Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nanotube Composite Anode Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotube Composite Anode Materials Technology available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs....

2

Novel Anode Materials  

Broader source: Energy.gov (indexed) [DOE]

with a variety of loadings, morphologies, and thicknesses. - Develop synchrotron tomography tools to better understand how the active materials interact with their surroundings...

3

Nanostructured Materials as Anodes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. es063whittingham2010p.pdf More Documents & Publications Nano-structured Materials as Anodes Metal-Based, High-Capacity Lithium-Ion Anodes...

4

Vehicle Technologies Office Merit Review 2014: Novel Anode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Novel Anode Materials Vehicle Technologies Office Merit Review 2014: Novel Anode Materials Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells...

5

New High-Energy Nanofiber Anode Materials  

SciTech Connect (OSTI)

The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

2013-11-15T23:59:59.000Z

6

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

7

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

8

Sulfur-tolerant anode materials for solid oxide fuel cell application  

SciTech Connect (OSTI)

This paper summarizes the degradation mechanisms for SOFC anodes in the presence of sulfur and recent developments in sulfur-tolerant anodes. There are two primary sulfur-degradation mechanisms for the anode materials: physical absorption of sulfur that blocks the hydrogen reaction sites, and chemical reaction that forms nickel sulfide. The sulfur-tolerant anodes are categorized into three kinds of materials: thiospinels and metal sulfides, metal cermets, and mixed ionic and electronic conductors. Each material has its own advantages and disadvantages, and the combined application of available materials to serve as different functional components in anodes through proper design may be effective to achieve a balance between stability and performance.

Gong, M. (West Virginia University, Morgantown, WV); Liu, X. (West Virginia University, Morgantown, WV); Trembly, J.; Johnson, C.

2007-06-01T23:59:59.000Z

9

Vehicle Technologies Office Merit Review 2014: Novel Anode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

10

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network [OSTI]

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

11

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications  

E-Print Network [OSTI]

applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

Chen, Po-Chun

2014-01-13T23:59:59.000Z

12

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh...

13

Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG) on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

Gouri Radhakrishnan; Brendan Foran; Michael V. Quinzio; Miles J. Brodie

2013-01-01T23:59:59.000Z

14

Graphene sheets decorated with ZnO nanoparticles as anode materials for lithium ion batteries  

Science Journals Connector (OSTI)

ZnO/graphene composites were synthesized using a facile solution- ... 4 nm were densely and homogeneously deposited on graphene sheets. As the anode material for the lithium ion batteries, the ZnO/graphene compos...

Ling-Li Xu; Shao-Wei Bian; Kang-Lin Song

2014-09-01T23:59:59.000Z

15

Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Composites of Co3O4/graphene nanosheets are prepared and characterized by X- ... behavior as anode materials of lithium-ion rechargeable batteries is investigated by galvanostatic discharge/charge measurements...

Guiling Wang; Jincheng Liu; Sheng Tang…

2011-12-01T23:59:59.000Z

16

TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries  

Science Journals Connector (OSTI)

A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported. The morphology and crystal structure...2/GNS electrode ...

Yi-ping Tang ???; Shi-ming Wang ???; Xiao-xu Tan ???…

2014-05-01T23:59:59.000Z

17

The effect of graphene nanosheets as an additive for anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

A small amount of graphene nanosheets was added to commercial graphite as an anode active material in lithium ion batteries and its effects were examined through a ... composite electrode containing 1 or 5 wt% graphene

Jae Hun Jeong; Dong-Won Jung; Byung-Sun Kong…

2011-11-01T23:59:59.000Z

18

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

19

Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects  

SciTech Connect (OSTI)

Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

2011-01-10T23:59:59.000Z

20

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect (OSTI)

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - anodic reaction kinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Al should be severely retarded. Because of this retarded kinetics of anodization process... The Formation of Porous Anodic ... Source: Kim, Ki-Bum - School of Materials...

22

Nonconforming Material Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

23

EMSL: Science: Energy Materials and Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

24

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network [OSTI]

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

Cui, Yi

25

Oxygen-producing inert anodes for SOM process  

DOE Patents [OSTI]

An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

Pal, Uday B

2014-02-25T23:59:59.000Z

26

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents [OSTI]

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

27

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Anatase TiO2...nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized ... as an anode material for the lithium ion battery. The nanosized TiO2 particles wer...

Dan Li; Dongqi Shi; Zongwen Liu; Huakun Liu…

2013-04-01T23:59:59.000Z

28

In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A novel SnO2/graphene composite has been synthesized via an in...2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized ... used as an anode material for lithium ion batteries

Hongdong Liu; Jiamu Huang; Chengjie Xiang…

2013-10-01T23:59:59.000Z

29

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties  

Science Journals Connector (OSTI)

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties ... A facile hydrothermal and sol–gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. ... carbon aerogel; oxide; hybrid; mesoporous structure; lithium-ion battery ...

Fengbin Hao; Zhiwei Zhang; Longwei Yin

2013-08-08T23:59:59.000Z

30

Energy Materials & Processes | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

31

EMSL - Energy Materials & Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

32

VSe2/graphene nanocomposites as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Unprecedented VSe2/graphene nanocomposites are synthesized through a hydrothermal route. A large number of hexagonal \\{VSe2\\} sheets anchored on the graphene sheets can be observed. The thicknesses and lengths of \\{VSe2\\} sheets are controlled by graphene sheets. VSe2/graphene nanocomposite prepared with 15 mg graphite oxide (VSe2/G-15) exhibits the best electrochemical lithium storage properties such as charge/discharge capacities, cycle stability and rate capability when used as an anode material for lithium-ion batteries.

Yaping Wang; Binbin Qian; Huanhuan Li; Liang Liu; Long Chen; Haobin Jiang

2015-01-01T23:59:59.000Z

33

Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials  

SciTech Connect (OSTI)

Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

Basoli, Francesco [Università degli Studi di Roma Tor Vergata, Italy] [Università degli Studi di Roma Tor Vergata, Italy; Senesi, Roberto [ORNL] [ORNL; Kolesnikov, Alexander I [ORNL] [ORNL; Licoccia, Silvia [NAST Center, University of Roma "Tor Vergata"] [NAST Center, University of Roma "Tor Vergata"

2014-01-01T23:59:59.000Z

34

Anodic films  

SciTech Connect (OSTI)

Surface layers are formed on many metals by anodic reaction. Such layers include the products of charge and discharge in many storage batteries, dielectric films used in electronic and optical circuits and display devices, layers responsible for passivity and corrosion protection, and films generated in metal shaping and finishing operations such as anodization, coloring, electropolishing, electrochemical machining and deburring. Anodic films are formed by solid-solid transformations or by dissolution-precipitation processes. Film properties and mechanisms of formation can be determined in situ by a number of optical techniques which have recently become available.

Muller, R.H.

1983-08-01T23:59:59.000Z

35

JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 9 (1998) 309 --311 Critical oxygen content in porous anodes of solid  

E-Print Network [OSTI]

in porous anodes of solid tantalum capacitors YU. POZDEEV-FREEMAN Vishay Israel Electronics Company anodes of solid tantalum capacitors and the current-voltage (I9V) characteristics of Ta2O5 amorphous layers formed on the anode surface have been performed. A strong correlation between a sharp increase

Palevski, Alexander

36

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network [OSTI]

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

37

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced  

E-Print Network [OSTI]

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced one-step route was developed to synthesize crystalline CuGeO3 nanowire/graphene composites (CGCs). Crystalline CuGeO3 nanowires were tightly covered and anchored by graphene sheets, forming a layered structure

Lin, Zhiqun

38

Sidewall Materials for Hall-Hroult Mr Reiza Mukhlis  

E-Print Network [OSTI]

of a Hall-Heroult prebaked anode electrolysis cell* Hall-Héroult Process Carbon anode need to be replaced ~ Total Cell Voltage Frac. Current Efficiency Voltage distribution chart of carbon anode cell* *Grjotheim Sidewall materials directly exposed to bath #12;Inert Anode Application Anode Type/Scenario Carbon* Inert/1

Liley, David

39

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery ... Yu, A.; Park, H. W.; Davies, A.; Higgins, D.; Chen, Z.; Xaio, X.Free-Standing Layer-by-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries J. Phys. ...

Fathy M Hassan; Abdel Rahman Elsayed; Victor Chabot; Rasim Batmaz; Xingcheng Xiao; Zhongwei Chen

2014-07-31T23:59:59.000Z

40

An Insoluble Titanium-Lead Anode for Sulfate Electrolytes  

SciTech Connect (OSTI)

The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

Ferdman, Alla

2005-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2Laser Materials Processing LISI Process  

E-Print Network [OSTI]

and a common delimitation failure point in laser clad material. The LISI process is somewhere in between surface treatment and laser cladding. In LISI a metal or metal/ceramic mixture is pre effects experienced in cladding and welding operations. Laser Induced Surface Improvement (LISI

Davis, Lloyd M.

42

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

43

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network [OSTI]

energy, rechargeable Li-ion battery based on carbon nanotubewith Sb and SnSb0.5 as Li-ion battery anodes. Carbon, 2003.Li, A review of application of carbon nanotubes for lithium ion battery

Zhao, Lin

2013-01-01T23:59:59.000Z

44

Plasma Processing of Advanced Materials  

SciTech Connect (OSTI)

Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

2005-02-28T23:59:59.000Z

45

Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

High-rate anode materials for lithium-ion batteries are desirable for applications that require high ... demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100–200 nm,...

Zhiyong Wang; Hao Zhang; Nan Li; Zujin Shi; Zhennan Gu; Gaoping Cao

2010-10-01T23:59:59.000Z

46

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

47

Sulfur tolerant anode materials. Quarterly report, October 1--December 31, 1987  

SciTech Connect (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-02-01T23:59:59.000Z

48

Sulfur tolerant anode materials. Quarterly report, January 1--March 31, 1988  

SciTech Connect (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-05-01T23:59:59.000Z

49

Silicon-Graphene Anodes | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon-Graphene Anodes Technology available for licensing: Provides low-cost production process. Advanced gas phase deposition process yields anodes with five times the specific...

50

Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A tin oxide-titanium oxide/graphene (SnO2-TiO2.../G) ternary nanocomposite as high-performance anode for Li-ion batteries was prepared via a simple reflux method. ... The graphite oxide (GO) was reduced to graphene

Shan-Shan Chen; Xue Qin

2014-10-01T23:59:59.000Z

51

CoOcarbon nanofiber networks prepared by electrospinning as binder-free anode materials for  

E-Print Network [OSTI]

for lithium-ion batteries with enhanced properties Ming Zhang,ab Evan Uchaker,a Shan Hu,a Qifeng Zhang(II) acetate and polyacrylonitrile by an electrospinning method followed by thermal treatment. The XPS results with diameters of 200 nm. As binder-free anodes for lithium-ion batteries, the discharge capacities of such Co

Cao, Guozhong

52

The use of synthetic hydrocalcite as a chloride-ion getter for a barrier aluminum anodization process  

SciTech Connect (OSTI)

Chloride ion contamination at parts per billion concentrations plaques electrochemists studying barrier anodic aluminum oxide film growth and anodic aluminum oxide capacitor manufacturers. Chloride ion contamination slows film growth and reduces film quality. We have demonstrated that synthetic hydrocalcite substantially reduces the detrimental effects of chloride ion contamination in an aqueous electrolyte commonly used to grow barrier anodic aluminum oxide. We have determined that problems arise if precautions are not taken when using synthetic hydrocalcite as a chloride-ion getter in an aqueous electrolyte. Synthetic hydrocalcite is somewhat hydrophobic. If this powder is added directly to an aqueous electrolyte, some powder disperses; some floats to the top of the bath and forms scum that locally impedes anodic film formation. Commercially available powder contains a wide range of particle sizes including submicrometer-sized particles that can escape through filters into the electrolyte and cause processing problems. These problems can be over come if (1) the getter is placed in filter bags, (2) a piece of filter paper is used to skim trace amounts of getter floating on the top of the bath, (3) dummy runs are performed to scavenge chloride-ion loaded getter micelles dispersed in the bath, and (4) substrates are rinsed with a strong stream of deionized water to remove trace amounts of powder after anodization.

Panitz, J.K.G.; Sharp, D.J.

1995-11-01T23:59:59.000Z

53

Materials Discovery Design, Synthesis & Processing | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Discovery Design, Synthesis & Processing Vision: AMES will be the premier U.S. laboratory lusing an "atoms to applications" approach to discover and design new materials....

54

Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds  

SciTech Connect (OSTI)

The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO{sub 2} film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

Stephen Everett Treimer

2002-06-27T23:59:59.000Z

55

Electron Microscopy Study of Novel Ru Doped La0.8Sr0.2CrO3 as Anode Materials for Solid Oxide Fuel Cells (SOFCs)  

E-Print Network [OSTI]

Electron Microscopy Study of Novel Ru Doped La0.8Sr0.2CrO3 as Anode Materials for Solid Oxide Fuel of Materials Science and Engineering, Northwestern University, 2220 Campus Dr. Evanston, IL 60208 Solid Oxide Fuel Cells (SOFCs) have been the center of research activities with the goal of improving energy

Marks, Laurence D.

56

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Broader source: Energy.gov (indexed) [DOE]

High-Energy Anode Materials for Li-ion Batteries Angstron - Hybrid Nano Carbon FiberGraphene Platelet-Based High Capacity Anodes for Lithium Ion Batteries Highlight - Fabricated...

57

Material and processes selection in conceptual design  

E-Print Network [OSTI]

Materials and manufacturing processes are an integral part of the design of a product. The need to combine materials and manufacturing processes selection during the early stages of the design has previously been realized. The work that generally...

Krishnakumar, Karthikeyan

2005-02-17T23:59:59.000Z

58

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

59

Anodes for alkaline electrolysis  

DOE Patents [OSTI]

A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

Soloveichik, Grigorii Lev (Latham, NY)

2011-02-01T23:59:59.000Z

60

Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability  

Science Journals Connector (OSTI)

Fe3O4 is an attractive conversion reaction-based anode material with high theoretical capacity (928 mA h g?1...). However, the poor cycling and rate performance hinder its applications in Li-ion batteries. In thi...

Delong Ma; Shuang Yuan; Zhanyi Cao

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ion beam processing of advanced electronic materials  

SciTech Connect (OSTI)

This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

62

Excited State Processes in Solar Energy Materials.  

E-Print Network [OSTI]

??This dissertation covers studies of excited state processes in two types of solar energy materials: alternating polyfluorene polymers and their blends with fullerenes in the… (more)

Österman, Tomas

2013-01-01T23:59:59.000Z

63

Magnetic Filtration Process, Magnetic Filtering Material, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process to handle organic...

64

Characterization of anodic bonding  

E-Print Network [OSTI]

Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

Tudryn, Carissa Debra, 1978-

2004-01-01T23:59:59.000Z

65

Plant Networks for Processing Recyclable Materials  

Science Journals Connector (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester; Mei Qi; Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

66

Batteries - Materials Processing and Manufacturing Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

67

Anodic Behavior of SAM2X5 Material Applied as Amorphous Coatings  

SciTech Connect (OSTI)

Iron-based amorphous alloys are desirable industrial materials since they are highly resistant to corrosion and possess enhanced hardness for wear resistance. The amorphous materials can be produced from the melt as powder and later spray deposited as coatings on large engineering structures. As a laboratory experiment, SAM2X5 powder was coated on electrochemical specimens of 304SS for testing. Results show that the coated specimens did not perform satisfactorily during the laboratory testing. This is because of partial devitrification during the deposition of the powder on the small specimen substrates.

Hailey, P D; Farmer, J C; Day, S D; Rebak, R B

2007-08-10T23:59:59.000Z

68

Effect of Anisotropic Volume Change in Tin Phosphate Nanoparticle Anode Material with Mesocellular Foam Structure  

E-Print Network [OSTI]

, PO = propylene oxide . This material has a mesocelluar foam structure. Experimental Pluronic P123 10 g, BASF were dissolved in 40 mL of distilled water into which 8.8 g of H3PO4 had been previously

Cho, Jaephil

69

Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells  

DOE Patents [OSTI]

A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

1994-01-01T23:59:59.000Z

70

Sn and SnO2-graphene composites as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Sn and SnO2-graphene composites were synthesized using hydrothermal process, followed by annealing in Ar/H2 atmosphere, and characterized using x-ray diffraction, scanning electron microscopy, and transition elec...

Qi-Hui Wu; Chundong Wang; Jian-Guo Ren

2013-12-01T23:59:59.000Z

71

Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract MnO and nitrogen-doped carbon (N-C) nanocomposites have been successfully synthesized by a facile thermal-decomposing method using the mixture of glycine and manganese acetate as precursor. As anode material for lithium-ion batteries (LIBs), electrochemical results show that the as-prepared MnO/N-C achieves a reversible capacity of 473 mAh g?1 after 50 cycles at a current density of 100 mA g?1 and the capacities of 631.4, 547.7, 443.1, 294.7, and 161.8 mAh g?1 at the current densities of 100, 200, 400, 800, and 1600 mA g?1, respectively. The superior cycling and rate performances is attributed to the nanocomposite structure, in which nanosized MnO particles shorten the diffusion path of lithium ions and the N-doped carbon cushions the volume change and improves the electronic conductivity of electrode.

