers, and coal-mine inspectors. These new safety recommendations are suggested in addition to those normally followed in blasting, as outlined in the Federal Mine Safety Codes for bituminous-coal, lignite, and anthracite mines.

Nagy, J.; Hartmann, I.; Van Dolah, R.W.

1959-01-01T23:59:59.000Z

123

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network (OSTI)

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

124

Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil  

DOE Patents (OSTI)

Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

Rodgers, Billy R. (Concord, TN); Edwards, Michael S. (Knoxville, TN)

1977-01-01T23:59:59.000Z

125

Evaluation of fluorescent lighting systems in various underground coal mines. Final report, May 1975-June 1978  

SciTech Connect

This report describes a variety of coal mining lighting projects that were funded by the Bureau of Mines to obtain underground lighting experience in support of new lighting requirements for underground coal mines. Some of the variables covered were low and high coal, narrow and wide entries, conventional and continuous mining, ac and dc power, bituminous and anthracite coal, machine mounting, and area lighting.

Ketler, A.E.

1979-05-01T23:59:59.000Z

126

THE BEST MEASURE OF A UNIVERSITY IS THECOLLECTIVE  

E-Print Network (OSTI)

Russian government conceived a program for doubling the output of Russian coal #12;v v v n v COAL mines in ocoupy high positions are the Hudson Coal Company, Weston Dodson Company, East Alden Mining Company to the anthracite field. In the mining of bituminous coal, the techniml and exmu- tive skill of its graduates

Napier, Terrence

127

Large-Scale Testing of Enhanced Mercury Removal for Subbituminous...  

NLE Websites -- All DOE Office Websites (Extended Search)

the mid-1990s to develop advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Anticipating new Federal rules and possible state legislation,...

128

0 2 4 6 8 10 12 14 Effective Stress(MPa)  

E-Print Network (OSTI)

and Transport Properties of Low-Rank Coal, PRB, WY: Implications for Carbon Sequestration on the mechanical and flow properties of sub-bituminous coal from the Powder River Basin, Wyoming. Lab measurements were conducted on one-inch diameter core samples of coal under hydrostatic

Stanford University

129

Chinese Journal of Chemical Engineering, 20(2) 389--399 (2012) Recent Advances in Flame Tomography*  

E-Print Network (OSTI)

-fuel combustion, co-firing biomass with coal and fluid- ized bed combustion. Flame characteristics under to be the main source of energy in many countries in the years to come. Coal-fired power stations are burning an in- creasingly varied range of fuels and fuel blends, in- cluding sub-bituminous and lower volatile

Yan, Yong

130

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

131

Effects of Anthracite on Pelletization of Hematite Ore  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

132

Deformation behaviour of bitumen and bituminous mixes  

E-Print Network (OSTI)

is the temperature at which a bitumen disc contained in a brass ring under the loading of a steel ball will touch a base plate 25 mm below the ring when the sample temperature is raised at 5oC per minute (BS2000-58, 1983). Chapter 2. Review of previous research...

Ossa, Edgar Alexander

2005-03-15T23:59:59.000Z

133

Evaluation of fine-particle size catalysts using standard test procedures  

SciTech Connect

The goal of this project is to evaluate and compare the activities/selectivities of fine-particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Liquefaction Program by using standard coal liquefaction activity test procedures. Since bituminous and subbituminous coals have significantly different properties, it is feasible that catalysts may perform differently with these coal types. Because all previous testing has been done with the DECS-17 Blind Canyon bituminous coal, it is important to develop the capability of evaluating catalysts using a subbituminous coal. Initial efforts towards developing a subbituminous coal test are aimed at comparing the reactivities of the Wyodak subbituminous coal and the Blind Canyon bituminous coal. Therefore, the same factorial experimental design was used with the Wyodak coal as was used previously with the Blind Canyon coal. In addition, PNL`s 6-line ferrihydrite catalyst precursor was used in the development of the Wyodak coal test procedure because this catalyst is the best powder catalyst found to date in Sandia`s tests with Blind Canyon coal. Results show that Blind Canyon coal yields higher DHP amounts in the reaction products and higher tetrahydrofuran conversions at the higher severity conditions. Wyodak coal gives higher heptane conversions and higher gas yields for all conditions tested.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-07-01T23:59:59.000Z

134

Alternative and innovative transport modes for moving US steam-coal exports to the Asian Pacific Basin  

Science Conference Proceedings (OSTI)

The United States is well positioned to play an expanding role in meeting the energy demands of the Asian Pacific Basin (APB). US coal reserves, among the world's largest, contain vast amounts of surface-mineable coal in the West in addition to significant volumes in the Midwest and East. However, high inland-transportation costs and the relatively low calorific value of some Western coals have recently resulted in delivered prices exceeding those of the world market -- maintaining the United States as a marginal supplier in a market that now receives one-third of worldwide steam-coal exports. This study describes alternatives that might reduce these delivered costs, emphasizing transport modes for four regions and mentioning blending for a fifth: (1) subbituminous coals of the Powder River Basin (Wyoming and Montana), (2) bituminous coals of central Utah and Colorado, (3) bituminous and subbituminous coals of the Four Corners Region (where Utah, Colorado, New Mexico, and Arizona meet), (4) bituminous and subbituminous coals of Alaska, and (5) bituminous coals of the Illinois Basin (Illinois, Indiana, and western Kentucky). It investigates innovative rail and ocean transport modes, coal-slurry pipelines, coal blends, and unconventional transport modes like overland conveyors and intermodal containers. It compares delivered prices under various scenarios, combining different transportation alternatives. 142 refs., 28 figs., 38 tabs.

Szpunar, C.B.; Kenkeremath, L.D.; Traczyk, P.A.; Brolick, H.J.; Heller, J.N.; Uttmark, G.F.

1989-11-01T23:59:59.000Z

135

Effect of coal rank and process conditions on temperature distribution in a liquefaction reactor  

SciTech Connect

The temperature distribution in a liquefaction reactor in the integrated TSL process is studied. The effects of gas and slurry superficial velocities, process solvent characteristics, reactor length, and catalyst sulfiding agent on the exotherm and temperature difference in the reactor are studied. A substantial temperature difference is observed with subbituminous coal as compared with bituminous coal, at comparable reactor conditions. Some of the factors that are believed to have contributed to the large exotherm and temperature difference in the reactor are slow kinetics and high reaction heat for subbituminous coal conversion and pyrrhotite catalysis.

Nalitham, R.V.; Moniz, M.

1986-04-01T23:59:59.000Z

136

Model documentation of the Short-Term Coal Analysis System  

Science Conference Proceedings (OSTI)

The short-term coal analysis system (SCOAL) is used by the Data Analysis and Forecasting Branch (DAFB) as an analytic aid to support preparation of short-term projections of bituminous coal and lignite production at the state level, and anthracite production, domestic imports of coal, and domestic and export demand for US coal at the national level. A description of SCOAL is presented which includes a general overview of the model and its analytical capabilities. (DMC)

Not Available

1983-04-01T23:59:59.000Z

137

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

138

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

139

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

140

Pilot plant assessment of blend properties and their impact on critical power plant components  

Science Conference Proceedings (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Measurement of Sorption-Induced Strain  

SciTech Connect

Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

Eric P. Robertson; Richard L. Christiansen

2005-05-01T23:59:59.000Z

142

Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 6, July 1, 1991--September 30, 1991  

SciTech Connect

Under the auspices of the Department of Energy and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; and in processes to provide deeply-cleaned coal. Since the inception of the project, we have: developed formulations for stabilizing wet filter cake into a granular free flowing material (Mulled Coal); applied the formulation to wet cake from a variety of coal sources ranging from anthracite to subbituminous coal; evaluated effects of moisture loss on mull properties; and developed design concepts for equipment for preparing the Mulled Coal and converting it into Coal Water Fuel.

1991-11-01T23:59:59.000Z

143

Demonstrated reserve base of coal in the United States on January 1, 1980  

Science Conference Proceedings (OSTI)

This is the second in a series of annual summaries on minable coal in the United States, pursuant to the power plant and industrial fuel use act. The demonstrated reserve base of coal in the United States on January 1, 1980 by area, rank, and potential method of mining is given. Reserve data are given by state and by type of coal (anthracite, bithiminous, subbituminous, and lignite). An introduction, summary, and a glossary of selected coal classification terms is also included. The appendix provides the demonstrated reserve base adjustments and related notions by state. References are also included. Coal reserves for 1979 are given for comparison. 7 figures, 6 tables.

Not Available

1982-05-01T23:59:59.000Z

144

Non-linear Regression - Subbituminous / CS-ESP / Darco Hg-LH  

NLE Websites -- All DOE Office Websites (Extended Search)

of Activated Carbon Injection Prepared for U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Innovations for Existing Plants Program...

145

ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

and F. Ziegler Brenstoff-Chemie 50, O. W. Van Krevelen andand F. Shaw Brenstoff-Chemie Table I. Analysis of Roland

Lindsey, D.

2011-01-01T23:59:59.000Z

146

ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

~. ~. ~. ~. Procedure . . . . . . . . . . . Coal and Solventon Subbiturninous Coal Below Pyrolysis Temperatures, LBL-Treatment of Extract Solution Coal Residue Treatment. Yield

Lindsey, D.

2011-01-01T23:59:59.000Z

147

Predictors of plasticity in bituminous coals. Final technical report  

SciTech Connect

A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

1984-02-01T23:59:59.000Z

148

Updated Costs (June 2011 Basis) for Selected Bituminous Baseline...  

NLE Websites -- All DOE Office Websites (Extended Search)

were also closer in size to the baseline cases. * Cases 1, 2, 13 and 14, Account 8.3 (Condenser and Auxiliaries): The condenser costs were re-calibrated using a series of more...

149

Process for producing electrodes from carbonaceous particles and a boron source  

Science Conference Proceedings (OSTI)

A method is described of making an electric arc furnace graphite electrode comprising: (a) calcining a carbonaceous material selected form the group consisting of anthracite coal, bituminous coal, lignites, and nos. 2 and 3 cokes; (b) mixing the calcined carbonaceous material with pitch, a lubricant, and a boron source selected from the group consisting of elemental boron, boron carbide, silicon tetraboride, and iron boride, in an amount such that the boron content is from about 0.1 to about 5.0 percent by weight of the graphite electrode to form a mixture; (c) extruding the mixture into an electrode form; (d) and graphitizing the electrode form to provide a graphite electrode.

Sara, R.V.

1988-09-13T23:59:59.000Z

150

Gasification of New Zealand coals: a comparative simulation study  

Science Conference Proceedings (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

151

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

152

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

153

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

154

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

155

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

156

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

Science Conference Proceedings (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

157

Wyoming geo-notes No. 2  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

158

Fuel Flexibility in Gasification  

DOE Green Energy (OSTI)

In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visi

McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K. (U.S. DOE National Energy Technology Laboratory); Lui, Alain P.; Batton, William A. (Parsons Infrastructure and Technology Group, Inc.)

2001-11-06T23:59:59.000Z

159

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. Prior to 2010, no power generating units firing Texas lignite were equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a two-phase program at the Sandow Station, located near Rockdale, Texas. The test pro...

2010-09-06T23:59:59.000Z

160

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. To date, no power generating units firing Texas lignite are equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a one-year program to test a plate-type catalyst at the Sandow Station, located near Rockdal...

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: August 2011 Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2% Natural Gas Price, Henry Hub -6% -9% Bituminous Coal Stocks -14% -14% Subbituminous Coal Stocks -10% -17% Heat wave drives record demand and wholesale prices in Texas A prolonged August heat wave in Texas stressed available generating capacity and produced very high wholesale prices in the Electric

162

Gasification Â… Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

163

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

164

Recommended guidelines for solid fuel use in cement plants  

Science Conference Proceedings (OSTI)

Pulverized solid fuel use at cement plants in North America is universal and includes bituminous and sub-bituminous coal, petroleum coke, and any combination of these materials. Provided are guidelines for the safe use of pulverized solid fuel systems in cement plants, including discussion of the National Fire Protection Association and FM Global fire and explosion prevention standards. Addressed are fire and explosion hazards related to solid fuel use in the cement industry, fuel handling and fuel system descriptions, engineering design theory, kiln system operations, electrical equipment, instrumentation and safety interlock issues, maintenance and training, and a brief review of code issues. New technology on fire and explosion prevention including deflagration venting is also presented.

Young, G.L.; Jayaraman, H.; Tseng, H. (and others)

2007-07-01T23:59:59.000Z

165

Catalyst dispersion and activity under conditions of temperature- staged liquefaction. [Catalyst precursors for molybdenum-based catalyst and iron-based catalyst  

DOE Green Energy (OSTI)

Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-07-01T23:59:59.000Z

166

Catalyst dispersion and activity under conditions of temperature- staged liquefaction. Technical progress report, January--March 1992  

DOE Green Energy (OSTI)

Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-07-01T23:59:59.000Z

167

Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

168

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

169

Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases  

SciTech Connect

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

2006-05-15T23:59:59.000Z

170

Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

171

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

172

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

173

Injury experience in coal mining, 1989  

Science Conference Proceedings (OSTI)

This Mine and Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

Not Available

1990-01-01T23:59:59.000Z

174

Injury experience in coal mining, 1992  

Science Conference Proceedings (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

Reich, R.B.; Hugler, E.C.

