Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

anodic materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anode materia.l1-9 These materials have been showed large-14 the use of metal and carbon composites,15-20 and the introduction of nano- sized metals,21-25 have been Cho,...

2

advanced anodic materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anode materia.l1-9 These materials have been showed large-14 the use of metal and carbon composites,15-20 and the introduction of nano- sized metals,21-25 have been Cho,...

3

New High-Energy Nanofiber Anode Materials  

SciTech Connect (OSTI)

The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

2013-11-15T23:59:59.000Z

4

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

5

anode electrode materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anode electrode materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Nanostructured Electrode...

6

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

7

Sulfur-tolerant anode materials for solid oxide fuel cell application  

SciTech Connect (OSTI)

This paper summarizes the degradation mechanisms for SOFC anodes in the presence of sulfur and recent developments in sulfur-tolerant anodes. There are two primary sulfur-degradation mechanisms for the anode materials: physical absorption of sulfur that blocks the hydrogen reaction sites, and chemical reaction that forms nickel sulfide. The sulfur-tolerant anodes are categorized into three kinds of materials: thiospinels and metal sulfides, metal cermets, and mixed ionic and electronic conductors. Each material has its own advantages and disadvantages, and the combined application of available materials to serve as different functional components in anodes through proper design may be effective to achieve a balance between stability and performance.

Gong, M. (West Virginia University, Morgantown, WV); Liu, X. (West Virginia University, Morgantown, WV); Trembly, J.; Johnson, C.

2007-06-01T23:59:59.000Z

8

Analysis of cadmium in undissolved anode materials of Mark-IV electro-refiner  

SciTech Connect (OSTI)

The Mark-IV electro-refiner (Mk-IV ER) is a unit process in the FCF (Fuel Conditioning Facility), which is primarily assigned to treating the used driver fuels. Mk-IV ER contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation. (authors)

Yoo, Tae-Sic; Fredrickson, G.L.; Vaden, D.; Westphal, B. [Separation Department, Materials and Fuels Complex, Idaho National Laboratory, Idaho Falls, ID (United States)

2013-07-01T23:59:59.000Z

9

Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner  

SciTech Connect (OSTI)

The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation.

Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden; Brian R. Westphal

2013-10-01T23:59:59.000Z

10

Vehicle Technologies Office Merit Review 2014: Novel Anode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

11

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network [OSTI]

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

12

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect (OSTI)

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

13

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries  

E-Print Network [OSTI]

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

Popov, Branko N.

14

Sandia National Laboratories: New Material Tests Show Biaxial...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Tests Show Biaxial Laminate Creep Is Important for Large Wind-Turbine Blades New Material Tests Show Biaxial Laminate Creep Is Important for Large Wind-Turbine Blades...

15

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

16

Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries  

SciTech Connect (OSTI)

During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

White, Ralph E.; Popov, Branko N.

2002-10-31T23:59:59.000Z

17

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

18

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and...

19

Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

controlling these two properties is the mag- nitude of interaction between the active and the inactiveElectrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries C. Y. Wang,a, * Y. S. Meng,b, * G. Ceder,c, *,z and Y. Lia,d,z a Advanced Materials

Ceder, Gerbrand

20

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network [OSTI]

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles

Cui, Yi

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect (OSTI)

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

22

Rate Characteristics of Anatase TiO2 Nanotubes and Nanorods for Lithium Battery Anode Materials at Room  

E-Print Network [OSTI]

ratio.11 Repulsive Coulombic interactions be- tween lithium ions are expected to be responsibleRate Characteristics of Anatase TiO2 Nanotubes and Nanorods for Lithium Battery Anode Materials for lithium content to x = 0.7. Li surface storage on nanometer-sized particles can be energetically more

Cho, Jaephil

23

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents [OSTI]

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

1991-01-01T23:59:59.000Z

24

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

25

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network [OSTI]

energy, rechargeable Li-ion battery based on carbon nanotubewith Sb and SnSb0.5 as Li-ion battery anodes. Carbon, 2003.Li, A review of application of carbon nanotubes for lithium ion battery

Zhao, Lin

2013-01-01T23:59:59.000Z

26

An Insoluble Titanium-Lead Anode for Sulfate Electrolytes  

SciTech Connect (OSTI)

The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

Ferdman, Alla

2005-05-11T23:59:59.000Z

27

Direct Access to Mesoporous Crystalline TiO2/Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries  

SciTech Connect (OSTI)

Mesoporous and highly crystalline TiO{sub 2} (anatase)/carbon composites with large (>5?nm) and uniform pores were synthesized using PI-b-PEO block copolymers as structure directing agents. Pore sizes could be tuned by utilizing block copolymers with different molecular weights. The resulting mesoporous TiO{sub 2}/carbon was successfully used as an anode material for Li ion batteries. Without addition of conducting aid (Super P), the electrode showed high capacity during the first insertion/desertion cycle due to carbon wiring inside the walls of mesoporous TiO{sub 2}/carbon. The electrode further showed stable cycle performance up to 50 cycles and the specific charge capacity at 30?C was 38?mA h (g of TiO{sub 2}){sup ?1}, which indicates CCM-TiO{sub 2}/carbon can be used as a material for high rate use.

Lee, Jinwoo; Jung, Yoon S.; Warren, Scott C.; Kamperman, Marleen; Oh, Seung M.; DiSalvo, Francis J.; Wiesner, Ulrich

2011-01-01T23:59:59.000Z

28

Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds  

SciTech Connect (OSTI)

The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO{sub 2} film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

Stephen Everett Treimer

2002-06-27T23:59:59.000Z

29

Establish and Expand Commercial Production of Graphite Anode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Expand Commercial Production of Graphite Anode Materials for High Performance Lithium-ion Batteries Establish and Expand Commercial Production of Graphite Anode Materials...

30

E-Print Network 3.0 - alloy anode material Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

curves of the ... Source: Zheng, Yufeng - Department of Advanced Materials and Nanotechnology, Peking University Collection: Materials Science ; Biology and Medicine 3 FIB-SEM...

31

Anodes for alkaline electrolysis  

DOE Patents [OSTI]

A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

Soloveichik, Grigorii Lev (Latham, NY)

2011-02-01T23:59:59.000Z

32

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network [OSTI]

Whittingham, M.S. , Lithium batteries and cathode materials.Whittingham, M.S. , Lithium batteries and cathode materials.applications of lithium secondary batteries. 2012: Wiley-VCH

Zhao, Lin

2013-01-01T23:59:59.000Z

33

A layered sodium titanate as promising anode material for sodium ion batteries  

E-Print Network [OSTI]

Sodium ion batteries have recently received great attention for large-scale energy applications because of the abundance and low cost of sodium source. Although some cathode materials with desirable electrochemical properties ...

Wu, Di, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

34

neutron scattering shows magnetic excitation mechanism at work in new materials.  

E-Print Network [OSTI]

neutron scattering shows magnetic excitation mechanism at work in new materials. In 2008 dai of orNl and the university of tennes- see led early neutron scattering studies of the pnictides. dai ticks off four main things neutron scattering has revealed about superconducting iron com- pounds

35

Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries  

E-Print Network [OSTI]

,3 In this regard, Fe, Pd, Co, Pt, or their alloys have been intensively investigated.4-7 On the other hand, Sn and dealloying, which causes cracking and crumbling of the electrode material and the consequent loss pulverization is much more important in a practical composite electrode.17 Obtaining good capacity retention

Cho, Jaephil

36

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network [OSTI]

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

37

Report on the source of the electrochemical impedance on cermet inert anodes  

SciTech Connect (OSTI)

the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

Windisch, C.F. Jr.; Stice, N.D.

1991-02-01T23:59:59.000Z

38

Novel Anode Materials  

Broader source: Energy.gov (indexed) [DOE]

(NIU) Collaborations * Fikile Brushett (MIT) * X. Xiao (APS microtomography) * Gao Liu (LBNL) * Russell Cook (Electron Microscopy Center) 3 Project Objectives - Relevance Project...

39

Novel Anode Materials  

Broader source: Energy.gov (indexed) [DOE]

silicon TBACl as supporting electrolyte Coin cells , Si vs Li metal in 1.2M LiPF 6 , EC:EMC electrode surface 1cm 2 , copper foam weight 60mg 1 st cycle voltage profile for...

40

Novel Anode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fabrication of advanced design (grooved) cermet anodes  

SciTech Connect (OSTI)

Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

1993-05-01T23:59:59.000Z

42

Nanostructured Metal Oxide Anodes (Presentation)  

SciTech Connect (OSTI)

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

43

E-Print Network 3.0 - anode supported planar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science ; Engineering 27 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Summary: Polymeric anodes for improved polymer...

44

Electron Microscopy Study of Novel Ru Doped La0.8Sr0.2CrO3 as Anode Materials for Solid Oxide Fuel Cells (SOFCs)  

E-Print Network [OSTI]

Cells (SOFCs) Y. Wang,* B. D. Madsen,* W. Kobsiriphat,* S.A. Barnett* and L.D. Marks* * Department of electrocatalyst nanoparticles have been introduced into ceramic anodes to improve the electrochemical of Ru nanoparticles could then be directly linked to the electrochemical performance of LSCR anode. Our

Marks, Laurence D.

45

Protection of Li Anodes Using Dual Phase Electrolytes  

Broader source: Energy.gov (indexed) [DOE]

cells with high energy anode and dual-phase electrolyte systems Partners BASF SE, Germany * Development of Li-S battery materials 3 Relevance. Project Objectives. * Develop a...

46

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

2012-01-31T23:59:59.000Z

47

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

2008-06-24T23:59:59.000Z

48

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

2011-04-05T23:59:59.000Z

49

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

50

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

1993-01-01T23:59:59.000Z

51

Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

2013-10-15T23:59:59.000Z

52

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents [OSTI]

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

53

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents [OSTI]

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

54

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1995-01-01T23:59:59.000Z

55

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

1995-06-20T23:59:59.000Z

56

anodic tantala films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes Materials Science Websites Summary: to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin...

57

Anode performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreasAnode performance Anode performance

58

Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method  

DOE Patents [OSTI]

A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

Bates, John B. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

59

E-Print Network 3.0 - anodically bonded glass-based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science 32 APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* Summary: , and anodic bonding. The starting material were two pieces of 3 in....

60

E-Print Network 3.0 - aluminum anodic oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation at the anode and material is being removed. D S b k June... Oxidation Reduction ... Source: Montana State University, Chemical and Biological Engineering...

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - anodic aluminum oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation at the anode and material is being removed. D S b k June... Oxidation Reduction ... Source: Montana State University, Chemical and Biological Engineering...

62

Movable anode x-ray source with enhanced anode cooling  

DOE Patents [OSTI]

An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

Bird, C.R.; Rockett, P.D.

1987-08-04T23:59:59.000Z

63

In situ characterization of nanoscale catalysts during anodic redox processes  

SciTech Connect (OSTI)

Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

Sharma, Renu [National Institute of Standards and Technology] National Institute of Standards and Technology; Crozier, Peter [Arizona State University] Arizona State University; Adams, James [Arizona State University] Arizona State University

2013-09-19T23:59:59.000Z

64

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

65

anodes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is analyzed Nielsen, Mads Pagh 25 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

66

anodization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is analyzed Nielsen, Mads Pagh 25 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

67

Anode film formation and control  

DOE Patents [OSTI]

A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

Koski, O.; Marschman, S.C.

1990-05-01T23:59:59.000Z

68

Aerogel and xerogel composites for use as carbon anodes  

DOE Patents [OSTI]

Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2008-08-12T23:59:59.000Z

69

Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries  

SciTech Connect (OSTI)

CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: • CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. • Monodispersity, shape and sizes of sample particles is specifically controlled. • Good quality adhesion between CNTs and CuNiO is visible from TEM image. • High electrochemical performance is achieved. • Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

Mustansar Abbas, Syed, E-mail: qau_abbas@yahoo.com [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Tajammul Hussain, Syed [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Ali, Saqib [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ahmad, Nisar [Department of Chemistry, Hazara University, Mansehra (Pakistan); Ali, Nisar [Department of Physics, University of Punjab, Lahore (Pakistan); Abbas, Saghir [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ali, Zulfiqar [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); College of Earth and Environmental Sciences, University of Punjab, Lahore (Pakistan)

2013-06-15T23:59:59.000Z

70

Inert Anode/Cathode Program: Fiscal Year 1986 annual report. [For Hall-Heroult cells  

SciTech Connect (OSTI)

Purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by the aluminum industry. The program is divided into four tasks: Inert Anode Development, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development. To devise sensors to control the chemistry of Hall-Heroult cells using stable anodes and cathodes. This report highlights the major FY86 technical accomplishments, which are presented in the following sections: Management, Materials Development, Materials Evaluation, Thermodynamic Evaluation, Laboratory Cell Tests, Large-Scale Tests, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development.

Brenden, B.B.; Davis, N.C.; Koski, O.H.; Marschman, S.C.; Pool, K.H.; Schilling, C.H.; Windisch, C.F.; Wrona, B.J.

1987-06-01T23:59:59.000Z

71

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network [OSTI]

on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium

Cui, Yi

72

Nanotube Composite Anode Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica forNanotechnologyExposuresNanotube

73

Nanostructured Materials as Anodes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250ThisMarsh MoreDepartmentIt's U.S. Department

74

The effects of microstructure on the corrosion of glycine/nitrate processed cermet inert anodes: A preliminary study  

SciTech Connect (OSTI)

The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under the study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anodes surface, and (c) to develop sensors for monitoring various anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The anode mechanism studies were focused in four areas in FY 1990 and FY 1991: (a) the determination of whether a film formed on cermet inert anodes and (if it existed) the characterization of this film, (b) the determination of the sources of the anode impedance, (c) the evaluation of the effects of silica and a precorroded state on anode corrosion, and (d) a preliminary study on the effect of microstructure on the corrosion properties of the anodes. This report discusses the results of the microstructure studies. 6 refs., 32 figs., 3 tabs.

Windisch, Jr, C F; Chick, L A; Maupin, G D; Stice, N D

1991-07-01T23:59:59.000Z

75

p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells  

DOE Patents [OSTI]

The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

2014-11-25T23:59:59.000Z

76

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

77

E-Print Network 3.0 - anode supported solid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at ScienceDirect Summary: methanol fuel cells--Effect of anode diffusion media Fuqiang Liu1 , Chao-Yang Wang Departments of Materials... March 2008 Keywords: Direct methanol...

78

Argonne and CalBattery strike deal for silicon-graphene anode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and CalBattery strike deal for silicon-graphene anode material By Angela Hardin * February 25, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National...

79

Novel Lithium Ion Anode Structures: Overview of New DOE BATT...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

80

One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability  

SciTech Connect (OSTI)

Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup ?1} at a current density of 50 mA g{sup ?1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

2014-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma  

SciTech Connect (OSTI)

The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

Piel, A.; Pilch, I.; Trottenberg, T. [Institute for Experimental and Applied Physics, Christian-Albrechts University, D-24098 Kiel (Germany); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26505-6315 (United States)

2008-09-07T23:59:59.000Z

82

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable, metal phosphides MPn, M = transition metal ions as attractive Li-ion anode materials have received lithium reactions, i MPn LixMPn simple Li-ion interca- lation and ii MPn M LixM + LixP alloying followed

Cho, Jaephil

83

Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...  

Broader source: Energy.gov (indexed) [DOE]

of the cathode utilization 9 ApproachStrategy DOE AMR 2010 The proposed battery system works by adding lithium to the anode of a cell in the form of SLMP. If the anode material...

84

Surface roughness of anodized titanium coatings.  

SciTech Connect (OSTI)

Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

Dugger, Michael Thomas; Chinn, Douglas Alan

2010-10-01T23:59:59.000Z

85

Microbial fuel cell with improved anode  

DOE Patents [OSTI]

The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

Borole, Abhijeet P.