Song Qiu; Xinzhen Wang; Guixia Lu; Jiurong Liu; Cuizhu He

2014-01-01T23:59:59.000Z

72

Materials Processing and Product Fabrication Course Description  

E-Print Network [OSTI]

/P/M Process Demo (1/2) 5 Monday, April 2 Machining/EDM/Die Fabrication (1/2) 6 Wednesday, April 4 Process. The course will concentrate on basic material processing techniques (i.e. casting, machining, and joining Wednesday, April 25 Project ­ Machining 13 Monday, April 30 Exam 14 Wednesday, May 2 Presentations #12;

73

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network [OSTI]

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

74

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

75

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

76

Novel Anode Materials  

Broader source: Energy.gov (indexed) [DOE]

* ECDECFEC 1M LiPF 6 ("BATT-FEC") ApproachStrategy * Characterization * X-Ray tomography studies of Si- based electrodes * EQCM studies to evaluate electrolyte stability and...

77

Novel Anode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

78

Sol–gel processing of energetic materials  

Science Journals Connector (OSTI)

Traditional manufacturing of energetic materials involves processing of granular solids. One application is the production of detonators where powders of energetic material and a binder are typically mixed and compacted at high pressure to make pellets. Performance properties are strongly dependent on particle size distribution, surface area of its constituents, homogeneity of the mix, and void volume. The goal is to produce detonators with fast energy release rate that are insensitive to unintended initiation. Preparation of detonators from xerogel molding powders and aerogels, and comparison with materials produced by state-of-the-art technology are described.

T.M Tillotson; L.W Hrubesh; R.L Simpson; R.S Lee; R.W Swansiger; L.R Simpson

1998-01-01T23:59:59.000Z

79

ENG 4793: Composite Materials and Processes 1 Compression Molding  

E-Print Network [OSTI]

1 ENG 4793: Composite Materials and Processes 1 Compression Molding ver 2 ENG 4793: Composite Materials and Processes 2 ENG 4793: Composite Materials and Processes 3 ENG 4793: Composite Materials and Processes 4 Schematic of a Compression Molding Press ENG 4793: Composite Materials and Processes 5 Matched

Colton, Jonathan S.

80

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

weight of cathode and anode active materials). This devicetotal mass of cathode and anode active materials), giving antotal mass of cathode and anode active materials. power for

Chen, Zheng

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fabrication of advanced design (grooved) cermet anodes  

SciTech Connect (OSTI)

Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

1993-05-01T23:59:59.000Z

82

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

83

Anode performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anode performance New hybrid anode design to improve long-term performance of batteries PNNL researchers have developed a hybrid anode made of graphite and lithium that...

84

Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process  

SciTech Connect (OSTI)

A simple phase-inversion process is successfully combined with a dip-coating process to fabricate anode-supported micro-tubular solid oxide fuel cells (SOFCs). Several processing parameters were systematically investigated to optimize cell microstructure and performance, including the amount of pore former used in the support substrate and the number of electrolyte coatings. Single cells with ?240 ?m thick NiO-YSZ support and 10 ?m thick YSZ electrolyte were successfully fabricated, demonstrating peak power densities of 752 and 277 mW cm{sup ?2} at 800 and 600 °C, respectively, when a composite cathode consisting of La{sub 0.85}Sr{sub 0.15}MnO{sub 3} and Sm{sub 0.2}Ce{sub 0.8}O{sub 2??} was used. This simple fabrication technique can be readily used for optimization of fuel cell microstructures and for cost-effective fabrication of high-performance SOFCs, potentially reducing the cost of SOFC technologies.

Chen, Changcheng; Liu, Mingfei; Yang, Lei; Liu, Meilin

2011-01-01T23:59:59.000Z

85

Blue fluorescent organic light emitting diodes with multilayered graphene anode  

SciTech Connect (OSTI)

As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

Hwang, Joohyun [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Hong Kyw [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Sung-Yool [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Lee, Jeong-Ik, E-mail: jiklee@etri.re.kr [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Chu, Hye Yong [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

2012-10-15T23:59:59.000Z

86

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials 2010 DOE Vehicle Technologies and Hydrogen...

87

High Metal Removal Rate Process for Machining Difficult Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Metal Removal Rate Process for Machining Difficult Materials High Metal Removal Rate Process for Machining Difficult Materials highmetalremovalprocessfactsheet.pdf More...

88

Advanced Materials and Processing of Composites for High Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Advanced Materials and Processing of Composites for High Volume Applications Carbon Fiber SMC Advanced Materials and Processing of Composites for High Volume...

89

REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS  

SciTech Connect (OSTI)

Based on quantum mechanical data obtained for the Y-doped BaZrO{sub 3} electrolyte and Ni-anode Reactive Force Field parameters have been developed for further molecular dynamics simulations of the proton diffusion and electrode/electrolyte interfaces. Electronic and atomic structures of different terminations of the (001) BaZrO{sub 3} surface have been studied using first-principles calculations. Several potential cathode materials for the Y-doped BaZrO{sub 3} system were synthesized via glycine nitrate combustion method. Of the five potential cathode materials examined BaZr{sub 0.40}Pr{sub 0.40}Gd{sub 0.20}O{sub 3} and BaZr{sub 0.60}Y{sub 0.20}Co{sub 0.20}O{sub 3} appear to be the most promising for further applications in proton ceramic fuel cells. Fuel cell test of a Y-doped BaZrO{sub 3} thin film using platinum ink for both electrodes have been performed. The obtained results shows that a robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have successfully been developed.

Boris Merinov; Adri van Duin; Sossina Haile; William A. Goddard III

2004-10-30T23:59:59.000Z

90

Cermet anode with continuously dispersed alloy phase and process for making  

DOE Patents [OSTI]

Cermet electrode compositions and methods for making are disclosed which comprise NiO--NiFe.sub.2 O.sub.4 --Cu--Ni. Addition of an effective amount of a metallic catalyst/reactant to a composition of a nickel/iron/oxide, NiO, copper, and nickel produces a stable electrode having significantly increased electrical conductivity. The metallic catalyst functions to disperse the copper and nickel as an alloy continuously throughout the oxide phase of the cermet to render the electrode compositon more highly electrically conductive than were the third metal not present in the base composition. The third metal is preferably added to the base composition as elemental metal and includes aluminum, magnesium, sodium and gallium. The elemental metal is converted to a metal oxide during the sintering process.

Marschman, Steven C. (Richland, WA); Davis, Norman C. (Richland, WA)

1989-01-01T23:59:59.000Z

91

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

92

ENG 4793: Composite Materials and Processes 1 Injection Molding  

E-Print Network [OSTI]

1 ENG 4793: Composite Materials and Processes 1 Injection Molding ver 1 ENG 4793: Composite · Ejection force · Design rules ENG 4793: Composite Materials and Processes 3 Equipment Clamp Mold Hopper Barrel ENG 4793: Composite Materials and Processes 4 Equipment ENG 4793: Composite Materials

Colton, Jonathan S.

93

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

94

A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract A new SnO2-Fe2O3/SWCNTs (single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach. SnO2 and Fe2O3 nanoparticles (NPs) were homogeneously located on the surface of SWCNTs, as confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX). Due to the synergistic effect of different components, the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g?1 which could be maintained after 50 cycles at 200 mA·g?1. Even at a high rate of 2000 mA·g?1, the capacity was still remained at 656 mAh·g?1.

Wangliang Wu; Yi Zhao; Jiaxin Li; Chuxin Wu; Lunhui Guan

2014-01-01T23:59:59.000Z

95

Anode and Cathode Arcs  

Science Journals Connector (OSTI)

... we call an anode arc, produces a circular pit on the anode and a general roughening of the opposed cathode. Photomicrographs of single anode-type arcs were published1 before the ... arcs\tCathode arcs

L. H. GERMER; W. S. BOYLE

1955-11-26T23:59:59.000Z

96

3.082 Materials Processing Laboratory, Spring 2003  

E-Print Network [OSTI]

Student project teams design and fabricate a materials engineering prototype using appropriate processing technologies (injection molding, thermoforming, investment casting, powder processing, brazing, etc.). Emphasis on ...

Chiang, Yet-Ming

97

Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract The lithium storage performance of silicon (Si) is improved substantially by forming composite of nano-Si particles embedded homogeneously in graphene nanosheets (GNs) using a simple discharge plasma assisted milling (P-milling) method. The synergistic effect of the rapid heating of the plasma and the mechanical ball mill grinding with nano-Si as nanomiller converted the graphite powder to \\{GNs\\} with the integration of nano-Si particles in the in-situ formed GNs. This composite structure inhibits the agglomeration of nano-Si and improves electronic conductivity. The cycling stability and rate capability are enhanced, with a stable reversible capacity of 976 mAhg?1 at 50 mAg?1 for the P-milled 20 h nano-Si/GNs composite. A full cell containing a commercial LiMn2O4 cathode is assembled and demonstrated a satisfying utilization of the P-milled nano-Si/GNs composite anode with stable working potential. This composite shows promise for application in lithium ion batteries.

Wei Sun; Renzong Hu; Hui Liu; Meiqin Zeng; Lichun Yang; Haihui Wang; Min Zhu

2014-01-01T23:59:59.000Z

98

ENG 4793: Composite Materials and Processes 1 Combining Thermoplastics with  

E-Print Network [OSTI]

1 ENG 4793: Composite Materials and Processes 1 Combining Thermoplastics with Reinforcing Fibers ver 1 ENG 4793: Composite Materials and Processes 2 Outline · Issues · Approaches ­ Short Fibers ­ Long Fibers ­ Continuous Fibers · Conclusions ENG 4793: Composite Materials and Processes 3 Issues

Colton, Jonathan S.

99

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

Jie Guan; Nguyen Minh

2003-10-01T23:59:59.000Z

100

Electrode materials for the electrolysis of metal oxides  

E-Print Network [OSTI]

Carbon, tungsten, platinum, and iridium were examined as candidate anode materials for an electrolytic cell. The materials were pre-selected to endure high process temperatures and were characterized for inertness and high ...

Cooper, Benjamin D

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Template-Free Electrochemical Synthesis of Sn Nanofibers as High-Performance Anode Materials for Na-Ion Batteries  

Science Journals Connector (OSTI)

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea ... sciences and engineering. ...

Do-Hwan Nam; Tae-Hee Kim; Kyung-Sik Hong; Hyuk-Sang Kwon

2014-10-28T23:59:59.000Z

102

Surface modifications for carbon lithium intercalation anodes  

DOE Patents [OSTI]

A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

2000-01-01T23:59:59.000Z

103

Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode  

Science Journals Connector (OSTI)

Abstract A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinel coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC.

Yeong-Shyung Chou; Jeffry W. Stevenson; Jung-Pyung Choi

2014-01-01T23:59:59.000Z

104

LASER MATERIALS PROCESSING Wenwu Zhang, Ph.D.  

E-Print Network [OSTI]

4-1 Chapter 34 LASER MATERIALS PROCESSING Wenwu Zhang, Ph.D. General Electric Global Research)34.1 OVERVIEW LASER is the acronym of light amplification by stimulated emission of radiation. Although regarded as one of the nontraditional processes, laser material processing (LMP) is not in its infancy anymore

Yao, Y. Lawrence

105

3D hollow Sn@carbon-graphene hybrid material as promising anode for lithium-ion batteries  

Science Journals Connector (OSTI)

A 3D hollow Sn@C-graphene hybrid material (HSCG) with high capacity and excellent cyclic and rate performance is fabricated by a one-pot assembly method. Due to the fast electron and ion transfer as well as the efficient carbon buffer structure, the ...

Xiaoyu Zheng, Wei Lv, Yan-Bing He, Chen Zhang, Wei Wei, Ying Tao, Baohua Li, Quan-Hong Yang

2014-01-01T23:59:59.000Z

106

Innovative Process and Materials Technologies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

110 trillion Btu per year. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets (Massachusetts Institute of Technology (MIT) - Cambridge, MA) A...

107

Innovative Materials Processing Technologies Ltd IMPT | Open Energy  

Open Energy Info (EERE)

Processing Technologies Ltd IMPT Processing Technologies Ltd IMPT Jump to: navigation, search Name Innovative Materials Processing Technologies Ltd (IMPT) Place United Kingdom Zip NG1 1GF Sector Solar Product UK-based manufacturer of non-vacuum coating systems for fuel cells and solar sectors. References Innovative Materials Processing Technologies Ltd (IMPT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Innovative Materials Processing Technologies Ltd (IMPT) is a company located in United Kingdom . References ↑ "Innovative Materials Processing Technologies Ltd (IMPT)" Retrieved from "http://en.openei.org/w/index.php?title=Innovative_Materials_Processing_Technologies_Ltd_IMPT&oldid=346972

108

Advanced Materials and Processing of Composites for High Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Processing of Composites for High Volume Applications FY 2009 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development Carbon Fiber SMC...

109

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

110

SciTech Connect: Module Encapsulation Materials, Processing and...  

Office of Scientific and Technical Information (OSTI)

Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ENCAPSULATION; PROCESSING; RELIABILITY; TESTING PV;...

111

Aircraft Gas Turbine Materials and Processes  

Science Journals Connector (OSTI)

...bears a superficial resem-blance to that obtained by directional...from superplastically formed sheet stock (20, 21). One such...per-mit the use ofnew, improved sheet mate-rials. 4) Multipiece...about four to five times less energy is consumed in go-ing from...

B. H. Kear; E. R. Thompson

1980-05-23T23:59:59.000Z

112

Electrochromic materials, devices and process of making  

DOE Patents [OSTI]

Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.

Richardson, Thomas J. (Oakland, CA)

2003-11-11T23:59:59.000Z

113

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

114

Processing of monolayer materials via interfacial reactions  

SciTech Connect (OSTI)

A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

Sutter, Peter Werner; Sutter, Eli Anguelova

2014-05-20T23:59:59.000Z

115

NREL: Photovoltaics Research - New Materials, Devices, and Processes for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Materials, Devices, and Processes for Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent conducting oxides (TCOs), combinatorial (combi) methods, and atmospheric processing. From fundamental physical studies to applied research relating to solar industry needs, we are developing the

116

Process for fabricating composite material having high thermal conductivity  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01T23:59:59.000Z

117

Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800 °C  

Science Journals Connector (OSTI)

Abstract In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar–4%H2–2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in ?-phase formation at the austenite–ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the ?-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe–Ni–Cr.

L. Garcia-Fresnillo; V. Shemet; A. Chyrkin; L.G.J. de Haart; W.J. Quadakkers

2014-01-01T23:59:59.000Z

118

Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of  

E-Print Network [OSTI]

- prove energy densities for both anode and cathode. Silicon as an anode material has at- tracted to over- come this issue, including the use of nano- sized active materials,1 6 active/inactive composite in weight than Si active material. In a commercial lithium ion cell, the anode material is usually coated

Cui, Yi

119

Materials-based process tolerances for neutron generator encapsulation.  

SciTech Connect (OSTI)

Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

2007-10-01T23:59:59.000Z

120

Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries  

Science Journals Connector (OSTI)

A Fe2O3 nanoparticle/carbon aerogel composite (Fe2O3/CA) is prepared from a carbon aerogel prepared by a sol–gel process by a simple soaking in a Fe(NO3)3 solution and subsequent heat treatment at 600 °C. Thermal gravimetric analysis, X-ray diffraction, scanning and transmission electron microscopy, energy dispersive X-ray analysis and X-ray photoelectron spectroscopy are used to characterize the products. The electrochemical performance of samples with different Fe2O3 content is evaluated. The optimal sample Fe2O3/CA-60 exhibits a good capacity retention of 916 and 617 mAh g?1 for the 1st and 100th cycle, respectively, which is much better than that of pure Fe2O3 and CA. The improved cycling performance, specific capacity and rate capability of Fe2O3/CA is mainly attributed to the synergistic effects of the nanoporous network skeleton of CA and the uniformly dispersed Fe2O3 nanoparticles.

Nianping Liu; Jun Shen; Dong Liu

2013-01-01T23:59:59.000Z

122

Protection of Li Anodes Using Dual Phase Electrolytes  

Broader source: Energy.gov (indexed) [DOE]

cells with high energy anode and dual-phase electrolyte systems Partners BASF SE, Germany * Development of Li-S battery materials 3 Relevance. Project Objectives. * Develop a...

123

Cell Analysis ? High-Energy Density Cathodes and Anodes  

Broader source: Energy.gov (indexed) [DOE]

* Investigate the relationships of structure, morphology and performance of cathode and anode materials. * Explore kinetic barriers and utilize the knowledge gained to design and...