1994-05-01T23:59:59.000Z

175

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

Improved coal liquefaction was reinvestigated for the current two-stage process on the basis of the associated molecular nature of coal. Since a significant portion of coal molecules are physically associated as pointed in our recent paper, physical dissolution should be considered. The step-wise, high-temperature soaking is a simple and effective method for coal dissolution. Larger dissolution makes liquefaction severity lower. Broad molecular mass distribution in the associated coal was another important factor. The selective reaction of fractions with high molecular weight isolated after the high-temperature soaking makes gas yield lower. Tests using an autoclave by the concept shown in Figure 5 enabled to more oil and 15-20% less gas yields. It is expected that the procedure will result in great cost reduction in coal liquefaction.

1993-01-01T23:59:59.000Z

176

Development of coker feeds from aromatic oil and bituminous coal digests.  

E-Print Network (OSTI)

??Kingwood coal has been digested with two coal derived (anthracene oil and carbon black base) and two petroleum derived (slurry oil and Maraflex oil) aromatic… (more)

Clendenin, L. Mitchell.

2004-01-01T23:59:59.000Z

177

Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model  

Science Conference Proceedings (OSTI)

Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

2009-09-15T23:59:59.000Z

178

 

U.S. Energy Information Administration (EIA) Indexed Site

Origin and Method of Transportation, 2006 Origin and Method of Transportation, 2006 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to

179

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

180

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

182

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring and Modeling Sorption- Induced Coal Strain Eric P. Robertson, Idaho National Laboratory Richard L. Christiansen, Colorado School of Mines FOURTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/NETL May 2-5, 2005 Abstract Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With

183

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

184

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 353 2.20 7.7 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 353 2.20 7.7 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

185

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

186

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

187

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

188

Encoal mild coal gasification project: Final design modifications report  

Science Conference Proceedings (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

189

Converting syncrudes to transportation fuels: Appendix 1  

DOE Green Energy (OSTI)

Syncrudes derived from oil shale and those produced in direct coal liquefaction processes can be converted to transportation fuels using modern commercial hydroprocessing technology. Upgrading routes typically consist of hydrogen addition and removal of heteroatom and inorganic impurities. This paper reviews refining routes and discusses the properties of finished transportation fuel products (gasoline, jet fuel, diesel) produced from syncrudes. Fuels produced from bituminous coal, subbituminous coal, and lignite are contrasted with those produced from oil shale and petroleum. Transportation fuels from shale oil resemble those from waxy petroleum crudes. Upgraded products from liquids made in H-Coal, EDS, and SRC-II direct coal liquefaction processes are low in paraffin content and consist mainly of cyclic hydrocarbons. As a result, the latter have some unusual and desirable properties for transportation fuels. 14 refs., 8 figs., 8 tabs.

Sullivan, R.F.; O'Rear, D.J.; Frumkin, H.A.

1981-01-01T23:59:59.000Z

190

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 732 0.87 10.5 41 0.09 2.0 0 -- -- Connecticut 0 -- -- 41 0.09 2.0 0 -- -- Maine 32 0.80 7.0 0 -- -- 0 -- -- Massachusetts 700 0.88 10.7 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

191

 

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Consumer, Origin and Method of Transportation, 2007 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A

192

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to determine the mode of transportation from the synfuel plant to the electric generating

193

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report for the period ending March 31, 1986  

SciTech Connect

The principal goal of coal char-steam gasification research at the University of North Dakota Energy Research Center (UNDERC) is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process, thereby simplifying operation and improving process economics. The study included evaluations of temperature and catalyst loading effects, coal and catalyst screening, and determinations of the apparent activation energies of the steam gasification reaction. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

194

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report  

Science Conference Proceedings (OSTI)

The principal goal of coal char-steam gasification research is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Reaction conditions for these tests were based on the results of earlier work at UNDERC in which product gases from fixed-bed, atmospheric pressure, steam gasification at temperatures of 700/sup 0/ to 750/sup 0/C were found to contain 63 to 65 mole % hydrogen, with the remainder being carbon dioxide, carbon monoxide, and less than 1 mole % methane. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results of this study showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring, alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

195

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction  

Science Conference Proceedings (OSTI)

Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS [sup 13]C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425[degree]C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.

Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

1992-08-01T23:59:59.000Z

196

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--July 1992  

Science Conference Proceedings (OSTI)

Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS {sup 13}C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425{degree}C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.

Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

1992-08-01T23:59:59.000Z

197

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

198

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

Science Conference Proceedings (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

199

Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988  

DOE Green Energy (OSTI)

We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

Schulz, J.G.; Porowski, E.N.; Straub, A.M.

1988-05-01T23:59:59.000Z

200

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advance coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less then 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. North Dakota and Texas lignite chars were slightly more reactive than a Wyoming subbituminous coal char and eight to ten times more reactive than an Illinois bituminous coal char. Pure and mineral (trona nd nahcolite) alkali carbonates and recycled ash from K/sub 2/CO/sub 3/-catalyzed steam gasification tests substantially improved low-rank coal steam gasification rates. The reactivities obtained using trona and nahcolite to catalyze the steam gasification were the highest, at nearly 3.5 times those without catalysts.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987  

Science Conference Proceedings (OSTI)

The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.

1987-10-15T23:59:59.000Z

202

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

203

Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

Science Conference Proceedings (OSTI)

Previous sampling has shown that air pollution control devices can have a significant impact on mercury and other trace elements. For example, selective catalytic reduction (SCR) can substantially increase the percentage of oxidized mercury that can then be removed by a wet flue gas desulfurization (FGD) system. The electrostatic precipitator (ESP) also readily captures most of the trace elements of interest. The emission of these trace elements is then directly related to the overall particulate collect...

2008-08-12T23:59:59.000Z

204

Catalysts and process developments for two-stage liquefaction. Final technical report, October 1, 1989--September 30, 1992  

SciTech Connect

Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with in sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.

Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

1992-12-31T23:59:59.000Z

205

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

206

Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)  

DOE Green Energy (OSTI)

Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

White, M.

1996-01-01T23:59:59.000Z

207

Predicting extents of mercury oxidation in coal-derived flue gases  

SciTech Connect

The extent of Hg oxidation determines the portion of Hg in the flue gas from a coal-fired power station that can be removed in SO{sub 2} scrubbers. This article evaluates predicted extents of Hg oxidation from a detailed chemical reaction mechanism, emphasizing the data from 1 and 29 MW pilotscale furnaces for diverse coal types. The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O{sub 2}, H{sub 2}O, HCl), emissions (NOx, SOx, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl{sub 2} and CaCl{sub 2} injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl. 33 refs., 4 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

208

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advanced coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less than 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. Uncatalyzed lignites and a subbituminous coal were found to be eight to ten times more reactive with steam at 700/sup 0/ to 800/sup 0/C than an Illinois bituminous coal. This relationship, within this narrow temperature range, is important as this is the range that thermodynamically favors the production of hydrogen from steam gasification at atmospheric pressure. The reactivity of the uncatalyzed coals increased 3 to 4 times with an increase in steam gasification temperature from 700/sup 0/ to 800/sup 0/C. For the catalyzed coals during steam gasification: Reactivity increased approximately 2 times over the 700/sup 0/ to 800/sup 0/C temperature range for low-rank coals catalyzed with potassium carbonate. Sodium carbonate was found to be as effective a catalyst as potassium carbonate for the steam gasification of low-rank coal chars on a mass loading basis; and naturally occurring mineral sources of sodium carbonates/bicarbonates, trona and nahcolite, are as effective in catalyzing low-rank coal steam gasification as the pure carbonates. 18 refs., 6 figs., 2 tabs.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-04-01T23:59:59.000Z

209

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

210

Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC  

SciTech Connect

Oxy-fuel technology uses effectively pure oxygen for fossil fuel combustion in order to obtain a highly concentrated CO{sub 2} stream, suitable for direct compression and sequestration. It is an effective technology to reduce greenhouse gas emissions to the atmosphere from large point sources such as power generation plants. Oxy-fuel FBC technology has the combined advantage of producing high CO{sub 2} concentration flue gas and allowing excellent fuel flexibility. In addition, with external cooling of the recirculated solids, the flue gas recirculation ratio can be reduced. CETC-Ottawa has carried out oxy-fuel fluidized bed combustion with flue gas recirculation on its modified mini-CFBC. The mini-CFBC has an internal diameter of 100 mm and internal height of 5000 mm. Both bituminous and sub-bituminous coals were fired. Limestone was premixed with coal and fed to the mini-CFBC. Recirculated solids were cooled in the return leg of the mini-CFBC. The bed temperature was controlled at about 850{sup o}C, while the oxygen concentration in the primary gas was about 25% and in the secondary gas was about 50%. With flue gas recycle, the CO{sub 2} concentration in the flue gas reached 82-90%. Sulfur capture efficiency and CO and NOx concentrations were also measured and were all at acceptable levels. The transition from air firing to oxy-fuel firing was a fast and relatively smooth process, and operation of the mini-CFBC under oxy-fuel firing conditions was similar to that of air firing. 15 refs., 4 figs., 3 tabs.

L. Jia; Y. Tan; C. Wang; E.J. Anthony [Natural Resources Canada, Ottawa, ON (Canada)

2007-12-15T23:59:59.000Z

211

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 Alabama Alaska Arizona Arkansas Colorado Illinois Indiana Kansas Kentucky Total Louisiana Maryland Mississippi Missouri Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Total Tennessee Texas Utah Virginia Washington West Virginia Total Wyoming Appalachian Total Interior Total Western Total East of Miss. River West of Miss. River U.S. Total State / Region Domestic Foreign 19,449 1,398 8,027 4 33,125 31,076 36,379 437 125,333 98,027 27,306 4,257 7,689 3,593 391 41,570 26,473 30,265 23,139 1,920 73,815 2,902 70,913 2,633 44,531 24,519 31,789 2,580 145,321 42,435 102,886 449,638 401,863 149,893 617,595 500,216 669,134 1,169,350 Total East West Anthracite Bituminous Northern Southern 13,425 964 8,027 4 32,326 30,836 36,379 437 121,621 94,315 27,306 4,257 7,277 3,593

212

file://J:\mydocs\Coal\Distribution\2003\distable1.HTML  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2003 and Foreign Distribution of U.S. Coal by State of Origin, 2003 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 16,639 3,902 20,541 Alaska 856 232 1,088 Arizona 12,093 - 12,093 Arkansas 6 - 6 Colorado 34,997 898 35,895 Illinois 31,751 55 31,806 Indiana 35,350 - 35,350 Kansas 154 - 154 Kentucky Total 113,241 906 114,146 East 92,391 890 93,282 West 20,849 15 20,865 Louisiana 3,959 - 3,959 Maryland 4,955 596 5,551 Mississippi 3,739 - 3,739 Missouri 345 - 345 Montana 36,181 541 36,721 New Mexico 27,138 - 27,138 North Dakota 31,077 - 31,077 Ohio 21,770 176 21,945 Oklahoma 1,645 - 1,645 Pennsylvania Total 57,362 3,562 60,924 Anthracite 2,805 68 2,873 Bituminous 54,557 3,494 58,051 Tennessee 2,551 2 2,553 Texas 47,506 8 47,513 Utah 23,276 318 23,594 Virginia 26,000 6,117 32,117 Washington 6,232 - 6,232 West Virginia Total 134,359

213

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Underground Mining Method, 2012 Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 29. Average Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Continuous 1 Conventional and Other 2 Longwall 3 Total Alabama w - w 107.73 Arkansas w - - w Colorado w - 37.18 w Illinois 48.08 - 59.51 54.18 Indiana 52.94 - - 52.94 Kentucky Total w w - 62.24 Kentucky (East) w w - 79.23 Kentucky (West) 50.18 - - 50.18 Maryland w - - w Montana - - w w New Mexico - - w w Ohio w - w 49.39 Oklahoma w - - w Pennsylvania Total 94.53 w 65.01 w Pennsylvania (Anthracite) w w - 82.71 Pennsylvania (Bituminous) w - w 72.67 Tennessee w - - w Utah w - 34.99

214

Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation  

SciTech Connect

Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

2007-07-01T23:59:59.000Z

215

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2001 and Foreign Distribution of U.S. Coal by State of Origin, 2001 State / Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143 Arkansas 13 - 13 Colorado 32,427 894 33,321 Illinois 33,997 285 34,283 Indiana 36,714 - 36,714 Kansas 176 - 176 Kentucky Total 131,546 2,821 134,367 East 107,000 2,707 109,706 West 24,547 114 24,660 Louisiana 3,746 - 3,746 Maryland 4,671 319 4,990 Mississippi 475 - 475 Missouri 366 - 366 Montana 38,459 485 38,944 New Mexico 28,949 - 28,949 North Dakota 30,449 - 30,449 Ohio 25,463 12 25,475 Oklahoma 1,710 - 1,710 Pennsylvania Total 64,392 6,005 70,397 Anthracite 2,852 205 3,057 Bituminous 61,540 5,800 67,340 Tennessee 3,346 28 3,374 Texas 45,019 31 45,050 Utah 24,761 2,144 26,905 Virginia 25,685 7,071 32,756 Washington 4,623 - 4,623 West Virginia Total 144,584