2010-04-13T23:59:59.000Z

86

Contested Material Interface Shows Mixing | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"Program and Book of

87

Developing High Capacity, Long Life Anodes  

Broader source: Energy.gov (indexed) [DOE]

long life and improved Safety for PHEV and EV applications. Objectives Develop a low cost synthesis methods to prepare high energy anodes Full structural and...

88

Experiments in anodic film effects during electrorefining of scrap U-10Mo fuels in support of modeling efforts  

SciTech Connect (OSTI)

A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling. In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.

Van Kleeck, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Willit, J.; Williamson, M.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fentiman, A.W. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

89

Anode protection system for shutdown of solid oxide fuel cell system  

SciTech Connect (OSTI)

An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

2014-12-30T23:59:59.000Z

90

Test plan for the pilot cell test of inert anodes: Report on the June 1991 meeting at the Reynolds Metals Company facility  

SciTech Connect (OSTI)

The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes (OIP) of the US Department of Energy (DOE) and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (1) evaluate the anode material in a pilot cell facility, (2) investigate the mechanisms of the electrochemical reactions at the anodes surface, and (3) develop sensors for monitoring various anode and/or electrolyte conditions. This report discusses a test plan that has been developed for the pilot cell test of the inert anodes. 6 refs., 7 figs., 4 tabs.

Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Alcorn, T.R.; Tabereaux, A.T. (Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.)

1991-09-01T23:59:59.000Z

91

Remote control for anode-cathode adjustment  

DOE Patents [OSTI]

An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

Roose, Lars D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

92

Interactions of nickel/zirconia solid oxide fuel cell anodes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing arsenic. Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing...

93

Synthesis and Characterization of Silicon Clathrates for Anode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE...

94

anodic protection: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is analyzed Nielsen, Mads Pagh 27 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

95

Breakthrough materials for energy storage  

E-Print Network [OSTI]

Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

96

EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCs  

SciTech Connect (OSTI)

Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

2011-01-01T23:59:59.000Z

97

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

98

The Nitrogen-Nitride Anode.  

SciTech Connect (OSTI)

Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

Delnick, Frank M.

2014-10-01T23:59:59.000Z

99

Anodizing of High Electrically Stressed Components  

SciTech Connect (OSTI)

Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

Flores, P. [NSTec; Henderson, D. J. [NSTec; Good, D. E. [NSTec; Hogge, K. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Naffziger, C. [NSTec; Codova, S. R. [SNL; Ormond, E. U. [SNL

2013-06-01T23:59:59.000Z

100

Structural transformation of macroporous silicon anodes as a result of cyclic lithiation processes  

SciTech Connect (OSTI)

Anodes based on a regular lattice of macroporous silicon with different periods, sizes, and shapes of pore cross sections are studied. The discharge capacity and its degradation during cycling (embedding and extraction of lithium) are examined. Scanning electron microscopy is used to analyze changes in the electrode structure upon the lithiation/delithiation of Si and to evaluate the elemental composition of the porous material. An ex situ morphological analysis of the electrodes demonstrates that, on the whole, the porous structure is preserved upon cycling and the thickness of silicon walls increases. The degree of Si-wall destruction depends on their initial thickness. Estimates show that the electrolyte reduction process mainly occurs according to the two-electron mechanism, with inorganic salts of lithium formed as a result.

Li, G. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kulova, T. L. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)] [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Tolmachev, V. A., E-mail: tva@mail.ioffe.ru; Chernienko, A. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Baranov, M. A. [National Research University of Information Technologies, Mechanics, and Optics (Russian Federation)] [National Research University of Information Technologies, Mechanics, and Optics (Russian Federation); Pavlov, S. I.; Astrova, E. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Skundin, A. M. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)] [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

2013-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enhanced electrochromic property of nickel hydroxide thin films prepared by anodic deposition  

SciTech Connect (OSTI)

Nickel hydroxide and nickel oxide thin films have received much attention as electrochromic (EC) materials, particularly as the materials for a complementary counterlayer against an EC tungsten oxide layer in smart window systems. Nickel hydroxide thin films were prepared onto transparent conductive tin oxide (NESA) substrates by potentiostatic electrolysis of a nickel amine complex solution at various potentials (0.6 to 1.5 V vs. Ag/AgCl). Nickel hydroxide thin film (F0.7) obtained at relatively lower anodic potential (0.7 V) showed enhanced electrochromism between colorless and dark brown in a sodium borate buffer solution at pH 12; the absorption spectrum in the colored (oxidized) state was broadened in the visible and near-infrared region compared with the nickel hydroxide films prepared at the higher anodic potential (1.1 V). characterization of the films revealed that crystal structure of F0.7 is assigned to [alpha]-Ni(OH)[sub 2], and that its electrochromism is based on the reversible oxidation to hexagonal [gamma][sub 2]-2NiO[sub 2] [center dot] NiOOH structure. Composite nickel hydroxide film, i.e., by the electrolytic deposition at 1.1 V followed by that at 0.7 V, showed electrochromic property similar to F0.7 and its durability in repeated redox cycles were much improved in comparison with that of F0.7. Electrochromic properties in switching performance of this composite nickel hydroxide film were investigated.

Chigane, Masaya; Ishikawa, Masami (Osaka Municipal Technical Research Inst. (Japan). Dept. of Inorganic Chemistry)

1994-12-01T23:59:59.000Z

102

Lithium ion batteries with titania/graphene anodes  

DOE Patents [OSTI]

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

103

Improvement of four anode rods ion source  

SciTech Connect (OSTI)

In this work, an improved form of a saddle field ion source has been designed and constructed. It consists of four anode rods made from copper and two copper cathode discs. The two cathode discs are placed symmetrically on both sides of the four anode rods. The electrical discharge and output ion beam characteristics were measured at different pressures using argon gas. The optimum distance between each two anode rods was determined. Also the optimum distance between the four anode rods and any cathode disc was obtained. It was found that the optimum distance between each two anode rods equal to 6 mm, while the optimum distance between the four anode rods and any cathode disc equal to 16 mm, where a stable discharge current and maximum output ion beam current can be obtained. The effect of negative extraction voltage applied to both the extractor electrode and Faraday cup on the output ion beam current was studied. The sputter yield of copper and aluminum targets using argon ions of different energies was determined.

Abdel Salam, F. W.; El-Khabeary, H.; Abdel Reheem, A. M. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P. No. 13759 (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt)

2011-03-15T23:59:59.000Z

104

SIDEWALL MATERIALS FOR ALUMINIUM SMELTER  

E-Print Network [OSTI]

SIDEWALL MATERIALS FOR ALUMINIUM SMELTER Reiza Zakia Mukhlis Supervisors: Dr. M. Akbar Rhamdhani heat losses *Grjotheim et al., 1988, Aluminium smelter technology #12;Reducing energy consumption anode cell* *Mukhlis, Rhamdhani and Brooks, TMS 2010 **Grjotheim et al., 1988, Aluminium smelter

Liley, David

105

Develop and Evaluate Materials and Additives that Enhance Thermal...  

Broader source: Energy.gov (indexed) [DOE]

protection 5 Recent Accomplishments and Progress SEI formation on different carbon anodes o Material investigated: MCMB-1028, 3 types of surface modified graphite from...

106

Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices  

DOE Patents [OSTI]

The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

2010-11-23T23:59:59.000Z

107

Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices  

DOE Patents [OSTI]

The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

2010-03-02T23:59:59.000Z

108

Structural Analysis of Novel Lignin-derived Carbon Composite Anodes  

SciTech Connect (OSTI)

The development of novel lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains motivates the understanding of a relationship of the structural properties characterizing these materials, such as crystallite size, intracrystallite dspacing, crystalline volume fraction and composite density, with their pair distribution functions (PDF), obtained from both molecular dynamics simulation and neutron scattering. A model for these composite materials is developed as a function of experimentally measurable parameters and realized in fifteen composite systems, three of which directly match all parameters of their experimental counterparts. The accurate reproduction of the experimental PDFs using the model systems validates the model. The decomposition of the simulated PDFs provides an understanding of each feature in the PDF and allows for the development of a mapping between the defining characteristics of the PDF and the material properties of interest.

McNutt, Nicholas W [ORNL; Rios, Orlando [ORNL; Feygenson, Mikhail [ORNL; Proffen, Thomas E [ORNL; Keffer, David J [ORNL

2014-01-01T23:59:59.000Z

109

Structural transformation of nickel hydroxide films during anodic oxidation  

SciTech Connect (OSTI)

The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

Crocker, R.W.; Muller, R.H.

1992-05-01T23:59:59.000Z

110

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

111

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents [OSTI]

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

112

Microbial Power-Generating Capabilities on Micro-/Nano-Structured Anodes in  

E-Print Network [OSTI]

Microbial fuel cells (MFCs) are an alternative electricity gen- erating technology and efficient method-/Nano-Structured Anode Materials, Microbial Fuel Cell 1 Introduction The last three decades have witnessed significant develop- ments and performance improvements in microbial fuel cell (MFC) technology [1]. These advances

Cincinnati, University of

113

AN ELECTROANALYTICAL STUDY OF ELECTRODE REACTIONS ON CARBON ANODES DURING ELECTROLYTIC PRODUCTION OF ALUMINUM  

E-Print Network [OSTI]

OF ALUMINUM Hongmin Zhu and Donald R. Sadoway Department of Materials Science and Engineering Massachusetts production of aluminum the anodic reactions have been studied on carbon microelectrodes by voltammetry electrolysis in a laboratory-scale aluminum reduction cell. When the voltage exceeds a critical value (about 3

Sadoway, Donald Robert

114

A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector  

SciTech Connect (OSTI)

Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

2011-01-01T23:59:59.000Z

115

Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells  

SciTech Connect (OSTI)

During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

2001-11-05T23:59:59.000Z

116

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

DOE Patents [OSTI]

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

117

Aerogel and xerogel composites for use as carbon anodes  

DOE Patents [OSTI]

A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2010-10-12T23:59:59.000Z

118

Nanocomposite protective coatings for battery anodes  

DOE Patents [OSTI]

Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

Lemmon, John P; Xiao, Jie; Liu, Jun

2014-01-21T23:59:59.000Z

119

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

120

Development of High Capacity Anode for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2015 Washington Auto Show  

Broader source: Energy.gov [DOE]

Secretary of Energy Ernest Moniz attended the 2015 Washington Auto Show in Washington, DC on January 22, 2015. He delivered brief remarks on the Energy Department's role in electric and fuel cell vehicle technology, and visited several of the exhibits featuring recent additions to the vehicles market.

122

Hybrid anode for semiconductor radiation detectors  

DOE Patents [OSTI]

The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

2013-11-19T23:59:59.000Z

123

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes  

SciTech Connect (OSTI)

A cost effective and scalable method is developed to prepare a core-shell structured Si/B4C composite with graphite coating with high efficiency, exceptional rate performance and long-term stability. In this material, conductive B4C with high Mohs hardness serves not only as micro-/nano- millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in-situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B4C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B4C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ~822 mAh?g-1 (based on the weight of the entire electrode, including binder and conductive carbon) and ~94% capacity retention over 100 cycles at 0.8C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications, and good opportunity for large scale manufacturing using commercially available materials and technologies.

Chen, Xilin; Li, Xiaolin; Ding, Fei; Xu, Wu; Xiao, Jie; Cao, Yuliang; Meduri, Praveen; Liu, Jun; Graff, Gordon L.; Zhang, Jiguang

2012-08-08T23:59:59.000Z

124

Spatially Interpolated Nonlinear Anodization in Synthetic Aperture Radar Imagery  

SciTech Connect (OSTI)

Spatially Interpolated Nonlinear Anodization in Synthetic Aperture Original formulation of spatially variant anodization for complex synthetic aperture radar (SAR) imagery oversampled at twice the Nyquist rate (2.OX). Here we report a spatially interpolating, noninteger-oversampled SVA sidelobe. The pixel's apparent IPR location is assessed by comparing its value to the sum of its value plus weighted comparable for exact interpolation. However, exact interpolation implies an ideal sine interpolator3 and large components may not be necessary. Note that P is the summation of IPR diagonal values. The value of a sine IPR on the diagonals is a sine-squared; values much less than cardinal direction (m, n) values. This implies that cardinal direction interpolation requires higher precision than diagonal interpolation. Consequently, we employed a smaller set. The spatially interpolated SVA used an 8-point/4-point sine interpolator described above. Table 1 shows the Table 1 results show a two-times speed-up using the 1.3x oversampled and spatially interpolated SVA over the Figure 1d. Detected results of 1.3x oversampled sine interpolated spatially variant

Eichel, Paul H.; Jakowatz, Jr., Charles V.; Yocky, David A.

1999-06-29T23:59:59.000Z

125

Performance of Ni/ScSZ cermet anode modified by coating with Gd{sub 0.2}Ce{sub 0.8}O{sub 2} for a SOFC  

SciTech Connect (OSTI)

A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd{sub 0.2}Ce{sub 0.8}O{sub 2}) within the pores of the anode for a solid oxide fuel cell (SOFC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Open circuit voltages (OCVs) increased from 1.027 to 1.078 V, and the maximum power densities increased from 238 to 825 mW/cm{sup 2}, as the operating temperature of a SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 deg. C in humidified hydrogen. The coating of nano-sized Gd{sub 0.2}Ce{sub 0.8}O{sub 2} particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cell. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Consequently, 2.0 wt.%GDC-coated Ni/ScSZ anode could be used as a novel anode material for a SOFC due to better electrochemical performance.

Huang Bo [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)]. E-mail: huangbo2k@hotmail.com; Ye, X.F. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Wang, S.R. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Nie, H.W. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Liu, R.Z. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

2007-09-04T23:59:59.000Z

126

Candidate anode materials for iron production by molten oxide electrolysis  

E-Print Network [OSTI]

Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

Paramore, James D

2010-01-01T23:59:59.000Z

127

Alloys as Anode Materials in Magnesium Ion Batteries.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of the possible application of magnesium alloys forfuture magnesium-ion batteries. It investigates dierent alloys and characterizesthem with respect… (more)

Syvertsen, Alf Petter

2012-01-01T23:59:59.000Z

128

Establish and Expand Commercial Production of Graphite Anode Materials for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse Environmental JusticeGroundsHigh Performance

129

Oxide-based SOFC Anode Materials - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics GroupPlanning Workshopthe Magnetite -Oxide-based

130

Nano-structured Materials as Anodes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA C T S H Estructured

131

Nanotube composite anode materials improve lithium-ion battery performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica

132

Search for New Anode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department1Scott MinosHigh Energy

133

New High-Energy Nanofiber Anode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh

134

New High-Energy Nanofiber Anode Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh0 DOE

135

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

136

Electrode materials for the electrolysis of metal oxides  

E-Print Network [OSTI]

Carbon, tungsten, platinum, and iridium were examined as candidate anode materials for an electrolytic cell. The materials were pre-selected to endure high process temperatures and were characterized for inertness and high ...

Cooper, Benjamin D

2006-01-01T23:59:59.000Z

137

Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...  

Broader source: Energy.gov (indexed) [DOE]

LiCoO 2 cathodes and, when paired with advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements,...