124

Creation of Onset Voltage Hash by Anode Spots in Magnetoplasmadynamic Thrusters  

E-Print Network [OSTI]

Creation of Onset Voltage Hash by Anode Spots in Magnetoplasmadynamic Thrusters Luke Uribarri and E (MPDTs) operating with three anode materials, and an anode spot model is presented which provides below and above onset with anodes of cop- per, graphite, and lead are analyzed using the statistical

Choueiri, Edgar

125

Processing and analysis techniques involving in-vessel material generation  

DOE Patents [OSTI]

In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

2011-01-25T23:59:59.000Z

126

Processing and analysis techniques involving in-vessel material generation  

DOE Patents [OSTI]

In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

2012-09-25T23:59:59.000Z

127

Optical waveguide solar energy system for lunar material processing  

SciTech Connect (OSTI)

This paper summarizes the study on the optical waveguide (OW) solar energy system for lunar material processing. In the OW solar energy system, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers and related optical components. The OW line transmits the high intensity solar radiation to the thermal reactor of the lunar materials processing plant. Based on the results discussed in this paper the authors conclude that the OW solar energy system is a viable concept which can effectively utilize solar energy for lunar material processing.

Nakamura, T.; Senior, C.L. [Physical Sciences, Inc., Andover, MA (United States); Shoji, J.M.; Waldron, R.D. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division

1995-11-01T23:59:59.000Z

128

Processing and Disposition of Special Actinide Target Materials - 13138  

SciTech Connect (OSTI)

The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

129

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief  

Broader source: Energy.gov [DOE]

This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

130

Interaction between process technology and material quality during the processing of multicrystalline silicon solar cells  

Science Journals Connector (OSTI)

Multicrystalline silicon is the most used material for the production of silicon solar cells. The quality of the as grown material depends on the quality of the feedstock and the crystallization process. Bulk ...

Dietmar Borchert; Markus Rinio

2009-01-01T23:59:59.000Z

131

Search for New Anode Materials  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

132

Friction stir welding tool and process for welding dissimilar materials  

DOE Patents [OSTI]

A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

2013-05-07T23:59:59.000Z

133

HIGH ENERGY ELECTRON BEAM (HEEB) PROCESSING OF ADVANCED MATERIALS  

E-Print Network [OSTI]

) ) HIGH ENERGY ELECTRON BEAM (HEEB) PROCESSING OF ADVANCED MATERIALS V. R. Dave*, D. L. Goodman 02143. ABSTRACT High Energy Electron Beams (HEEBs) offer a unique heat source that may be used- based processing so attractive are : in-depth energy penetration, very high average power levels, shock

Eagar, Thomas W.

134

Electrostatic probe apparatus for measurements in the near-anode region of Hall thrusters  

E-Print Network [OSTI]

Electrostatic probe apparatus for measurements in the near-anode region of Hall thrusters L. Dorf Received 22 August 2003; accepted 27 January 2004; published 26 April 2004 Near-anode processes in Hall measurements in the near-anode region, the high potential of the anode relative to ground, small spatial

135

Method for materials deposition by ablation transfer processing  

DOE Patents [OSTI]

A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

Weiner, Kurt H. (San Jose, CA)

1996-01-01T23:59:59.000Z

136

Method for co-processing waste rubber and carbonaceous material  

SciTech Connect (OSTI)

In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

Farcasiu, M.; Smith, C.M.

1990-10-09T23:59:59.000Z

137

Large scale molecular dynamics modeling of materials fabrication processes  

SciTech Connect (OSTI)

An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

1994-02-01T23:59:59.000Z

138

Method of processing materials using an inductively coupled plasma  

DOE Patents [OSTI]

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

139

Anodizing of High Electrically Stressed Components  

SciTech Connect (OSTI)

Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

Flores, P. [NSTec; Henderson, D. J. [NSTec; Good, D. E. [NSTec; Hogge, K. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Naffziger, C. [NSTec; Codova, S. R. [SNL; Ormond, E. U. [SNL

2013-06-01T23:59:59.000Z

140

Stainless steel anodes for alkaline water electrolysis and methods of making  

DOE Patents [OSTI]

The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

Soloveichik, Grigorii Lev

2014-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics  

E-Print Network [OSTI]

Thermal Analysis of Novel Underfill Materials with Optimum Processing Characteristics Yang Liu,1 Yi evolution. Boron nitride, silica-coated alu- minum nitride, and alumina ceramic powders were used as fillers poly- merization. The effects of the filler type and composition on the thermal and mechanical

Harmon, Julie P.

142

CIGS Material and Device Stability: A Processing Perspective (Presentation)  

SciTech Connect (OSTI)

This is a general overview of CIGS material and device fundamentals. In the first part, the basic features of high efficiency CIGS absorbers and devices are described. In the second part, some examples of previous collaboration with Shell Solar CIGSS graded absorbers and devices are shown to illustrate how process information was used to correct deviations and improve the performance and stability.

Ramanathan, K.

2012-03-01T23:59:59.000Z

143

First Principles Calculations of Electrode Materials | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Analysis High-Energy Density Cathodes and Anodes Design and Evaluation of Novel High Capacity Cathode Materials Development of High Capacity Anode for Li-ion Batteries...

144

Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

2013-10-15T23:59:59.000Z

145

Status and potential of atmospheric plasma processing of materials  

SciTech Connect (OSTI)

This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

Pappas, Daphne [United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

2011-03-15T23:59:59.000Z

146

Nano-sized Li-Fe composite oxide prepared by a self-catalytic reverse atom transfer radical polymerization approach as an anode material for lithium-ion batteries  

SciTech Connect (OSTI)

A novel Self-catalytic Reverse Atom Transfer Radical Polymerization (RATRP) approach that can provide the radical initiator and the catalyst by the system itself is used to synthesize a nano-sized Li-Fe composite oxide powder in large scale. Its crystalline structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The results reveal that the composite is composed of nano-sized LiFeO{sub 2} and Fe{sub 3}O{sub 4}. Its electrochemical properties are evaluated by charge/discharge measurements. The results show that the Li-Fe composite oxide is an excellent anode material for lithium-ion batteries with good cycling performance (1249 mAh g{sup -1} at 100th cycle) and outstanding rate capability (967 mAh g{sup -1} at 5 C). Such a self-catalytic RATRP approach provides a way to synthesize nano-sized iron oxide-based anode materials industrially with preferable electrochemical performance and can also be applied in other polymer-related area.

Yue, G.Q.; Liu, C.; Wang, D.Z. [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)] [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wang, Y.; Yuan, Q.F.; Xu, R.; Zhao, F.G. [Amperex Technology Ltd, Guanggong Dongguan 523080 (China)] [Amperex Technology Ltd, Guanggong Dongguan 523080 (China); Chen, C.H., E-mail: cchchen@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)

2010-09-15T23:59:59.000Z

147

Synthesis, processing and properties of materials for SOFCs  

SciTech Connect (OSTI)

The synthesis and processing methods of complex oxide materials can significantly influence use in solid oxide fuel cells (SOFCs). This paper discusses (1) effects of powder synthesis and conditioning on fabrication, i.e., sintering, where close, reproducible control of composition and structure are required, and (2) influences on electrical, mechanical, structural and electrochemical properties that can influence SOFC performance. Examples are given for chromites, manganites and related oxides used as interconnections and electrodes in SOFCs. Materials, from source to incorporation into the fuel cell and generator, is a major issue in the development of solid oxide fuel cells (SOFCs). An integral part of this is the synthesis from chemicals and other virgin materials, generally as an oxide or metal powder, which can become a SOFC component. In some instances, such as with electrochemical vapor deposition, the component is formed directly from the chemicals. The synthesized materials are then conditioned and processes prior to fabrication into the fuel cell component, either separately or in conjunction with other material components.

Bates, J.L.; Armstrong, T.A.; Kingsley, J.J.; Pederson, L.R.

1994-03-01T23:59:59.000Z

148

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

149

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

DOE Patents [OSTI]

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

150

MATERIAL PROCESSING FOR SELF-ASSEMBLING MACHINE SYSTEMS  

SciTech Connect (OSTI)

We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial use of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.

K. LACKNER; D. BUTT; C. WENDT

1999-06-01T23:59:59.000Z

151

Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries  

E-Print Network [OSTI]

Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries Dragan Slavkova of lead anodes used in lead acid batteries. However, one drawback of these materials is their increased corrosion rate as compared to pure lead anodes. In the present investigation, the dissolution of Pb

Popov, Branko N.

152

Creation of Onset Voltage Hash by Anode Spots in a Magnetoplasmadynamic Thruster  

E-Print Network [OSTI]

Creation of Onset Voltage Hash by Anode Spots in a Magnetoplasmadynamic Thruster Luke Uribarri flow rate) of onset voltage fluctuations in a magnetoplasmadynamic thruster operating with three anode materials, and an anode spot model is presented which provides a physical explanation for the properties

Choueiri, Edgar

153

Relationship Between Anode Spots and Onset Voltage Hash in Magnetoplasmadynamic Thrusters  

E-Print Network [OSTI]

Relationship Between Anode Spots and Onset Voltage Hash in Magnetoplasmadynamic Thrusters Luke in magnetoplasmadynamic thrusters operating above onset and the time-resolved appearance of destructively released anode material in the thruster plume. Such a relationship gives support to previously discussed anode spotting

Choueiri, Edgar

154

Definition: Anode | Open Energy Information  

Open Energy Info (EERE)

Anode Anode Jump to: navigation, search Dictionary.png Anode The positive electrode in an electrochemical cell, or battery.[1] View on Wikipedia Wikipedia Definition An anode is an electrode through which electric current flows into a polarized electrical device. The direction of electric current is, by convention, opposite to the direction of electron flow. In other words, the electrons flow from the anode into, for example, an electrical circuit. Mnemonic: ACID (Anode Current into Device). A widespread misconception is that anode polarity is always positive (+). This is often incorrectly inferred from the correct fact that in all electrochemical devices, negatively charged anions move towards the anode (hence their name) and positively charged cations move away from it. In fact anode polarity

155

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

156

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

157

Wide-Area Thermal Processing of Light-Emitting Materials  

SciTech Connect (OSTI)

Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is significant as higher thermal and electrical conductivities of the surface layer are critical for a successful development of integrated optoelectronic devices; and (3) PTP provides low thermal budget dopant activation with a controlled depth profile, which can be exploited for high performance device development with selective patterning of the substrate. This project has successfully demonstrated that a low thermal budget annealing technique, such as PTP, is critical to defining the path for low cost electronic devices integrated on glass or polymeric substrates. This project is complimentary to the goals of the Solid State Lighting Program within DOE. It involves new manufacturing techniques for light emitting materials that are potentially much lower cost and energy efficient than existing products. Significant opportunity exists for further exploration of AppliCote's material and device technology in combination with ORNL's PTP technique, modeling, and characterization capabilities.

Duty, C.; Quick, N. (AppliCote Associates, LLC) [AppliCote Associates, LLC

2011-09-30T23:59:59.000Z

158

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

159

Low Cost SiOx-Graphite and Olivine Materials  

Broader source: Energy.gov (indexed) [DOE]

Replace graphite anode with an alternative material that meets the requirement for low cost and high energy. Continue development of binders for the cathode and alternative anode...

160

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes ... A new graphene-based hybrid nanostructure is designed for anode materials in lithium-ion batteries. ...

Huawei Song; Hao Cui; Chengxin Wang

2014-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recovery of plutonium from electrorefining anode heels at Savannah River  

SciTech Connect (OSTI)

In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control.

Gray, J H; Gray, L W; Karraker, D G

1987-03-01T23:59:59.000Z

162

Anode initiated surface flashover switch  

DOE Patents [OSTI]

A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

Brainard, John P. (Albuquerque, NM); Koss, Robert J. (Albuquerque, NM)

2003-04-29T23:59:59.000Z

163

Supporting information for Vertically Grown Multi-walled Carbon Nanotube Anode  

E-Print Network [OSTI]

1 Supporting information for Vertically Grown Multi-walled Carbon Nanotube Anode and Nickel. Summarized fabrication process flow The anode chamber and contact area were constructed on a 4" P area for the ohmic contact from the anode to the external load. A layer of Ni was then evaporated

164

E-Print Network 3.0 - anodic alumina films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrodeposition as anode materials for lithium rechargeable batteries Source: Yang, Eui-Hyeok - Department of Mechanical Engineering, Stevens Institute of Technology...

165

E-Print Network 3.0 - anodized titanium discs Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: As a specimen material, we chose sintered titanium. Chemically pure titanium powder was prepared by a rotating-anode... Internal Friction and Elastic Constants of...

166

Process for hydrocracking carbonaceous material in liquid carrier  

DOE Patents [OSTI]

Solid carbonaceous material is hydrocracked to provide aliphatic and aromatic hydrocarbons for use as gaseous and liquid fuels or chemical feed stock. Particulate carbonaceous material such as coal in slurry with recycled product oil is preheated in liquid state to a temperature of 600.degree.-1200.degree. F. in the presence of hydrogen gas. The product oil acts as a sorbing agent for the agglomerating bitumins to minimize caking within the process. In the hydrocracking reactor, the slurry of oil and carbonaceous particles is heated within a tubular passageway to vaporize the oil and form a gas-solid mixture which is further heated to a hydropyrolysis temperature in excess of 1200.degree. F. The gas-solid mixture is quenched by contact with additional oil to condense normally liquid hydrocarbons for separation from the gases. A fraction of the hydrocarbon liquid product is recycled for quenching and slurrying with the carbonaceous feed. Hydrogen is recovered from the gas for recycle and additional hydrogen is produced by gasification of residual char.

Duncan, Dennis A. (Downers Grove, IL)

1980-01-01T23:59:59.000Z

167

Movable anode x-ray source with enhanced anode cooling  

DOE Patents [OSTI]

An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

Bird, C.R.; Rockett, P.D.

1987-08-04T23:59:59.000Z

168

Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries  

E-Print Network [OSTI]

-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod change during the charge and discharge processes. These advantageous attributes make ZGCs the potential expansion and eliminate the stress during the charge and discharge processes. Clearly, it remains

Lin, Zhiqun

169

ENG 4793: Composite Materials and Processes 1 Non-Destructive Testing (NDT)  

E-Print Network [OSTI]

1 ENG 4793: Composite Materials and Processes 1 Non-Destructive Testing (NDT) ver 1 ENG 4793: Composite Materials and Processes 2 Types of NDT · Visual · Ultrasonic · X-ray · Thermographic · Acoustic Emission · Eddy Current · Shearography ENG 4793: Composite Materials and Processes 3 Visual Inspection

Colton, Jonathan S.

170

Process and continuous apparatus for chemical conversion of materials  

DOE Patents [OSTI]

A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

Rugg, Barry (New York, NY); Stanton, Robert (Ramsey, NJ)

1983-01-01T23:59:59.000Z

171

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents [OSTI]

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

172

CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries  

Science Journals Connector (OSTI)

CoFe2O4-graphene nanosheets (CoFe2O4...-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The...?1 even ...

Yinglin Xiao; Xiaomin Li; Jiantao Zai; Kaixue Wang; Yong Gong; Bo Li…

2014-10-01T23:59:59.000Z

173

Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility  

DOE Patents [OSTI]

The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

Holloway, A.

1992-01-07T23:59:59.000Z

174

Anodic oxidation of zircaloy-2  

Science Journals Connector (OSTI)

The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications.

A. Conte; A. Borello; A. Cabrini

1976-07-01T23:59:59.000Z

175

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Received 472K * FY10 Funding Expected 890K Barriers * Reduce the production cost of Cathode Material * Meet PHEV battery requirements for a 40 mile all-electric range *...

176

Preliminary overview of innovative industrial-materials processes  

SciTech Connect (OSTI)

In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

1983-09-01T23:59:59.000Z

177

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

178

EXERGY METRIC FOR THE ASSESMENT OF MATERIAL PROCESSING IN MANUFACTURING.  

E-Print Network [OSTI]

??Exergy utilization calculations have been in the past repeatedly used to quantify the quality and quantity of energy used in thermal energy processes. This thesis… (more)

Boddapati, Venkata- Sandeep

2006-01-01T23:59:59.000Z

179

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

180

Material and Chemical Processing (Concentrated Solar) (4 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to detoxify hazardous wastes, to drive chemical reactions, and to treat materials for increased hardness and resistance to corrosion.

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Broader source: Energy.gov (indexed) [DOE]

chemicals. 1012009 through 6302011 BDB in Electrolyte 2 BDB Cell Test NanofiberGrapheneSilicon Anode Polyacrylonitrile (PAN ) electrospun precursor mat then carbonized and...

182

Process Optimization and Integration Strategies for Material Reclamation and Recovery  

E-Print Network [OSTI]

...................................................................................... 1 1.2 Key Strategies .................................................................................................... 2 1.3 Process Integration Introduction ........................................................................ 3 1.3.1 Mass... Integration .................................................................................... 3 1.3.2 Property Integration ............................................................................... 8 1.4 Optimization...