216

file://C:\Documents%20and%20Settings\ICR\My%20Documents\Coal\Di  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: September 2003 Release Date: September 2003 Next Release Date: Summer 2004 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2002 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 15,552 3,425 18,977 Alaska 847 311 1,158 Arizona 12,971 - 12,971 Arkansas 12 - 12 Colorado 33,904 843 34,748 Illinois 32,719 21 32,740 Indiana 35,391 - 35,391 Kansas 205 - 205 Kentucky Total 123,129 791 123,920 East 98,492 791 99,284 West 24,636 - 24,636 Louisiana 3,810 - 3,810 Maryland 4,632 413 5,044 Mississippi 2,906 - 2,906 Missouri 203 - 203 Montana 37,050 180 37,230 New Mexico 27,555 - 27,555 North Dakota 31,011 - 31,011 Ohio 20,919 68 20,987 Oklahoma 1,394 - 1,394 Pennsylvania Total 59,764 5,530 65,294 Anthracite 2,436 251 2,687 Bituminous 57,328 5,279 62,607 Tennessee 3,229 52 3,281 Texas 45,638 33

217

Model documentation of the Short-Term Coal Analysis System. Volume 2. Model description. [SCOAL  

Science Conference Proceedings (OSTI)

This is the second of three volumes of documentation for the Short-Term Coal Analysis System (SCOAL) developed by the Coal Data Analysis and Forecasting Branch, Office of Coal, Nuclear, Electric, and Alternate Fuels. The principal aim of SCOAL is to project on a quarterly basis the likely contribution of each of the 26 major bituminous coal, lignite, and anthracite producing states to total US production. A secondary objective is to estimate a companion demand-side aggregated by region but disaggregated by end-use sector. In its current use, the two sides are operated in tandem, and serve to cross-validate each other by means of tracking market balances. The purposes of this report are to describe the estimation method, results, and performance evaluation criteria that were deemed relevant in assessing the potential predictive performance of SCOAL's statistically fitted relationships and to discuss the pre- and post-estimation considerations that prevailed over the course of mode development. The single equation parameter estimates, associated significance levels, statistical equation performance measures, and general comments regarding SCOAL's supply and demand side equations are presented.

Not Available

1983-04-01T23:59:59.000Z

218

Injury experience in coal mining, 1991  

Science Conference Proceedings (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

Not Available

1991-12-31T23:59:59.000Z

219

The Effect of Temperature on Dielectric Permitivity and Microwave ...  

Science Conference Proceedings (OSTI)

Dielectric property and microwave absorption property of anthracite were measured ... Effect of Continuous Cooling Rate on Microstructural Transformation of ...

220

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2002 423,128 1.47 10.1 391,785 0.36 6.2 65,555 0.93 13.3 2003 467,286 1.50 10.0 432,513 0.38 6.4 79,869 1.03 14.4 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677 1.02 14.0 2006 489,550 1.59 10.5 504,947 0.35 6.1 75,742 0.95 14.4 2007 467,817 1.62 10.3 505,155 0.34 6.0 71,930 0.90 14.0

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Use of Fischer-Tropsch Synthesis Commercial Use of Fischer-Tropsch Synthesis Operating Facilities - Sasol Production of liquid fuels and chemicals from coal on a large scale has been a reality in South Africa for decades. Sasol Synfuels owns and operates Sasol II and Sasol III, which are two F-T synthesis-based fuels production plants in Secunda, South Africa. The Sasol plants represent the most significant example of commercialized F-T synthesis in the world. Construction of Sasol II began in the mid 1970s, with operation of the two plants commencing in the early 1980s. The two plants contain 80 Sasol-Lurgi Fixed Bed Dry Bottom (FBDB) gasifiers, and total output from both of the plants is approximately 150,000 barrels per day (bpd), reaching 160,000 bpd in 2006. The feedstock for the plants is sub-bituminous coal supplied by Sasol Mining, a sister company of Sasol Synfuels. Natural gas is also used as a supplemental feedstock. A proprietary iron-based Fisher-Tropsch (FT) process is used to convert the synthesis gas (syngas) produced by the gasifiers to gasoline, light olefins (alkenes), and a variety of other products.

222

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

223

Coal liquefaction process streams characterization and evaluation: The preliminary evaluation of the kinetics of coal liquefaction distillation resid conversion  

SciTech Connect

This study evaluated the use of a novel laboratory-scale batch reactor, designed by the University of Delaware, to study the kinetics of coal liquefaction resid reactivity. The short time batch reactor (STBR) is capable of conducting reactions at temperatures up to 450{degrees}C and pressures up to 2500 psi at well-defined reaction times from a few seconds to 30 min or longer. Sixty experiments were conducted with the STBR in this project. The products of the resid/tetralin/hydrogen reaction were separated by solubility, and several analytical procedures were used to evaluate the reaction products, including thermogravimetric analysis (TGA), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Changes were monitored in the boiling ranges of the products, as a function of process conditions (time, temperature, and tetralin donor solvent-to-resid ratio), with and without catalysts. Two distillation resid samples were studied; Sample 1 is the resid of the second stage product stream from Wilsonville Run 259 which used Pittsburgh seam coal (Ireland mine) bituminous coal, and Sample 2 is the resid of the same streak from Wilsonville Run 260 which used Wyodak and Anderson (Black Thunder Mine) subbituminous coal. It was determined that the resid reactivity was different for the two samples studied. The results demonstrate that further development of this experimental method is warranted to empirically assess resid reactivity and to provide data for use in the construction of an empirical model of coal conversion in the direct liquefaction process.

Klein, M.T.; Calkins, W.H.; Huang, He [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1994-02-01T23:59:59.000Z

224

Characteristics of carbonized sludge for co-combustion in pulverized coal power plants  

Science Conference Proceedings (OSTI)

Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

Park, Sang-Woo [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

2011-03-15T23:59:59.000Z

225

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR  

Science Conference Proceedings (OSTI)

It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

1998-01-01T23:59:59.000Z

226

Results of the PDF{trademark} test burn at Clifty Creek Station  

Science Conference Proceedings (OSTI)

Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

Johnson, S.A.; Knottnerus, B.

1996-10-01T23:59:59.000Z

227

Mild coal pretreatment to improve liquefaction reactivity  

SciTech Connect

This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

Miller, R.L.

1991-01-01T23:59:59.000Z

228

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-01-01T23:59:59.000Z

229

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalyst for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char activities. The effects of potassium impregnation conditions (pH and coal surface charge) on the reactivities, in carbon dioxide, of chars derived from demineralized lignite, subbituminous and bituminous coals have been determined. Impregnation of the acid-leached coal with potassium from strongly acidic solutions resulted in initial slow char reactivity which progressively increased with reaction time. Higher reactivities were obtained for catalyst (potassium) loaded at pH 6 or 10. The dependence of char gasification rates on catalyst addition pH increased in the order: pH 6 {approximately} pH 10 {much gt} pH 1.

Abotsi, G.M.K.; Bota, K.B.

1991-01-01T23:59:59.000Z

230

A novel approach to highly dispersing catalytic materials in coal for gasification. First quarterly report, October 1, 1989--December 31, 1989  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-12-31T23:59:59.000Z

231

Flash hydropyrolysis of coal. Quarterly report No. 4, October 1--December 31, 1977  

SciTech Connect

The principal objective of this program is to experimentally study the process variables and chemistry of the Flash Hydropyrolysis Process, a rapid gas-phase, non-catalytic coal hydrogenation technique developed at BNL for the conversion to gaseous and liquid fuels. The experimental equipment used for this purpose is a highly instrumented 1 inch down-flow tubular reactor originally designed to operate at up to 4000 psi and 800/sup 0/C, with coal feed up to 1 lb/hr. These conditions are being extended to include temperatures to 900/sup 0/C at pressures equal to or less than 2500 psi and coal feed to 2 lbs/hr. Coal and char analyses are performed on a routine basis. A second distillation curve was performed on the total organic liquid product, this time extending the distillation temperature range to 350/sup 0/C. The results were similar to the first curve indicating that the liquid contains approximately 50% BTX (benzene, toluene, xylene) and 50% heavier hydrocarbons. A major portion of the experimental effort was devoted to the study of the effect of coal particle residence time. A number of exploratory runs were also conducted and results are reported here, including the use of a Battelle Treated Coal (BTC-caking coal treated with CaO), a New Mexico sub-bituminous coal, a mixture of lignite and lignite char and a lignite impregnated with iron.

1978-02-01T23:59:59.000Z

232

Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report  

SciTech Connect

The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

Ness, R.O. Jr.; Runge, B.; Sharp, L.

1992-11-01T23:59:59.000Z

233

Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation  

Science Conference Proceedings (OSTI)

The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

Ness, R.O. Jr.; Runge, B.; Sharp, L.

1992-11-01T23:59:59.000Z

234

Effect of Coal Blending By  

E-Print Network (OSTI)

Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. One control option is to utilize existing pollution control equipment such as wet flue gas desulfurization (FGD) scrubbers. The split (speciation) between chemical forms of mercury (Hg) species has a strong influence on the control and environmental fate of Hg emissions from coal combustion. The high-temperature coal combustion process releases Hg in elemental form (Hg 0). A significant fraction of the Hg 0 can be subsequently oxidized in the low-temperature, post-combustion environment of a coal-fired boiler. Relative to Hg 0, oxidized Hg (Hg 2+) is more effectively removed by air pollution control systems (APCS). For example, the water-soluble Hg 2+ is much more easily captured than insoluble Hg 0 in FGD units. Selective catalytic reduction (SCR) technology widely applied for reducing NOX emissions from power plants also affects the speciation of Hg in the coal combustion flue gases. Recent full-scale field tests conducted in the U.S. showed increases in Hg oxidation across the SCR catalysts for plants firing bituminous coals with sulfur (S) content ranging from 1.0 to 3.9%. However, plants firing subbituminous Powder River Basin (PRB) coals which contains significantly lower chlorine (Cl) and sulfur (S)

Pilot-scale Coal Combustor The; Shannon D. Serre; Chun Wai Lee

2009-01-01T23:59:59.000Z

235

Coal-fired power-plant-capital-cost estimates. Final report. [Mid-1978 price level; 13 different sites  

Science Conference Proceedings (OSTI)

Conceptual designs and order-of-magnitude capital cost estimates have been prepared for typical 1000-MW coal-fired power plants. These subcritical plants will provide high efficiency in base load operation without excessive efficiency loss in cycling operation. In addition, an alternative supercritical design and a cost estimate were developed for each of the plants for maximum efficiency at 80 to 100% of design capacity. The power plants will be located in 13 representative regions of the United States and will be fueled by coal typically available in each region. In two locations, alternate coals are available and plants have been designed and estimated for both coals resulting in a total of 15 power plants. The capital cost estimates are at mid-1978 price level with no escalation and are based on the contractor's current construction projects. Conservative estimating parameters have been used to ensure their suitability as planning tools for utility companies. A flue gas desulfurization (FGD) system has been included for each plant to reflect the requirements of the promulgated New Source Performance Standards (NSPS) for sulfur dioxide (SO/sub 2/) emissions. The estimated costs of the FGD facilities range from 74 to 169 $/kW depending on the coal characteristics and the location of the plant. The estimated total capital requirements for twin 500-MW units vary from 8088 $/kW for a southeastern plant burning bituminous Kentucky coal to 990 $/kW for a remote western plant burning subbituminous Wyoming coal.

Holstein, R.A.

1981-05-01T23:59:59.000Z

236

Utilization of Partially Gasified Coal for Mercury Removal  

Science Conference Proceedings (OSTI)

In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

Chris Samuelson; Peter Maly; David Moyeda

2008-09-09T23:59:59.000Z

237

Flash pyrolysis of oil shale with various gases  

DOE Green Energy (OSTI)

The flash pyrolysis of Colorado Oil Shale with methane at a temperature of 800/sup 0/C and pressure of 500 psi appears to give the highest yield of hydrocarbon gas and liquid followed by hydrogen and lowest with helium. In the methane pyrolysis over 54.5% of the carbon in the kerogen is converted to ethylene and benzene. The flash pyrolysis with hydrogen (flash hydropyrolysis) of the oil shale at increasing temperatures showed a rapidly increasing amount of methane formed and a decrease in ethane formation, while the BTX (benzene mainly) yield remained at approximately 10%. At 950/sup 0/C and 500 psi almost all (97.0%) of the carbon in the kerogen is converted to liquid and gaseous hydrocarbons. Experiments with a mixture of a New Mexico sub-bituminous coal and oil shale under flash hydropyrolysis and methane pyrolysis conditions indicated higher yields of methane and ethylene and slightly lower yields of benzene than predicted by partial additive calculations. These exploratory experiments appear to be of sufficient interest to warrant a fuller investigation of the interaction of the natural resources, oil shale, coal and natural gas under flash pyrolysis conditions.

Steinberg, M.; Fallon, P.T.

1983-10-01T23:59:59.000Z

238

Coal derived fuel gases for molten carbonate fuel cells  

DOE Green Energy (OSTI)

Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiers operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.