138

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

139

Cooling for a rotating anode X-ray tube  

DOE Patents [OSTI]

A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

Smither, Robert K. (Hinsdale, IL)

1998-01-01T23:59:59.000Z

140

Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same  

DOE Patents [OSTI]

A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

De Jonghe, Lutgard C. (Berkeley, CA); Visco, Steven J. (Berkeley, CA); Liu, Meilin (Albany, CA); Mailhe, Catherine C. (Vevey, CH)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Anode Reaction for Copper Electrowinning  

SciTech Connect (OSTI)

This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

Not Available

2005-07-01T23:59:59.000Z

142

Hybrid phosphazene anodes for energy storage applications  

SciTech Connect (OSTI)

The use of hybrid cyclic phosphazene polymer/graphite anodes, where the phosphazene serves as distributed loci for Li deposition, has been investigated. Capacity within the hybrid system was found to occur reversibly in distinct regions. At the most positive voltages, above 0.06 V vs Li/Li+, the capacity was associated mostly with Li+ intercalation into graphite. In the most negative region, deposition of Li within the polymer was the predominate mechanism. A transitional region is inferred by the data whereby bulk aggregation or clustering of Li atoms occurs in proximity to the phosphazene sites that then serve as a template for more widespread population of Li within the anode at higher voltages, akin to a nucleation process. In full cells with a mixed oxide cathode, controlling the extent of Li deposition by limiting the charging voltage to 4.45 V enabled repeated cycling with no loss in capacity. Capacities as high as 183 mAh g-1 have been achieved for systems containing as little as 10% graphite while retaining coulombic efficiencies of 98% over 50 cycles. This level of cycling equates to the deposition of 7.4 Li per cyclic phosphazene.

Eric J. Dufek; Mark L. Stone; Kevin L. Gering; Frederick F. Stewart; David Jamison; Aaron D. Wilson; Lucia M. Petkovic; Mason K. Harrup; Harry W. Rollins

2014-12-01T23:59:59.000Z

143

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents [OSTI]

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

144

Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes  

SciTech Connect (OSTI)

Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385°C for 2 h, and subsequently creep-flattened at 1350°C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500°C to 750°C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650°C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

2010-05-08T23:59:59.000Z

145

E-Print Network 3.0 - anodizing aluminum sections Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anodizing aluminum sections Search Powered by Explorit Topic List Advanced Search Sample search results for: anodizing aluminum sections Page: << < 1 2 3 4 5 > >> 1 ENS'05 Paris,...

146

E-Print Network 3.0 - anode image sensor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arc enters the anode is referred... and behavior of the anode spot under typical plasma cutting conditions. III. ... Source: Settles, Gary S. - Department of Mechanical and...

147

Focused cathode design to reduce anode heating during vircator operation  

SciTech Connect (OSTI)

Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2013-10-15T23:59:59.000Z

148

Virtual cathode microwave generator having annular anode slit  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

Kwan, Thomas J. T. (Los Alamos, NM); Snell, Charles M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

149

Results from a pilot cell test of cermet anodes  

SciTech Connect (OSTI)

Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N [Pacific Northwest Lab., Richland, WA (United States); Alcorn, T R [Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.

1992-08-01T23:59:59.000Z

150

Inert anodes and advanced smelting of aluminum  

SciTech Connect (OSTI)

This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

ASME Technical Working Group on Inert Anode Technologies

1999-07-01T23:59:59.000Z

151

Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

2009-01-07T23:59:59.000Z

152

Inert Anode Life in Low Temperature Reduction Process  

SciTech Connect (OSTI)

The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

Bradford, Donald R.

2005-06-30T23:59:59.000Z

153

Adhesion of anodic films on aluminum-lithium alloys  

SciTech Connect (OSTI)

During anodizing of certain binary Al alloys, the growing anodic oxide film detaches from the alloy substrate, subsequently allowing access of the electrolyte to the underlying bare metal and re-anodizing at a high current density. An Al-3% Li alloy was shown to reveal these phenomena, which are associated with the development of voids at the alloy/film interface as the film thickens. The development of voids, assisting the film detachment, was attributed to the reduced volume of lithium oxide (Li[sub 2]O) formed at the alloy/film interface and compared to that of alumina (Al[sub 2]O[sub 3]).

Skeldon, P.; Zhou, X.; Thompson, G.E.; Wood, G.C. (Univ. of Manchester Institute of Science and Technology (United Kingdom). Corrosion and Protection Centre); Habazaki, H. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research); Shimizu, K. (Keio Univ., Hiyoshi, Yokohama (Japan). University Chemical Lab.)

1999-06-01T23:59:59.000Z

154

Designer carbons as potential anodes for lithium secondary batteries  

SciTech Connect (OSTI)

Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

1995-07-01T23:59:59.000Z

155

High Energy Materials for PHEVs: Cathodes (New Project)  

Broader source: Energy.gov (indexed) [DOE]

new cathode materials and to use surplus lithium in precursor structures to load thin film metal- or metal-alloy anode substrates. Collaborators Co-investigators: Sun-Ho...

156

A microfocus x-ray source based on a nonmetal liquid-jet anode  

SciTech Connect (OSTI)

We demonstrate stable operation of a nonmetallic anode in an electron-impact x-ray source. A high-brightness electron beam is focused on a {approx}70 m/s speed, {approx}10 {mu}m diameter methanol jet producing stable x-ray emission with peak spectral brightness at {approx}5.4x10{sup 5} photons/(sx{mu}m{sup 2}xsrx0.1%BW). The jet is fully evaporated in the interaction point. The shape of a simulated spectrum using Monte Carlo methods shows good agreement with experimental data, and the theoretical brightness values give an upper limit for the achievable x-ray emission from jets with very high velocities. Using this anode concept, all compounds and elements found in liquid form are potentially usable for x-ray generation.

Tuohimaa, T.; Ewald, J.; Schlie, M.; Hertz, H. M.; Vogt, U. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, SE-10691 Stockholm (Sweden); Fernandez-Varea, J. M. [Facultat de Fisica (ECM), Universitat de Barcelona, Diagonal 647, ES-08028 Barcelona (Spain)

2008-06-09T23:59:59.000Z

157

Improving dielectric performance in anodic aluminum oxide via detection and passivation of defect states  

SciTech Connect (OSTI)

The electronic and ionic transports in 32–56?nm thick anodic aluminum oxide films are investigated before and after a 1-h anneal at 200–400?°C in argon. Results are correlated to their defect density as measured by the Mott-Schottky technique. Solid state measurements show that electronic conduction upon annealing is hindered by an increase in the Schottky emission barrier, induced by a reduction in dopant density. Using an electrochemical contact, the films fail rapidly under cathodic polarization, unless defect density is decreased down to 10{sup 17}?cm{sup ?3}, resulting in a three order of magnitude reduction in current and no visible gas evolution. Under anodic polarization, the decrease in defect density delays the onset of ionic conduction as well as further oxide growth and failure.

Mibus, M.; Zangari, G. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Jensen, C. [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Hu, X.; Reed, M. L. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Knospe, C. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

2014-06-16T23:59:59.000Z

158

Sandia National Laboratories: New Material Tests Show Biaxial Laminate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On September 26, 2012,MoreCreep Is

159

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

160

Microbial Community Composition Is Unaffected by Anode Potential Xiuping Zhu,  

E-Print Network [OSTI]

SHE).2,6 This voltage can be produced by an external power source, or through insertion of a reverse electrodialysis stack between the electrodes.7,8 The anode potential can influence the performance of BESs.9

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

SciTech Connect (OSTI)

A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge?discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

2010-01-01T23:59:59.000Z

162

anode cathodic protection: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

163

anode interfacial layer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

164

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

165

Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst  

E-Print Network [OSTI]

its strength. Application of the cathode occurs next. An LSCF or similar powder is mixed allowing the water to evaporate from the LSCF, the half-cell is sintered again. The anode is applied

Collins, Gary S.

166

Breakdown Anodization (BDA) for hierarchical structures of titanium oxide  

E-Print Network [OSTI]

Breakdown Anodization (BDA) of titanium dioxide is a very promising, fast fabrication method to construct micro-scale and nano-scale structures on titanium surfaces. This method uses environmentally friendly electrolytes, ...

Choi, Soon Ju, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

167

Porous anodic aluminum oxide scaffolds; formation mechanisms and applications  

E-Print Network [OSTI]

Nanoporous anodic aluminium oxide (AAO) can be created with pores that self-assemble into ordered configurations. Nanostructured metal oxides have proven to be very useful as scaffolds for growth of nanowires and nanotubes ...

Oh, Jihun

2010-01-01T23:59:59.000Z

168

Novel Lithium Ion Anode Structures: Overview of New DOE BATT...  

Broader source: Energy.gov (indexed) [DOE]

University 200,000 Synthesis and Characterization of Polymer-Coated Layered SiO x -Graphene Nanocomposite Anodes J-G Zhang and J. Liu Pacific Northwest National Laboratory...

169

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, E.

1984-04-10T23:59:59.000Z

170

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, Eugene (Coram, NY)

1985-01-01T23:59:59.000Z

171

Direct Ethanol Fuel Cells: Platinum/Rhodium Anode  

E-Print Network [OSTI]

Direct Ethanol Fuel Cells: Platinum/Rhodium Anode Catalysis Ken Ellis-Guardiola PCCM REU 2010 #12 EtOH+3H2O 12H+ +2CO2+ 12e- Pt C 4H+ + 4e- + O2 2H2O O2 Anode Cathode The Direct Ethanol Fuel Cell #12;The addition of other metals to Platinum improves its fuel cell performance Pt alone is easily

Petta, Jason

172

Stainless steel anodes for alkaline water electrolysis and methods of making  

DOE Patents [OSTI]

The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

Soloveichik, Grigorii Lev

2014-01-21T23:59:59.000Z

173

Process for anodizing a robotic device  

DOE Patents [OSTI]

A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

Townsend, William T. (Weston, MA)

2011-11-08T23:59:59.000Z

174

Inert Electrodes Program: Characterization of the reaction layer or film on PNL (Pacific Northwest Laboratory) inert anodes: Progress Report for April-December 1989  

SciTech Connect (OSTI)

This progress report addresses activities conducted at Pacific Northwest Laboratory (PNL) between April 1989 and December 1989 to characterize the reaction layer or film previously proposed by PNL to form on cermet anodes during the electrolytic production of aluminum in Hall-Heroult cells. Formation of this resistive film was thought to protect the cermet anode from corrosion reactions that would otherwise occur in the molten cryolite electrolyte. The results of potential-step studies, electrochemical impedance spectroscopy, and post-mortem microscopic analysis of polarized anodes suggest that the processes of corrosion of the metallic phase of the anode and the production of oxygen gas are separable and exhibit very different kinetic behavior. The corrosion reactions occur predominantly at low anode potentials, appear to show diffusion control, and may be related to the porosity of the anode. The oxygen production reaction is the predominant reaction above 2.2 V, exhibits activation control, occurs primarily on the surface of the anode, and is accompanied by an increase in surface roughness at higher current densities. Evidence presented in this report indicates that the production of oxygen shuts down the corrosion reactions, possibly through a pore-blocking mechanism. In addition, roughness effects may help explain some of the impedance relationships previously observed by PNL for these anodes. Although the present results do not rule out the formation of a protective layer or film, they strongly indicate mechanisms other than the formation of a macroscopic protective film for the apparent attenuation of corrosion reactions at typical operating current densities. 11 refs.

Windisch, C.F. Jr.; Stice, N.D.

1990-05-01T23:59:59.000Z

175

A novel method for preparing anode cermets for solid oxide fuel cells  

SciTech Connect (OSTI)

A new method for fabrication of metal-cermet anodes in solid-oxide fuel cells (SOFCs) has been developed. Highly porous, yttria-stabilized zirconia (YSZ) films were prepared using a mixture of zircon fibers (YSZp, Si-stabilized, and {lt}0.3% Si) and normal YSZ powders (YSZd). The films remained highly porous following calcination up to 1,550 C, after which either Cu or Ni could be incorporated by impregnation with the nitrate salts. For Cu cermets, the performance increased with metal loading to at least 40% Cu. At 800 C using H{sub 2} as the fuel and a 230 {micro}m, YSZ electrolyte, the current-voltage (I-V) curves for either a Cu- or Ni-cermet anode formed using this new method were found to be identical to the I-V curve for a Ni cermet formed using traditional methods. Scanning electron microscopy showed that the anode films remained porous even with addition of Cu, so that additional modification was possible. Tests of this concept through the addition of ceria by impregnation with the Ce(NO{sub 3}){sub 3} led to an additional increase in the cell performance.

Craciun, R.; Park, S.; Gorte, R.J.; Vohs, J.M.; Wang, C.; Worrell, W.L.

1999-11-01T23:59:59.000Z

176

Backstage at the Daily Show  

Broader source: Energy.gov [DOE]

Backstage footage from Secretary Chu's appearance on the Daily Show where he discuses the green room candy dish and possible lighting considerations.

177

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

178

Composite Electrolyte to Stabilize Metallic Lithium Anodes  

Broader source: Energy.gov (indexed) [DOE]

- Develop composites of electrolyte materials with requisite electrochemical and mechanical properties - Fabricate thin membranes to provide good power performance and long...

179

This journal is c The Royal Society of Chemistry 2010 Chem. Commun. Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless  

E-Print Network [OSTI]

nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffoldsw in electroless plating reactions. As a result, self-assembled metallic nanorods can be fabricated, which have advantage of the proposed structure lies in the self-assembly of the viral materials. Nickel- coated TMV can

Rubloff, Gary W.

180

34 JOM May 2001 Inert Anodes  

E-Print Network [OSTI]

· Electronically conductive · Resistant to thermal shock · Mechanically robust · Easytodeploy on three materials classes: ceramics, cermets, and metals. CERAMICS For resistance to chemical attack of aluminum production. Research is continuing on materials that would best serve that purpose. Results

Sadoway, Donald Robert

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NAIHC Convention and Trade Show  

Broader source: Energy.gov [DOE]

The National American Indian Housing Council's (NAIHC) most longstanding Annual Event, the 39th Annual NAIHC Convention and Trade Show is an opportunity to learn about tribal housing, attend...

182

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents [OSTI]

A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

1994-07-19T23:59:59.000Z

183

The possibility of forming a sacrificial anode coating for Mg  

SciTech Connect (OSTI)

Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

Dudney, Nancy J [ORNL; Li, Juchuan [Oak Ridge National Laboratory (ORNL); Sacci, Robert L [ORNL; Thomson, Jeffery K [ORNL

2014-01-01T23:59:59.000Z

184

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

185

Diarrheal Disease in Show Swine  

E-Print Network [OSTI]

cause disease in humans. Contaminated water is the main source of Giardia spp. Bacterial Causes Swine dysentery or ?bloody dysentery? from infec- tion with Brachyspira (Serpulina) hyodysenteriae is a major cause of diarrheal disease in show pigs... (the same area as whipworms) and prevents reabsorption of fluids. Affected pigs severe- ly dehydrate and up to 30 percent can die. Most affected pigs will drink but will not eat. Pigs that recover are intermittent shedders of B. hyodysenteriae and are a...

Lawhorn, D. Bruce

2007-02-27T23:59:59.000Z

186

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

187

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

188

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

189

Oxygen-producing inert anodes for SOM process  

DOE Patents [OSTI]

An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

Pal, Uday B

2014-02-25T23:59:59.000Z

190

Anodes for rechargeable lithium batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreasAnode performance Anode

191

Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors  

SciTech Connect (OSTI)

Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.

Blakemore, James D; Schley, Nathan D; Olack, G.; Incarvito, Christopher D; Brudvig, Gary W; Crabtree, Robert H

2011-01-01T23:59:59.000Z

192

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications  

E-Print Network [OSTI]

applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

Chen, Po-Chun

2014-01-13T23:59:59.000Z

193

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

194

E-Print Network 3.0 - anodized ti-metal substrates Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diffusion medium CDM , serves as a methanol... from the cathode into the anode to offset the water dragged by electro-osmosis. The new MEA, consisting... of a CDM anode, a...

195

Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Sulfur Poisoning of NiZirconia SOFC Anodes by Antimony and Tin . Mitigation of Sulfur Poisoning of NiZirconia SOFC Anodes by Antimony and Tin . Abstract: Surface...