Kheireddine, Houssein

2012-07-16T23:59:59.000Z

183

Microfluidics for Single Molecule Detection and Material Processing  

E-Print Network [OSTI]

, it usually performed by conventional biochemical approaches, which require long process time and a large amount of samples. We have been developed the new applications based on microfluidics and Raster image Correlation spectroscopy (RICS) techniques. A...

Hong, Sung Min

2012-10-19T23:59:59.000Z

184

Adsorbent and adsorbent bed for materials capture and separation processes  

DOE Patents [OSTI]

A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

Liu, Wei (Richland, WA)

2011-01-25T23:59:59.000Z

185

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents [OSTI]

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

186

Multi-anode ionization chamber  

DOE Patents [OSTI]

The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

Bolotnikov, Aleksey E. (South Setauket, NY); Smith, Graham (Port Jefferson, NY); Mahler, George J. (Rocky Point, NY); Vanier, Peter E. (Setauket, NY)

2010-12-28T23:59:59.000Z

187

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

1998-07-21T23:59:59.000Z

188

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

1998-01-01T23:59:59.000Z

189

Cells having cathodes containing polycarbon disulfide materials  

DOE Patents [OSTI]

The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

Okamoto, Yoshi (Fort Lee, NJ); Skotheim, Terje A. (Shoreham, NY); Lee, Hung S. (Rocky Point, NY)

1995-08-15T23:59:59.000Z

190

Cells having cathodes containing polycarbon disulfide materials  

DOE Patents [OSTI]

The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

1995-08-15T23:59:59.000Z

191

New High-Energy Nanofiber Anode Materials  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

192

New High-Energy Nanofiber Anode Materials  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

193

Nano-structured Materials as Anodes  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

194

Natural radionuclide concentrations in processed materials from thai mineral industries  

Science Journals Connector (OSTI)

......Phosphogypsum, a waste produced from...NORM-contaminated waste and equipment...any radiation control guidelines...waterworks treatment facility...by-products and waste produced from...Positioning System. Figure-1...coupled to an integrated signal processor...mineral-processing plants and nearby......

S. Chanyotha; C. Kranrod; N. Chankow; R. Kritsananuwat; P. Sriploy; K. Pangza

2012-11-01T23:59:59.000Z

195

Natural radionuclide concentrations in processed materials from thai mineral industries  

Science Journals Connector (OSTI)

......radioactivity in their everyday life. Human management of NORM for economic purposes, such as mineral ore mining and processing, and fossil...the NORM project. REFERENCES 1 Tadmor J. Radioactivity from coal-fired power plants: a review. J. Environ. Radioact......

S. Chanyotha; C. Kranrod; N. Chankow; R. Kritsananuwat; P. Sriploy; K. Pangza

2012-11-01T23:59:59.000Z

196

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

197

Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report  

SciTech Connect (OSTI)

Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

Later, D.W.; Pelroy, R.A.; Wilson, B.W.

1984-05-01T23:59:59.000Z

198

Reactor Materials Program process water piping indirect failure frequency  

SciTech Connect (OSTI)

Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

Daugherty, W.L.

1989-10-30T23:59:59.000Z

199

Simulations of ductile flow in brittle material processing  

SciTech Connect (OSTI)

Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

Luh, M.H.; Strenkowski, J.S.

1988-12-01T23:59:59.000Z

200

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode ... In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene–nanotube–iron three-dimensional nanostructure as an anode material in lithium-ion batteries. ...

Si-Hwa Lee; Vadahanambi Sridhar; Jung-Hwan Jung; Kaliyappan Karthikeyan; Yun-Sung Lee; Rahul Mukherjee; Nikhil Koratkar; Il-Kwon Oh

2013-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes  

Science Journals Connector (OSTI)

Abstract Manufacturing, where great amount of energy and materials are being consumed, should take response to have cleaner production and to improve its sustainability. Additive manufacturing (AM) technology shows potential to reduce environment impact as a more sustainable manufacturing method; however, the lack of well documented energy consumption and material flow data limits the development of Life-Cycle Inventory (LCI) analysis of AM technology. This paper presents an energy and material consumption model of Binder-Jetting (BJ) process. A Unit-Process (UP) level model is created and validated by experimental data to provide LCI data for further Life-Cycle Analysis (LCA) of BJ additive manufacturing processes. The accurate process model provides a tool to industry to understand the energy consumption and material efficiency aspect of the binder-jetting process and to allow comparisons with traditional processes.

Simon Meteyer; Xin Xu; Nicolas Perry; Yaoyao Fiona Zhao

2014-01-01T23:59:59.000Z

202

Development of an inert ceramic anode to reduce energy consumption in magnesium production. Final Report  

SciTech Connect (OSTI)

The objective of this work is to develop a dimensionally stable ceramic anode for production of magnesium metal in electrolytic cells, replacing the graphite anodes currently used by The Dow Chemical Company magnesium business. The work is based on compositional and design technology for a ceramic anode developed in the former Central Research Inorganic Laboratory. The approach selected is to use a ceramic semiconductor tube as the material to interface with the bath and gaseous atmosphere in the cell. The testing goal was to demonstrate six anodes surviving a 30 day test lifetime with acceptable wear rates and electrical performance in a laboratory scale magnesium cell test. State of the art slip casting techniques were used and advanced in the pursuit of a virtually flaw free ceramic anode shell. Novel core materials were also invented to allow for the complete, crack free fabrication of the laboratory scale anode. Two successive anodes were tested and exceeded the 30 day cell lifetime goal with excellent wear characteristics. More aggressive testing of the ceramic anode revealed that the anode had a rather narrow operating region.

NONE

1997-06-01T23:59:59.000Z

203

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries  

Science Journals Connector (OSTI)

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries ... (1, 2) Commercial LIBs use graphite as the anode material with a low theoretical specific capacity of 372 mAh g–1, necessitating extensive research to develop substitute anode materials with higher energy/power densities for high performance LIBs to satisfy demanding applications like electric vehicles. ...

Mohammad Akbari Garakani; Sara Abouali; Biao Zhang; Curtis Alton Takagi; Zheng-Long Xu; Jian-qiu Huang; Jiaqiang Huang; Jang-Kyo Kim

2014-10-15T23:59:59.000Z

204

Alkali metal recovery from carbonaceous material conversion process  

DOE Patents [OSTI]

In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

Sharp, David W. (Seabrook, TX); Clavenna, LeRoy R. (Baytown, TX); Gorbaty, Martin L. (Fanwood, NJ); Tsou, Joe M. (Galveston, TX)

1980-01-01T23:59:59.000Z

205

Process for safe underground storage of materials and apparatus for storage of such materials  

SciTech Connect (OSTI)

A method is disclosed for the formation of a safe storage area to hold materials, where the storage area is in the form of an underground storage cavern in a preferably rock formation maintained at a different temperature from the natural temperature of the environs surrounding the walls, floor, and the ceiling of said storage cavern. The inside of the storage cavern is with or without insulation and an inner first circulation system surrounds the cavern. The circulation system has a plurality of channels regularly distributed around the cavern and near its surface parallel to the axis of the storage space. The system of tunnels formed of the channels together encloses and surrounds the cavern. Further away from the cavern and on the outside of and in working relation to the first inner circulation system is a second outer circulation system, consisting of a plurality of regularly distributed channels formed either from the said inner tunnel system or between a second outer system of surrounding tunnels parallel to the axis of the storage space and together with said last mentioned channels enclosing the cavern and the inner circulation system. A circulating drying heat exchange medium for exchanging heat between the circulating medium and the surroundings around the first inner circulation system is introduced into the first inner circulation system and a circulating heat exchange drying medium for exchanging heat between the circulating medium and the surroundings around the second outer circulation system is also employed by maintaining heat exchange with the surroundings of first inner circulation system keeping its walls, floor, and ceiling of the cavern at a predetermined temperature above a temperature of the stored materials when storing hot materials below the temperature of the hot materials to form a temperature barrier envelope about said cavern.

Grennard, A.H.

1980-09-30T23:59:59.000Z

206

Short communication Compositional control of continuously graded anode functional layer  

E-Print Network [OSTI]

May 2012 Available online 17 May 2012 Keywords: Solid oxide fuel cell Anode Spray deposition Compositional gradation SOFC a b s t r a c t In this work, solid oxide fuel cells (SOFC's) are fabricated improvements in solid oxide fuel cell performance have come about through various strategies. Materials

Mukhopadhyay, Sharmila M.

207

Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst  

E-Print Network [OSTI]

-Marins, Sean Parris, and Caleb Ellefson Introduction to Multiscale Engineering School of Mechanical and Materials Engineering This work was supported by the National Science Foundation's REU program Introduction in fuels such as biodiesel or jet fuel, SOFC anodes are poisoned, rendering them useless. Research

Collins, Gary S.

208

p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells  

DOE Patents [OSTI]

The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

2014-11-25T23:59:59.000Z

209

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

210

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

211

Process for impregnating a concrete or cement body with a polymeric material  

DOE Patents [OSTI]

A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

Mattus, A.J.; Spence, R.D.

1988-05-04T23:59:59.000Z

212

One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability  

SciTech Connect (OSTI)

Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup ?1} at a current density of 50 mA g{sup ?1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

2014-02-15T23:59:59.000Z

213

Laboratory for Advanced Materials Processing University of Maryland http://www.enma.umd.edu/LAMP  

E-Print Network [OSTI]

) = Rs x (L / W), with Rs: sheet resistance of a layer of this material The sheet resistance is expressedLaboratory for Advanced Materials Processing � University of Maryland http Operating Procedure for LAMP four point probe sheet resistance measurements Overview of 4 point probe

Rubloff, Gary W.

214

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network [OSTI]

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

215

Short communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with  

E-Print Network [OSTI]

oxide Li rechargeable battery Anode Nanoconifer Nanowire Thermal evaporation a b s t r a c t Silicon subShort communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural through a simple thermal evaporation process.

Jo, Moon-Ho

216

Argonne and CalBattery strike deal for silicon-graphene anode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and CalBattery strike deal for silicon-graphene anode material By Angela Hardin * February 25, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National...

217

Argonne and CalBattery strike deal for silicon-graphene anode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Return to Search Argonne and CalBattery strike deal for silicon-graphene anode material Argonne National Laboratory CalBattery has worked with Argonne for...

218

E-Print Network 3.0 - anode solid oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solid oxide fuel cells (SOFCs) exhibit a number of attractive features... of anode and cathode materials for propane oxidation was tested in both flow- through and half... but not...

219

Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes  

Science Journals Connector (OSTI)

Abstract In this report, we introduce electrospun silicon nanoparticle and carbon nanotube loaded carbon nanofibers (SCNFs) as anode materials in lithium-ion batteries (LIBs). The one-dimensional structure of electrospun nanofibers provides porosity for the anode material. Carbon nanotubes (CNTs) in the electrospun fibers reduce the volume expansion of silicon nanoparticles (SiNPs) and improve mechanical stability of the electrode. Both \\{CNTs\\} and carbon nanofibers enhance electronic conduction by connecting SiNPs in \\{SCNFs\\} for electrode reactions. These contribute to improved electrochemical performance of SCNF anode-based \\{LIBs\\} resulting in the enhancement of capacity and cycling ability.

Nguyen Trung Hieu; Jungdon Suk; Dong Wook Kim; Ok Hee Chung; Jun Seo Park; Yongku Kang

2014-01-01T23:59:59.000Z

220

ADVANCED SILICIDE-BASED MATERIALS FOR HIGH TEMPERATURE GLASS PROCESSING SENSORS  

SciTech Connect (OSTI)

Materials research is needed to improve the performance of high temperature materials that must withstand the hostile environment of the glassmaking process and to improve the operating efficiency. Advances in materials used for sensors and controls is perhaps one of the most important requirements for improving the efficiency of the glass production process. The use of molybdenum disilicide (MoSi{sub 2}) based materials, which are corrosion resistant in glass, are being investigated for improving the performance of advance temperature sensors. Using advanced plasma spray forming techniques, laminate and functionally graded composite tubes of MoSi{sub 2} and Al{sub 2}O{sub 3} are being developed to protect advanced temperature sensors from the hostile environment of the glassmaking process.

Castro, R. G. (Richard G.); Peters, M. I. (Maria I.); Mendoza, D. (Daniel); Vaidya, R. U. (Rajendra U.); Petrovic, J. J.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DYMAT Technical Meeting September 10-12, 2008, Bourges, France ULTRAFINE-GRAINED MATERIALS PROCESSED FROM  

E-Print Network [OSTI]

, defects) depend on the processing route and are characterised by means of X-ray diffraction line profile analysis and transmission electron microscopy. The influence of the microstructure on the mechanical materials [2,3,6- 8]. The present work reports on the influence of processing routes on the macroscopic

Gubicza, Jenõ

222

Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments  

SciTech Connect (OSTI)

The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are 1) dynamic creep-fatigue-environment process, 2) subcritical crack processes, 3) dynamic corrosion – crack initiation processes, and 4) modeling.

Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

2014-01-16T23:59:59.000Z

223

Chemical-vapor deposition of complex oxides: materials and process development  

SciTech Connect (OSTI)

This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) part of the Advanced Materials Laboratory (AML). The demand for higher performance and lower cost in electronics is driving the need for advanced materials and consequent process integration. Ceramic thin-film technology is becoming more important in the manufacture of microelectronic devices, photovoltaics, optoelectronics, magneto-optics, sensors, microwave, and radio frequency communication devices, and high-Tc superconducting tapes. A flexible processing approach for potential large-scale manufacturing of novel electronic ceramic thin films is desirable. Current thin- film deposition technologies based on physical vapor-deposition techniques are limited in scale potential and have limited control of processing parameters. The lack of control over multiple process parameters inhibits the versatility and reproducibility of the physical vapor deposition processes applied to complex oxides. Chemical vapor deposition is emerging as a viable approach for large- scale manufacturing of electronic materials. Specifically, the ability to control more processing parameters with chemical vapor deposition than with other processing techniques provides the reliability and material property reproducibility required by manufacturing. This project sought to investigate the chemical vapor deposition of complex oxides.

Muenchausen, R.

1996-11-01T23:59:59.000Z

224

Object-oriented process modeling for material-at-risk estimation.  

SciTech Connect (OSTI)

Nuclear analytical chemistry/materials characterization operations at Los Alamos support many programs related to national security. These operations work with a wide range of material masses (microgram to tens of grams) and several forms (metal, oxide, and liquid). We have used detailed flowsheets for the chemistry and characterization functions to construct a process model of the facility operations. The model, constructed with the commercially available package ExtendTMt,r acks material amounts and forms through the process of sample receiving through data return. The model calculates equipment utilization, throughput, and turnaroundtime, as well as the material-at-risk and source term as a function of time for facility safety analyses. We see that the source-term is highly dependent on the material holding time, as expected; thus, proper material management policies are essential to operating a facility within regulatory guidelines regarding material-at-risk. In addition, we see that segregation of operations based on the material used can be beneficial to the overall operations.

Kornreich, D. E. (Drew E.); Farman, Richard F.

2002-01-01T23:59:59.000Z

225

Microwave processing of cement and concrete materials – towards an industrial reality?  

Science Journals Connector (OSTI)

Abstract Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

Adam Buttress; Aled Jones; Sam Kingman

2015-01-01T23:59:59.000Z

226

Argonne CNM News: Batteries Get a Quick Charge with New Anode Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Get a Quick Charge with New Anode Technology Batteries Get a Quick Charge with New Anode Technology Tijana Rajh Argonne nanoscientist Tijana Rajh holds a strip of material created from titanium dioxide nanotubes. A team of researchers led by Tijana Rajh (Group Leader, Argonne Center for Nanoscale Materials NanoBio Interfaces Group), and Christopher Johnson (Argonne's Chemical Sciences & Engineering Division), working under a CNM user science project, discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. New batteries produced with this material can be recharged up to half of their original capacity in less than 30 seconds. By switching out conventional graphite anodes with titanium nanotube anodes, a surprising phenomenon occurs. As the battery cycles through

227

Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials  

SciTech Connect (OSTI)

: Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

Polsky, Yarom [ORNL] [ORNL; An, Ke [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Bingham, Philip R [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2014-01-01T23:59:59.000Z

228

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

229

Manufacturing Analysis of SOFC Interconnect Coating Processes - NexTech Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Analysis of SOFC Manufacturing Analysis of SOFC Interconnect Coating Processes- NexTech Materials Background The adoption of high-temperature metal alloys as alternatives to traditional ceramic interconnect materials provides a cost effective path for the production of solid oxide fuel cells (SOFCs). Low-cost and effective protective coatings must be developed for the metallic system and stack components for SOFCs to be economical. Since current

230

Retrofitting sacrificial anodes in the Arabian Gulf  

SciTech Connect (OSTI)

Cathodic protection (CP) systems of 15 fixed offshore platforms were analyzed. These steel template structures, off the coast of the United Arab Emirates, are in water depths between 125 and 185 ft (115 and 170 m). A systematic survey program exists to monitor the CP systems including assessment of sacrificial anode depletion, and measurement of anode and platform potentials. These data are used to design new anode retrofits for older structures to extend CP system life. An analysis of field survey measurements, the method used to evaluate new anode needs, and locations for retrofit anodes are described.