Not Available

1979-11-01T23:59:59.000Z

239

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

240

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research guidance studies to assess gasoline from coal by methanol-to-gasoline and sasol-type Fischer--Tropsch technologies. Final report  

DOE Green Energy (OSTI)

This study provides a technical and economic comparison between the new Mobil methanol-to-gasoline technology under development and the commercially available Fischer--Tropsch technology for the production of motor gasoline meeting U.S. quality standards. Conceptual plant complexes, sited in Wyoming, are complete grass-roots facilities. The Lurgi dry-ash, pressure technology is used to gasify sub-bituminous strip coal. Except for the Mobil process, processes used are commercially available. Coproduction of products, namely SNG, LPG and gasoline, is practiced. Four sensitivity cases have also been developed in less detail from the two base cases. In all areas, the Mobil technology is superior to Fischer--Tropsch: process complexity, energy usage, thermal efficiency, gasoline selectivity, gasoline quality, investment and gasoline selectivity, gasoline quality, investment and gasoline cost. Principal advantages of the Mobil process are its selective yield of excellent quality gasoline with minimum ancillary processing. Fischer--Tropsch not only yields a spectrum of products, but the production of a gasoline meeting U.S. specifications is difficult and complex. This superiority results in about a 25% reduction in the gasoline cost. Sensitivity study conclusions include: (1) the conversion of methanol into gasoline over the Mobil catalyst is highly efficient, (2) if SNG is a valuable product, increased gasoline yield via the reforming of SNG is uneconomical, and (3) fluid-bed operation is somewhat superior to fixed-bed operation for the Mobil methanol conversion technology.

Schreiner, M.

1978-08-01T23:59:59.000Z

242

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2002 70,704 66,593 4,417 141,714 2003 57,716 59,884 3,967 121,567 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2010, End of Month Stocks January 86,354 86,893 4,845 178,091 February 82,469 83,721 4,836 171,026 March 86,698 86,014 5,030 177,742 April 92,621 89,545 7,095 189,260 May 93,069 91,514 7,085 191,669

243

Production of Substitute Natural Gas from Coal  

DOE Green Energy (OSTI)

The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

Andrew Lucero

2009-01-31T23:59:59.000Z

244

Mulled coal - a beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 11, October 1, 1992--December 31, 1992  

SciTech Connect

Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. Since the inception of the project, the authors have: developed formulations to stabilize wet filter cake into a granular free flowing material (Mulled Coal); applied the formulation to wet cake from a variety of coal sources ranging from anthracite to subbituminous coal; evaluated effects of moisture loss on mull properties; developed design concepts for equipment for preparing the Mulled Coal and converting it into Coal Water Fuel; obtained storage and handling system design data for the granular coal; completed the 74-day aging study on various mull formulations to determine the effects of time and exposure on mull properties; demonstrated the continuous production of mulled coal from wet filter cake; performed atomization studies on Mulled Coal and CWF prepared from Mulled Coal; developed a standardized set of empirical tests to evaluate handling characteristics of various mull formulations; completed integrated, continuous mulling process circuit design. During this report period they have completed coal aging studies; plant design is being reviewed; and final report preparation has begun.

1993-01-01T23:59:59.000Z

245

Coalbed methane potential of the Pechora Coalfield, Timan-Pechora Basin, Russia  

SciTech Connect

A comparison of the more important geologic attributes of coal beds in the coalbed methane producing regions of the United States to Permian coal beds in the Pechora Coalfield, Timan-Pechora Basin, Russia indicates a high potential for commercial coalbed methane production. Although the depositional and structural histories, as well as the age, of the coal beds in the Pechora Coalfield are different than coal beds in U.S. basins, coal quality attributes are similar. The more prospective part of the coal-bearing sequence is as thick as 1600 m and contains more than 150 coal beds that individually are as thick as 4 m. These coal beds are composed primarily of rank ranges from subbituminous to anthracite (,0.5->2.5% R[sub 0]), with the highest rank coal located near the city of Vorkuta. Published data indicates that the gas content of coals is as high as 28-35 m[sup 3]/ton, with an average value of 18 m[sup 3]/ton. About 700 MMCM of gas per year is emmitted from coal mines. Pore pressures in the coal beds are unknown, however, interbedded sandstones in some parts of the basin are overpressured. The commonly occurring problem, in mid-latitude coalbed methane well, of excessive amounts of water may be alleviated in this high-latitude coal field. We suggest that the wide-spread occurrence of permafrost in the Pechora Coalfield may form an effective barrier to down-dip water flow, thereby facilitating the dewatering state. In summary, the quality of coal beds in the Pechora Coalfield are similar to methane producing coal beds in the United States and should, therefore, be favorable for commercial rates of gas production.

Yakutseni, V.P.; Petrova, Y.E. (VNIGRI, St. Petersburg (Russian Federation)); Law, B.E.; Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

246

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

247

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 5 - Eastern Bituminous Coal-Fired Power Plant wi th an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8212 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2005-11-28T23:59:59.000Z

248

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 7 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-26T23:59:59.000Z

249

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 4 - Eastern Bituminous Coal-Fired Power Plant wit h an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber fabric filter (SDA-FF) combination. In this program CONSOL is determining mercu...

2006-07-31T23:59:59.000Z

250

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Site 6 - Eastern Bituminous Coal-Fired Power Plant with an SCR, ESP, and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber 8211 fabric filter (SDA-FF) combination. In this program CONSOL is determining ...

2006-07-31T23:59:59.000Z

251

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1993--June 30, 1993  

DOE Green Energy (OSTI)

This project is focussed on the effective preconversion and liquefaction of coal. One of the main goals of this project was to reduce hydrogen consumption by decreasing the gas yield and increasing the oil yield based on a new structural model of coal. Two factors were critically evaluated during these tasks: (1) maximizing dissolution of associated coal and (2) different reactivity of fractions with different molecular weight. High-temperature soaking at{approximately} 350{degree}C in a coal liquid (recycle oil) was one method for effective dissolution not requiring additional chemicals and/or hydrogen. Two-step soaking at 350{degree}C and 400{degree}C was more effective for maximum dissolution. The addition of a relatively small amount of hydrogen peroxide during soaking slightly enhanced preconversion. Separation of dissolved coal into light and heavy fractions, followed by liquefaction of the heavy fraction, was effective as a means to improve product selectivity. Vacuum distillation was projected for the simple separation method. Cyclohexane extraction was used instead of vacuum distillation since cyclohexane solubles closely resemble the distillable oil fraction. Tests of the suggested procedure inferred a 30% increase in the oil yield and a 15--20% decrease in the gas yield. The effectiveness of the suggested procedure was confirmed from coal/oil ratios (g/ml) of 1/10--{1/2}. Batchwise vacuum distillation was tested, but was not successful due to an inherent problem in resolubilizing pitch samples in coal liquid. Progress this quarter is described.

Not Available

1993-07-01T23:59:59.000Z

252

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Coal Production by Coal-Producing Region and State, 2006 - 2010 2. U.S. Coal Production by Coal-Producing Region and State, 2006 - 2010 (Million Short Tons) Coal-Producing Region and State 2006 2007 2008 2009 2010 Percent Change 2009 - 2010 Appalachia Total 391.2 377.8 390.2 341.4 334.3 -2.1 Alabama 18.8 19.3 20.6 18.8 20.2 7.6 Kentucky, Eastern 93.6 87.1 90.3 74.7 67.4 -9.7 Maryland 5.1 2.3 2.9 2.3 2.5 7.4 Ohio 22.7 22.6 26.3 27.5 27.3 -0.8 Pennsylvania Total 66.0 65.0 65.4 57.9 58.0 0.1 Anthracite 1.5 1.6 1.7 1.7 1.7 0.3 Bituminous 64.5 63.5 63.7 56.2 56.3 0.1 Tennessee 2.8 2.7 2.3 2.0 1.7 -16.1 Virginia 29.7 25.3 24.7 21.0 21.6 2.9 West Virginia Total 152.4 153.5 157.8 137.1 135.6 -1.1 Northern 42.4 42.2 41.1 38.4 41.4 7.9 Southern 110.0 111.3 116.7 98.7 94.2 -4.6

253

Reactivity of heat treated chars  

DOE Green Energy (OSTI)

Reactivities of a number of chars produced from American coals varying in rank from lignite to anthracite have been measured in air, CO/sub 2/, steam and H/sub 2/. The variables chosen for the study were: rank of the parent coal, inorganic matter content, particle size, reaction temperature and pressure as well as heat treatment conditions used during char preparation. In all gasification atmospheres studied, reactivity plots for different chars are essentially of the same general shape and have three distinct regions. The reaction rate first increases slowly with time. The plot then goes through a maximum in slope, followed by a lengthy region of decreasing slope as burn-off approaches 100 percent. The shape of the burn-off curves can be explained on the basis of what is known about the development of porosity and surface area in microporous chars as they undergo gasification. Using an adjustable time parameter, equations have been developed which successfully correlate the reactivity data. Char reactivity decreases, in general, with increase in rank of the parent coal. Reactivities of chars in air, CO/sub 2/ and steam increase over 150-fold in going from a low volatile bituminous to a lignite parent coal; the spread in char reactivities in H/sub 2/ is only 30-fold. Removal of inorganic matter from coal precursors prior to their charring or from chars produced from the raw coals has a marked effect on char reactivity and surface area. Removal of inorganic matter (by acid washing) decreases, in general, reactivity of chars produced from lower rank coals, whereas reactivities of chars derived from higher rank coals increase.

Mahajan, O. P.; Walker, Jr., P. L.

1977-01-01T23:59:59.000Z

254

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

255

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

Unknown

2001-07-01T23:59:59.000Z

256

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

257

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

258

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

259

Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II  

Science Conference Proceedings (OSTI)

The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

2010-12-22T23:59:59.000Z

260

TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS  

DOE Green Energy (OSTI)

With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similar

Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

1993-02-01T23:59:59.000Z

262

Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash  

Science Conference Proceedings (OSTI)

A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of sub-bituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.

Luo, Yun; Giammar, Daniel E.; Huhmann, Brittany L.; Catalano, Jeffrey G. (WU)

2011-11-17T23:59:59.000Z

263

VHF EPR analysis of organic sulfur in coal. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

A direct and non-destructive technique called very High Frequency Electron Paramagnetic Resonance (VHF EPR) utilizing instrumentation and application techniques developed in this laboratory, is proving to be a practical and sensitive analytical method for the organic sulfur in coal. Research during this past year (1992--1993) was very successful in terms of obtaining spectrochemical information on organic sulfur in coal both quantitatively (amount of organic sulfur) and qualitatively (form and distribution of organic sulfur). Starting in this funding year, the authors have begun to develop and use a two-species model (non-exchanging and axially symmetric) for the simulation of VHF EPR coal spectra. Such a model provides quantitative information on the total concentration of sulfur species that can be directly related to the organic sulfur content as measured by conventional chemical methods. Utilizing the newly developed method, they have analyzed the VHF EPR spectra from some sub-bituminous coals containing organic sulfur in the range from 2% to 12% and a number of maceral blends. Excellent quantitative agreement is achieved between VHF EPR results and chemical analyses. In addition, the modelling of VHF EPR spectra of coal provides detailed spectral parameters. These parameters can be related to the molecular structures of the paramagnetic species giving rise to the EPR signals, as demonstrated by our study of the model compounds. The foundation of VHF EPR analysis of aromatic sulfur radicals has been firmly established based on careful investigations of the molecular and electronic structures of the thiophenic model compounds. The results validate the theoretical soundness of the method and carry important practical implications.

Clarkson, R.B.; Belford, R.L. [Illinois Univ., Urbana, IL (United States)

1993-12-31T23:59:59.000Z

264

Effect of liquefaction processing conditions on combustion characteristics of solvent-refined coal  

Science Conference Proceedings (OSTI)

One of several direct liquefaction processes currently under advanced stages of development is the Solvent-Refined Coal-I (SRC-I) process. A major SRC-1 product option is a low sulfur, low ash solid (SRC) which could be used as an electric utility boiler fuel much in the same manner that pulverized coal is currently fired in this type of combustion equipment. SRC-I processing has been performed using three variations in the manner in which mineral matter and unconverted coal are separated from the hot coal liquid. These processes are the Pressure Filtration Deashing (PFD), Anti-Solvent Deashing (ASD), and Critical Solvent Deashing (CSD). Since processing conditions may influence the combustion of SRC-I solids produced, an experimental program was carried out at both the bench and pilot plant scale to determine the influence of processing (i.e. solids separation method) and combustion conditions on carbon burnout of these three varieties of SRC solid boiler fuels. Included in this study was an examination of NO/sub x/ emissions (particularly for the CSD SRC and PFD SRC) with the objective of attaining low NO/sub x/ emissions without adversely affecting combustion efficiency. The work was carried out at the laboratory, bench and pilot plant scales employing Thermo-Gravimetric analyses, Drop Tube Furnace testing, and Controlled Mixing History furnace testing, respectively. Reactivity and NO/sub x/ emissions results were compared with those obtained from two coals previously tested and used as reference coals. One of these coals was a high reactivity Wyoming subbituminous coal and the other was a low reactivity Kentucky high volatile bituminous coal. The type of processing scheme used in the SRC-I deashing step was found to have a major impact on the combustion properties of the resultant solid SRC product.

Goetz, G.J.; Lao, T.C.; Mehta, A.K.; Nsakala, N.Y.