196

Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

197

E-Print Network 3.0 - anode wire grids Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Fig. 12. Zinc thruster data while operating using a consumable anode. The same four-grid RPA used... consumable anodes that were machined from solid magnesium and zinc, which...

198

Effect of Sulfur and Hydrocarbon Fuels on Titanate/Ceria SOFC Anodes  

SciTech Connect (OSTI)

The purpose of the project is to develop low-cost, high-performance anodes that offer low polarization resistance as well as improved tolerance for nonidealities in anode environment such as redox cycles, sulfur and other poisons, and hydrocarbons.

Marina, O.A.; Pedersen, L.R.; Stevenson, J.W.

2005-01-27T23:59:59.000Z

199

4-H Show Lamb Guide  

E-Print Network [OSTI]

members in devoting many hours over several months to the proper care, feeding and management of a potentially award-winning lamb. Lambs may be purchased by private treaty at a producer?s ranch or through sales. During the late spring and summer..., there are usually one or more sales every week throughout the state. Information on lamb sales is available through magazines such as ?The Showbox,? ?Show Times? and ?The Purple Circle.? However, many of the decisions you make regarding the type of feeder lamb...

Craddock, Frank; Stultz, Ross

1998-11-30T23:59:59.000Z

200

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

SciTech Connect (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells  

E-Print Network [OSTI]

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells D.05.118 #12;Abstract Single chamber anode-supported fuel cells are investigated under several methane under methane-to-oxygen ratio (Rmix) of 2. Anode-supported fuel cells are investigated regarding

Paris-Sud XI, Université de

202

Posting type Informational Subject Introduction of a second copper-anode XRF system  

E-Print Network [OSTI]

Posting type Informational Subject Introduction of a second copper-anode XRF system Module in samples collected after 12/1/01 have been determined by XRF analysis using a Cu-anode tube as the source/1/05 will be reported with an added indicator of the Cu- anode XRF system used in analysis, the first (1) or the second

Fischer, Emily V.

203

Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors  

E-Print Network [OSTI]

Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors Module/Species A@crocker.ucdavis.edu Supporting information A molybdenum-anode XRF instrument is used to analyze the heavier elements (Ni, Cu, Zn with lighter deposits were acquired and used in the Mo-anode XRF system. The new calibration foils resulted

Fischer, Emily V.

204

Novel carbonaceous materials for lithium secondary batteries  

SciTech Connect (OSTI)

Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

1997-07-01T23:59:59.000Z

205

Pd/Ni-WO3 anodic double layer gasochromic device  

DOE Patents [OSTI]

An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

2004-04-20T23:59:59.000Z

206

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents [OSTI]

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

207

Showing results, 3 Energy technology and energy planning  

E-Print Network [OSTI]

aspects of energy, industrial, and agricultural production Materials, 24 Materials and measuring materials, 8 Plasma and fluid dynamics, 9 ­ Energy planning, 10 Simulation and optimisation of energyShowing results, 3 Energy, 4 Energy technology and energy planning Environment, 12 Environmental

208

Corrosion inhibitor storage and release property of TiO{sub 2} nanotube powder synthesized by rapid breakdown anodization method  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? TiO{sub 2} nanotube powders were synthesized by rapid breakdown anodization method. ? Benzotriazole was loaded into the TiO{sub 2} nanotube powders. ? Low pH induced release of benzotriazole from TiO{sub 2} nanotube powders was proved. -- Abstract: Titanium dioxide (TiO{sub 2}) is one of the most studied substances in material science due to its versatile properties and diverse applications. In this study titanium dioxide nanotube powder were synthesized by rapid breakdown anodization (RBA) method. The synthesis involved potentiostatic anodization of titanium foil in 0.1 M HClO{sub 4} electrolyte under an applied voltage of 20 V and rapid stirring. The morphology and the phase of titanium dioxide nanotube powder were studied using field emission scanning electron microscopy, laser Raman spectroscopy and high resolution transmission electron microscopy. Benzotriazole was chosen as model inhibitor to evaluate TiO{sub 2} nanotube powder's corrosion inhibitor loading and releasing properties. The storage and release properties of TiO{sub 2} nanotube powder were studied using UV–visible spectroscopy and thermogravimetric analysis.

Arunchandran, C.; Ramya, S.; George, R.P. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)] [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

2013-02-15T23:59:59.000Z

209

Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode  

SciTech Connect (OSTI)

We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

2014-07-07T23:59:59.000Z

210

Modeling a short dc discharge with thermionic cathode and auxiliary anode  

SciTech Connect (OSTI)

A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

Bogdanov, E. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Demidov, V. I. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); West Virginia University, Morgantown, West Virginia 26506 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)] [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

2013-10-15T23:59:59.000Z

211

Investigation of materials for inert electrodes in aluminum electrodeposition cells  

SciTech Connect (OSTI)

Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

Haggerty, J. S.; Sadoway, D. R.

1987-09-14T23:59:59.000Z

212

Cells having cathodes containing polycarbon disulfide materials  

DOE Patents [OSTI]

The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

Okamoto, Yoshi (Fort Lee, NJ); Skotheim, Terje A. (Shoreham, NY); Lee, Hung S. (Rocky Point, NY)

1995-08-15T23:59:59.000Z

213

OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS  

SciTech Connect (OSTI)

This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

Scott A. Barnett; Jiang Liu; Yuanbo Lin

2004-07-30T23:59:59.000Z

214

Electrocatalyst for alcohol oxidation at fuel cell anodes  

DOE Patents [OSTI]

In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

2011-11-02T23:59:59.000Z

215

Developing High Capacity, Long Life Anodes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartmentLife Anodes Developing

216

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

2014-01-17T23:59:59.000Z

217

Thermal Neutron Detectors with Discrete Anode Pad Readout  

SciTech Connect (OSTI)

A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

2008-10-19T23:59:59.000Z

218

Anode-supported tubular SOFC at low temperature using Ni, Fe, GDC, and YSZ based anode support  

SciTech Connect (OSTI)

NiO-GDC, NiO-YSZ, NiO-Fe2O3-GDC, NiO-Fe2O3-YSZ anode tube supported tubular fuel cells was fabricated at the co-sintering temperature from 1250 C to 1400 C to investigate how the co-sintering temperature affect the open-circuit voltage. To focus on the changing of anode tube, all the tubular fuel cells support a ScSZ electrolyte layer and a LSCF cathode layer. The microstructure of the electrolyte layer sintered under 1300 C included pores inside it, and the densification of the electrolyte completed at the sintering temperatures above 1300 C. Furthermore, the shrinkage both in length and in diameter of a tubular fuel cell reaches as much as 20% at co-sintering temperature of 1400 C. The densification of ScSZ electrolyte layer and shrinkage of anode tube will result in the changing of open-circuit voltage of fuel cell from 1.0 V to 1.1 V.

Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Fujishiro, Y.; Awano, M.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

2011-01-01T23:59:59.000Z

219

Experimental study of the ion flux parameters and anode plasma dynamics in the Angara-5-1 facility  

SciTech Connect (OSTI)

Results are presented from experimental studies of the anode plasma dynamics and measurements of the ion flux ejected along the axis of a high-current Z-pinch. Pinch discharges were formed by the implosion of tungsten wire arrays in the Angara-5-1 facility. It is shown that the ion energy spectrum depends on the mass and configuration of wire arrays, as well as on the diameter of the anode aperture. The shape of the ion spectrum indicates that the plasma propagates in the form of a compact plasmoid. Shadow and X-ray images of the plasma show that the axial velocity of the plasma outflowing through the anode aperture is comparable with the velocity of radial plasma compression and, for tungsten ions, can reach a value corresponding to an energy of 100 keV. The experimental data indicate that the ion energy spectrum mainly forms due to the electrodynamical acceleration of the plasma and cumulative jets. A possible mechanism for the production of compact plasma formations in the course of electrodynamic plasma acceleration is discussed.

Aleksandrov, V. V.; Grabovski, E. V.; Zukakishvili, G. G.; Mitrofanov, K. N.; Medovshchikov, S. F.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2008-10-15T23:59:59.000Z

220

Cu--Ni--Fe anode for use in aluminum producing electrolytic cell  

DOE Patents [OSTI]

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

2006-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

This journal is c The Royal Society of Chemistry 2010 Chem. Commun., 2010, 46, 73497351 7349 Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless  

E-Print Network [OSTI]

-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition-binding affinity in electroless plating reactions. As a result, self-assembled metallic nanorods can be fabricated advantage of the proposed structure lies in the self-assembly of the viral materials. Nickel- coated TMV can

Larson-Prior, Linda

222

E-Print Network 3.0 - alternative anode reaction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Operating Power Including Nitrogen... is presented that describes the steady state profile of anode nitrogen ... Source: Wetton, Brian - Department of Mathematics, University...

223

Buried anode lithium thin film battery and process for forming the same  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

2004-10-19T23:59:59.000Z

224

A MORE EFFICIENT ANODE MICROSTRUCTURE FOR SOFCs BASED ON PROTON CONDUCTORS  

SciTech Connect (OSTI)

While the desired microstructure of the state-of-the-art Ni-YSZ anode for a solid oxide fuel cell (SOFC) based on YSZ is well known, the anode microstructure for a SOFC based on a proton conductor is yet to be optimized. In this study, we examined the effect of anode porosity on the performance of a SOFC based on BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3??} (BZCYYb), a mixed ion (proton and oxygen anion) conductor with high ionic conductivity at intermediate temperatures. Three cells with Ni-BZCYYb cermet anodes of different porosities (37%, 42%, and 50%) and identical electrolytes and cathode components were fabricated and tested. Under typical fuel cell operating conditions, the cell with anode of the lowest porosity (37%), prepared without pore former, achieved the highest performance, demonstrating a peak power density of 1.2 W/cm{sup 2} at 750 °C. This is radically different from the results of Ni-YSZ anodes for YSZ based cells, where high anode porosity (?55%) is necessary to achieve high performance. The observed increase in performance (or electrocatalytic activity for anode reactions) is attributed primarily to the unique microstructure of the anode fabricated without the use of pore forming precursors.

Rainwater, Ben H; Liu, Mingfei; Liu, Meilin

2012-01-01T23:59:59.000Z

225

E-Print Network 3.0 - anodic films formed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin film electrolyte is sintered at a temperature of 1400 C for 4 h... anode support SOFC cross-section, (b) microwave ... Source: Kasagi, Nobuhide - Department of Mechanical...

226

E-Print Network 3.0 - anodic reaction kinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CELLS Summary: with electrochemical kinetics in active regions of anode and cathode of a SOFC. In the following section, the model... occurs by the following reactions. Oxidation...

227

E-Print Network 3.0 - anodic stripping square Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: anodic stripping square Page: << < 1 2 3 4 5 > >> 1 Nuclear Instruments and Methods in Physics Research A 554 (2005) 291299 Characteristics of...

228

Organic Light Emitting Diodes Using a Ga:ZnO Anode  

SciTech Connect (OSTI)

We report the application of gallium doped zinc oxide (GZO) films as anodes in organic light emitting diodes (OLEDs). Pulsed laser deposited GZO films of differing Ga composition are examined. Bilayer OLEDs using GZO and indium tin oxide (ITO) anodes are then compared. Relative to ITO, the GZO anodes have slightly better sheet resistance and transparency in the visible spectral region. Device data suggest GZO results in more effective hole injection into an aromatic triamine hole transporting layer. Indium free anodes are expected toimprove OLED stability while lowering the cost per unit area, crucial for OLED based lighting applications.

Berry, J. J.; Ginley, D. S.; Burrows, Paul E.

2008-05-12T23:59:59.000Z

229

E-Print Network 3.0 - anode dielectric coating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-5 Table 1. Dielectric parameters for anodic oxide, shunt capacitance... Josephson junction geometry with minimal volume of lossy isolation ... Source: Martinis, John M. -...

230

E-Print Network 3.0 - anode-supported solid oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , "Microstructure Optimization Designs for Anode-Supported Planar Solid Oxide Fuel Cells," ASME Journal of Fuel Cell... ., "Optimization design of electrodes for...

231

E-Print Network 3.0 - anodic aluminium oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Warwick Collection: Engineering 8 Characterisation of Oxidised Aluminium Powder: Validation of a new Anodic Oxidation Bench Nicolas Gascoin* Summary: 137...

232

Pitch Production Using Solvent Extraction of Coal: Suitability as Carbon Anode Precursor.  

E-Print Network [OSTI]

??Albertan coal has been used to produce extracts as precursor for production of anode coke. Coal extractability was studied using digestion with Tetralin in a… (more)

Mohammad Ali Pour, Mehdi

2009-01-01T23:59:59.000Z

233

E-Print Network 3.0 - anode x-ray source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from measurements of the kinetic energy and intensity of the photoelectrons emitted... carbon film (conver- ter) illuminated by X-rays emitted by an aluminium- magnesium anode. For...

234

E-Print Network 3.0 - anodic oxygen-transfer reactions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy ; Energy Storage, Conversion and Utilization 57 Performance modeling and cell design for high concentration methanol fuel cells Summary: primarily on the anode side of...

235

E-Print Network 3.0 - anode-supported high power Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anode ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

236

E-Print Network 3.0 - anode current response Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrogen is produced, and there- fore the current and power are very low. In this regime, the anode... understanding the physical processes responsible for SCFC ... Source:...

237

Forming gas treatment of lithium ion battery anode graphite powders  

DOE Patents [OSTI]

The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

2014-09-16T23:59:59.000Z

238

Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program InformationBibliographicAnode Catalysts

239

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

2014-01-01T23:59:59.000Z

240

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells  

E-Print Network [OSTI]

The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

2006-01-01T23:59:59.000Z

242

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network [OSTI]

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

243

Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab  

E-Print Network [OSTI]

Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

Cui, Yi

244

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

245

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network [OSTI]

efficiency. SECTION: Energy Conversion and Storage; Energy and Charge Transport Silicon is a promising highCrumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao improved performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic

Huang, Jiaxing

246

Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries  

E-Print Network [OSTI]

Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 successful anode for lithium ion batteries due to its low cost, safety, and ease of fabrication, but higher are expected to surpass conventional graphite anodes due to larger number of edges for lithium ion

247

Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel  

E-Print Network [OSTI]

Microstructural Degradation of Ni- YSZ Anodes for Solid Oxide Fuel Cells Karl Thydén Risø-PhD-32(EN 2008 #12;Author: Karl Thydén Title: Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel Cells Department: Fuel Cells and Solid State Chemistry Department Risø-PhD-32(EN) March 2008 This thesis

248

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE  

E-Print Network [OSTI]

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE BY FOILS simpler, and low cost method to fabricate porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach were carried out. During our experiments, it was found that the pores

Paris-Sud XI, Université de

249

386 Anal. Chem. 1987, 59,386-389 Square Wave Anodic Stripping Voltammetry at the Mercury  

E-Print Network [OSTI]

386 Anal. Chem. 1987, 59,386-389 Square Wave Anodic Stripping Voltammetry at the Mercury Film treatment of square wave anodic stripping voltammetry at a mercury film electrode Is presented. Nu- merlcal) frequency ( f ) and amount of metal depostted In the mercury layer (9R) and glves a response 6 tlmes

Kounaves, Samuel P.

250

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network [OSTI]

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.… (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

251

Anode-cathode power distribution systems and methods of using the same for electrochemical reduction  

DOE Patents [OSTI]

Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

2014-01-28T23:59:59.000Z

252

Anode shroud for off-gas capture and removal from electrolytic oxide reduction system  

DOE Patents [OSTI]

An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

2014-07-08T23:59:59.000Z

253

Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells  

DOE Patents [OSTI]

A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

1994-01-01T23:59:59.000Z

254

Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12  

E-Print Network [OSTI]

on the anode, producing a complex response in fuel cell power output. Under optimized gas compositions and flowAnode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 Zongping of anode-supported, thin-film, single chamber fuel cells (SCFCs) have been investigated. Cells, in which Ni

Haile, Sossina M.