Kiefer, J.H.; Thomason, W.H.; Alansari, N.G.

1999-08-01T23:59:59.000Z

231

Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material - From Process to Performance  

SciTech Connect (OSTI)

This paper summarizes work to date on resistance spot welding (RSW) of aluminum alloy to mild steel from process development to performance evaluation. A cold-rolled strip material is introduced as a transition material to aid the resistance welding process. The optimal welding parameters and electrode selections were established using a combination of experimental and analytical approaches. The mechanical behaviors of welded samples was evaluated using static and dynamic strength tests and cyclic fatigue tests. A statistical analysis was also performed to analyze the effect of different failure modes on the sample's peak load and energy absorption.

Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.; Shao, H; Kimchi, Menachem; Menachem Kimchi and Wanda Newman

2004-05-11T23:59:59.000Z

232

Treatment of effluents arising from a material characterization laboratory, using chemical precipitation and reverse osmosis processes  

SciTech Connect (OSTI)

Owing to the restrictions imposed by the Regulations, mainly in the field of effluent release into a water body, it`s necessary to use a set of technologies that will help meeting the standards established by these regulations. Taking into account what was exposed above, a process for treating the effluents arising from a Material Characterization Laboratory, that will characterize nuclear materials is proposed in this paper. The process proposed uses chemical precipitation for removing chemicals which can be removed by this means (Chromium, Calcium and Sulfate for instance), and reverse osmosis process to purify the filtrate from precipitation process. The reverse osmosis process is used to remove dissolved chemicals (Nitrates and Chlorides). A synthetic solution with a COD of 8000 mg/l was used to simulate the treatment process. After treatment was finished, a purified stream, which represents 90 % of the intake stream have presented a COD of less then 10 mg/l, showing that this process can be utilized to minimize the impact caused to the environment. The characterization of all streams involved in the treatment process as well as the process description is presented in this paper.

Bello, S.M.G.; Mierzwa, J.C. [Cidade Universitaria, Sao Paulo (Brazil)

1995-11-01T23:59:59.000Z

233

Hybrid phosphazene anodes for energy storage applications  

SciTech Connect (OSTI)

The use of hybrid cyclic phosphazene polymer/graphite anodes, where the phosphazene serves as distributed loci for Li deposition, has been investigated. Capacity within the hybrid system was found to occur reversibly in distinct regions. At the most positive voltages, above 0.06 V vs Li/Li+, the capacity was associated mostly with Li+ intercalation into graphite. In the most negative region, deposition of Li within the polymer was the predominate mechanism. A transitional region is inferred by the data whereby bulk aggregation or clustering of Li atoms occurs in proximity to the phosphazene sites that then serve as a template for more widespread population of Li within the anode at higher voltages, akin to a nucleation process. In full cells with a mixed oxide cathode, controlling the extent of Li deposition by limiting the charging voltage to 4.45 V enabled repeated cycling with no loss in capacity. Capacities as high as 183 mAh g-1 have been achieved for systems containing as little as 10% graphite while retaining coulombic efficiencies of 98% over 50 cycles. This level of cycling equates to the deposition of 7.4 Li per cyclic phosphazene.

Eric J. Dufek; Mark L. Stone; Kevin L. Gering; Frederick F. Stewart; David Jamison; Aaron D. Wilson; Lucia M. Petkovic; Mason K. Harrup; Harry W. Rollins

2014-12-01T23:59:59.000Z

234

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

235

Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells  

Science Journals Connector (OSTI)

Abstract Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO2)/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the \\{BMFCs\\} via a direct redox reaction between permanganate ions (MnO4?) and MWCNTs. The results indicate that the MnO2/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO2 (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

Yubin Fu; Jian Yu; Yelong Zhang; Yao Meng

2014-01-01T23:59:59.000Z

236

Energy Input per Unit Length – High Accuracy Kinematic Metrology in Laser Material Processing  

Science Journals Connector (OSTI)

Laser material processes require constant energy input per unit length. Besides focal z-position, spot size, laser power and other process parameters, the relative travel speed (feed rate) of the laser spot on the work piece has the highest influence on the resulting energy input per unit length. In this paper a new metrology method is introduced, which enables users in industry and research to measure the real travel speed of the laser spot and the resulting contour of the trajectory.

Christoph Franz; Peter Abels; Raphael Rolser; Michael Becker

2011-01-01T23:59:59.000Z

237

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes  

Science Journals Connector (OSTI)

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes ... The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. ...

Zhe-Fei Li; Hangyu Zhang; Qi Liu; Yadong Liu; Lia Stanciu; Jian Xie

2014-04-04T23:59:59.000Z

238

Low Cost SiOx-Graphite and Olivine Materials  

Broader source: Energy.gov (indexed) [DOE]

Sotowa (Showa-Denko) Objective Synthesize and evaluate doped manganese phosphate as low cost cathode material Replace graphite anode with an alternative material that meets the...

239

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

240

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

242

European Aviation Safety Agency announces acceptance of NCAMP material certification process  

E-Print Network [OSTI]

developed through the FAA process described in Federal Aviation Administration Memorandum AIR100-2010 as certification data. NCAMP works with the FAA and industry partners to qualify material systems and populate 8552 Newport NCT4708 Cytec MTM45-1 Tencate TC250 (available Mar 2014) Cytec 5320-1 (available Aug

243

The new materials processing beamline at the SRS Daresbury, MPW6.2  

Science Journals Connector (OSTI)

A new facility for the study of materials processing has been designed and built on the SRS at Daresbury Laboratory. A matched pair of gas-filled wire chambers is able to provide simultaneous data for powder diffraction and small-angle scattering on a timescale of 1 s per frame.

Cernik, R.J.

2004-02-12T23:59:59.000Z

244

Twin Screw Extrusion Processing of Energetic Materials AIChE Annual Meeting  

E-Print Network [OSTI]

Twin Screw Extrusion Processing of Energetic Materials AIChE Annual Meeting San Francisco, CA, and the mathematical modeling of the thermo-mechanical history of the energetic formulations in the extruder and bulk distortions of extrudates, the formation of hot spots, the important role played

245

Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes  

E-Print Network [OSTI]

is water electrolysis at high temperatures using heat from a nuclear reactor, known as high temperatureMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis steam electrolysis (HTSE). The feasibility of this process is currently being demonstrated at Idaho

Yildiz, Bilge

246

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

247

Prospective Article Materials processing strategies for colloidal quantum dot solar cells  

E-Print Network [OSTI]

Prospective Article Materials processing strategies for colloidal quantum dot solar cells: advances and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada Kang, Toronto, Ontario M5S 3G4, Canada Address all correspondence to Edward H. Sargent at ted

248

MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MATERIALS PHYSICS AND PROCESSING (MPP) MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet 1 , V. Kiryukhin 2 , C. Lavoie 1 , C.E. Murray 1 , C.S. Nelson 3 , I.C. Noyan 4 1 IBM Research Division, 2 Rutgers University, 3 Brookhaven National Laboratory, 4 Columbia University TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * High-throughput, real-time, in-situ rapid thermal annealing (RTA) studies of structural changes in thin films, film stacks, and nanopatterned samples: * Phase transformations, texture changes, barrier failure, interfacial roughening, etc. * X-ray diffraction (XRD) and scattering techniques on solids, including thin films, stacks, nanopatterned samples, magnetic and strongly correlated systems, and bulk materials. Capability for

249

HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing  

SciTech Connect (OSTI)

This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

Wright, C.W.; Later, D.W.

1985-12-01T23:59:59.000Z

250

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

251

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

252

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Title Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Publication Type Journal Article Year of Publication 2012 Authors Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia Journal Journal of The Electrochemical Society Volume 159 Issue 5 Pagination A520 Date Published 2012 ISSN 00134651 Abstract Battery grade graphite products from major suppliers to the battery industry were evaluated in 2325 coin cells with lithium counter electrodes. First and ongoing cycle efficiency, total and reversible capacity, cycle life and discharge rate performance were measured to compare these anode materials. We then ranked the graphites using a formula which incorporates these performance measures to estimate the cost of the overall system, relative to the cost of a system using MCMB. This analysis indicates that replacing MCMB with CCP-G8 (Conoco Phillips) would add little to no cost, whereas each of the other graphites would lead to a more costly system. Therefore we chose CCP-G8 as the new baseline graphite for the BATT program.

253

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

254

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect (OSTI)

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

255

Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications  

SciTech Connect (OSTI)

A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

1998-12-01T23:59:59.000Z

256

Process development for a field emission structure  

E-Print Network [OSTI]

self-aligned process technology has been developed to fabricate field emis- sion structures using standard semiconductor fabrication procedures. Arrays of field emission diode structures incorporating silicon cathodes have been fabricated... already been fa. bricated. The aim of' this research is focused on developing a process technology to fabri- cate field emission structures incorporating a low work function cathode material. In addition, this technology must allow for adjustable anode...

Legg, James Derek

2012-06-07T23:59:59.000Z

257

Anode Sheath Switching in a Carbon Nanotube Arc Plasma  

SciTech Connect (OSTI)

The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

Abe Fetterman, Yevgeny Raitses, and Michael Keidar

2008-04-08T23:59:59.000Z

258

Developing High Capacity, Long Life Anodes  

Broader source: Energy.gov (indexed) [DOE]

long life and improved Safety for PHEV and EV applications. Objectives Develop a low cost synthesis methods to prepare high energy anodes Full structural and...

259

Experiments in anodic film effects during electrorefining of scrap U-10Mo fuels in support of modeling efforts  

SciTech Connect (OSTI)

A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling. In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.

Van Kleeck, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Willit, J.; Williamson, M.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fentiman, A.W. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

260

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

262

Toward an integrated computational system for describing the additive manufacturing process for metallic materials  

Science Journals Connector (OSTI)

Abstract The ability to simulate the thermal, mechanical, and material response in additive manufacturing offers tremendous utility for gaining a deeper understanding of the process, while also having significant practical application. The approach and progress in establishing an integrated computational system for simulating additive manufacturing of metallic components are discussed, with the primary focus directed at the computational intensive components, which include the process and material models. The ability to experimentally measure key characteristics for verification of the models is also presented and is seen as critical in the development of the integrated computational system. Two examples are also presented that utilize the current features of the analyses techniques for exploring and applying additive manufacturing technology.

Richard Martukanitz; Pan Michaleris; Todd Palmer; Tarasankar DebRoy; Zi-Kui Liu; Richard Otis; Tae Wook Heo; Long-Qing Chen

2014-01-01T23:59:59.000Z

263

Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution – Tafel and EIS investigations  

Science Journals Connector (OSTI)

The oxygen evolution kinetics and anodic layer properties of Pb/Pb–MnO2 composite anode during the 72 h galvanostatic electrolysis in H2SO4 solution were investigated with Quasi-stationary polarization (Tafel) and Electrochemical Impedance Spectroscopy (EIS) techniques. The results revealed that the anodic activity and reaction kinetics varied a lot during the electrolysis for it is a process indicating the formation and stabilization of anodic layer. At the very beginning of electrolysis, the composite anode exhibited very high oxygen evolution activity since the reaction was controlled by the transformation step of intermediates. Then, its oxygen evolution activity was largely diminished and the rate determination step (rds) became the formation and adsorption of first intermediate, S–OHads. In the prolonged electrolysis, the anodic potential gradually decreased and the final stable value was comparable to industrial Pb–Ag (1.0%) anode. On the stable anodic layer after 72 h, the oxygen evolution reaction (OER) was still controlled by the formation and adsorption of intermediate, and the adsorption resistance took a dominant part in the whole impedance. Besides, compared with Pb–Ag and Pb anode, although OER at the stable state were all controlled by the intermediate adsorption process, the adsorption resistance of Pb/Pb–MnO2 anode was much smaller than the other two due to the existence of MnO2 particles and large amount of ?-PbO2 in the stable anodic layer.

Yanqing Lai; Yuan Li; Liangxing Jiang; Wang Xu; Xiaojun Lv; Jie Li; Yexiang Liu

2012-01-01T23:59:59.000Z

264

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

SciTech Connect (OSTI)

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

265

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes  

E-Print Network [OSTI]

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes Huigang Zhang Supporting Information ABSTRACT: Silicon-based lithium ion battery anodes are attracting significant during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix

Braun, Paul

266

Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Mesoporous metal oxides such as SnO2...exhibit a superior electrochemical performance as anode materials for lithium-ion batteries due to their large surface areas and ... collapse during the charge–discharge pro...

Shuhua Jiang; Wenbo Yue; Ziqi Gao; Yu Ren; Hui Ma…

2013-05-01T23:59:59.000Z

267

Anode protection system for shutdown of solid oxide fuel cell system  

SciTech Connect (OSTI)

An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

2014-12-30T23:59:59.000Z

268

NICKEL/YTTRIA-STABILISED ZIRCONIA CERMET ANODES  

E-Print Network [OSTI]

NICKEL/YTTRIA-STABILISED ZIRCONIA CERMET ANODES FOR SOLID OXIDE FUEL CELLS Søren Primdahl #12;ii Primdahl, Søren Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells Thesis FOR SOLID OXIDE FUEL CELLS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente

269

Remote control for anode-cathode adjustment  

DOE Patents [OSTI]

An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

Roose, Lars D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

270

Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes; Summary Discussion Sessions  

SciTech Connect (OSTI)

This report is a summary of the panel discussions included with the Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme of the workshop was ''Supporting the Transition to World Class Manufacturing.'' This workshop provided a forum for an informal exchange of information between researchers in the photovoltaic and nonphotovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helped establish a knowledge base that can be used for improving device-fabrication processes to enhance solar-cell performance and reduce cell costs. It also provided an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research.

Sopori, B.; Swanson, D.; Sinton, R.; Stavola, M.; Tan, T.

1998-12-08T23:59:59.000Z

271

Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions  

SciTech Connect (OSTI)

This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ``R and D Challenges and Opportunities in Si Photovoltaics.'' This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring.

Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

1999-11-23T23:59:59.000Z

272

Materials basis for a six-level epitaxial HTS digital circuit process  

SciTech Connect (OSTI)

We have developed a process for fabrication of HTS single-flux-quantum logic circuits based on edge SNS junctions which requires six epitaxial film layers and six mask levels. The process was successfully applied to fabrication of small-scale circuits ({le} 10 junctions). This paper examines the materials properties affecting the reproducibility of YBCO-based SNS junctions, the low inductance provided by an integrated YBCO ground plane, and electrical isolation by SrTiO{sub 3} or SrAlTaO{sub 6} ground-plane and junction insulator layers. Some of the critical processing parameters identified by electrical measurements, TEM, SEM, and AFM were control of second-phase precipitates in YBCO, oxygen diffusion, Ar ion milling parameters, and preparation of surfaces for subsequent high-temperature depositions.

Talvacchio, J.; Forrester, M.G.; Hunt, B.D. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)] [and others

1996-12-31T23:59:59.000Z

273

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

274

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

275

Bifunctional Anode Catalysts for Direct Methanol Fuel Cells....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anode Catalysts for Direct Methanol Fuel Cells. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. Abstract: Using the binding energy of OH* and CO* on close-packed...

276

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...  

Broader source: Energy.gov (indexed) [DOE]

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel...

277

Interactions of nickel/zirconia solid oxide fuel cell anodes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing arsenic. Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing...

278

Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report  

SciTech Connect (OSTI)

The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

Willis, P. B.; Baum, B.; Schnitzer, H. S.

1980-07-01T23:59:59.000Z

279

Fabrication of TiO2 film with different morphologies on Ni anode and application in photoassisted water electrolysis  

Science Journals Connector (OSTI)

The anode of an alkaline electrolytic cell for water electrolysis was modified by TiO2 photocatalysts with different morphologies. The water electrolysis was coupled with photocatalytic decomposition of water by irradiation of UV light on the modified anode. And a feasible process for the hydrogen production of water electrolysis assisted by photocatalysis (WEAP) was proposed and experimentally confirmed. The results show that the highly ordered, vertically oriented tubular arrays structure on Ni anode surface has better hydrogen production performance than random TiO2. In WEAP process, the maximum rate of hydrogen production is 2.77 ml/(h*cm2) when the anode modified by ordered TiO2 nanotube arrays, compared to traditional alkaline electrolytic cell for water electrolysis with Ni anode, H2-production rate increased by 139%.

Hongbo He; Aiping Chen; Hui Lv; Haijun Dong; Ming Chang; Chunzhong Li

2013-01-01T23:59:59.000Z

280

PRODUCTION PROCESS MONITORING OF MULTILAYERED MATERIALS USING TIME-DOMAIN TERAHERTZ GAUGES  

SciTech Connect (OSTI)

The results of both a laboratory and factory trial of a time-domain terahertz (TD-THz) multi-layer gauge for on-line process monitoring are presented. The TD-THz gauge is demonstrated on a two layer laminated plastic insulation material. The TD-THz gauge simultaneously measured the total and the individual layer thicknesses. Measurements were made while transversely scanning across a 12 foot wide sheet extruded at high speed in a factory environment. The results were analyzed for precision, accuracy, and repeatability; and demonstrated that the TD-THz gauge performed in an equivalent or superior manner to existing ionizing radiation gauges (which measure only one layer). Many dielectric materials (e.g., plastic, rubber, paper, paint) are transparent to THz pulses, and the measurement of a wide range of samples is possible.