1982-03-01T23:59:59.000Z

265

Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal  

SciTech Connect

Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

Eric P. Robertson

2005-10-01T23:59:59.000Z

266

Direct liquefaction proof-of-concept program: Bench Run 05 (227-97). Final report  

DOE Green Energy (OSTI)

This report presents the results Bench Run PB-05, conducted under the DOE Proof of Concept - Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. Bench Run PB-05 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and included the evaluation of the effect of using dispersed slurry catalyst in direct liquefaction of a high volatile bituminous Illinois No. 6 coal and in combined coprocessing of coal with organic wastes, such as heavy petroleum resid, MSW plastics, and auto-shredder residue. PB-05 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. Coprocessing of waste plastics with Illinois No. 6 coal did not result in the improvement observed earlier with a subbituminous coal. In particular, decreases in light gas yield and hydrogen consumption were not observed with Illinois No. 6 coal as they were with Black Thunder Mine coal. The higher thermal severity during PB-05 is a possible reason for this discrepancy, plastics being more sensitive to temperatures (cracking) than either coal or heavy resid. The ASR material was poorer than MSW plastics in terms of increasing conversions and yields. HTI`s new dispersed catalyst formulation, containing phosphorus-promoted iron gel, was highly effective for the direct liquefaction of Illinois No. 6 coal under the reaction conditions employed; over 95% coal conversion was obtained, along with over 85% residuum conversion and over 73% distillate yields.

Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

1997-04-01T23:59:59.000Z

267

Making Direct Reduced Iron from Millscale Containing Coal by ...  

Science Conference Proceedings (OSTI)

Millscale fines have good microwave heating characteristics, better than anthracite .... Tile Production Using Wastes from Mining Industry of the Mining District ...

268

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... wind, geothermal, biomass and ethanol ... The heat content of anthracite coal consumed in the United States averages 25 million ...

269

CARBON TECHNOLOGY: Session V: Cathode - TMS  

Science Conference Proceedings (OSTI)

ECA (Electrically Calcined Anthracite) is the main raw material for the carbon part of the electrolysis cells. Demand for increased potlife and more efficient ...

270

Glossary | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Account of others (natural gas): ... Note: Since the 1980's, anthracite refuse or mine waste has been used for steam electric power generation.

271

Table A5. Approximate Heat Content of Coal and Coal Coke, 1949 ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... coal obtained from a refuse bank or slurry dam, anthracite culm,

272

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas utility demand-side management (DSM) program sponsor: A DSM ... refuse bank, slurry dam, and dredge operations except for Pennsylvania anthracite.

273

Materials and Systems  

Science Conference Proceedings (OSTI)

A14: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A15: Purification of Metallurgical Grade ...

274

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 167 Glossary Anthracite: ... the electric department at tariff or other specified rates

275

Evolution of the Thermo-Mechanical Properties of Ramming Paste ...  

Science Conference Proceedings (OSTI)

This anthracite and coal tar pitch mixture bakes during the cell start-up and chemical ... and Air Permeability Through Process Optimization and Coke Blending.

276

Idaho - U.S. Energy Information Administration (EIA) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report ... Power System Outage Task Force, ... com, Stories from PA History, Overview: Mining Anthracite: Nuclear:

277

"Table A42. Average Prices of Purchased Energy Sources by...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonutility(c)","Total","from Utility(b)","from Nonutility(c)","Total","Total","Anthracite","Coal","Lignite","Coal Coke","Breeze","Petroleum Coke","Waste","from...

278

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

dividing total production by total labor hours worked by all mine employees except office workers; beginning in ... 1978 and Coal—Pennsylvania Anthracite 1977; ...

279

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

anthracite, were originally ... in 1998, the calculation also includes office workers. R=Revised. P=Preliminary. NA=Not available. 2 Beginning in 2001, ...

280

Exhibitor: SKAMOL  

Science Conference Proceedings (OSTI)

... Carbon Skamol markets two types of ramming pastes based on Electrically Calcined Anthracite (ECA). ... For further information contact one of our offices:.

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Application of Advanced Microscopy to Elucidate Materials ...  

Science Conference Proceedings (OSTI)

... Office of Energy Efficiency and Renewable Energy and ORNL's ShaRE User ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass ...

282

Poster Session  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... The presentation will report the synthesis of alternative porous materials, ...

283

Designing Advanced Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

284

Recent Progress on the Development of High Performance ...  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

285

Materials for Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis · A4: Analysis of Micro-compositional and ...

286

Pennsylvania Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Pennsylvania Quick Facts. Pennsylvania was the fourth largest coal-producing State in the Nation in 2011, and the only State producing anthracite coal, which has a ...

287

Multifunctional Molybdenum Back Contacts for CIGS Solar Cells on ...  

Science Conference Proceedings (OSTI)

... and optimized surface morphology while acting as a sodium supply. ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

288

A15: Purification of Metallurgical Grade Silicon by Electron-Beam ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A18: Study on Super Stable All-solid-state Battery at High Temperature.

289

Engineering Point Defects for Charge and Energy Transport in ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

290

Effect of Pore Structure on the Mechanical, Electrical and ...  

Science Conference Proceedings (OSTI)

Anode Properties of MgH2 for All Solid State Lithium Ion Battery ... Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ...

291

Design Guide for Dye-sensitized Solar Cells using ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

292

Thermoelectric Material Design of Half-Heusler (Zr,Ti)NiSn-based ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

293

Nanoscale Thermoelectric Materials and Devices for Energy ...  

Science Conference Proceedings (OSTI)

... Kinetics of Anthracite Coal and Biomass Char by Thermogravimetric Analysis ... A2: Anode Properties of MgH2 for All Solid State Lithium Ion Battery.

294

Hierarchical ZnO Nano-tree Growth for High Efficiency Solar Cell  

Science Conference Proceedings (OSTI)

Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char ... Three-Dimensional Nickel Nanoparticle/Graphene Aerogel for Direct Ethanol ...

295

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

296

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 10---Eastern-Bituminous Coal-Fired Power Plant w ith an SCR, ESP and Wet FGD  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber – fabric filter (SDA-FF) combination. In this program CONSOL is to determine mercury speciation and removal at 10 coal-fired faci...

2005-11-28T23:59:59.000Z

297

Mercury Measurements Characterizing the Impact of SCR on Mercury: Consol Test Site 3 - Eastern Bituminous Coal-Fired Power Plant Wit h an SCR, ESP, and Wet FGD; Impact of Chloride Addition  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber - fabric filter (SDA-FF) combination. In this program CONSOL is determining mer...

2006-04-26T23:59:59.000Z

298

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

299

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

300

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

DOE Green Energy (OSTI)

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Health Effects of Subchronic Inhalation of Simulated Downwind Coal Combustion Emissions  

DOE Green Energy (OSTI)

The purpose of this project was to conduct a comprehensive laboratory-based evaluation of selected respiratory and cardiac health hazards of subchronic (up to 6 months) inhalation of simulated key components of 'downwind plume' emissions of coal combustion. This project was performed as an integral part of a joint government-industry program termed the 'National Environmental Respiratory Center' (NERC), which is aimed at disentangling the roles of different physical-chemical air pollutants and their sources in the health effects associated statistically with air pollution. The characterization of the exposure atmosphere and the health assays were identical to those employed in the NERC protocols used to evaluate other pollution source emissions, such as diesel, gasoline, and wood combustion. The project had two phases, each encompassing multiple tasks. Guidelines for the composition of the exposure atmosphere were set by consensus of an expert workshop. Development of the capability to generate the exposure atmosphere and pilot studies of the comparative exposure composition using two coal types were accomplished in Phase 1. In Phase 2, the toxicological study was conducted using Powder River Basin Sub-bituminous coal. NETL provided 50% support for the work in Phase 1 and had intended to provide 20% support for the work in Phase 2. Phase 1 is completed and Phase 2 is in the final stages. All animal exposures were completed without incident, and the composition of the exposure atmospheres met the targets. All of the health sample collections are completed, but some samples remain to be analyzed. Data summaries and final statistical analysis of results remain to be completed. The goal is to submit all publications before the end of FY-08. Repeated exposure to simulated downwind coal emissions caused some significant health effects, but the number of effects tended to be fewer than those caused by the other NERC exposures (diesel and gasoline emissions and hardwood smoke). the lowest concentration, a dilution containing approximately 100 {micro}g particulate matter (PM)/m{sup 3}, was a no-effects level for nearly all measured variables. One of the most interesting findings was that few, if indeed any, health outcomes appeared to be caused by the PM component of the exposure. This finding strongly suggests that PM simulating the major contributions of coal combustion to environmental PM is of very low toxicity.

Joe Mauderly

2009-01-07T23:59:59.000Z

302

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network (OSTI)

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value of 29590 kJ/kg for dry ash free (DAF) coal and 21450 kJ/kg for DAF DB. A new method called Respiratory Quotient (RQ), defined as ratio of carbon dioxide moles to oxygen moles consumed in combustion, used widely in biology, was recently introduced to engineering literature to rank global warming potential (GWP) of fuels. A higher RQ means higher CO_(2) emission and higher GWP. PRB had an RQ of 0.90 and DB had an RQ of 0.92. For comparison purposes, methane has an RQ of 0.50. For unknown fuel composition, gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured; then NO_(x) on a heat basis (g/GJ), fuel burnt fraction, and fuel nitrogen conversion percentage were estimated. The gas analyses yielded burnt fraction ranging from 89% to 100% and confirmed an RQ of 0.90 to 0.94, which is almost the same as the RQ based on fuel composition. At the 0.90 equivalence ratio, unstaged pure coal produced 653 ppm (377 g/GJ) of NOx. At the same equivalence ratio, a 90-10 PRB:LADB blended fuel produced 687 ppm (397 g/GJ) of NO_(x). By staging 20% of the total combustion air as tertiary air (which raised the equivalence ratio of the main burner to 1.12), NO_(x) was reduced to 545 ppm (304 g/GJ) for the 90-10 blended fuel. Analysis of variance showed that variances were statistically significant because of real differences between the independent variables (equivalence ratio, percent LADB in the fuel, and staging intensity).

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

303

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

304

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

305

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT® Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

306

REFINING AND END USE STUDY OF COAL LIQUIDS  

Science Conference Proceedings (OSTI)

Two direct coal liquids were evaluated by linear programming analysis to determine their value as petroleum refinery feedstock. The first liquid, DL1, was produced from bitiuminous coal using the Hydrocarbon Technologies, Inc.(HTI) two-stage hydrogenation process in Proof of Concept Run No.1, POC-1. The second liquid, DL2,was produced from sub-bituminous coal using a three-stage HTI process in Proof of Concept Run No. 2, POC-2; the third stage being a severe hydrogenation process. A linear programming (LP) model was developed which simulates a generic 150,000 barrel per day refinery in the Midwest U.S. Data from upgrading tests conducted on the coal liquids and related petroleum fractions in the pilot plant testing phase of the Refining and End Use Study was inputed into the model. The coal liquids were compared against a generic petroleum crude feedstock. under two scenarios. In the first scenario, it was assumed that the refinery capacity and product slate/volumes were fixed. The coal liquids would be used to replace a portion of the generic crude. The LP results showed that the DL1 material had essentially the same value as the generic crude. Due to its higher quality, the DL2 material had a value of approximately 0.60 $/barrel higher than the petroleum crude. In the second scenario, it was assumed that a market opportunity exists to increase production by one-third. This requires a refinery expansion. The feedstock for this scenario could be either 100% petroleum crude or a combination of petroleum crude and the direct coal liquids. Linear programming analysis showed that the capital cost of the refinery expansion was significantly less when coal liquids are utilized. In addition, the pilot plant testing showed that both of the direct coal liquids demonstrated superior catalytic cracking and naphtha reforming yields. Depending on the coal liquid flow rate, the value of the DL1 material was 2.5-4.0 $/barrel greater than the base petroleum crude, while the DL2 material was 3.0-4.0 /barrel higher than the crude. Co-processing the coal liquids with lower quality, less expensive petroleum crudes that have higher sulfur, resid and metals contents was also examined. The coal liquids have higher values under this scenario, but the values are dependent on the prices of the alternative crudes.

NONE

1998-08-12T23:59:59.000Z

307

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

DOE Green Energy (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

308

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

309

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

DOE Green Energy (OSTI)

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

310

Guidelines for Manuscript Preparation for Publication in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

cement pyroprocess. The European Cement Research Academy (ECRA) has estimated that modern anthracite- and lignite-fired power plants emit 750 or 950 grams(g) CO 2 kWh,...

311

Winter'04Ash4-5  

NLE Websites -- All DOE Office Websites (Extended Search)

PA In eastern Pennsylvania, there are several pre-act stripping pits in the middle of an anthracite coal basin where active strip and deep mining for coal was practiced since the...