255

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

SciTech Connect (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

256

Anode reactive bleed and injector shift control strategy  

DOE Patents [OSTI]

A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

2012-01-03T23:59:59.000Z

257

Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material  

E-Print Network [OSTI]

.; Beaudoin, B.; Naudin, E.; Morctette, M.; Tarascon, J. M. Solid State Ionics 2004, 166, 295. (6) Fernandez. Chem., Int. Ed. 2004, 43, 5987. (12) Kim, E.; Kim, M. G.; Kim, Y.; Cho, J. Electrochem. Solid-State. Soc. 2006, 153, A1633. (14) Kim, J.; Cho, J. Electrochem. Solid-State Lett. 2006, 9, A373. (15) Kim, E

Cho, Jaephil

258

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network [OSTI]

interaction between lithium ion interactions. The doping ofwould benefit the interaction with lithium ions. (a) (b) (al. , Interaction and concerted diffusion of lithium in a (

Zhao, Lin

2013-01-01T23:59:59.000Z

259

Amorphous Al-transition Metal Alloys as Anode Material for Lithium Ion Battery  

E-Print Network [OSTI]

Al based alloy powders (Al??Ni?Y?Co?Fe?) are produced by spray atomization method. High energy ball milling is done to modify the surface topology and particle size for better electrochemical performance. X ray diffraction ...

Wang, C.Y.

260

A new anode material for oxygen evolution in molten oxide electrolysis  

E-Print Network [OSTI]

Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock and compared with traditional methods of extractive metallurgy offers ...

Allanore, Antoine

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhanced performance of graphite anode materials by AlF3 coating for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix

262

Hard Carbon Materials for High-Capacity Li-ion Battery Anodes | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLEDFriends ofTreatsHantz Legerof

263

Battery Anodes > Batteries & Fuel Cells > Research > The Energy Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic Batteries

264

Argonne and CalBattery strike deal for silicon-graphene anode material -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2 (CRACApril 22-23, 2011ArgonneArgonneEnergy

265

New High Power Li2MTi6O14Anode Material | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartmentEnergyHigh Power

266

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect (OSTI)

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

267

Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report  

SciTech Connect (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

268

Development of metal-coated ceramic anodes for molten carbonate fuel cells  

SciTech Connect (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

269

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes  

SciTech Connect (OSTI)

Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (?2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

Liu, Nian; Wu, Hui; Mcdowell, Matthew T.; Yao, Yan; Wang, Chong M.; Cui, Yi

2012-05-02T23:59:59.000Z

270

Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries  

SciTech Connect (OSTI)

Nanostructured silicon as an anode material for Li-ion batteries is produced for the first time by inductively coupled plasma–plasma etching of Si wafers in the black silicon regime. The microscopic structure strongly resembles other types of nanostructured silicon, with a well-arranged nanostructure possessing a sufficient porosity for accommodating large volume expansion. Despite these features, however, a high first-cycle irreversible capacity loss and a poor cycle life are observed. The main reason for these poor features is the formation of a thick solid-electrolyte interphase (SEI) layer related to the surface condition of the pristine nanostructured black silicon (b-Si) electrode. Therefore, the cycle life of the b-Si electrode is heavily influenced by the constant reformation of the SEI layer depending upon the surface composition in spite of the presence of nanostructured Si. In the fast lithiation experiments, the nanostructure region of the b-Si electrode is detached from the Si substrate owing to the kinetics difference between the lithium ion diffusion and the electron injection and phase transformation in the nanostructured Si region. This means that more Si substrate is involved in lithiation at high current rates. It is therefore important to maintain balance in the chemical kinetics during the lithiation of nanostructured Si electrodes with a Si substrate.

Lee, Gibaek; Wehrspohn, Ralf B., E-mail: ralf.b.wehrspohn@iwmh.fraunhofer.de [Fraunhofer Institute for Mechanics of Materials IWM, Halle (Saale) 06120, Germany and Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany); Schweizer, Stefan L. [Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany)

2014-11-01T23:59:59.000Z

271

Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity  

E-Print Network [OSTI]

Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

Kim, Hojong

272

P-230 / X. Yu P-230: Novel Electrical-Chemically Polished Stainless Steel Anode Organic  

E-Print Network [OSTI]

time, top emission OLEDs with evaporated aluminum anode on glass (called Devices AA) were fabricated be widely used in ceiling lighting illuminator and automotive application in the future. High work

273

E-Print Network 3.0 - anode-cathode microbial fuel Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 61 Visions on Energy Production Technologies for Finland up to 2030 Summary: turbine G G After- burner Solid oxide fuel cell (SOFC) Anode...

274

E-Print Network 3.0 - anode catalysts prepared Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cells, by modifying both the anode and the cathode catalysts that will enable PEM fuel cell... catalyst as a separate phase - as nanoparticles. 2. ... Source: DOE Office of...

275

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network [OSTI]

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

276

E-Print Network 3.0 - aluminum anodization process Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminum anodization process Page: << < 1 2 3 4 5 > >> 1 ENS'05 Paris, France, 14-16 December...

277

A study of certain trace metals in sea water using anodic stripping voltammetry  

E-Print Network [OSTI]

Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

Fitzgerald, William Francis, 1926-

1970-01-01T23:59:59.000Z

278

Modeling of the anode side of a direct methanol fuel cell with analytical solutions  

E-Print Network [OSTI]

In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

Mosquera, Martín A

2010-01-01T23:59:59.000Z

279

E-Print Network 3.0 - anodic oxide coatings Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for fuel oxidation and the cathode chamber for oxygen... - Synthesize electrolyte powder Sm0.2Ce0.8O1.9 Step 2 - Fabricate anode powder Nickel Oxide + Electrolyte Step......

280

E-Print Network 3.0 - anodic oxide overlayer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for oxygen... - Synthesize electrolyte powder Sm0.2Ce0.8O1.9 Step 2 - Fabricate anode powder Nickel Oxide + Electrolyte Step... Solid Oxide Fuel Cells Victoria A. Liem and...

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - anodal transcranial direct Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

111:796806, 2009 796 J Neurosurg Volume 111 October 2009 Summary: of rTMS over the Trains of transcranial direct current stimulation antagonize motor cortex... of anodal tran-...

282

A Partial Oxidation Technique for Fuel-Cell Anode Exhaust-Gas Synthesis  

SciTech Connect (OSTI)

This paper describes the performance of a gas generator used to synthesize the exhaust gas from the anode of a molten-carbonate fuel cell. The composition of this gas is estimated to be that of equilibrium at 1,250 ° F and 1 atm: 48% CO2 , 39% H2O, 5% CO, and 8% H2, with an energy content of approximately 39 Btu/scf (higher heating value). To synthesize a range of gas compositions around this point, the gas generator partially oxidizes a mixture of CH4 , O2 , and CO2 to generate energy densities between 20 and 60 Btu/scf at temperatures between 1,198 and 1,350 ° F. Results show that the technique provides a relatively high ratio of CO to H2 concentrations compared with the target composition (CO:H2 of 2, versus 0.71). A detailed chemical model shows that the likely cause is quenching of the CO and H2 chemistry below 2,000 ° F.

Edward H. Robey, Jr.; Randall S. Gemmen

1998-11-10T23:59:59.000Z

283

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect (OSTI)

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

284

2013 Washington Auto Show | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff12011-2020Energy2013the3

285

Development of a Novel Non-Consumable Anode for Electrowinning Primary Aluminum  

SciTech Connect (OSTI)

The principal goal of the project was to determine through theoretical considerations and from chemical and electrochemical laboratory studies the technical and economic feasibility for the substitution and retrofitting of an SOFC-type anode for today's carbon anode in a cell for electrowinning primary Al. However, solubility measurements showed that no value of cryolite ratio can exist where the solubilities of the solid electrolyte components (zirconia and especially yttria) would be small relative to the alumina solubility. Therefore, the utilization of the proposed SOFC-type anode cannot be realized for any cell involving a cryolite-base solvent. However, the project suggested that the SOFC-type anode scheme might be successful if the solvent/electrolyte for electrowinning Al could be changed to a fused sulfate melt. During the solubility experiments, electrochemical probes were developed, and a bath characterization was defined, to measure quantitatively the acid-base character of cryolite melts. The measured acid-base behavior was then used to correlate the alumina solubility in cryolite over a wide range of cryolite ratio at 1300K. A mathematical modeling of the alumina solubility as a function of basicity identified three solutes of Al{sub 2}O{sub 3} in cryolite-base melts: Na{sub 2}Al{sub 2}OF{sub 6}, Na{sub 2}Al{sub 2}O{sub 2}F{sub 4}, and Na{sub 4}Al{sub 2}O{sub 2}F{sub 6} as acidic, neutral and basic solutes, respectively. For the first time, the stereochemistry (geometries) of these complex solutes was clarified. For the non-oxygen containing Al-F complex anions, Na{sub 3}AlF{sub 6} and NaAlF{sub 4} were also considered as solutes, and some NaF (but no AlF{sub 3}) could remain in the melts. The previously suggested solute Na{sub 2}AlF{sub 5} was found to be unstable. The strong complexing in the cryolite/alumina system means that the bath is highly buffered so that a significant shift in basicity is not possible and therefore the alumina solubility does not vary greatly. The maximum solubility for alumina occurs at a cryolite ratio of about four. The method used for theoretical modeling of the alumina solubility in the NaF-AlF{sub 3} system involved the simultaneous solution of all possible equilibria in the bath coupled with element balances, similar to the software program SOLGASMiX. Such an analysis identified the dominant complex oxyfluoride solutes in the system and provided a quantitative evaluation for their stabilities. With these new values added to the thermodynamic data bank, the solubilities of other oxides in cryolite could be analyzed. Thus new papers by other authors on the solubilities of NiO/NiAl{sub 2}O{sub 4}, FeO/FeAl{sub 2}O{sub 4}, and TiO{sub 2} in cryolite were interpreted differently than the original authors to identify the solute ions and provide quantitative data for their stabilities in these systems: Na{sub 2}NiF{sub 4}, Na{sub 4}NiF{sub 6}, Na{sub 2}FeF{sub 4}, Na{sub 4}FeF{sub 6}, FeF{sub 2}, Na{sub 4}TiO{sub 2}F{sub 4}, NaTIOF{sub 3}, and Na{sub 3}TiO{sub 3}F. Again the stereochemistry for these solutes was described by simple geometric (octahedral and tetrahedral) arrangements of large anions about a smaller cation. In the case of the solubilities for the oxides of iron and nickel, the data and explanations would be useful in understanding the dissolution of the proposed Fe,Ni oxide composite for the oxygen-evolving inert anode. The research on this project has demonstrated the correct method to analyze the complicated equilibria in such a complex solution, and exposed as inadequate (incorrect) the existing (log-log) method of treating only one or two equilibria in isolation. In response to a high priority from the 2002 Aluminum Roadmapping report, two sensors were proposed to measure the dissolved alumina content in cryolite. Because of the high cost of the necessary BN hardware, however, confirming experiments were not undertaken. Hole-in-tube type sensors were designed and demonstrated for the measurement of Mg activity/concentration in binary Al-Mg melts and for Li activ

Robert A. Rapp; Y. Zhang

2003-12-04T23:59:59.000Z

286

MagLab - Science Show and Tell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arrow Meet the Magnets Arrow Q & A Arrow World Records Arrow By the Numbers Arrow Science Show & Tell Arrow Audio Slideshows Arrow History & Timeline Arrow Look Whos at the...

287

Performances and ageing study of resistive-anodes Micromegas detectors for HL-LHC environment  

E-Print Network [OSTI]

With the tenfold luminosity increase envisaged at the HL-LHC, the background (photons, neutrons, ...) and the event pile-up probability are expected to increase in proportion in the different experiments, especially in the forward regions like, for instance, the muons chambers of the ATLAS detector. Detectors based on the Micromegas principle should be good alternatives for the detector upgrade in the HL-LHC framework because of a good spatial (flux hadrons environment. Several prototypes of 10x10 cm2, with different pitches (0.5 to 2 mm) and different resistive layers have been tested at CERN (pi+@SPS). Several tests have been performed with a telescope at different voltages to assess the performances of the detectors in terms of position resolution and efficiency. The spark behaviour in these conditions has also been evaluated. Resistive coating has been shown to be a successful method to reduce the effect of sparks on the efficiency of micromegas. A good spatial resolution (~80 \\mum) can be reached with a resistive strip coating detector of 1mm pitch and a high efficiency (> 98%) can be achieved with resistive-anode micromegas detector. An X-rays irradiation has been also performed, showing no ageing effect after more than 21 days exposure and an integrated charge of almost 1C.

F. Jeanneau; T. Alexopoulos; D. Attié; M. Boyer; J. Derré; G. Fanourakis; E. Ferrer-Ribas; J. Galán; E. Gazis; T. Geralis; A. Giganon; I. Giomataris; S. Herlant; J. Manjarrés; E. Ntomari; Ph. Schune; M. Titov; G. Tsipolitis

2012-01-09T23:59:59.000Z

288

anodic alumina membranes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

307 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

289

anodic porous alumina: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tsaros 388 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

290

anodic alumina membrane: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

307 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

291

anodic alumina formed: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

234 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

292

anodic alumina films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

268 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

293

anodic alumina template: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

445 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

294

anodic alumina supported: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

240 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

295

anode cermet processed: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

response Materials Science Websites Summary: were produced by a technique combining self-propagating high-temperature synthesis (SHS) of elementalC result in the formation of...

296

anodic alumina templates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

445 Chemical Preparation of the Binary Compounds in the CalciaAlumina System by Self-Propagating Combustion Synthesis Materials Science Websites Summary: Chemical...

297

Inside Gun Shows What Goes On  

E-Print Network [OSTI]

, particularly in Canada and Mexico. There is solid evidence, primarily from investigations of illegal gun trafficking, that gun shows are an important source of crime guns. But less than 2% of felons incarcerated as 40% of all gun sales. They are quick and convenient, and their anonymity will attract those who put

Nguyen, Danh

298

Electrocatalysis of anodic and cathodic oxygen-transfer reactions  

SciTech Connect (OSTI)

The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

Wels, B.R.

1990-09-21T23:59:59.000Z

299

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network [OSTI]

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed… (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

300

Nutrition and Feeding of Show Poultry  

E-Print Network [OSTI]

should be maintained. Feed quality also af_fects con- sumption. Birds given stale, ran- cid or moldy feed will stop eat- Nutrition and Feeding of Show Poultry L-5159 10/03 T he champion- ship potential of a chicken or turkey is determined by genetics..., it will only grow as well as you feed it and it cannot grow beyond its maximum potential. A. Lee Cartwright Associate Professor and Extension Poultry Specialist The Texas A&M University System ing. To keep feed fresh, store it properly away from exposure...

Cartwright, A. Lee

2003-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System  

SciTech Connect (OSTI)

Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

2011-07-28T23:59:59.000Z

302

Organic light emitting device architecture for reducing the number of organic materials  

DOE Patents [OSTI]

An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

D'Andrade, Brian (Westampton, NJ); Esler, James (Levittown, PA)

2011-10-18T23:59:59.000Z

303

Protection of Li Anodes Using Dual Phase Electrolytes  

Broader source: Energy.gov (indexed) [DOE]

50 full charge-discharge cycles in the laboratory scale Li-S cells. Partners BASF SE, Germany * Development of Li-S battery materials 3 Project Objectives * Develop a unique...