Zimdars, David; Duling, Irl; Fichter, Greg; White, Jeffrey [Picometrix LLC, 2925 Boardwalk Dr., Ann Arbor, MI 48104 (United States)

2010-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating  

SciTech Connect (OSTI)

Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850° C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800°C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

2007-10-01T23:59:59.000Z

282

Evaluating Safeguards Benefits of Process Monitoring as compared with Nuclear Material Accountancy  

SciTech Connect (OSTI)

This paper illustrates potential safeguards benefits that process monitoring (PM) may have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). This benefit is illustrated by quantifying the standard deviation associated with detecting a considered material diversion scenario using either an NMA-based method or a PM-based approach. To illustrate the benefits of PM for effective safeguards, we consider a reprocessing facility. We assume that the diversion of interest for detection manifests itself as a loss of Pu caused by abnormally operating a dissolver for an extended period to accomplish protracted diversion (or misdirection) of Pu to a retained (unconditioned) waste stream. For detecting the occurrence of this diversion (which involves anomalous operation of the dissolver), we consider two different data evaluation and integration (DEI) approaches, one based on NMA and the other based on PM. The approach based on PM does not directly do mass balance calculations, but rather monitors for the possible occurrence of anomaly patterns related to potential loss of nuclear material. It is thus assumed that the loss of a given mass amount of nuclear material can be directly associated with the execution of proliferation-driven activities that trigger the occurrence of an anomaly pattern consisting of series of events or signatures occurring at different unit operations and time instances. By effectively assessing these events over time and space, the PM-based DEI approach tries to infer whether this specific pattern of events has occurred and how many times within a given time period. To evaluate the goodness of PM, the 3 Sigma of the estimated mass loss is computed under both DEI approaches as function of the number of input batches processed. Simulation results are discussed.

Humberto Garcia; Wen-Chiao Lin; Reed Carlson

2014-07-01T23:59:59.000Z

283

The Nitrogen-Nitride Anode.  

SciTech Connect (OSTI)

Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

Delnick, Frank M.

2014-10-01T23:59:59.000Z

284

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

285

Nano-scale optical and electrical probes of materials and processes.  

SciTech Connect (OSTI)

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

Bogart, Katherine Huderle Andersen

2007-03-01T23:59:59.000Z

286

Method for Plutonium-Gallium Separation by Anodic Dissolution of a Solid Plutonium-Gallium Alloy  

SciTech Connect (OSTI)

Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu-Ga) alloy by using an electrorefining process. The solid Pu-Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu-Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500 C, resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.

Miller, William E.; Tomczuk, Zygmunt

1998-12-08T23:59:59.000Z

287

Critical Material and Process Issues for CO2 Separation from Coal-Powered Plants  

SciTech Connect (OSTI)

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration schemes. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Technically, CO2 can be separated out of a gas mixture by all the methods discussed in this work, such as distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in determining which approach is the most practical or feasible, and ultimately the most cost-efficient. Important material issues and their impacts on the process viability will be discussed.

Liu, Wei; King, David L.; Liu, Jun; Johnson , Brad R.; Wang, Yong; Yang, Zhenguo

2009-04-30T23:59:59.000Z

288

Critical material and process issues for CO{sub 2} separation from coal-powered plants  

SciTech Connect (OSTI)

Concentrating CO{sub 2} from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO{sub 2} emissions by capture and sequestration. This paper provides a short review of CO{sub 2} capture incentives, current separation processes, and research progress of various new technologies. Scientifically, CO{sub 2} can be separated from a gas mixture by all the methods reviewed in this work: distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in practical feasibility and ultimately the cost. Important material issues and their impacts to the process viability will be discussed.

Liu, W.; King, D.; Liu, J.; Johnson, B.; Wang, Y.; Yang, Z.G. [Pacific North West National Laboratory, Richland, WA (United States)

2009-04-15T23:59:59.000Z

289

Computational modelling of transport phenomena in high energy materials processing application: large eddy simulation and parallelisation  

Science Journals Connector (OSTI)

A comprehensive three-dimensional numerical model is presented in order to address the coupled turbulent momentum, heat and species transport during molten metal-pool convection in association with continuous evolution of solid-liquid interface typically encountered in high energy materials processing applications. The turbulent aspect is handled by a large eddy simulation (LES) model and the phase changing phenomena is taken care of by a modified enthalpy-porosity technique. The proposed finite volume based LES model is subsequently parallelised for effective computational economy. To demonstrate the effectiveness of the present model, a systematic analysis is subsequently carried out to simulate a typical high power laser surface alloying process, where the effects of turbulent transport can actually be realised.

Dipankar Chatterjee

2011-01-01T23:59:59.000Z

290

Determination of residual monomers resulting from the chemical polymerization process of dental materials  

SciTech Connect (OSTI)

The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials and an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.

Boboia, S. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania); Moldovan, M. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania); Ardelean, I. [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

291

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents [OSTI]

A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

1994-01-01T23:59:59.000Z

292

Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3–5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (?1300 mAh g?1 after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g?1 at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of self-assembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.

Kowsalya Palanisamy; Yunok Kim; Hansu Kim; Ji Man Kim; Won-Sub Yoon

2015-01-01T23:59:59.000Z

293

Lithium ion batteries with titania/graphene anodes  

DOE Patents [OSTI]

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

294

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect (OSTI)

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

295

Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

2011-12-11T23:59:59.000Z

296

Electrolyte electroreflectance study of the effects of anodization and of chemomechanical polish on Hg1?x Cd x Te  

Science Journals Connector (OSTI)

We havw shown that electrolyte electroreflectance (EER) can be used as a sensitive probe to study the effects of processing agents on the near surface bulk. Our results indicate that Br2/methanol may be damaging Hg?annealed materials to a depth of about 600 Angstroms depleting them in Cd and leaving their surfaces covered with a Te?rich layer. While it is possible to remove the damaged layer anodization?dissolution steps our results show that such a procedure must be terminated when the undamaged material has been reached. If it is continued the difference between the rates at which the Cd and Hg diffuse through the oxide would again deplete the interface in Cd.

A. Lastras?Martinez; U. Lee; J. Zehnder; P. M. Raccah

1982-01-01T23:59:59.000Z

297

Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability  

Science Journals Connector (OSTI)

Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability ... Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries ...

Jingshan Luo; Jilei Liu; Zhiyuan Zeng; Chi Fan Ng; Lingjie Ma; Hua Zhang; Jianyi Lin; Zexiang Shen; Hong Jin Fan

2013-11-12T23:59:59.000Z

298

Working Principle of the Hollow-Anode Plasma Source Hollow-Anode Plasma  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

36240 36240 Plasma Sources Science and Technology 4 (1995) 571-575. Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 -10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through the anode hole and forms a bright plasma jet streaming with supersonic velocity (Mach number 1.2). The plasma stream can be used, for instance, in plasma-assisted deposition of thin films

299

Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste  

Science Journals Connector (OSTI)

Abstract In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).

Muhammad Nasrullah; Pasi Vainikka; Janne Hannula; Markku Hurme; Janne Kärki

2014-01-01T23:59:59.000Z

300

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ITP Aluminum: Inert Anodes Roadmap  

Broader source: Energy.gov [DOE]

Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

302

Simultaneous calorimetric and quick-EXAFS measurements to study the crystallization process in phase-change materials  

Science Journals Connector (OSTI)

New insights into the complex crystallization process in amorphous Ge15Sb85 phase-change material are presented. The structural mechanisms leading to phase separation are analysed using simultaneous calorimetric and quick-EXAFS measurements.

Zalden, P.

2012-07-07T23:59:59.000Z

303

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect (OSTI)

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

304

Crystalline structure transformation of carbon anodes during gasification  

SciTech Connect (OSTI)

The crystalline structure transformation of five carbon anodes during gasification in air and carbon dioxide was studied using quantitative X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). XRD analysis and HRTEM observations confirmed that anodes have a highly ordered graphitic structure. The examination of partially gasified samples indicated that crystalline structure transformation occurred in two stages during gasification. The first stage involved the consumption of disorganized carbon matter in the initial 15% conversion. Oxygen was found to be more reactive toward disorganized carbon at this stage of the gasification process compared to carbon dioxide. Following this stage, as more carbon was consumed, especially with the removal of smaller crystallites, it was found that the crystalline structure became more ordered with increasing conversion levels. This is due to the merging of neighboring crystallites, required to maintain the minimum energy configuration. In addition, the interaction between the pitch and the coke components was found to be strongly linked to the initial coke structure. 'Stress graphitization' occurred at the pitch-coke interface, which helps to enhance the structural development of the anodes. 26 refs., 9 figs., 3 tabs.

Kien N. Tran; Adam J. Berkovich; Alan Tomsett; Suresh K. Bhatia [University of Queensland, St. Lucia, Qld. (Australia). Division of Chemical Engineering

2008-05-15T23:59:59.000Z

305

High frequency atmospheric cold plasma treatment system for materials surface processing  

Science Journals Connector (OSTI)

The paper presents a new laboratory-made plasma treatment system. The power source which generates the plasma is based on a modern half-bridge type inverter circuit working at a frequency of 4 MHz and giving an output power of about 200 W. The inverter is fed directly from the mains voltage and features high speed protection circuits for both over voltage and over current protection making the system light and easy to operate. The output of the inverter is connected to the resonant circuit formed by a Tesla coil and the dielectric barrier discharge plasma chamber. The plasma is generated at atmospheric pressure in argon helium or mixtures of helium and small quantities of argon. It is a cold discharge (Tgas plasma generates chemically active species especially O and OH which could be important in various applications such as the treatment and processing of materials surfaces.

Cristian D. Tudoran; Vasile Surducan; Sorin D. Anghel

2012-01-01T23:59:59.000Z

306

Processes for making dense, spherical active materials for lithium-ion cells  

DOE Patents [OSTI]

Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2011-11-22T23:59:59.000Z

307

An investigation of roller burnishing process on tool steel material using CNC lathe  

Science Journals Connector (OSTI)

This paper investigates the surface characteristics of tool steel material in the roller burnishing on CNC lathe. Burnishing is a cold working, surface finishing process in which plastic deformation of surface irregularities takes place by exerting pressure through a hard roller on a surface to generate uniform and work hardened surface. The tool and work piece materials are tungsten carbide (69 HRC) and HCHCr tool steel (35 HRC). The input parameters are burnishing force, speed, feed and the number of passes. The output parameters are surface roughness and surface hardness. The surface roughness has reduced by 127.7% and hardness has improved by 55.5%. The minimum surface roughness obtained in the operating condition of burnishing force of 900 N, feed of 0.1 mm/rev, speed of 600 rpm and fourth number of pass and the value is 0.153 ?m. The empirical model is developed for the surface characteristics and validated using Pearson product moment correlation coefficient.

M.R. Stalin John; B.K. Vinayagam

2011-01-01T23:59:59.000Z

308

E-Print Network 3.0 - advanced material processing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Illinois at Urbana-Champaign Collection: Materials Science 46 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: for GaN-on-Si chips Structural, material and...

309

Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste  

Science Journals Connector (OSTI)

Abstract This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream.

Muhammad Nasrullah; Pasi Vainikka; Janne Hannula; Markku Hurme; Janne Kärki

2014-01-01T23:59:59.000Z

310

Structural Analysis of Novel Lignin-derived Carbon Composite Anodes  

SciTech Connect (OSTI)

The development of novel lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains motivates the understanding of a relationship of the structural properties characterizing these materials, such as crystallite size, intracrystallite dspacing, crystalline volume fraction and composite density, with their pair distribution functions (PDF), obtained from both molecular dynamics simulation and neutron scattering. A model for these composite materials is developed as a function of experimentally measurable parameters and realized in fifteen composite systems, three of which directly match all parameters of their experimental counterparts. The accurate reproduction of the experimental PDFs using the model systems validates the model. The decomposition of the simulated PDFs provides an understanding of each feature in the PDF and allows for the development of a mapping between the defining characteristics of the PDF and the material properties of interest.

McNutt, Nicholas W [ORNL; Rios, Orlando [ORNL; Feygenson, Mikhail [ORNL; Proffen, Thomas E [ORNL; Keffer, David J [ORNL

2014-01-01T23:59:59.000Z

311

Conductive Anodic Filament Enhancement the Presence of a Polyglycol -Containing Flux  

E-Print Network [OSTI]

Institute of Technology Atlanta, GA 30332-0245 Under certain environmental conditions, printed wiring boards (CAF), is a result of an electrochemical corrosion process that initiates at the anode and proceeds process involves two steps [2]. The first is a physical degradation of the fibedepoxy bond

Bennett, Gisele

312

Colin Fink was a pioneer in electrochemical processing of materials. Fink is best known for his ground-breaking developments in the electro-deposi:on of metals, and par:cularly for  

E-Print Network [OSTI]

:le tungsten for incandescent lamp filaments, an insoluble anode used in the copper! ! Invented process to produce ductile tungsten for incandescent lamp filaments! ! Taught S. Ruben, who for incandescent lamp filaments! ! Taught S. Ruben, who invented alkaline baJery (Duracell Company

Columbia University

313

Tenth Workshop on Crystalline Silicon Solar Cell Materials and Processes: A Summary of Discussion Sessions  

SciTech Connect (OSTI)

The 10th Workshop on Silicon Solar Cell Materials and Processes was held in Copper Mountain, Colorado, on August 13-16, 2000. The workshop was attended by 85 scientists and engineers from 15 international photovoltaic (PV) companies and 24 research institutions. Review and poster presentations were augmented by discussion sessions to address the recent progress and critical issues in meeting the goals for Si in the PV Industry Roadmap. The theme of the workshop was Si Photovoltaics: 10 Years of Progress and Opportunities for the Future. Two special sessions were held: Advanced Metallization and Interconnections - covering recent advances in solar cell metallization, printed contacts and interconnections, and addressing new metallization schemes for low-cost cell interconnections; and Characterization Methods - addressing the growing need for process monitoring techniques in the PV industry. The following major issues emerged from the discussion sessions: (1) Mechanical breakage in the P V industry involves a large fraction, about 5%-10%, of the wafers. (2) The current use of Al screen-printed back-contacts appears to be incompatible with the PV Industry Roadmap requirements. (3) The PV manufacturers who use hydrogen passivation should incorporate the plasma-enhanced chemical vapor deposited (PECVD) nitride for antireflection coating and hydrogenation. (4) There is an imminent need to dissolve metallic precipitates to minimize the electrical shunt problem caused by the ''bad'' regions in wafers. (5) Industry needs equipment for automated, in-line monitoring and testing. There are simply not many tools available to industry. (6) In the Wrap-Up Session of the workshop, there was consensus to create four industry/university teams that would address critical research topics in crystalline silicon. (7) The workshop attendees unanimously agreed that the workshop has served well the PV community by promoting the fundamental understanding of industrial processes, forecasting critical issues and research areas, and promoting a climate of openness to facilitate growth of the industry.

Tan, T.; Swanson, D.; Sinton, R.; Sopori, B.

2001-01-22T23:59:59.000Z

314

Exploring China’s Materialization Process with Economic Transition: Analysis of Raw Material Consumption and Its Socioeconomic Drivers  

Science Journals Connector (OSTI)

Understanding the key drivers behind China’s mass consumption of raw materials is thus crucial for developing sustainable resource management and providing valuable insights into how other emerging economies may be aiming to accomplish a low resource-dependent future. ... Of these two influencing factors, urbanization is the predominant driving force behind increasing RMC, characterized by the rapid increase in urbanization-related investment, notably in the construction sector (e.g., infrastructure, real estate), and rises in urban household consumption. ... Environmental sustainability can only be achieved by timely technol. ...

Heming Wang; Xin Tian; Hiroki Tanikawa; Miao Chang; Seiji Hashimoto; Yuichi Moriguchi; Zhongwu Lu

2014-04-10T23:59:59.000Z

315

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

316

Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells  

SciTech Connect (OSTI)

During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

2001-11-05T23:59:59.000Z

317

Aerogel and xerogel composites for use as carbon anodes  

DOE Patents [OSTI]

A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2010-10-12T23:59:59.000Z

318

Pore-Scale Investigation of Mass Transport and Electrochemistry in a Solid Oxide Fuel Cell Anode  

SciTech Connect (OSTI)

The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure.

Grew, K. N.; Joshi, A. S.; Peracchio, A. A.; Chiu, W. K. S.

2010-01-01T23:59:59.000Z

319

The material and energy flow through the abrasive waterjet machining and recycling processes  

E-Print Network [OSTI]

The purpose of this thesis was to investigate the material and energy flow through the abrasive waterjet machine and the WARD recycling machine. The goal was to track all of the material, water, abrasive, energy, air, and ...