312

Heterojunction Organic Photovoltaics– Nano Morphology Control ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

313

Thermoelectric Properties of Iron Aluminum Alloys  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

314

A2: Corrosion Problems in Heat Recovery for Water Heating  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

315

Highly Efficient Polymer Light-Emitting Diodes Using Graphene ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

316

Electrochemical Performance of LiMn0.5-xNi0.5-xAl2xO2 by ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

317

Materials for Organic Photovoltaic Solar Cells PBTTT and PTB7  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

318

Porous Graphene Nanosheets for Li-ion Battery Anodes  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

319

Molten Salt Electrorefining of Zr-Hf Impure Metal for Nuclear ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

320

A11: Renewable Thermoenergetic Resources in the ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Synthesis, Characterization and Pseudo-Capacitive Performance of ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

322

Study of Electronic Conductivity of LiNi 0.5 Mn 1.5 O 4 Cathode ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

323

Porous Silicon/Carbon Nanocomposite as Anode Materials for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

324

A1: 3D TiO2 Long Nanotube Arrays Manufactured by Anodization of ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

325

Effects of Alloy Microstructure and Manganese Cobaltite Coatings ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

326

Novel LSM/GDC Composite Materials Used as Cathode Supports ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

327

Reaction Mechanism of Hydrogen Storage Materials with High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

328

HIgh Yield Fabrication of Semiconductor Nanoparticles for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

329

Study on Preventing Volume Expansion of Amorphous Si/Sn ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

330

Co3O4/reduced Graphene Oxide Nanocomposites for High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

331

Porous Materials for Fuel Gas Storage  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

332

First-principles Study Using Hybrid-density Functional Theory for the ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

333

Europe and Middle-East International Oil Business: How to Reach ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

334

Activation of TiFe Intermetallics for Hydrogen Storage Using High ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

335

Carbon-coated LiFePO4/porous Carbon Composites as Cathode ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

336

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

Cobb, J.T. Jr.

1991-08-29T23:59:59.000Z

337

Residential coal use: 1982 international solid fuel trade show and conference Atlantic City, New Jersey. [USA; 1974; By state  

Science Conference Proceedings (OSTI)

The US Department of Energy's anthracite and residential coal programs are described. The residential coal effort is an outgrowth and extension of the anthracite program, which has been, and continues to be, involved in promoting increased production and use of anthracite and the restoration of anthracite as a viable economic alternative to soft coals and to imported oil and gas now supplying the Northeast. Since anthracite is a preferred fuel for residential heating, residential coal issues comprise an important part of our anthracite activities. We have commenced a study of residential coal utilization including: overview of the residential coal market; market potential for residential coal use; analysis of the state of technology, economics, constraints to increased use of coal and coal-based fuels in residential markets, and identification of research and development activities which would serve to increase the market potential for coal-fired residential systems. A considerable amount of information is given in this report on residential coal furnaces and coal usage in 1974, prices of heating oils and coal, methods of comparing these fuels (economics), air pollution, safety, wood and wood furnaces, regulations, etc.

Pell, J.

1982-06-01T23:59:59.000Z

338

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

339

Word Pro - Untitled1  

Annual Energy Outlook 2012 (EIA)

subbituminous coal, and lignite. 2 Fuel oil nos. 1, 2, and 4. For 1973-1979, data are for gas turbine and internal combustion plant stocks of petroleum. For 1980-2000, electric...

340

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

control technologies at the pilot scale that show promise for application at plants burning Gulf Coast lignite, or a blend with subbituminous coal. Gulf Coast lignite is one of...

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

342

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

343

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 4.16. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, November 2013 Bituminous ...

344

THE CHEMISTRY OF COAL MODEL COMPOUNDS -CLEAVAGE OF ALIPHATIC BRIDGES BETWEEN AROMATIC NUCLEI CATALYSED BY LEWIS ACIDS  

E-Print Network (OSTI)

and Background I. II. III. IV. II. Coal Liquefaction . •Coal Structure • • . Lewis Acid Catalysts. Scope andOrganic Structure of Bituminous Coal", Proceedings, Stanford

Taylor, Newell D.

2011-01-01T23:59:59.000Z

345

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

into the substantial reserves of mid- and high-sulfur bituminous coal in Illinois, Indiana, and western Kentucky and from lignite mines in Texas and Louisiana. Appalachian coal...

346

Kansas Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... is the fifth largest natural gas field in the United States. Minor reserves of bituminous coal are found in the Cherokee basin in the southeastern corner of the ...

347

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

... is the fifth largest natural gas field in the United States. Minor reserves of bituminous coal are found in the Cherokee basin in the southeastern corner of the ...

348

New NIST SRMs/RMs  

Science Conference Proceedings (OSTI)

... µmol/mol, and will primarily support power plants aiming to ... This is a list of our most recent ... SRM 2684b Bituminous Coal (Sulfur and Mercury) New ...

2011-02-23T23:59:59.000Z

349

Chemistry-Processing-Microstructure-Property Relationships III  

Science Conference Proceedings (OSTI)

Oct 28, 2009... perpendicular trenches that were correlated with the EBIC data. ... Manipulation of Electrical Conductivity in Bituminous Coal by CNT Doping: ...

350

SANS Publications - Current Year and in Press  

Science Conference Proceedings (OSTI)

... distribution in bituminous coals, R. Sakurovs, L. He, YB Melnichenko, AP Radlinski, T. Blach, H. Lemmel, DF Mildner, Intl. J. of Coal Geology, 100, 1, ...

351

NIST CNR SANS Bonze-Hart Perfect Crystal Diffractometer ...  

Science Conference Proceedings (OSTI)

... distribution in bituminous coals, R. Sakurovs, L. He, YB Melnichenko, AP Radlinski, T. Blach, H. Lemmel, DF Mildner, Intl. J. of Coal Geology, 100, 1, ...

352

Combustion kinetics of coal chars in oxygen-enriched ...  

Science Conference Proceedings (OSTI)

... oil re- covery or coal-bed methane applications [1 ... eastern United States bituminous coal blend provided ... These coals were ground and sieved into a ...

2007-03-13T23:59:59.000Z

353

ZINC CHLORIDE-CATALYZED REACTIONS OF OXYGEN- AND SULFUR-CONTAINING COMPOUNDS WITH MODEL STRUCTURES IN COAL  

E-Print Network (OSTI)

H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,Internat. Conf. Bituminous Coal, 3d Con£. , 2, 35 (1932);

Mobley, David Paul

2013-01-01T23:59:59.000Z

354

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

355

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

+ hide properties that link here Definition:Alternative-fuel vehicle + , Definition:Battery + , Definition:Biofuels + , Definition:Biopower + , Definition:Bituminous coal + ,...

356

www.eia.gov  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT

357

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Coke (coal): A solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal from which the volatile constituents are driven off by ...

358

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period  

E-Print Network (OSTI)

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian of years produced the bituminous coals currently found in southwestern Indiana. Bituminous coals in Indiana currently ranks as the seventh-largest coal-producing state in the nation and has an estimated 17.57 billion

Polly, David

359

CANDACE L. KAIRIES BEATTY Department of Geoscience  

E-Print Network (OSTI)

sburgh Disserta on: Characteriza on of Precipitates Associated with Bituminous Coal Mine Drainage on of iron hydroxide precipitates associated with coal mine drainage in the bituminous region. T., Kleinmann, R. L. P., Kairies, C. L., and R. W. Nairn (2003) Passive treatment of coal mine

Polly, David

360

How do we create a m re sustainable  

E-Print Network (OSTI)

materials such as coal fly ash and slag, and developing new materials such as geopolymer concrete include bituminous concrete (as- phalt), portland cement concrete, and aggregates and soils. The Cen- ter. In the area of bituminous concrete, Center researchers are developing Warm Mix Asphalt technology applications

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ALTERNATIVE THERMAL DESTRUCTION PROCESSES FOR HAZARDOUS WASTES  

E-Print Network (OSTI)

·Product Gas 400 2,000 11,300 Natural Gas 15,900 57,700 11,300 Most of these boilers are very small natural gas Distillate oil Natural gas Residual oil Distillate oil Natural gas Bituminous coal Bituminous coal Percent regulations. Candidate thermal processes include industrial processes such as boilers, process heaters, cement

Columbia University

362

Evaluation of MerCAP for Power Plant Mercury Control  

SciTech Connect

This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on MerCAP{trademark} performance. At Site 2, a pilot-scale array was installed in a horizontal reactor chamber designed to treat approximately 2800 acfm of flue gas obtained from downstream of the plant's flue gas desulfurization (FGD) system. The initial MerCAP{trademark} array was installed at Plant Yates in January 2004, operating continuously for several weeks before a catastrophic system failure resulting from a failed flue gas fan. A second MerCAP{trademark} array was installed in July 2006 and operated for one month before being shut down for a reasons pertaining to system performance and host site scheduling. A longer-term continuous-operation test was then conducted during the summer and fall of 2007. Tests were conducted to evaluate the impacts of flue gas flow rate, sorbent space velocity, and sorbent rinsing frequency on mercury removal performance. Detailed characterization of treated sorbent plates was carried out in an attempt to understand the nature of reactions leading to excessive corrosion of the substrate surfaces.

Carl Richardson

2008-09-30T23:59:59.000Z

363

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

364

Undergraduate Research Day April 23, 2008, McKeldin Library  

E-Print Network (OSTI)

Culture on the Media's Portrayal of the 1902 Anthracite Coal Strike Elizabeth Ahn, Christopher De, Jessica Lieberman, and Mary Tellers Controversy over Surface Mine Legislation in the Appalachian Region Karen Jo, Hailey Lin, and Louis Wu The Sociology of Coal Extraction: Tragedy to Change Katherine Mann

Johnson, Raymond L.

365

Catalytic coal liquefaction process  

SciTech Connect

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

366

Catalysts for coal liquefaction processes  

SciTech Connect

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, Diwakar (Macungie, PA)

1986-01-01T23:59:59.000Z

367

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

368

Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-1 Chapter 3 Sulphur  

E-Print Network (OSTI)

to anthracite, peat, oil shales etc., sulphur is present in two inorganic forms, being pyritic sulphur (FeS2) ~ 0.2 Auto shredder residue (ASR) ~ 0.3 Petroleum coke, "petcoke" ~ 5 Leather waste 1 - 2 Estonian oil shale ~ 2 OrimulsionTM ~ 4 Black liquor solids ~ 5 #12;Zevenhoven & Kilpinen SULPHUR 6.1.2004 3-5 3

Zevenhoven, Ron

369

Catalysts for coal liquefaction processes  

DOE Patents (OSTI)

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, D.

1986-10-14T23:59:59.000Z

370

Catalytic coal liquefaction process  

DOE Patents (OSTI)

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

371

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

Science Conference Proceedings (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

372

Proceedings. 20th symposium on western fuels  

SciTech Connect

This conference on lignite, brown coal and subbituminous coal covered advanced power systems, CCBs and power plant auxiliary systems, environmental issues and control technologies - mercury and multipollutants, fuel properties and upgrading, energy and water, power plant systems performance, and carbon sequestration. The poster papers are also included. Some of the papers only consist of a printout of the overheads/viewgraphs.

NONE

2006-07-01T23:59:59.000Z

373

Evaluation of a Dow-Based Gasification-Combined-Cycle Plant Using Low-Rank Coals  

Science Conference Proceedings (OSTI)

This feasibility study developed performance and cost data for two different Dow-based gasification-combined-cycle (GCC) power plants, designed to fire either Texas lignite or Wyoming subbituminous coals at a Gulf Coast location. It demonstrated the cost-effectiveness and efficiency of these plants for generating power from low-rank coals.

1989-04-25T23:59:59.000Z

374

Development of Silica/Vanadia/ Titania Catalysts for Removal of  

E-Print Network (OSTI)

(subbituminous or lignite) coals. Therefore, need exists for a low cost Hg oxidation/capturing process. Activated power plants. However, the incremental cost of Hg control via ACI is estimated to range from $3810. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg

Li, Ying

375

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

376

Definition: Coke | Open Energy Information  

Open Energy Info (EERE)

Coke A solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal; used as a fuel and a reducing agent in smelting iron ore in a blast furnace. Coke from...

377

NETL Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

to Revision Notes IGCC and PC fired with Bituminous Coal CF for IGCC 80%, PC 85% 30-Year, Current -Dollar Levelized Cost of Electricity 150MWh 86MWh +73% 4 DOE CCS...

378

Advisory Board Activities This past April we held the second annual  

E-Print Network (OSTI)

Plains also includes mining operations of high-sulfur bituminous coal. The disturbance of these coal of reference condition, nutrient modeling, Mined Land Lake 27 has excellent water quality and few nutrient

Peterson, Blake R.

379

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

handling and preparation Coal is delivered to plant fromcommercial coal gasification plants, such as coal handlingCoal handling & preparation (Area 100) The Utah bituminous coal feedstock for the plant

Lu, Xiaoming

2012-01-01T23:59:59.000Z

380

Effects of blending, staging and furnace temperature on co-firing of coal and biomass-bagasse.  

E-Print Network (OSTI)

??This manuscript reports on emissions generated from laboratory-scale batch combustion of a high-volatile content bituminous coal, sugar-cane bagasse, and blends thereof. The average bulk equivalence… (more)

Arvind, Joshi Kulbhushan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer:...

382

Power Plant Validation of the Mercury Speciation Sampling Method  

Science Conference Proceedings (OSTI)

This report presents results for the field validation study of the Ontario Hydro mercury speciation method. The tests were conducted at a Midwestern plant -- designated as Site E-29 -- burning bituminous coal.

1999-04-16T23:59:59.000Z

383

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Power Plants study, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007. PC Boiler (No SCR) Steam Bag Filter Wet Limestone FGD...

384

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network (OSTI)

to Elec (RDSF) MSW to Elec (Oil) Source Separation *Million~----------- MSW to Elec (Oil) Source Separation(2) *D.C.Oil Bituminous (Incineration) Coal Particulates Sulphur Oxide Carbon Monoxide Hydrocarbon Nitrogen Oxide Source:

Authors, Various

2011-01-01T23:59:59.000Z

385

FRAGMENTATION OF COAL AND IMPROVED DISPERSION OF LIQUEFACTION CATALYSTS USING IONIC LIQUIDS.  