304

Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator  

SciTech Connect (OSTI)

Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China) [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China)] [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

2013-05-28T23:59:59.000Z

305

Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism  

SciTech Connect (OSTI)

An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2013-01-28T23:59:59.000Z

306

Method for providing uranium articles with a corrosion resistant anodized coating  

DOE Patents [OSTI]

Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

Waldrop, Forrest B. (Powell, TN); Washington, Charles A. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

307

Method for providing uranium articles with a corrosion-resistant anodized coating  

DOE Patents [OSTI]

Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

Waldrop, F.B.; Washington, C.A.

1981-01-07T23:59:59.000Z

308

Fabrication of copper-based anodes via atmosphoric plasma spraying techniques  

DOE Patents [OSTI]

A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

Lu, Chun (Monroeville, PA)

2012-04-24T23:59:59.000Z

309

Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes  

E-Print Network [OSTI]

Bioelectrochemical Microbial fuel cell Biofuels Separators a b s t r a c t The combined use of brush anodes and glass was 75 ± 1 W/m3 . Removing the separator decreased power by 8%. Adding a second cathode increased power into the anode chamber. The use of a cloth separator (J-cloth, JC) substan- tially improved power generation

310

EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes  

E-Print Network [OSTI]

EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes and Technology Clear Water Bay, Kowloon, Hong Kong Abstract Indium-tin oxide anodes capped with certain oxides-emitting diodes (OLEDs). The oxides of tin, zinc, praseodymium, yttrium, gallium, terbium and titanium have been

311

Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial Suqin Ci a,c  

E-Print Network [OSTI]

Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells Suqin Ci November 2011 Available online 20 November 2011 Keywords: Carbon nanotubes Nitrogen doping Anode Microbial. Introduction Microbial fuel cells (MFCs) are bio-electrochemical systems that directly convert chemical energy

312

Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells  

DOE Patents [OSTI]

A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, Richard W. (Santa Clara, CA); Smith, David F. (Boulder Creek, CA)

1983-01-01T23:59:59.000Z

313

Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells  

DOE Patents [OSTI]

A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, R.W.; Smith, D.F.

1982-09-20T23:59:59.000Z

314

Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries  

E-Print Network [OSTI]

Meeting on Lithium Batteries, Biarritz, France, June 18–23,Sn/C anodes for lithium batteries. Thin layers of graphiticKeywords: Sn/C; Lithium Batteries; Anode; Plasma; Microwave

Marcinek, M.

2008-01-01T23:59:59.000Z

315

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

316

advanced proton-exchange materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proton-exchange materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of novel anodic...

317

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,  

E-Print Network [OSTI]

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

318

Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO  

E-Print Network [OSTI]

Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO Anne in the polymer electrolyte membrane fuel cell (PEMFC) using electrochemical impedance spectroscopy (EIS mechanism 1. Introduction In the polymer electrolyte membrane fuel cell (PEMFC), the largest overpotential

Kjelstrup, Signe

319

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Jixin Chen,*,z  

E-Print Network [OSTI]

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations Jixin Chen,*,z Jason B. Siegel on the electrode carbon corrosion of the Proton Exchange Membrane (PEM) fuel cell. A reduced order isothermal model. This model explains, and can be used to quantify, the carbon corrosion behavior dur- ing DEA operation

Stefanopoulou, Anna

320

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures  

SciTech Connect (OSTI)

Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

2014-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying  

SciTech Connect (OSTI)

The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at.?%. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2?eV (300–135?nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3?eV, which is about ?1.4?eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Rechendorff, K.; Pleth Nielsen, L. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Borca, C. N. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

2014-03-24T23:59:59.000Z

322

Evaluation of multi-brush anode systems in microbial fuel cells Vanessa Lanas, Bruce E. Logan  

E-Print Network [OSTI]

on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected (You et al., 2007), carbon cloth (Wang et al., 2009), and activated carbon fiber felt (Zhu et al., 2011 27 August 2013 Available online 5 September 2013 Keywords: Microbial fuel cell Carbon brush anode

323

Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells  

E-Print Network [OSTI]

ARTICLE Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells Ramaraja P: Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during: microbial fuel cells; biofilm; internal resis- tance; electrochemical impedance; polarization resistance

Mench, Matthew M.

324

Degradation phenomena in PEM fuel cell with dead-ended anode  

E-Print Network [OSTI]

Degradation phenomena in PEM fuel cell with dead-ended anode Toyoaki Matsuura, Jixin Chen*, Jason B of Energy (DOE) target of 30 $/kW for automotive application by 2015 [1], cost reduction in both fuel cell currently ac- counts for around 50% of the fuel cell system cost, is also essential [1]. Conventional fuel

Stefanopoulou, Anna

325

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life  

E-Print Network [OSTI]

in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion battery is one of the most promising systems which is efficient in delivering energy, light in weightPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

Zhou, Chongwu

326

Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries  

E-Print Network [OSTI]

There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

Limthongkul, Pimpa, 1975-

2002-01-01T23:59:59.000Z

327

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries  

E-Print Network [OSTI]

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes

Rogers, John A.

328

MicroScale Modeling of an AnodeSupported Planar Solid Oxide Fuel Cell  

E-Print Network [OSTI]

1 Micro­Scale Modeling of an Anode­Supported Planar Solid Oxide Fuel Cell P. Chinda1 , W. Wechsatol A micro ­ scale model of a Solid Oxide Fuel Cell (SOFC) involving the mass transfer together the available literatures. Keywords: Solid Oxide Fuel Cells, Micro ­ Scale Model, Mass Transfer, Electrochemical

Paris-Sud XI, Université de

329

Conduction in Multiphase ParticulateFibrous Networks Simulations and Experiments on Li-ion Anodes  

E-Print Network [OSTI]

promising Li-ion battery technologies incorporate nanoarchitectured carbon networks, typically in the form electronically February 7, 2003. Several promising Li-ion battery technologies incorporate nanoarchitecturedConduction in Multiphase ParticulateÃ?Fibrous Networks Simulations and Experiments on Li-ion Anodes

Sastry, Ann Marie

330

Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for  

E-Print Network [OSTI]

to achieve high-performance silicon electrodes using a low-cost/facile route. Up to now, great attentions of Sciences, Beijing 100083, P. R. China. Toward the increasing demands of portable energy storage anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial

Zhou, Chongwu

331

Conductive Anodic Filament Enhancement the Presence of a Polyglycol -Containing Flux  

E-Print Network [OSTI]

Institute of Technology Atlanta, GA 30332-0245 Under certain environmental conditions, printed wiring boards (CAF), is a result of an electrochemical corrosion process that initiates at the anode and proceeds process involves two steps [2]. The first is a physical degradation of the fibedepoxy bond

Bennett, Gisele

332

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine  

E-Print Network [OSTI]

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine fuel cells are usually described as devices able to convert chemical energy into electrical energy. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split

Boyer, Edmond

333

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

334

Novel forms of carbon as potential anodes for lithium batteries  

SciTech Connect (OSTI)

The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

Winans, R.E.; Carrado, K.A.

1994-06-01T23:59:59.000Z

335

Operating conditions for the generation of stable anode spot plasma in front of a positively biased electrode  

SciTech Connect (OSTI)

Stability of an anode spot plasma, which is an additional high density plasma generated in front of a positively biased electrode immersed in ambient plasma, is a critical issue for its utilization to various types of ion sources. In this study, operating conditions for the generation of stable anode spot plasmas are experimentally investigated. Diagnostics of the bias current flowing into the positively biased electrode and the properties of ambient plasma reveal that unstable nature of the anode spot is deeply associated with the reduction of double layer potential between the anode spot plasma and the ambient plasma. It is found that stability of the anode spot plasma can be improved with increasing the ionization rate in ambient plasma so as to compensate the loss of electrons across the double layer or with enlarging the area of the biased electrode to prevent electron accumulation inside the anode spot. The results obtained from the present study give the guideline for operating conditions of anode spot plasmas as an ion source with high brightness.

Park, Yeong-Shin; Lee, Yuna; Dang, Jeong-Jeung [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of) [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

2014-02-15T23:59:59.000Z

336

Dense Membranes for Anode Supported all Perovskite IT-SOFCs  

SciTech Connect (OSTI)

During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).

Rambabu Bobba

2006-09-14T23:59:59.000Z

337

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

338

Chemisorption and anodic oxidation of aromatic molecules on Pd electrode surfaces: studies by UHV-EC-STM  

E-Print Network [OSTI]

The chemisorption and anodic oxidation of hydroquinone (H2Q) and benzoquinone (BQ) at palladium electrode surfaces was studied by a combination of electrochemistry (EC), Auger electron spectroscopy (AES), high-resolution electron...

Chen, Xiaole

2006-04-12T23:59:59.000Z

339

Three-phase model for the reversible lithiation/delithiation of SnO anodes in Li-ion batteries  

E-Print Network [OSTI]

Using first-principles calculations, we propose a microscopic model to explain the reversible lithiation/delithiation of tin-oxide anodes in lithium-ion batteries. When the irreversible regime ends, the anode grains consist of layers of Li-oxide separated by Sn bilayers. During the following reversible lithiation, the Li-oxide undergoes two phase transformations that give rise to a Li-enrichment of the oxide and the formation of a SnLi composite. The anode grain structure stays layered and ordered with an effective theoretical reversible capacity of 4.5 Li per Sn atom. The predicted anode volume expansion and voltage profile agree well with experiments, contrary to existing models.

Pedersen, Andreas; Luisier, Mathieu

2015-01-01T23:59:59.000Z

340

Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study  

E-Print Network [OSTI]

Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters  

E-Print Network [OSTI]

libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity), as well as water desalination (Cao et al., 2009). The production of hydrogen from non-fermentable sub

342

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

343

Method for minimizing decarburization and other high temperature oxygen reactions in a plasma sprayed material  

DOE Patents [OSTI]

A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.

Lenling, William J. (Madison, WI); Henfling, Joseph A. (Bosque Farms, NM); Smith, Mark F. (Albuquerque, NM)

1993-06-08T23:59:59.000Z

344

Adsorbate-induced corrosion: anodic dissolution of palladium induced by chemisorbed iodine in halide-free acid solutions  

E-Print Network [OSTI]

as to style and content by: M. P. ria (Chair Co ittee) G. Vigh (Member) R. G. Anthony (Member) M. B. Hall (Head of Department) December 1991 ABSTRACT Adsorbate-Induced Corrosion: Anodic Dissolution of Palladium Induced by Chemisorbed Iodine... not anodically dissolve to an appreciable extent. Approach This investigation employed polycrystalline palladium foils, wires, and rods. Experimental measurements utilized a combination of conventional electrochemical techniques including voltammetry and...

Schimpf, Janemarie A

1991-01-01T23:59:59.000Z

345

Highly conductive PEDOT:PSS on flexible substrate as ITO-free anode for polymer solar cells  

SciTech Connect (OSTI)

In this work, highly conductive anode based on PEDOT:PSS is proposed as substitute of Indio-Tin Oxide (ITO) in flexible solar cells. The anodic conductive polymer was spin coated on a 125 ?m thick polyethylene naphthalate (PEN) substrate. The obtained film was characterized in terms of structure and physical- chemical proprieties. The obtained results are very promising and the conductive film will be investigated in future as electrode in a complete polymeric solar cell.

Del Mauro, A. De Girolamo; Ricciardi, R.; Montanino, M.; Morvillo, P.; Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, p.le E. Fermi 1, 80055 Portici (Italy)

2014-05-15T23:59:59.000Z

346

Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges  

SciTech Connect (OSTI)

Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E. (Oregon Dept. of Transportation)

1996-01-01T23:59:59.000Z

347

Final Report: Novel ALD-Coated Nanoparticle Anodes for Enhanced Performance Lithium-Ion Batteries  

SciTech Connect (OSTI)

The Phase I effort is described in detail in the Phase I report given below. The key accomplishments of the Phase I project were (1) the demonstration of high stability LiCoO2 cathodes using ALD-coated LiCoO2 particles, as well as on ALD-coated LiCoO2 electrodes and (2) the demonstration of high stability of graphite anodes using ALD-coated graphite electrodes.

Groner, Markus

2009-04-16T23:59:59.000Z

348

Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes  

SciTech Connect (OSTI)

Nanostructured ion beam-modified Ge electrodes fabricated directly on Ni current collector substrates were found to exhibit excellent specific capacities during electrochemical cycling in half-cell configuration with Li metal for a wide range of cycling rates. Structural characterization revealed that the nanostructured electrodes lose porosity during cycling but maintain excellent electrical contact with the metallic current collector substrate. These results suggest that nanostructured Ge electrodes have great promise for use as high performance Li ion battery anodes.

Rudawski, N. G.; Darby, B. L.; Yates, B. R.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400 (United States); Elliman, R. G. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Volinsky, A. A. [Department of Mechanical Engineering, University of South Florida, Tampa Florida 33620 (United States)

2012-02-20T23:59:59.000Z

349

Developing High Capacity, Long Life, and High Power Anodes | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartmentLife Anodes

350

Developing a new high capacity anode with long life | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacity anode with long life

351

Composite solid oxide fuel cell anode based on ceria and strontium titanate  

DOE Patents [OSTI]

An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

Marina, Olga A. (Richland, WA); Pederson, Larry R. (Richland, WA)

2008-12-23T23:59:59.000Z

352

Passivation and anodic oxidation of duplex TiN coating on stainless steel  

SciTech Connect (OSTI)

The passivation and anodic oxidation of duplex TiN coatings deposited by arc ion plating onto prenitrided AISI 304 stainless steel have been studied by potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky measurements in 0.1 M H{sub 2}SO{sub 4} + 0.05 M HCl. The chemical composition of the oxidized surface film atop TiN was analyzed by X-ray photoelectron spectroscopy. Up to 1.2 V/SHE the TiN coating exhibits passive behavior, which is attributed to the formation of a TiO{sub 2}-like film of nanometer thickness which grows linearly with anodic potential at a rate of 2.4 nm/V. Above 1.2 V/SHE enhanced anodic oxidation of TiN is observed at a rate of 17.7 nm/V, and the overall corrosion performance is governed both by the oxidized TiN coating and by a metallic Ti interlayer atop the nitrided stainless steel substrate. At all potentials the TiO{sub 2} film is characterized by relatively high donor densities and is, furthermore, terminated by a hydroxylated surface.

Rudenja, S.; Pan, J.; Wallinder, I.O.; Leygraf, C.; Kulu, P.

1999-11-01T23:59:59.000Z

353

DOI 10.1155/JNM/2006/64501 Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials  

E-Print Network [OSTI]

Atomic layer deposition (ALD) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide (AAO) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ? 40 nm and pore length L

unknown authors

354

Project Description In the search for superior batteries, the road to success is paved with advanced materials: better  

E-Print Network [OSTI]

Project Description In the search for superior batteries, the road to success is paved with advanced materials: better cathodes, better anodes, better electrolytes. The universe of candidates is so of this proposal is that by leveraging the advances in informatics and high-throughput experimental

Sadoway, Donald Robert

355

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network [OSTI]

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

356

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

Uday B. Pal; Srikanth Gopalan

2005-01-24T23:59:59.000Z

357

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

358

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

359

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

360

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Critical Materials:  

Broader source: Energy.gov (indexed) [DOE]

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

362

Cermet materials  

DOE Patents [OSTI]

A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

Kong, Peter C. (Idaho Falls, ID)

2008-12-23T23:59:59.000Z

363

Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating  

SciTech Connect (OSTI)

Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850° C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800°C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

2007-10-01T23:59:59.000Z

364

Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror  

SciTech Connect (OSTI)

We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

2009-07-20T23:59:59.000Z

365

Sharp transition between two regimes of operation of dc discharge with two anodes and thermionic emission from cathode  

SciTech Connect (OSTI)

In a dc discharge plasma with two anodes and thermionic emission from cathode, the two anodes are used for plasma control. The main anode is placed between the cathode and the other auxiliary anode has a circular opening for passing electron current from the cathode to the second anode. It is experimentally demonstrated that a plasma may exhibit a sudden transition between two quasi-stable conditions as one increases the cathode-electron current collected by the auxiliary anode through an aperture, i.e., hole, in the main anode. In one regime, a bright glowing “ball-shaped double layer” appears on the plasma side having a potential drop of 10–15?eV and concomitant ionization in the neighboring region attached to the opening. The second regime is characterized by a uniform potential profile in plasma and an absence of the ball-shaped double layer. The transition between these regimes is accompanied by a significant change in plasma properties, such as the electron energy distribution function (EEDF). Controlling the EEDF is a valuable capability in technological applications. Increasing the gas pressure leads to the elimination of the first regime for sufficiently high gas pressure, the threshold being a few Torr. The disappearance of a regime transition can be explained by invoking an EEDF transition, from being nonlocal at low pressure to becoming local at high pressure. Local EEDF is determined by local values of electric field. Nonlocal EEDF is determined by electric field values elsewhere, and the electron can travel without energy loss over a path much longer than the discharge dimension.