Kurd, Michael Omar, 1982-

2004-01-01T23:59:59.000Z

320

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs  

Broader source: Energy.gov [DOE]

Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

322

Nanocomposite protective coatings for battery anodes  

DOE Patents [OSTI]

Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

Lemmon, John P; Xiao, Jie; Liu, Jun

2014-01-21T23:59:59.000Z

323

Multiple pass and multiple layer friction stir welding and material enhancement processes  

DOE Patents [OSTI]

Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

Feng, Zhili (Knoxville, TN) [Knoxville, TN; David, Stan A. (Knoxville, TN) [Knoxville, TN; Frederick, David Alan (Harriman, TN) [Harriman, TN

2010-07-27T23:59:59.000Z

324

Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries  

Science Journals Connector (OSTI)

Si has been considered as a promising anode material but its practical application has been severely hindered due to poor cyclability caused by the large volume change during charge/discharge. A new and effective...

Xiaosi Zhou; An-Min Cao; Li-Jun Wan; Yu-Guo Guo

2012-12-01T23:59:59.000Z

325

A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery  

Science Journals Connector (OSTI)

Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. ...

Lingmin Yao; Xianhua Hou; Shejun Hu; Qiang Ru…

2013-07-01T23:59:59.000Z

326

Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining  

SciTech Connect (OSTI)

This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

2011-09-01T23:59:59.000Z

327

Development of High Capacity Anode for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

328

Fuel cell system shutdown with anode pressure control  

DOE Patents [OSTI]

A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

2002-01-01T23:59:59.000Z

329

Degradation Mechanisms of SOFC Anodes in Coal Gas Containing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abstract: The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both anode-supported and...

330

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents [OSTI]

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

Nellis, W.J.; Geballe, T.H.; Maple, M.B.

1990-03-13T23:59:59.000Z

331

Ethnography of Cool Roof Retrofits: The Role of Rebates in the Materials Selection Process  

E-Print Network [OSTI]

you  qualify  for  a  rebate?   Was  that  a  deciding  Retrofits: The Role of Rebates in the Materials Selectionwho   had  received  a  rebate  for  their  cool  roof  

Mazur-Stommen, Susan

2014-01-01T23:59:59.000Z

332

Biomolecular hybrid material and process for preparing same and uses for same  

DOE Patents [OSTI]

Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

Kim, Jungbae [Richland, WA

2010-11-23T23:59:59.000Z

333

Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material  

DOE Patents [OSTI]

Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

Sopori, Bhushan; Rangappan, Anikara

2014-11-25T23:59:59.000Z

334

Progress of DOE Materials, Manufacturing Process R&D, and ARRA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es098johnson2011o.pdf More Documents & Publications Progress of DOE Materials, Manufacturing...

335

Roll-to-Roll Electrode Processing and Materials NDE for Advanced...  

Energy Savers [EERE]

and Materials NDE for Advanced Lithium Secondary Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

336

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles  

E-Print Network [OSTI]

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles Norikazu Takagi@thtlab.t.u-tokyo.ac.jp Abstract During SOFC operation with typical Ni-YSZ anode, Ni is always subjected to the risk of oxidation the effect of redox cycles on anode performance has been intensively investigated, quantitative change

Kasagi, Nobuhide

337

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2003-01-01T23:59:59.000Z

338

Apparatus and method for treating a cathode material provided on a thin-film substrate  

DOE Patents [OSTI]

An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

2001-01-01T23:59:59.000Z

339

Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell  

E-Print Network [OSTI]

Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell Jeff Lillibridge Department of Mechanical & Aerospace Engineering Advisor: Mikko Haataja #12;What is a solid oxide fuel cell microstructuralcoarsening processes to electrochemical performancein solid oxide fuel cells: An integrated modeling approach

Petta, Jason

340

Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review  

Science Journals Connector (OSTI)

Abstract Sn-based materials have attracted much attention as anodes in lithium ion batteries (LIBs) due to their low cost, high theoretical capacities, and high energy density. However, their practical applications are limited by the poor cyclability originating from the huge volume changes. Graphene nanosheets (GNSs), a novel two-dimensional carbon sheet with one atom thickness and one of the thinnest materials, significantly address the challenges of Sn-based anodes as excellent buffering materials, showing great research interests in LIBs. In this review, various nanocomposites of GNSs/Sn-based anodes are summarized in detail, including binary and ternary composites. The significant impact of 2D \\{GNSs\\} on the volume change of Sn-based anodes during cycling is discussed, along with with their preparation methods, properties and enhanced LIB performance.

Yang Zhao; Xifei Li; Bo Yan; Dejun Li; Stephen Lawes; Xueliang Sun

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications  

Science Journals Connector (OSTI)

Abstract A graphene/silicon nanocomposite has been synthesized, characterized and tested as anode active material for lithium-ion batteries. A morphologically stable composite has been obtained by dispersing silicon nanoparticles in graphene oxide, previously functionalized with low-molecular weight polyacrylic acid, in eco-friendly, low-cost solvent such as ethylene glycol. The use of functionalized graphene oxide as substrate for the dispersion avoids the aggregation of silicon particles during the synthesis and decreases the detrimental effect of graphene layers re-stacking. Microwave irradiation of the suspension, inducing reduction of graphene oxide, and the following thermal annealing of the solid powder obtained by filtration, yield a graphene/silicon composite material with optimized morphology and properties. Composite anodes, prepared with high-molecular weight polyacrylic acid as green binder, exhibited high and stable reversible capacity values, of the order of 1000 mAh g?1, when cycled using vinylene carbonate as electrolyte additive. After 100 cycles at a current of 500 mA g?1, the anode showed a discharge capacity retention of about 80%. The mechanism of reversible lithium uptake is described in terms of Li–Si alloying/dealloying reaction. Comparison of the impedance responses of cells tested in electrolytes with or without vinylene carbonate confirms the beneficial effects of the additive in stabilizing the composite anode.

F. Maroni; R. Raccichini; A. Birrozzi; G. Carbonari; R. Tossici; F. Croce; R. Marassi; F. Nobili

2014-01-01T23:59:59.000Z

342

Graphene composites as anode materials in lithium-ion batteries  

Science Journals Connector (OSTI)

Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant e...

M. Mazar Atabaki; R. Kovacevic

2013-03-01T23:59:59.000Z

343

Alloys as Anode Materials in Magnesium Ion Batteries.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of the possible application of magnesium alloys forfuture magnesium-ion batteries. It investigates dierent alloys and characterizesthem with respect… (more)

Syvertsen, Alf Petter

2012-01-01T23:59:59.000Z

344

Advanced process research and development to enhance metals and materials recycling.  

SciTech Connect (OSTI)

Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

Daniels, E. J.

1997-12-05T23:59:59.000Z

345

E-Print Network 3.0 - aqueous processing material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aqueous humor. Collection and Processing of Aqueous Humor Aqueous humor... ... Source: Johnson, Mark - Biomedical Engineering Department, Northwestern University Collection:...

346

The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades  

SciTech Connect (OSTI)

Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC&A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC&A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC&A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC&A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC&A project team’s suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC&A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC&A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP’s equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

2008-10-01T23:59:59.000Z

347

Performance of Ni/ScSZ cermet anode modified by coating with Gd{sub 0.2}Ce{sub 0.8}O{sub 2} for a SOFC  

SciTech Connect (OSTI)

A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd{sub 0.2}Ce{sub 0.8}O{sub 2}) within the pores of the anode for a solid oxide fuel cell (SOFC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Open circuit voltages (OCVs) increased from 1.027 to 1.078 V, and the maximum power densities increased from 238 to 825 mW/cm{sup 2}, as the operating temperature of a SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 deg. C in humidified hydrogen. The coating of nano-sized Gd{sub 0.2}Ce{sub 0.8}O{sub 2} particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cell. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Consequently, 2.0 wt.%GDC-coated Ni/ScSZ anode could be used as a novel anode material for a SOFC due to better electrochemical performance.

Huang Bo [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)]. E-mail: huangbo2k@hotmail.com; Ye, X.F. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Wang, S.R. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Nie, H.W. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Liu, R.Z. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China); Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

2007-09-04T23:59:59.000Z

348

Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States  

SciTech Connect (OSTI)

The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

349

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1  

SciTech Connect (OSTI)

In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

350

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2  

SciTech Connect (OSTI)

In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

351

Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect (OSTI)

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

352

Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste  

SciTech Connect (OSTI)

The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kg{sub wood}{sup -1}) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

Bosmans, A., E-mail: anouk.bosmans@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium); Auweele, M. Vanden; Govaerts, J.; Helsen, L. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium)

2011-04-15T23:59:59.000Z

353

Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing  

SciTech Connect (OSTI)

This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

Young, J.K.; Fowler, R.A.

1994-05-01T23:59:59.000Z

354

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

WORK Identify suitable graphite materials for anodes that meet the requirement for low cost and long cycle life. Fabricate half cells (Ligraphite) and Li-ion (graphiteolivine)...

355

Charge–discharge characteristics of polythiopheneas a cathode active material in a rechargeable battery  

Science Journals Connector (OSTI)

Polythiophene films were electrochemically deposited on glassy carbon substrates under potentiostatic control and used as cathode active material together with a Zn anode in a...

G. C´iric´-Marjanovic´; S. Mentus

1998-01-01T23:59:59.000Z

356

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100-2009-00153p1.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Anodes for Lithium-Ion Nanostructured Anodes for Lithium-Ion Batteries at a glance  patent pending  increase energy density  longer cyclic life  replaces graphite anodes  simple and lower cost manufacturing Current carbon-based anodes are fabricated through a series of processes of mixing carbon, binder and conductive additives in organic solution, pasting the slurry on current collector and baking to remove solvent. It involves intensive labor, fire safety and environment emission control resulting in high cost. Background Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries that are reported to increase the energy density four-fold. It is

357

Vehicle Technologies Office Merit Review 2014: Process Development and Scale Up of Advanced Electrolyte Materials  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process...

358

Roll-to-Roll Electrode Processing and Materials NDE for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries In-situ characterization and diagnostics of mechanical degradation in electrodes...

359

Residual Stress Evaluation of Materials Manufactured by High-Energy Process  

Science Journals Connector (OSTI)

This paper presents several applications of the step by step hole drillling method for measuring residual stress distribution introduced in different components manufactured by the high energy process.

J. F. Flavenot; J. Lu

1990-01-01T23:59:59.000Z

360

Slope processes and strength of material in silt rich ravines in Säterdalen, Sweden.  

E-Print Network [OSTI]

?? Slope processes are important to understand if we are to protect fragile environments. Every year slope development in weak soils put nearby infrastructure in… (more)

Westrin, Pontus

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Effect of the Environment on Processing and Handling Materials at Sea [and Discussion  

Science Journals Connector (OSTI)

...August 1978 research-article Effect of the Environment on Processing...stability of the vehicle, be it ship or other floating structure...operations at depths of 2-5 km the effects of associated pressure, salinity...4 plates United Kingdom 1981 Effect of the environment on processing...

1978-01-01T23:59:59.000Z

362

Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials  

DOE Patents [OSTI]

Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

Hogan, S.J.

1983-03-13T23:59:59.000Z

363

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

364

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

365

Materials and Process Simulation Center (M/C 139-74) California Institute of Technology  

E-Print Network [OSTI]

battery EDUCATION Ph. D., Materials Science and Engineering, 1997 Institute of Metal Research, Chinese and Physical Review B, and I have had 17 oral/poster presentations at domestic and international conferences. According to Science Citation Index (SCI) these papers have been cited more than 127 times. In particular

Goddard III, William A.

366

Method and apparatus for de-watering biomass materials in a compression drying process  

DOE Patents [OSTI]

A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

Haygreen, John G. (Roseville, MN)

1986-01-01T23:59:59.000Z

367

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents [OSTI]

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

368

HIGH PURITY FERROELECTRIC MATERIALS BY SOL-GEL PROCESS FOR MICROWAVE APPLICATIONS  

E-Print Network [OSTI]

is dissolved in methanol at a concentration of 0.1 M. Titanium isopropoxide, Ti(C3H7O4), is then added is produced at room temperature and in dry nitrogen atmosphere. BTO powders can be obtained by calcining approach of producing BTO and BST ferroelectric materials presents several advantages, such as high purity

De Flaviis, Franco

369

HIGH PURITY FERROELECTRIC MATERIALS BY SOL-GEL PROCESS FOR MICROWAVE APPLICATIONS  

E-Print Network [OSTI]

in methanol at a concentration of 0.1 M titanium isopropoxide, Ti(C3H7C)4), is then added to the solution to yield a 1:1 molar ratio of barium-titanium complex alkoxide solution. This precursor is produced at room for the production of BST and PTO. This new approach of producing ferroelectric material presents several advantages

De Flaviis, Franco

370

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

SciTech Connect (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

371

Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

372

13th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers  

SciTech Connect (OSTI)

The 13th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental aspects of impurities and defects in silicon: their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. A combination of oral, poster, and discussion sessions will review recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands.

Sopori, B. L.; Rand, J.; Saitoh, T.; Sinton, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.; Al-Jassim, M.

2003-08-01T23:59:59.000Z

373

Use of a Direct Search Algorithm in the Process Design of Material ...  

E-Print Network [OSTI]

Dec 2, 2014 ... ing processes developed for conventional products (i.e. reheated slabs). .... hot air that should be introduced into the BF will be a function of the ...

Le Digabel

2014-12-02T23:59:59.000Z

374

Study of inkjet printing as additive manufacturing process for gradient polyurethane material  

Science Journals Connector (OSTI)

Reactive inkjet printing as additive manufacturing technique is evaluated for generation of gradient ... . This study does not examine the complete additive manufacturing process to build whole 3D objects but...O...

Marco Müller; Quang-Ut Huynh; Eckart Uhlmann; Manfred H. Wagner

2014-03-01T23:59:59.000Z

375

Process based cost modeling of emerging optoelectronic interconnects : implications for material platform choice  

E-Print Network [OSTI]

Continuously increasing demand for processing power, storage capacity, and I/O capacity in personal computing, data network, and display interface suggests that optical interconnects may soon supplant copper not only for ...

Liu, Shan, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

376

A demonstration of variance and covariance calculations using MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator)  

SciTech Connect (OSTI)

Good decision-making in materials accounting requires a valid calculation of control limits and detection sensitivity for facilities handling special nuclear materials (SNM). A difficult aspect of this calculation is determining the appropriate variance and covariance values for the terms in the materials balance (MB) equation. Computer software such as MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator) can efficiently select and combine variance terms. These programs determine the variance and covariance of an MB equation by first obtaining relations for the variance and covariance of each term in the MB equation through propagating instrument errors and then substituting the measured quantities and their uncertainties into these relations. MAVARIC is a custom spreadsheet used with the second release of LOTUS 1-2-3.** PROFF is a stand-alone menu-driven program requiring no commercial software. Programs such as MAVARIC and PROFF facilitate the complex calculations required to determine the detection sensitivity of an SNM facility. These programs can also be used to analyze materials accounting systems.

Barlich, G.L.; Nasseri, S.S.

1990-01-01T23:59:59.000Z

377

The r-process nucleosynthesis during the decompression of neutron star crust material  

SciTech Connect (OSTI)

About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.

Goriely, S. [Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Bauswein, A. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece and Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Janka, H.-T. [Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Sida, J.-L.; Lemaître, J.-F.; Panebianco, S. [C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette (France); Dubray, N.; Hilaire, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-05-02T23:59:59.000Z

378

Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report  

SciTech Connect (OSTI)

Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

Wilson, B.W.; Buhl, P.; Moroni, E.C.

1983-07-01T23:59:59.000Z

379

Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels  

SciTech Connect (OSTI)

Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

Hui Zhang; Raman P. Singh

2008-11-30T23:59:59.000Z

380

Creep rupture behavior of candidate materials for nuclear process heat applications  

SciTech Connect (OSTI)

Creep and stress rupture properties are determined for the candidate materials to be used in hightemperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of about20000 h. The medium creep strengths of the alloys Inconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that Inconel-617 has the best creep rupture properties in the temperature range above 800/sup 0/C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored.

Schubert, F.; te Heesen, E.; Bruch, U.; Cook, R.; Diehl, H.; Ennis, P.J.; Jakobeit, W.; Penkalla, H.J.; Ullrich, G.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process for introducing electrical conductivity into high-temperature polymeric materials  

DOE Patents [OSTI]

High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.Ag.degree.+RCOOH and R.sub.3 M.fwdarw.M.degree.+3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.