E-Print Network (OSTI)

??Coal has been utilized for coal-to-liquid fuels and coal-to-chemical industries both historically in South Africa and recently in China. Abundant bituminous and low-rank coal reserves… (more)

Cetiner, Ruveyda

2011-01-01T23:59:59.000Z

386

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

average unit price of electricity and coal used inyear. The weighted average unit price of Bituminous coal,coal, and coke consumed in the steel industry in 2010 is used as the fuel price

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

387

NETL: Advanced NOx Emissions Control: Control Technology - Ultra...  

NLE Websites -- All DOE Office Websites (Extended Search)

bituminous (Pennsylvania Middle Kittanning). No staging will be employed; a stoichiometric ratio range from 1.10 to 1.28 will be tested, with 17% excess air being the target...

388

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 NITROGEN #2NITROGEN #2  

E-Print Network (OSTI)

$/ton) Primary measures Low Nox burners ~50 10 ­ 20 110 - 200 Coal reburning ~50 38 ­ 50 360 - 470 Low NOx concentration in CBFC 12 MW CFBC, bituminous coal, air factor 1.212 MW CFBC, bituminous coal, air factor 1NOx emissionsemissions from coal/woodfrom coal/wood coco--firing in CFBCfiring in CFBC 850°C, air factor 1.25850°C, air

Zevenhoven, Ron

389

Program on Technology Innovation: Assessment of Coal Cleaning for Near-Zero Emissions (NZE)  

Science Conference Proceedings (OSTI)

The goal of this project was to determine if there are pre-combustion coal cleaning technologies, applicable to bituminous coals, that can result in near-zero emissions (NZE). That would imply removing 90% of the sulfur and mercury and reducing the ash content substantially from all Eastern and Midwestern bituminous coals at the mine site. A comprehensive literature search was completed and an annual coal preparation conference was attended to obtain the most recent information regarding coal ...

2012-11-05T23:59:59.000Z

390

Environmental renaissance in Pennsylvania  

Science Conference Proceedings (OSTI)

During centuries of rapid growth of the coal mining industry and expanded development in Pennsylvania, trees were felled, streams were diverted and strip mining caused much environmental damage. All that has now changed. The article gives examples of land and water restoration carried out by organizations such as the Susquehanna River Basin Commission, the West Branch Susquehanna Restoration Coalition and the Anthracite Region Independent Power Producers Association. The Pennsylvania Department of Environmental Protection directs and coordinates environmental projects. 5 photos.

Stevens, J.

2009-07-15T23:59:59.000Z

391

A study of mining-induced seismicity in Czech mines with longwall coal exploitation  

Science Conference Proceedings (OSTI)

A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.

Holub, K. [Academy of Sciences of the Czech Republic, Ostrava (Czech Republic)

2007-01-15T23:59:59.000Z

392

Adsorption of anionic and cationic surface-active agents by natural coals  

SciTech Connect

Adsorption isotherms were measured in terms of isopropyl-, butyl- and pentyl-amine and isopropyl alcohol for gas coals and anthracite. It was shown that the amount of adsorption depends on the type of coal and the structure of the adsorbate molecules. Cationic surfactants tend to be adsorbed better than anionic. The paper calculates the standard reduction in free energy during adsorption of amines by coal. It was found that the amine adsorption process leads to an increase in pH.

Butuzova, L.F.; Isaeva, L.N.; Saranchuk, V.I.

1983-01-01T23:59:59.000Z

393

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

Miller, R.N.

1986-10-14T23:59:59.000Z

394

Military installations  

Science Conference Proceedings (OSTI)

This report has reviewed the use of U.S. coal at DOD installations in West Germany. DOD reported that between April 1, 1988, and December 31, 1988, it had between 306,000 and 419,000 tons of U.S. coal stored in Germany. About two-thirds of that was anthracite coal. GAO visited six coal-handling locations that accounted for 72 to 79 percent of the total U.S. coal between April and December 1988. This report could not verify the official inventory records at five locations - two Air Force and three Army - for several reasons, including a lack of required physical inventories of coal for recent years. DOD's coal consumption data for fiscal year 1988 appeared to be accurate since it matched the data reported on source documents maintained at the installations and their commands. According to reported DOD coal inventory and consumption data, as of September 30, 1988, DOD had enough anthracite coal on hand to satisfy projected demands through at least fiscal year 1993, given that no additional heating plant conversions other than those already approved occur and no additional shipments of coal occur. DOD said that as of September 30, 1988, it facilities in Germany had enough anthracite coal on hand to last a minimum of five years.

Not Available

1990-03-01T23:59:59.000Z

395

JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING  

SciTech Connect

The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

2003-10-01T23:59:59.000Z

396

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report  

Science Conference Proceedings (OSTI)

The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

Baldwin, R.M.; Miller, R.L.

1991-12-01T23:59:59.000Z

397

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment  

SciTech Connect

The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

Baldwin, R.M.; Miller, R.L.

1991-12-01T23:59:59.000Z

398

Mercury Emissions from Curing Concretes that Contain Fly Ash and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the release of mercury from concrete containing fly ash and powdered activated carbon sorbents used to capture mercury. The concretes studied in this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing powdered activated carbon (PAC). Minute quantities of mercury were emitted from five concretes during the standard 28-day curing process and throughout an additional 28 days of curing for two of these concretes. Ge...

2006-09-07T23:59:59.000Z

399

Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

After an initial scouting study (described in Electric Power Research Institute [EPRI] Technical Update 1014432) revealed that using liquid CO2 in place of water in coal slurries could have several beneficial effects on integrated-gasificationcombined-cycles (IGCCs) employing CO2 capture, EPRI's Program on Technology Innovation funded additional work on this subject. This report summarizes the results of rheological testing performed with slurries made from liquid CO2 and two types of subbituminous coal ...

2008-09-14T23:59:59.000Z

400

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pilot Evaluation of the Impact of Chloride on Selective Catalytic Reduction (SCR) Mercury Oxidation  

Science Conference Proceedings (OSTI)

This study investigated the effect of blending Powder River Basin (PRB) coal with an Eastern bituminous coal on the speciation of Hg across a selective catalytic reduction (SCR) catalyst. A pilot-scale coal combustor equipped with an SCR reactor for NOx control was used to evaluate the effect of coal blending on improving Hg oxidation across an SCR catalyst. Several parameters such as the ratio of PRB/bituminous coal blend and the concentrations of hydrogen halides (HCl, HBr, and HF) and halogens (Cl2 an...

2008-03-19T23:59:59.000Z

402

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

403

Two Stage Liquefaction With Illinois 6 Coal: Volume 2: Run 248  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 248 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run began on 8 February 1985 and continued through 5 May 1985. A total of 170 tons of Illinois No. 6 bituminous coal was fed in 1,904 hours of operation. The primary run objectives included the demonstration of unit and system operability for bituminous coal with the low-contact time (LCT) reactor in place at the thermal liquefaction unit (TLU) in both the Double Integrated T...

1991-03-01T23:59:59.000Z

404

Two Stage Liquefaction With Illinois 6 Coal: Volume 3: Run 250  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 250 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was demonstration of unit and system operability for bituminous coal in the Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode of operation. In CC-ITSL the products from the thermal (first stage) reactor are sent directly ...

1991-03-01T23:59:59.000Z

405

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

406

"Table A42. Average Prices of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Units)" ,,,,,"Noncombustible Energy Sources",,,,,,,,,,,,,,,,,,"Combustible Energy Sources" ,,,,,,,,,,,,,,,"Solids",,,,,,,,,,"Gases",,,,,,,,,"Liquids" " "," ",," "," ",,,,," "," "," "," "," "," "," ",,,"Wood","Wood Residues",,,,,,,,,,,,,,,,,,,," " " "," ",,"Electricity","Electricity","Electricity","Steam","Steam","Steam","Industrial",," ","Bituminous and"," ",," ",,,"Harvested","and Byproducts","Wood and",,"Natural Gas",,,,,,,"Total Diesel Fuel",,,,,"Motor Gasoline",,,,," "

407

Transuranic contaminated waste form characterization and data base  

Science Conference Proceedings (OSTI)

This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

Kniazewycz, B.G.; McArthur, W.C.

1980-07-01T23:59:59.000Z

408

Erroneous coal maturity assessment caused by low temperature oxidation  

E-Print Network (OSTI)

Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

Paris-Sud XI, Université de

409

Thermal dissolution of brown and hard coals with the addition of natural and organosilicon compounds  

Science Conference Proceedings (OSTI)

The addition of activators (natural compounds and their mixtures with organo-silicates) was found to double the yield of liquid products from the thermal solvent extraction of Kansk-Achinsk brown coal, and increase by 20% the yield from Kuzbass bituminous coal. High concentrations of sulphur in the natural additives reduced the extractability of the coal.

Vol-Ehpshtein, A.B.; Gorlov, E.G.; Shataeva, T.A.; Shpil'berg, M.B.

1983-01-01T23:59:59.000Z

410

Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration  

E-Print Network (OSTI)

and shipped back to the coal mine on the coal train's return trip. The synthesis of other commercially, and methane from coal are readily available at coal-fired electrical generating stations. Generation of thermogenic methane from coal begins in the higher ranks of the high-volatile bituminous coals, and at about

Spiteri, Raymond J.

411

Undergraduate Research Symposium focusing on  

E-Print Network (OSTI)

-Petersen Faculty Mentor: Dan Bain There are many abandoned bituminous coal mines in southwestern Pennsylvania. Some environmental impacts from production. Synthesizing Chemical Data for Acidic Mine Drainage Author: Hannah Fried of these mines generate and discharge acidic water contaminated with a variety of metals into local surface

Sibille, Etienne

412

Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite  

E-Print Network (OSTI)

characteristics. Vitrinite reflectance is also significant in the characterisation of coal blends employed in temperature (off-line pyrolysis in an open-medium system) on a monomaceralic coal (low rank and pure vitrinite­ chemical processes that occur in vitrinite of bituminous coal rank. Of special interest is the information

Paris-Sud XI, Université de

413

Proceedings of ASME Turbo Expo 2010 June 14-18, 2010, Glasgow, Scotland  

E-Print Network (OSTI)

GASIFIER-BASED COAL IGCC WITH CO2 CAPTURE: PARTIAL WATER QUENCH VS. NOVEL WATER-GAS SHIFT Thomas Kreutz feeding into the gasifier. All plants in this work use bituminous coal; a forth- coming study addresses for high levels of CO2 capture. In this regard, dry feed gasifiers are at a disadvantage relative to coal

414

Polymerized crumb rubber modified mixtures in Minnesota. Final report, 1991-1993  

SciTech Connect

The objectives of the research program were to: (1) Define asphalt-rubber interactions; (2) Conduct a preliminary assessment of both laboratory tests and the resulting mixture properties of crumb rubber modified bituminous (CRM) mixtures; (3) Evaluate both the fundamental properties and field performance of CRM mixtures.

Newcomb, D.E.; Stroup-Gardiner, M.; Kim, J.R.; Allen, B.; Wattenhoffer-Spry, J.

1994-01-01T23:59:59.000Z

415

TTUS FP&C Design & Building Standards Division 7 Thermal & Moisture Protection  

E-Print Network (OSTI)

TTUS FP&C Design & Building Standards Division 7 ­ Thermal & Moisture Protection Division for this project. Exterior Insulation and Finish Systems (EIFS) are not allowed without permission from the TTUS & Building Standards Division 7 ­ Thermal & Moisture Protection Bituminous Waterproofing Surfaces

Gelfond, Michael

416

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 Relative Standard Errors for Table 7.1;" 7.1 Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

417

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

418

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

419

Assessment of NOx Reduction Potential from Combustion Modifications at Illinois Power -- Baldwin Unit 1  

Science Conference Proceedings (OSTI)

Cyclone boilers have recently become regulated with respect to NOx emissions due to the adoption of Title IV -- Group 2 NOx emission limits for cyclones of 0.86 lb/MBtu. This project explored the NOx reduction potential of cyclone biasing on a bituminous coal-fired cyclone boiler.

1998-06-24T23:59:59.000Z

420

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Influence of process changes on PCDD/Fs produced in an iron ore sintering plant  

Science Conference Proceedings (OSTI)

This study investigated the influence of different charge typologies and additives on the PCDD/Fs amount produced and on the congener profiles in an iron ore sintering plant. Many tests were carried out combining different typologies of charge (iron materials) and solid fuel ('coke breeze' or 'anthracite') with or without the use of urea. The PCDD/Fs produced ranged from 1.2 to 22.7 {mu} g I-TEQ/ton of agglomerate, whereas the PCDD/Fs released to the ambient air ranged from 0.10 to 1.92 ng I-TEQ/Nm{sup 3} because of cleaning in an electrostatic precipitator (ESP) and a Wetfine scrubber (WS). A more homogeneous charge with a higher amount of fine particles charge appeared to produce a lower PCDD/Fs concentration due to a better combustion but this hypothesis needs further investigations on charges having different dimension particles. Only a synergitic action of urea and anthracite was able to reduce the high PCDD/Fs content due to the bad combustion of the more inhomogeneous charge with a lower amount of fine particles. The congener profile was a typical combustion process fingerprint because the PCDFs predominated, the highly chlorinated congeners (HeptaCDD and OctaCDD) prevailed in PCDDs, whereas in PCDFs the profile was more varied; 1,2,3,4,6,7,8-HeptaCDF was the main contributor to the total concentration while 2,3,4,7,8-PentaCDF was the main contributor to the I-TEQ concentration. Whereas all the parameters under scrutiny influenced strongly the amount of PCDD/Fs produced, they affected only slightly the fingerprint of PCDD/Fs. In all cases studied, the reduction obtained using urea, anthracite, or the more homogeneous charge with a higher amount of fine particles was slightly greater on the higher chlorinated congeners in respect to the lower ones.