Mustafaev, A. S.; Grabovskiy, A. [National Mineral Resources University “Gorniy,” St. Petersburg 199106 (Russian Federation)] [National Mineral Resources University “Gorniy,” St. Petersburg 199106 (Russian Federation); Demidov, V. I. [West Virginia University, Morgantown, West Virginia 26506 (United States) [West Virginia University, Morgantown, West Virginia 26506 (United States); St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

2014-05-15T23:59:59.000Z

366

The influence of inert anode material and electrolyte composition on the electrochemical production of oxygen from molten oxides  

E-Print Network [OSTI]

Shifts in global and political climates have led industries worldwide to search for more environmentally sound processes that are still economically viable. The steel industry is studying the feasibility of molten oxide ...

Gmitter, Andrew J

2008-01-01T23:59:59.000Z

367

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethod for EstimatingSimplifying

368

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

Uday B. Pal; Srikanth Gopalan

2006-01-12T23:59:59.000Z

369

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2001-01-01T23:59:59.000Z

370

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2003-01-01T23:59:59.000Z

371

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

372

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

373

Material Symbols   

E-Print Network [OSTI]

What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

Clark, Andy

2006-01-01T23:59:59.000Z

374

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

375

Effect of Nickel-Phosphorus Interactions on Structural Integrity of Anode-Supported Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni - yttria-stabilized zirconia (YSZ) porous anode supports followed the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni-YSZ anode-supported button cells exposed to 0.5-10 ppm of phosphine in synthetic coal gas at 700-800oC. The extent of Ni-P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni-YSZ anode became possible under the operating conditions. These results emphasize the need for extensive coal gas cleanup when used as a fuel for SOFCs.

Liu, Wenning N.; Sun, Xin; Pederson, Larry R.; Marina, Olga A.; Khaleel, Mohammad A.

2010-11-01T23:59:59.000Z

376

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)  

SciTech Connect (OSTI)

A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

Not Available

2011-02-01T23:59:59.000Z

377

In situ formation of micron-scale Li-metal anodes with high cyclability  

SciTech Connect (OSTI)

Scanning probe microscopy methods have been used to fabricate and cycle micron-scale Li anodes deposited electrochemically under nanofabricated Au current collectors. An average Li volume of 5 10^8 nm3 was deposited and cycled with 100 % coulombic efficiency for ~ 160 cycles. Integrated charge/discharge values agree with before/after topography, as well as in situ dilatometry, suggesting this is a reliable method to study solid-state electrochemical processes. In this work we illustrate the possibility to deposit highly cyclable nanometer thick Li electrodes by mature SPM and nanofab techniques which can pave the way for inexpensive nanoscale battery arrays.

Arruda, Thomas M [ORNL] [ORNL; Lawton, Jamie S [ORNL] [ORNL; Kumar, Amit [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Unocic, Raymond R [ORNL] [ORNL; Kravchenko, Ivan I [ORNL] [ORNL; Zawodzinski, Thomas A [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL

2014-01-01T23:59:59.000Z

378

Enhancement of hole injection using O{sub 2} plasma-treated Ag anode for top-emitting organic light-emitting diodes  

SciTech Connect (OSTI)

We report the enhancement of hole injection using AgO{sub x} layer between Ag anode and 4,4{sup '}-bis[N-(1-naphtyl)-N-phenyl-amino]biphenyl in top-emitting organic light-emitting diode (OLED). The turn-on voltage of OLEDs decreased from 17 to 7 V as Ag changed to AgO{sub x} by the surface treatment using O{sub 2} plasma. Synchrotron radiation photoelectron spectroscopy results showed that the work function increased about 0.4 eV by the O{sub 2} plasma treatment. This led to the decrease of the energy barrier for hole injection, reducing the turn-on voltage of OLEDs.

Ho, Won Choi; Soo, Young Kim; Kim, Ki-Beom; Tak, Yoon-Heung; Lee, Jong-Lam [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Korea (Korea, Republic of); LG Electronics Inc., Kumi, Kyungbuk, 730-030 (Korea, Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of)

2005-01-03T23:59:59.000Z

379

MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL  

SciTech Connect (OSTI)

AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

Uday B. Pal; Srikanth Gopalan

2004-02-15T23:59:59.000Z

380

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

SciTech Connect (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A High Temperature (400 to 650oC) Secondary Storage Battery Based on Liquid Sodium and Potassium Anodes  

SciTech Connect (OSTI)

This STTR Phase I research program was on the development of high temperature (400 to 650 C), secondary batteries with roundtrip efficiency > 90% for integration with a 3 to 10 kW solid oxide fuel cell (SOFC) system. In fulfillment of this objective, advanced planar high temperature rechargeable batteries, comprised of an alkali metal ion conducting, highly refractory, beta'' alumina solid electrolyte (BASE) sandwiched between liquid sodium (or potassium) anode and liquid metal salt cathode, were developed at MSRI. The batteries have been successfully demonstrated at a working temperature as high as 600 C. To our knowledge, so far no work has been reported in the literature on planar rechargeable batteries based on BASE, and results obtained in Phase I for the very first time demonstrated the viability of planar batteries, though relatively low temperature tubular-based sodium-sulfur batteries and ZEBRA batteries have been actively developed by very limited non U.S. companies. The results of this Phase I work have fulfilled all the goals and stated objectives, and the achievements showed much promise for further, substantial improvements in battery design and performance. The important results of Phase I are briefly described in what follows: (1) Both Na-BASE and K-BASE discs and tubes have been successfully fabricated using MSRI's patented vapor phase process. Ionic conductivity measurements showed that Na-BASE had higher ionic conductivity than K-BASE, consistence with the literature. At 500 C, Na-BASE conductivity is 0.36 S/cm, which is more than 20 times higher than 8YSZ electrolyte used for SOFC at 800 C. The activation energy is 22.58 kJ/mol. (2) CuCl{sub 2}, FeCl{sub 2}, ZnCl{sub 2}, and AgCl were identified as suitable salts for Na/metal salt or K/metal salt electrochemical couples based on thermochemical data. Further open circuit voltage measurements matched those deduced from the thermochemical data. (3) Tubular cells with CuCl{sub 2} as the cathode and Na as the anode were constructed. However, it was discovered that CuCl{sub 2} was somewhat corrosive and dissolved iron, an element of the cathode compartment. Since protective coating technology was beyond this Phase I work scope, no further work on the CuCl{sub 2} cathode was pursued in Phase I. Notwithstanding, due to its very high OCV and high specific energy, CuCl{sub 2} cathode is a very attractive possibility for a battery capable of delivering higher specific energy with higher voltage. Further investigation of the Na-CuCl{sub 2} battery can be done by using suitable metal coating technologies developed at MSRI for high temperature applications. (4) In Phase I, FeCl{sub 2} and ZnCl{sub 2} were finalized as the potential cathodes for Na-metal salt batteries for delivering high specific energies. Planar Na-FeCl{sub 2} and Na-ZnCl{sub 2} cells were designed, constructed, and tested between 350 and 600 C. Investigation of charge/discharge characteristics showed they were the most promising batteries. Charge/discharge cycles were performed as many as 27 times, and charge/discharge current was as high as 500 mA. No failure was detected after 50 hours testing. (5) Three-cell planar stacks were designed, constructed, and evaluated. Preliminary tests showed further investigation was needed for optimization. (6) Freeze-thaw survival was remarkably good for planar BASE discs fabricated by MSRI's patented vapor phase process.

Tao, Greg; Weber, Neill

2007-06-08T23:59:59.000Z

382

E-Print Network 3.0 - anodized ti-6al-4v alloy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alloys,1 ... Source: Zheng, Yufeng - Department of Advanced Materials and Nanotechnology, Peking University Collection: Materials Science ; Biology and Medicine 2...

383

Hardfacing material  

DOE Patents [OSTI]

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

384

Electrodes and electrochemical storage cells utilizing tin-modified active materials  

DOE Patents [OSTI]

An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

Anani, Anaba (Lauderhill, FL); Johnson, John (Calverton, NY); Lim, Hong S. (Agoura Hills, CA); Reilly, James (Bellport, NY); Schwarz, Ricardo (Los Alamos, NM); Srinivasan, Supramaniam (College Station, TX)

1995-01-01T23:59:59.000Z

385

Study Shows Active Power Controls from Wind May Increase Revenues...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve...

386

Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics  

SciTech Connect (OSTI)

The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

2013-08-15T23:59:59.000Z

387

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

388

High-capacity nanostructured germanium-containing materials and lithium alloys thereof  

DOE Patents [OSTI]

Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

2010-08-24T23:59:59.000Z

389

New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575  

SciTech Connect (OSTI)

This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko [eds.

2000-07-01T23:59:59.000Z

390

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

391

Insights in fundamental scratch behavior of polymeric materials  

E-Print Network [OSTI]

of polymeric materials under scratch deformations are dependent on the type and physical nature of the material, whereas brittle and ductile materials show various behaviors under the specified conditions. Based on the failure mechanism which the material...

Moghbelli, Ehsan

2009-06-02T23:59:59.000Z

392

Energy Innovation Hub Report Shows Philadelphia-area Building...  

Energy Savers [EERE]

Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500...

393

The primary components of a fuel cell are an ion conducting electrolyte, a cathode, and an anode, as  

E-Print Network [OSTI]

The primary components of a fuel cell are an ion conducting electrolyte, a cathode, and an anode chemical driving force for the oxygen and the hydrogen to react to produce water. In the fuel cell, however for the many categories of fuel cells under development today. Desirable characteristics of fuel cell

Haile, Sossina M.

394

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

395

Uniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

O2) semiconductor surface layer of dye-sensitized solar cells (DSSCs); however, many of them are used of the techniques alone. I. Introduction DYE-SENSITIZED solar cells (DSSCs) are comprised of three major and twoUniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized

Meyers, Marc A.

396

Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain  

E-Print Network [OSTI]

Microbial fuel cells (MFCs) exploit the ability of some bacteria to couple oxidation of organic matter Microbial fuels cells (MFCs) rely on the ability of certain microorganisms to transfer electrons to anodes is broadly applicable and may be useful to develop strategies for optimizing power generation by MFCs. 896

Lovley, Derek

397

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells  

E-Print Network [OSTI]

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite*[e] and Thomas Schleid[f] Abstract: A novel approach for the marking of deposited lithium on graphite anodes from of the electrochemical stability window of the electrolyte components.[3] Therefore, changes on the electrode

Schmidt, Volker

398

Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc  

E-Print Network [OSTI]

Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry voltammetry, Zinc, Lab-on-a-chip sensor, Dopamine, Evaporated Bi film electrode DOI: 10.1002/elan.201300349 1 negative potential window. Most importantly, it is much less toxic than mercury and is environmentally

Papautsky, Ian

399

Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 L) Microbial  

E-Print Network [OSTI]

Microsized (1.25 L) Microbial Fuel Cell Justine E. Mink,,§ Jhonathan P. Rojas,,§ Bruce E. Logan, and Muhammad, Pennsylvania 16802, United States *S Supporting Information ABSTRACT: Microbial fuel cells (MFCs to more efficiently shuttle electrons from the anode out of the device. KEYWORDS: Microbial fuel cell

400

New DMFC Anode Structure Consisting of Platinum Nanowires Deposited into a Nafion Z. X. Liang and T. S. Zhao*  

E-Print Network [OSTI]

fuel cell (DMFC) has recently attracted much interest as it has been identified as a promising designs of the electrode for fuel cells. New Design of the Anode Structure As discussed above, the balance. It has been reported that the Nafion has an optimal content in the ink, which ranges generally from 10

Zhao, Tianshou

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating  

E-Print Network [OSTI]

significantly increase the methanol-crossover rate, producing an unfavorable * Corresponding author. DepartmentEffect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a

Zhao, Tianshou

402

Co-sputtered Aluminum Doped Zinc Oxide Thin Film as Transparent Anode for Organic Light-emitting Diodes  

E-Print Network [OSTI]

Co-sputtered Aluminum Doped Zinc Oxide Thin Film as Transparent Anode for Organic Light and Technology, Clear Water Bay, Kowloon, Hong Kong, China ABSTRACT Aluminum doped zinc oxide (AZO that MTDATA matches better with AZO than CuPc, which served as hole injection layer. Keywords: Aluminum doped

403

Production of energetic neutral particles and low energy electrons from four anode rods ion source  

SciTech Connect (OSTI)

The factors affecting the energetic neutral current, the low energy electron current, and the positive ion current emerging from a four-anode-rods ion source have been studied using argon gas. The neutral and electron current were measured using a simple, new technique. It was found that the energetic neutral current and the electron current depend on the positive ion current and the gas pressure. The ratio of the neutral and electron current to the positive ion current increases by increasing the gas pressure. Also it was found that at a pressure equal to 9 × 10{sup ?4} mmHg, the ratio of the neutral to the positive ion current reaches 2.34 while the ratio of the electron current to the positive ion current reaches 1.7.

Mostafa, O. A.; El-Khabeary, H.; Abdel Reheem, A. M. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P.N.13759, Inchas, Cairo (Egypt)] [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P.N.13759, Inchas, Cairo (Egypt)

2013-11-15T23:59:59.000Z

404

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

405

Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes  

SciTech Connect (OSTI)

The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

Windisch, C.F. Jr.

1992-04-01T23:59:59.000Z

406

Casting materials  

DOE Patents [OSTI]

A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

2011-06-14T23:59:59.000Z

407

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53Reference Materials There are a variety of

408

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-RayMaterials

409

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect (OSTI)

Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

Anil V. Virkar

2002-03-26T23:59:59.000Z

410

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

411

Use of Preventative and Therapeutic Drugs in Show Market Animals  

E-Print Network [OSTI]

Various preventive and therapeutic medicines may be used for disease management in show mar- ket livestock and poultry. These include vaccines and bacterins, antibiotics and antibacterials, para- siticides and corticosteroids. Exhibitors of show ani.... These instructions are to be followed precisely. L-2335 2-01 Use of Preventive and Therapeutic Drugs in Show Market Animals F.C. Faries, Jr. Associate Professor and Extension Program Leader for Veterinary Medicine The Texas A&M University System Testing The Food...

Faries Jr., Floron C.

2001-03-12T23:59:59.000Z

412

abeta oligomers show: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creek showing (Candy and Deep Purple claims) is hosted by Middle Devonian carbonate rocks in the southem Rocky Mountains oi British Columbia. The property lies near the...

413

alfa show improved: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Program Format AZ Town Hall president, Tara Jackson Reisslein, Martin 299 Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle...

414

ORISE: Report shows nuclear engineering graduation rates on the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORISE report shows nuclear engineering graduation rates on the rise in 2013 Number of graduate degrees expected to remain consistent, but undergraduate degrees could see decrease...