Guerriero, E.; Bianchini, M.; Gigliucci, P.F.; Guarnieri, A.; Mosca, S.; Rossetti, G.; Varde, M.; Rotatori, M. [CNR, Monterotondo (Italy)

2009-01-15T23:59:59.000Z

422

Glossary | Open Energy Information  

Open Energy Info (EERE)

Glossary Glossary Jump to: navigation, search Dictionary.png Glossary Add.png Add a Definition 2 2-M Probe Survey A Acoustic Logs Acoustic Televiewer Active Seismic Techniques Active Sensors Adaptive Protection Adequacy Adjacent Balancing Authority Advanced Interrupting Switch Advanced Metering Infrastructure Advanced Metering Infrastructure (Ami) / Smart Meters Advanced Transmission Applications Adverse Reliability Impact Aerial Photography Aeromagnetic Survey Air Cooling Airborne Gravity Survey Airborne Gravity Survey Algae Algae fuel Alternating current Alternative-fuel vehicle Alternator Altitude Correction Factor Ampere Analytical Modeling Ancillary Service Ancillary Services Revenue Angle of incidence Anode Anthracite coal Anti-Aliasing Filter Area Control Error Arranged Interchange Artesian Well

423

Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E  

Science Conference Proceedings (OSTI)

In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids.

Not Available

1992-10-01T23:59:59.000Z

424

Create a Consortium and Develop Premium Carbon Products from Coal  

DOE Green Energy (OSTI)

The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.

Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

2006-01-01T23:59:59.000Z

425

Development of fly ash-based slope protection materials for waste disposal ponds. Topical report, Task 7.7  

Science Conference Proceedings (OSTI)

A research project was conducted to develop a cost-effective slope protection material for a 100-acre scrubber sludge disposal pond located at the Sherco power plant. The technical objective of the project was to formulate and evaluate the performance of a slope protection material produced using self-cementing coal combustion by-products. The material was to have sufficient durability and erosion resistance to protect the underlying bottom ash fill and clay liner from wave erosion for at least 5 years when it was placed on the interior side slopes of the pond. The two coal combustion by-products that were considered for use in the slope protection material were 1) a spray dryer waste and 2) a subbituminous coal fly ash. The spray dryer waste was approximately a 50:50 mixture of subbituminous coal fly ash and reacted, lime-based scrubber sorbent. The subbituminous coal fly ash was produced from a cyclone-fired boiler. Both by-products displayed self-cementing behavior when mixed with water. The results of the field tests indicated that a slope protection slab prepared from Sherco spray dryer waste placed with a 20% moisture content showed almost no deterioration after 20 months in the field. A slab prepared from a mixture of 25% Riverside fly ash and 75% bottom ash with a moisture content of 18% showed a slight loss of material from the surface of the slab, but no substantial deterioration after 20 months in the field. Two other materials containing Riverside fly ash that were prepared with higher moisture contents showed somewhat more deterioration after 20 months, although none of the field test slabs appeared to have failed in that time period.

Moretti, C.J.

1993-02-01T23:59:59.000Z

426

Fly ash chemical classification based on lime  

Science Conference Proceedings (OSTI)

Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

Fox, J. [BASF Construction Chemicals, LLC (United States)

2007-07-01T23:59:59.000Z

427

Determination of electrical resistivity of dry coke beds  

SciTech Connect

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

428

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

429

Microsoft PowerPoint - ACC032503_V2_1.PPT  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council Mercury & Multi- Emissions Compliance: Strategies & Tactics March 26-27, 2003 Charlotte, NC Thomas J. Feeley, III National Energy Technology Laboratory TJF_ACC_March2003 Presentation Outline * Regulatory drivers * Program objectives * Current program * Future plans TJF_ACC_March2003 Power Plant Mercury Emissions Coal Plants Emit ~ 48 tons/year NETL Boiler Database 0 2 4 6 8 10 0 10 20 30 Lignite SubB Bituminous Lignite SubB Bituminous Total US Hg Emissions (tons per year) 0 10 20 30 0 2 4 6 8 10 Hg Emission Rate (lb per TBtu) TJF_ACC_March2003 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: Dec. 2007 Clean Power Act of 2003 * Re-introduced in Senate (S.

430

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

431

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

432

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

433

Effects of coal interaction with supercritical CO{sub 2}: physical structure  

Science Conference Proceedings (OSTI)

It is known that polar solvents swell coal, break hydrogen-bonds in the macromolecular structure, and enhance coal liquefaction efficiencies. The effects of drying, interaction with supercritical CO{sub 2} and degassing on the physical structure of coal have been studied using gas sorption technique and a scanning electron microscope (SEM). Both drying and interaction with supercritical CO{sub 2} drastically change the micropore and mesopore surface area, absolute volume, and volume distribution in both bituminous coal and lignite. Degassing removes debris in the pore space which allows for better analysis of the changes in the morphology that were induced by drying and exposure to supercritical CO{sub 2}. SEM reveals that interaction of bituminous coal with supercritical CO{sub 2} results in an abundance of carbon structures similar to the maceral collinite.

Gathitu, B.B.; Chen, W.Y.; McClure, M. [University of Mississippi, University, MS (United States). Dept. of Chemical Engineering

2009-05-15T23:59:59.000Z

434

Pelletizing lignite  

DOE Patents (OSTI)

Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

Goksel, Mehmet A. (Houghton, MI)

1983-11-01T23:59:59.000Z

435

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

436

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

Science Conference Proceedings (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

437

RSE Table N8.1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" 1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,," "

438

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2006;" 2 Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

439

Table 7.2 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002;" 2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

440

Fuel Effects on Catalyst Life and Deactivation Database  

Science Conference Proceedings (OSTI)

This report provides case studies and catalyst performance supplemental data to aid EPRI members in the management of Selective Catalytic Reduction (SCR) installations, particularly as related to the firing of both PRB and bituminous coals. The report discusses the primary deactivation mechanisms, along with analytical techniques to help members identify the primary modes of deactivation in their specific catalyst fleet. In addition, it offers benchmark data about the deactivation rates expected dependin...

2009-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky  

SciTech Connect

The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

1983-09-01T23:59:59.000Z

442

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2010;" 2 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" ,,,,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

443

Table N8.2. Average Prices of Purchased Energy Sources, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Purchased Energy Sources, 1998;" 2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

444

Table 7.1 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2002;" Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

445

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 Average Prices of Purchased Energy Sources, 2010;" 7.1 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

446

Coal plasticity at high heating rates and temperatures  

SciTech Connect

Effects of coal type on coal plasticity are investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, are studied. Different indices and structural data of a coal are shown to affect its plastic behavior. A coal-specific parameter incorporating the effects of labile bridges, oxygen, and hydrogen on plasticity has been used to successfully correlate measured values of maximum plasticity (i.e. minimum apparent viscosity) at elevated temperature with coal type.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1992-01-01T23:59:59.000Z

447

Pyrolysis process and apparatus  

DOE Patents (OSTI)

This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

Lee, Chang-Kuei (Sewell, NJ)

1983-01-01T23:59:59.000Z

448

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

449

Coal switch helps New York plants stay competitive  

Science Conference Proceedings (OSTI)

NRG Energy bought the Dunlook and Huntley Generating Stations in 1999 from Niagara Mohawk Power Corp. and has since then invested millions of dollars in converting them from bituminous coal to low sulphur Powder River Basin coal, combustion tuning and routine maintenance to help provide reliable stable-priced electricity to New York. The plants have reduced NOx, SO{sub 2} and particulate emissions. 1 photo.

Blankinship, S.

2009-04-15T23:59:59.000Z

450

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

451

Program on Technology Innovation: Feasibility of Laser-Induced Breakdown Spectroscopy for Fuel Analysis—Phase II  

Science Conference Proceedings (OSTI)

In the first phase of this project, researchers evaluated the capabilities of laser-induced breakdown spectroscopy (LIBS) for fuel characterization in gasification applications. A LIBS system was assembled and optimized to identify and measure the elemental spectra from the following gasifier feedstocks: bituminous coal, lignite coal, and petroleum coke, including three blends of coal and pet coke as well as coal treated with limestone. Laboratory LIBS data were acquired and processed using artificial ne...

2011-12-30T23:59:59.000Z

452

Long-Term Testing of Protective Coatings and Claddings at Allegheny Energy Supply Hatfield's Ferry #2 Boiler  

Science Conference Proceedings (OSTI)

Excessive waterwall corrosion due to the presence of iron sulfide (FeS) deposits was discovered in an Allegheny Energy Supply boiler firing eastern bituminous coal and retrofitted with a low-nitrogen oxide (NOx) cell burner (LNCB) system. Weld overlays with a high chromium (Cr) content reduced corrosion rates to tolerable levels. This report summarizes EPRI's long-term service tests of various coatings and weld overlays in the company's Hatfield's Ferry #2 boiler.

2000-09-15T23:59:59.000Z

453

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2006;" Average Prices of Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,,," "

454

Two Stage Liquefaction With Illinois 6 Coal: Volume 1: Run 247  

Science Conference Proceedings (OSTI)

This report presents the operating results for Run 247 at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. This run operated in a Two-Stage Liquefaction (TSL) mode using Illinois No. 6 bituminous coal from the Burning Star mine. The primary run objective was to obtain performance data for the TSL system and the individual process units with particular emphasis on hydrotreating catalyst performance. Secondary objectives were to demonstrate operability for the system and the respective ...

1991-03-01T23:59:59.000Z

455

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

456

The release of iron during coal combustion. Milestone report  

Science Conference Proceedings (OSTI)

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01T23:59:59.000Z

457

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

458

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

459

Microsoft Word - Responses for IRS Notices 2006 24 and 25 May 4 2006.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6-24, Qualifying Advanced Coal Project Program, 6-24, Qualifying Advanced Coal Project Program, IRS Notice 2006-25, Qualifying Gasification Program May 4, 2006 DOE is answering questions related only to DOE certifications. Other questions should be directed to the IRS by calling Doug Kim or Kathy Reed at (202) 622-3110, or by faxing the questions to them at (202) 622-4779. 21. Waste Coal. Is it correct that a low-cost anthracite culm (i.e., culm is defined as coal waste that consists of coal and rock with varying amounts of carbon material remaining after removal of a higher-quality saleable coal) qualifies for clean coal investment tax credits under sections 48A and 48B? Kindly assume that the producer procured the culm from a culm bank (i.e., ubiquitous piles or other depository of culm on

460

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

Note: This page contains sample records for the topic "anthracite bituminous subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

462

EIS-0357: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0357: Final Environmental Impact Statement Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, Pennsylvania This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project has been selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

463

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

464

Categorical Exclusion Determinations: Los Alamos Site Office | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos Site Office Los Alamos Site Office Categorical Exclusion Determinations: Los Alamos Site Office Categorical Exclusion Determinations issued by Los Alamos Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD July 16, 2013 Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office November 30, 2012 CX-009798: Categorical Exclusion Determination Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office November 30, 2012 CX-009524: Categorical Exclusion Determination Foreign Location Source Recovery - Fiscal Year 2013

465

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 16, 2013 Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office July 16, 2013 CX-010582: Categorical Exclusion Determination Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration July 16, 2013 CX-010581: Categorical Exclusion Determination Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration July 16, 2013 CX-010858: Categorical Exclusion Determination Demolition of the 745-N Excess Equipment Pad CX(s) Applied: B1.23

466

EIS-0357: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Final Environmental Impact Statement 57: Final Environmental Impact Statement EIS-0357: Final Environmental Impact Statement Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, Pennsylvania This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project has been selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

467

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

468

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 22070 of 28,905 results. 61 - 22070 of 28,905 results. Download CX-010875: Categorical Exclusion Determination Routine Maintenance and Custodial Services August 2013 to August 2014 CX(s) Applied: B1.3 Date: 08/28/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office http://energy.gov/nepa/downloads/cx-010875-categorical-exclusion-determination Event FWP Event Mound- Miamisburg, OH FWP Event Mound - Miamisburg, OH http://energy.gov/hss/events/fwp-event-mound-miamisburg-oh-3 Download Anthracite/Total Orange/Black Transfer of Contact-Handled Transuranic Waste to Idaho National Laboratory for Processing and Shipment to Waste Isolation Pilot Plant CX(s) Applied: B1.30 Date: 07/16/2013 Location(s): New Mexico Offices(s): Los Alamos Site Office http://energy.gov/nepa/downloads/anthracitetotal-orangeblack

469

Process for solvent refining of coal using a denitrogenated and dephenolated solvent  

DOE Green Energy (OSTI)

A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1984-01-01T23:59:59.000Z