415

Tests show benefits of new polished rod lubricator  

SciTech Connect (OSTI)

Tests with beam-pumped oil wells, completed over 7-months at the Rocky Mountain Oilfield Testing Center (Rmotc), indicated that a new lubricator supplying supplementary grease to polished rods lowered operating costs by reducing maintenance, material costs, and electrical requirements. It also minimized polished rod corrosion and enhanced pollution control. The lubricator worked with extremely hot fluids and in adverse weather conditions. The paper describes Rmotc, the new lubrication, the test wells, and cost reduction.

Tyler, M.R.; Khatib, A. [Rocky Mountain Oilfield Testing Center, Casper, WY (United States)

1995-04-10T23:59:59.000Z

416

2014 Washington Auto Show Slideshow | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief Freedom of Information20144 Smart Grid

417

2015 ACI National Home Performance Conference and Trade Show | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief Freedom of Information20144Industrial Naturalof

418

ShowFlow: A practical interface for groundwater modeling  

SciTech Connect (OSTI)

ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

Tauxe, J.D.

1990-12-01T23:59:59.000Z

419

Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials  

SciTech Connect (OSTI)

Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

2013-02-01T23:59:59.000Z

420

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Secretary Chu Speaks at the 2010 Washington Auto Show  

Broader source: Energy.gov [DOE]

at the 2010 Washington Auto Show, Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need. He also announced that the Department of Energy had...

422

Global Climate Change Assessment Report Shows Nations Not Doing...  

Open Energy Info (EERE)

Global Climate Change Assessment Report Shows Nations Not Doing Enough Home > Blogs > Dc's blog Dc's picture Submitted by Dc(107) Contributor 5 November, 2014 - 14:49 The latest...

423

Considering removing "Show Preview" button on utility rate form...  

Open Energy Info (EERE)

Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 April, 2013 - 13:55 Utility Rates I'm considering removing the "Show Preview" button, since it does not work (javascript...

424

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

425

Biological Monitoring at Amchitka Appears to Show Impacts from...  

Energy Savers [EERE]

of the monitoring showed that Dolly Varden (a type of freshwater char, a trout-like fish), rockweed (littoral-zone algae), and to a lesser extent, Irish Lord (a small...

426

Enlightening lightning! Producing and directing a multimedia planetarium show  

E-Print Network [OSTI]

is middle school aged children. The goal of the show is to teach lightning safety and lightning facts in an immersive environment. Through the use of video, an animated character, and a meteorologist, the curriculum is presented to the audience. I...! by starting with outlining the curriculum and finishing with putting it all together at the planetarium. The goal of this paper is to discuss the techniques and organizational methods used to manage a diverse group and produce a multimedia show. iv...

Fowler, Sarah Marie

2005-02-17T23:59:59.000Z

427

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

Oliver, Douglas L.

428

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

429

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

430

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

431

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ã?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

432

Figures of the World Healthcare Organisation show that stroke  

E-Print Network [OSTI]

Figures of the World Healthcare Organisation show that stroke is currently the leading cause disabilities following a stroke, the economic burden and shortage of rehabilitation therapists are also developed a robotic exoskeleton system that meets the requirements of effective post-stroke upper

433

Materials Project: A Materials Genome Approach  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

434

An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development  

SciTech Connect (OSTI)

National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

Droemer, Darryl W. [National Security Technologies, LLC; Crain, Marlon D.; Lare, Gregory A. [National Security Technologies, LLC; Bennett, Nichelle L. [National Security Technologies, LLC; Johnston, Mark D. [Sandia National Laboratories

2013-06-13T23:59:59.000Z

435

Response of the plasma to the size of an anode electrode biased near the plasma potential  

SciTech Connect (OSTI)

As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode.

Barnat, E. V.; Laity, G. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Baalrud, S. D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2014-10-15T23:59:59.000Z

436

Secretary Chu Speaks at the 2010 Washington Auto Show  

ScienceCinema (OSTI)

Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

Secretary Chu

2010-09-01T23:59:59.000Z

437

Secretary Chu Speaks at the 2010 Washington Auto Show  

SciTech Connect (OSTI)

Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

Secretary Chu

2010-02-03T23:59:59.000Z

438

JSON shows incomplete info | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatibleInformation offApproach toJSON shows

439

FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES  

SciTech Connect (OSTI)

We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities-two near 2:1 and one just outside 5:2. We discuss the implications that multi-transiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories, as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTVs) due to gravitational interactions, though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, Batavia, IL 60510 (United States); Batalha, Natalie M. [Department of Astronomy and Physics, San Jose State University, San Jose, CA 95192 (United States); Borucki, William J.; Caldwell, Douglas A.; Haas, Michael J.; Jenkins, Jon M.; Koch, David; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Buchhave, Lars A.; Fabrycky, Daniel C.; Fressin, Francois; Holman, Matthew J.; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cochran, William D.; Endl, Michael [McDonald Observatory, University of Texas, Austin, TX 78712-2059 (United States); Ford, Eric B.; Moorhead, Althea V. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howell, Steve B. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Isaacson, Howard [Astronomy Department, University of California Berkeley, Berkeley, CA 9472 (United States)

2010-12-10T23:59:59.000Z

440

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

Oliver, Douglas L.

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Kuwaiti oil sector shows more signs of recovery  

SciTech Connect (OSTI)

This paper reports that Kuwait's oil sector continues to show signs of recovery from the Persian Gulf war. On Mar. 23 Kuwait Petroleum Co. (KPC) loaded the country's first shipment of liquefied petroleum gas for export since the Iraqi invasion in August 1990. In addition, the first shipment of Kuwaiti crude recovered from giant oil lakes formed by hundreds of wild wells sabotaged in the war was to arrive by tanker in Naples, Italy, late last month. The tanker is carrying 210,000 bbl of crude. However, the project to clean up the lakes and recover more oil, undertaken by Bechtel Corp. with Kuwait Oil Co. (KOC), has reached a stand still.

Not Available

1992-04-06T23:59:59.000Z

442

Line tests show DRA's don't cross-contaminate  

SciTech Connect (OSTI)

Pipeline tests with a commercially available drag-reducing agent (DRA) show that such agents can be injected into one product in a multiproduct pipeline without cross-contamination from one batch to another. The tests were conducted in the Cherokee system, a three-segment Ponca City-to-Oklahoma City products line operated by Conoco Pipe Line Co. A batch of gasoline treated with a DRA, Conoco's CDR Flow Improver, preceded an untreated jet-fuel batch. The amount of DRA in the gasoline was measured as the tenders were transported through the pipeline system.

Goudy, C.F.L.; Muth, C.I.

1989-05-15T23:59:59.000Z

443

Method for forming materials  

DOE Patents [OSTI]

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

444

Nanostructure material for supercapacitor application  

SciTech Connect (OSTI)

Transition metal nitrides and carbonitride materials were fabricated via sol-gel technology. The transition metal amides were synthesized by two methods: chemical route and electrolysis. The transition metal amides were then further polymerized, sintering to high temperature in an inert or reduced atmosphere. Transition metal nitrides and carbonitrides powders with surface area up to 160 m{sup 2}/g were obtained. The resultant electrode material showed high specific capacitance as crystalline ruthenium oxide.

Huang, Y.; Chu, C.T.; Wei, Q.; Zheng, H.

2000-07-01T23:59:59.000Z

445

E-Print Network 3.0 - anodic stripping voltammetry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology (MIT) Collection: Materials Science 30 Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane Summary: cyclic...

446

E-Print Network 3.0 - amorphous layer formation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tin Anode Material for Lithium Secondary Battery Summary: , indicating the formation of an amorphous phase. The XRD pattern of Sn nanoparticles showed no impurity...

447

Technical Note Received: 25 April 2013 Revised: 11 June 2013 Accepted article published: 20 June 2013 Published online in Wiley Online Library: 16 July 2013  

E-Print Network [OSTI]

, such as graphite,4 carbon cloth,5 carbon fiber,6 activated carbon,7 stainless steel (SS),8 copper,9 E. Logan Abstract Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed

448

Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery  

SciTech Connect (OSTI)

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: > Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. > Accommodate volume changes of Si NPs during Li ion charge/discharge. > Sizes of microcapsules were controlled by experimental parameters. > Lithium storage capacity and coulombic efficiency were demonstrated. > Use of sol-gel procedure as intermediate reaction.

Bae, Joonwon, E-mail: joonwonbae@gmail.com [Samsung Advanced Institute of Technology, Yong-In City 446-712, Gyeong-Gi Province (Korea, Republic of)

2011-07-15T23:59:59.000Z

449

Transporting particulate material  

DOE Patents [OSTI]

A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

2011-08-30T23:59:59.000Z

450

Nanostructured magnetic materials  

E-Print Network [OSTI]

Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

Chan, Keith T.

2011-01-01T23:59:59.000Z

451

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

452

battery materials | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

453

Energy Materials & Processes | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

454

E-Print Network 3.0 - anodized implant surface Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Astronomy, Seoul National University Collection: Physics ; Materials Science 4 Plastic MSGCs with TwoSided Readout M.R. Bishai, E.K.E. Gerndt, I.P.J. Shipsey, P.N. Wang...

455

Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells  

SciTech Connect (OSTI)

In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 5–10 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

2011-12-12T23:59:59.000Z

456

This book describes the responsibilities of show personnel and outlines the job descriptions of various positions for the NH 4-H State Horse Show (or any other 4-H horse show).  

E-Print Network [OSTI]

of various positions for the NH 4-H State Horse Show (or any other 4-H horse show). June 2013 #12;Table of Contents Organizing a 4-H Horse Show ........................................................................................... 1 State 4-H Horse Show Philosophy................................................................ 1

New Hampshire, University of

457

Light Show  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLife a9

458

Nuclear materials safeguards for the future  

SciTech Connect (OSTI)

Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

Tape, J.W.

1995-12-31T23:59:59.000Z

459

Coated ceramic breeder materials  

DOE Patents [OSTI]

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

460

HAZARDOUS MATERIALS EMERGENCY RESPONSE  

E-Print Network [OSTI]

ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

UNDERGRADUATE Materials Science & Engineering  

E-Print Network [OSTI]

UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Tipple, Brett

462

Materials Science & Engineering  

E-Print Network [OSTI]

Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Simons, Jack

463

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

464

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

465

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

Kaun, T.D.

1996-07-23T23:59:59.000Z

466

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

467

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

468

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

469

Supporting Online Material Materials and Methods  

E-Print Network [OSTI]

1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

Wolfe, Cecily J.

470

SUPPORTING ONLINE MATERIAL Materials and Methods  

E-Print Network [OSTI]

SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

Newsome, William

471

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

472

Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate  

SciTech Connect (OSTI)

Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

2010-08-05T23:59:59.000Z

473

Joining of dissimilar materials  

DOE Patents [OSTI]

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

474

Materials for breeding blankets  

SciTech Connect (OSTI)

There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

Mattas, R.F.; Billone, M.C.

1995-09-01T23:59:59.000Z

475

Template Synthesis of Ordered Pt Nanorods in Porous Anodic Alumina Yar-Ming Wang, Hong-Hsiang Kuo, and Mark W. Verbrugge  

E-Print Network [OSTI]

, Singapore 639798 High-purity aluminum was anodized to form an alumina coating layer (typically 10 to 30 µm composite layer could be used as an oxidizing catalyst for automotive applications. The morphologies (Fig. 1B) obtained after removing the front surface of the aluminum oxide have been observed using

Zhou, Wei

476

Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz, Sorina Udroiu, Jean-Paul Viricelle, Christophe Pijolat, Michle Pijolat  

E-Print Network [OSTI]

Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz Single chamber solid oxide fuel cells (SCFC) are an alternative concept to traditional SOFC-gas-shift equilibrium. Introduction Fifteen years ago, Hibino (1) has shown the feasibility of a fuel cell consisting

Boyer, Edmond

477

Displacement cascades in diatomic materials  

SciTech Connect (OSTI)

A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al/sub 2/O/sub 3/ and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one.

Parkin, D.M.; Coulter, C.A.

1981-01-01T23:59:59.000Z

478

New MEA Materials for Improved DMFC Performance, Durability and Cost  

SciTech Connect (OSTI)

Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: • Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. • Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. • Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA

Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

2013-09-16T23:59:59.000Z

479

Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells  

SciTech Connect (OSTI)

Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

Shaowu Zha; Meilin Liu

2005-03-23T23:59:59.000Z

480

Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes  

SciTech Connect (OSTI)

We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

2014-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "anode material shows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion  

SciTech Connect (OSTI)

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

None

2010-09-01T23:59:59.000Z

482

Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes. Inert Electrodes Program  

SciTech Connect (OSTI)

The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

Windisch, C.F. Jr.

1992-04-01T23:59:59.000Z

483

Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries  

E-Print Network [OSTI]

-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod change during the charge and discharge processes. These advantageous attributes make ZGCs the potential expansion and eliminate the stress during the charge and discharge processes. Clearly, it remains

Lin, Zhiqun

484

Nanocomposites as thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

485

Factors of material consumption  

E-Print Network [OSTI]

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Díaz, Pamela Cristina

2012-01-01T23:59:59.000Z

486

Earth-Abundant Materials  

Broader source: Energy.gov [DOE]

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

487

Nanostructured composite reinforced material  

DOE Patents [OSTI]

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

488

Institute for Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

489

Materials Science & Engineering  

E-Print Network [OSTI]

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

490

Geopolymer Sealing Materials  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

491

Short communication The composite rods of MnO and multi-walled carbon nanotubes as  

E-Print Network [OSTI]

Short communication The composite rods of MnO and multi-walled carbon nanotubes as anode materialsO as an anode material for lithium ion batteries are significantly improved. The MnO/MWNTs composite shows a Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong

Ceder, Gerbrand

492

Biological and Biomimetic Low-Temperature Routes to Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation Meeting es047morse2012p.pdf More Documents & Publications Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for...

493

Instructions and Materials  

Broader source: Energy.gov [DOE]

The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

494

A drift detector system with anode and cathode readout in the GlueX experiment  

SciTech Connect (OSTI)

A drift detector system designed to detect charged particle tracks in the GlueX experiment dedicated to study the nature of confinement is described. The key design features of the drift chambers associated with the requirement of a minimum material budget in the path of secondary particles are presented. The spatial resolution and the detection efficiency have been measured with cosmic rays using the automatic data acquisition system.

Berdnikov, V V; Somov, S V; Pentchev, L; Zihlmann, B

2015-01-01T23:59:59.000Z

495

Advanced neutron absorber materials  

DOE Patents [OSTI]

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

496

Magnetocaloric Materials Stinus Jeppesen  

E-Print Network [OSTI]

Magnetocaloric Materials Stinus Jeppesen Risø-PhD-43(EN) Risø National Laboratory for Sustainable Jeppesen Title: Magnetocaloric Materials Division: Fuel Cells and Solid State Chemistry Division Risø.D. degree at The University of Copenhagen Abstract: New and improved magnetocaloric materials are one

497

Radioactive Materials License Commitments  

E-Print Network [OSTI]

Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

498

Materials Science and Materials Chemistry for Large Scale Electrochemi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

499

Montani, Kohn, Smith and Schultz (2006), Supplemental Material Supplemental Material  

E-Print Network [OSTI]

Montani, Kohn, Smith and Schultz (2006), Supplemental Material 1 Supplemental Material A. Entropy, Kohn, Smith and Schultz (2006), Supplemental Material 2 occupied, it is ambiguous whether

Smith, Matthew A.

500

Assembly of biological building blocks for nano- and micro-fabrication of materials  

E-Print Network [OSTI]

Experimental studies were performed to fabricate various material structures using genetically engineered M13 bacteriophage. This virus template showed superior controls of material syntheses from nanoscale to microscale. ...

Chiang, Chung-Yi

2008-01-01T23:59:59.000Z