Liepins, Raimond (Los Alamos, NM); Jorgensen, Betty S. (Jemez Springs, NM); Liepins, Leila Z. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

382

The insert of zinc oxide thin film in indium tin oxide anode for organic electroluminescence devices q  

E-Print Network [OSTI]

structure including a trans- parent anode, an organic active layer, and a metallic cathode. It has recently zinc oxide films have been actively investigated as alternate materials to ITO because zinc oxide consisted of Al as a cathode, Al2O3 as an electro transport layer, Alq3 as a luminously layer, TPD as a hole

Boo, Jin-Hyo

383

CORROSION STUDY OF REPLACEMENT MATERIALS FOR HAZARDOUS LOW LEVEL WASTE PROCESSING TANKS  

SciTech Connect (OSTI)

New waste tanks are to be constructed in H-area to store hazardous low level wastes. AISI Type 304L (304L) stainless steel was recommended as a suitable material of construction for these tanks. Cyclic polarization and coupon tests were performed to evaluate the corrosion resistance of 304L over a wide range of waste tank environments. The results of both tests indicated that 304L was not susceptible to attack under any of these conditions. Comparison tests were also performed with ASTM A537 carbon steel (A537) and Incoloy 825. The carbon steel corroded severely in some of the environments, while Incoloy 825 did not corrode. These tests, along with those for 304L, verified the correlation between cyclic polarization and coupon tests. Electrochemical Impedance Spectroscopy (EIS) was performed to monitor the breakdown of the protective oxide film on the surface of the material as a function of time and temperature. These results also correlated with those from the cyclic polarization and coupon tests.

Wiersma, B.; Mickalonis, J.

1991-03-28T23:59:59.000Z

384

Materials technology for coal-conversion processes. Progress report, April-June 1981  

SciTech Connect (OSTI)

Materials research activities have included work in the areas of coal-slag/refractory interactions, ultrasonic erosion monitoring of metals, fluid acoustics, high-temperature gaseous corrosion of metal alloys, and failure analysis. Work on coal-slag/refractory interaction has included the design of a gas-fired rotating-drum dynamic-slag corrosion test furnace. Field tests on the high-pressure loop (1 1/4-in. 321 SS piping) at the Solvent Refined Coal Liquefaction Pilot Plant were terminated because of excessive erosive wear (1.27 mm lost). Longitudinal and shear-wave velocity measurements from room temperature to 540/sup 0/C were obtained on Types 304, 304L, 316, 347, and 410 stainless steels, Fe-2 1/4Cr-1Mo steel, Stellite 6B, Haynes metal, cold-rolled steel, and cast stainless steel. Work on the fluid-acoustic test loop included changing all seals at the flange joints and calibrating the volumetric flowmeter by using an ASME orifice plate installed in the test section. Agreement within 10% was achieved. The loop has now been cycled several dozen times over a wide range of flow rates. Corrosion experiments have been conducted to evaluate the influence of combustion gas stoichiometry and deposits, such as CaSO/sub 4/, on the corrosion behavior of materials for use as air and steam heat-exchanger tubes. Analyses of failed components from the Grand Forks Energy Technology Center's Slagging Coal-gasification Pilot Plant have been completed.

Not Available

1981-09-01T23:59:59.000Z

385

Cooling for a rotating anode X-ray tube  

DOE Patents [OSTI]

A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

Smither, Robert K. (Hinsdale, IL)

1998-01-01T23:59:59.000Z

386

NETL SOFC: Anode-Electrolyte-Cathode (AEC) Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Plan Project Portfolio Project Information Systems Analysis Publications Anode-Electrolyte-Cathode (AEC) Development-This key technology focuses on improving...

387

Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

388

Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed  

DOE Patents [OSTI]

An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

Fant, B. T. (Kingwood, TX); Miller, John D. (Baytown, TX); Ryan, D. F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

389

Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed  

SciTech Connect (OSTI)

An improved process is disclosed for the liquefaction of solid carbonaceous materials. A solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material. The solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

Fant, B.; Miller, J.D.; Ryan, D.F.

1982-01-19T23:59:59.000Z

390

Materials processing issues for non-destructive laser gas sampling (NDLGS)  

SciTech Connect (OSTI)

The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of the crimp using the electro-spark deposition (ESD) process followed by laser mixing, drilling and rewelding. Results of a study of the ESD parameters on deposition rate and efficiency will be discussed along with mass balance calculations for determining the desired Cr content to eliminate cracking. The study also required purchase of new pulsed Nd:YAG laser welders. Evaluation of the performance of the new lasers, including beam profiling results, will also be presented. Development of a mixing, drilling and re-welding process at atmospheric pressure with inert gas shielding demonstrated the efficacy of the Cr-augmentation approach. However, extending the process to vacuum conditions proved more challenging owing to loss of laser transmission through the window from spatter and condensation of metal vapors. Solutions developed to circumvent hese issues will be reviewed. Weld microstructures found with various Cr levels will be presented and discussed.

Lienert, Thomas J [Los Alamos National Laboratory

2010-12-09T23:59:59.000Z

391

Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers  

SciTech Connect (OSTI)

The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

NONE

1998-08-01T23:59:59.000Z

392

Silicon dendritic web material process development. First quarterly report, March 28-June 30, 1980  

SciTech Connect (OSTI)

Initial values of pressure, power, and speed have been determined for seam bonding interconnects to dendritic web solar cells. Satisfactory bond strengths and high yield have been achieved without cell damage. However, in case of processing large numbers of cells for module fabrication, further testing is required to assure reproducibility of this technique. Various techniques have been developed for fabricating solar modules by lamination using ethylene vinyl acetate with a glass superstrate, and no cell breakage has been noted.

Campbell, R. B.; Stapleton, R. E.; Sienkiewicz, L.; Rai-Choudhury, P.

1980-01-01T23:59:59.000Z

393

Corrosion evaluation of the PNS CITROX process for chemical decontamination of BWR structural materials  

SciTech Connect (OSTI)

The effects of PNS Citrox decontamination on the corrosion and intergranular stress corrosion cracking (IGSCC) of sensitized Type 304 stainless steel and Alloy 600 were assessed. Evaluations involved decontaminated surface morphology examination, as well as constant extension rate tensile (CERT) testing in BWR water. Quenched and tempered low alloy steel was also included for evaluation of general corrosion. The Pacific Nuclear Services (PNS) Citrox decontamination included laboratory one- and three-step processes as well as an in-plant three- step Citrox process applied at the Vermont Yankee Power Plant. For the laboratory Citrox decontamination, intergranular attack (IGA) up to 3.2 mils in depth was observed in the sensitized Type 304 stainless steel. No IGA occurred in the laboratory decontaminated Alloy 600. On the other hand, no IGA was found in sensitized Type 304 stainless steel for the in-plant Citrox decontamination, but shallow and extremely narrow IGA was observed in the Alloy 600. Results of CERT stress corrosion cracking tests indicated that sensitized Type 304 stainless steel exposed to the three-step laboratory Citrox decontamination suffered degradation of IGSCC resistance. However, no degradation of IGSCC resistance was observed for the steel exposed to the one-step laboratory process or to PNS Citrox decontamination at the Vermont Yankee Plant. Moderate general corrosion in the range of one to three mils per decontamination cycle was observed in quenched and tempered low alloy steel. However, very low general corrosion was found in sensitized Type 304 stainless steel and Alloy 600.

Wang, M.T.

1986-08-01T23:59:59.000Z

394

Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material  

SciTech Connect (OSTI)

A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tablets of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.

van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.; Hufton, J.R.; van den Brink, R.W. [Energy research Center of the Netherlands, Petten (Netherlands)

2009-05-15T23:59:59.000Z

395

Corrosion and degradation of test materials in the Westinghouse 15 ton/day Coal Gasification Process Development Unit  

SciTech Connect (OSTI)

Two periods of in-plant exposures of candidate materials in the Westinghouse PDU have been completed. Coupons were exposed in the gasifier, hot-gas cyclone, quench scrubber, and gas cooler vessels. Corrosion monitoring of test materials is currently being conducted in the Westinghouse Coal Gasification Process Development Unit (PDU) coal gasification pilot plant. The corrosion data presented are from work during 1981 through 1984. During these two exposure periods, several coals ranging from lignites to bituminous coals and two petroleum cokes were gasified in the steam-oxygen mode. Fouling was observed on most corrosion racks. The effect of this process-related material was to promote corrosion. In the gasifier environment, alloys 6B, IN 671, and 18SR were the best performing alloys. Nickel-base alloys with Ni/Cr ratios >1.5, namely IN-617, IN-825, and alloy X, incurred severe corrosion attack in both exposures. Other alloys, although generally acceptable in corrosion performance, were not immune to solids-induced corrosion around coupon mounting holes. Several refractories such as Brickram 90, Harbison-Walker Ruby, and Chemal 85B showed little degradation in both gasifier exposures. Nitride bonded silicon carbon Refrax 20 had the greatest reduction in abrasion resistance as well as other properties. Single-phase structural ceramics including siliconized SiC, sintered ..cap alpha..-SiC, and Al/sub 2/O/sub 3/ did not suffer any noticeable damage. Materials evaluation in the hot-gas cyclone showed IN-671 and 26-1 to be more resistant than Type 310 and Type 310 aluminized. 18 refs., 23 figs., 24 tabs.

Yurkewycz, R.

1985-01-31T23:59:59.000Z

396

Bases and Basic Materials in Industrial and Environmental Chemistry: A Review of Commercial Processes  

Science Journals Connector (OSTI)

Solid bases include basic clays, alkaline-earth oxides, alkali metals containing oxides and zeolites, synthetic hydrotalcites, rare-earth oxides and mixed oxides, impregnated carbons, and supported alkali metals. ... Among the most common is the so-called hot-potassium carbonate (HP) process, which is largely used to recover CO2 and sometimes also H2S from different gases such as syngas in ammonia plants, ethylene oxide facilities, and natural gas cleaning plants. ... (106) To this end, magnesia-based bricks are mostly used, because of their availability, high melting temperature (2825 °C), and moderate reactivity. ...

Guido Busca

2009-06-10T23:59:59.000Z

397

Processing and analysis of polycrystalline thin-film solar cells made from uniform single phase materials  

SciTech Connect (OSTI)

This paper presents processes for producing uniform single phase polycrystalline films of Cu(InGa)Se{sub 2} and CdTe and the analysis of the resulting films and solar cell devices. The first two sections discuss Cu(InGa)Se{sub 2} cells prepared by the selenization of Cu-In-Ga films and of elemental evaporation. The third section describes a CdCl{sub 2} vapor treatment of CdTe that results in uniform large grain films with reduced {ital S} diffusion and reproducible performance. {copyright} {ital 1996 American Institute of Physics.}

Birkmire, R.W.; Hichri, H.; Klenk, R.; Marudachalam, M.; McCandless, B.E.; Phillips, J.E.; Schultz, J.M.; Shafarman, W.N. [Institute of Energy Conversion, Department of Energy, University Center of Excellence for Photovoltaic, Research and Education (National Renewable Energy Laboratory), University of Delaware, Newark, Delaware 19716 (United States)

1996-01-01T23:59:59.000Z

398

Development of High Capacity Anode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon...

399

Anodic CaO-TiO2 nanotubes composite film for low temperature CO2 adsorption  

Science Journals Connector (OSTI)

A novel one-dimensional anodic CaO-TiO2 nanotubes composite film was prepared using a rapid-anodic oxidation electrochemical anodization technique for low temperature CO2 absorption application. This study aims to determine the ...

Chin Wei Lai

2014-01-01T23:59:59.000Z

400

E-Print Network 3.0 - anode current response Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as is shown below. Influence of anode... . 3a, the cell with the CDM anode has a lower methanol cross- over current density than the CCM anode... , owing to the thicker CDM...

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings  

DOE Patents [OSTI]

Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

Ellingson, William A. (Naperville, IL); Forster, George A. (Westmont, IL)

1999-11-02T23:59:59.000Z

402

ESS 2012 Peer Review - Next Generation Processes for Carbonate Electrolytes for Battery Applications - Kris Rangan, Materials Modification  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Processes for Carbonate Electrolytes for Battery Applications Next Generation Processes for Carbonate Electrolytes for Battery Applications Dr. Kausik Mukhopadhyay & Dr. Krishnaswamy K. Rangan Materials Modification, Inc. 2809-K Merrilee Drive, Fairfax. VA 22031 ABSTRACT  Dimethyl Carbonate (DMC) is a promising electrolyte solvent for lithium battery applications due to its inherent safety and robustness. Despite the enormous promise of its industrial use, this chemical is currently entirely imported from China. The global battery market is about US$ 50 billion, of which approximately $ 5.5 billion is captured by the rechargeable batteries for use in electric vehicles, laptops, consumer electronics, rechargeable batteries etc.  Indigenous manufacture of DMC will enormously benefit not only the American lithium battery industry

403

Engineering porous materials for fuel cell applications  

Science Journals Connector (OSTI)

...conducting material that is situated...anode and cathode in a PEMFC...delivery to the active catalyst...upon the material choice...1000-1200C for cathode sintering...fine grained active composite...showing the cathode, electrolyte...composed of an active catalyst...layers. material SIGRACET...

2006-01-01T23:59:59.000Z

404

Thermal Cyclability of Reactive Air Braze Seals in Anode Supported Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

The popularity of anode-supported solid oxide fuel cells (SOFC) has increased in tandem with the ability to fabricate thinner gas-tight yttrium-stabilized zirconia (YSZ) electrolyte layers, which can now be routinely produced on the order of 7 to 10 ?m thick. While this has significantly improved power output and decreased the required fuel cell operating temperatures, the ability to reliably seal fuel cells remains a concern. The seals must be hermetic and be robust enough to retain their hermeticity even under the extreme operating conditions of SOFCs. Perhaps the largest contributor to stresses experienced by the seal is the fact that the SOFC is an assembly of many different materials with different thermal expansion properties. Although every effort is made to minimize thermal expansion mismatches across the seals, the stresses developed during thermal cycling still jeopardize seal integrity. Reactive air brazing (RAB), a method of joining that employs a metallic, and therefore non-brittle, seal material has been used to seal electrolyte/anode bilayers, such as those in anode-supported SOFCs, to Crofer-22 alloy. The results of rupture strength testing will be reported for as-brazed and thermally cycled samples and the effect of thermal cycling on the RAB seal microstructure will be shown

Hardy, John S.; Darsell, Jens T.; Coyle, Christopher A.; Birnbaum, Jerome C.; Weil, K. Scott

2004-12-31T23:59:59.000Z

405

Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts  

DOE Patents [OSTI]

The present invention discloses a process for forming a catalyst for the hydrodenitrogenation of an organic feedstock, which includes (a) obtaining a precatalyst comprising cobalt and molybdenum or nickel and molybdenum; (b) adding in a non-oxidizing an atmosphere selected from hydrogen, helium, nitrogen, neon, argon, carbon monoxide or mixtures thereof to the precatalyst of step (a), a transition met ORIGIN OF THE INVENTION This invention was made in the course of research partially sponsored by the Department of Energy through grants DE-FG22-83P C60781 and DE-FG-85-PC80906, and partially supported by grant CHE82-19541 of the National Science Foundation. The invention is subject to Public Law 96-517 (and amendments), and the United States Government has rights in the present invention.

Laine, Richard M. (Palo Alto, CA); Hirschon, Albert S. (Menlo Park, CA); Wilson, Jr., Robert B. (Mountain View, CA)

1987-01-01T23:59:59.000Z

406

Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode  

E-Print Network [OSTI]

Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode Effect of Humidity and Temperature Hydrogen peroxide H2O2 formation rates in a proton exchange membrane fuel cell PEMFC anode and cathode were catalyst onto the disk and by varying the temperature, dissolved O2 concentration, and the acidity levels

Weidner, John W.

407

The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb M ssbauer spectroscopies  

SciTech Connect (OSTI)

The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb M ssbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na3Sb. The reversible reaction takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na3Sb crystalline phase at full discharge at higher temperatures (65 and 95 C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn (121Sb) M ssbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.

Baggetto, Loic [ORNL; Hah, Hien-Yoong [University of Tennessee (UT) Space Institute; Jumas, Dr. Jean-Claude [Institut Charles Gerhardt, University of Montpellier II, FRANCE; Johnson, Prof. Dr. Charles E. [University of Tennessee (UT) Space Institute; Johnson, Jackie A. [University of Tennessee (UT) Space Institute; Keum, Jong Kahk [ORNL; Bridges, Craig A [ORNL; Veith, Gabriel M [ORNL

2014-01-01T23:59:59.000Z

408

14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions  

SciTech Connect (OSTI)

The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

2004-10-01T23:59:59.000Z

409

12th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Summary Discussion Sessions  

SciTech Connect (OSTI)

This report is a summary of the discussion sessions of the 12th Workshop on Crystalline Silicon Solar Cells and Processes. The theme of the workshop was"Fundamental R&D in c-Si: Enabling Progress in Solar-Electric Technology." This theme was chosen to reflect a concern that the current expansion in the PV energy production may redirect basic research efforts to production-oriented issues. The PV industry is installing added production capacity and new production lines that include the latest technologies. Once the technologies are selected, it is difficult to make changes. Consequently, a large expansion can stagnate the technologies and diminish interest in fundamental research. To prevent the fundamental R&D program from being overwhelmed by the desire to address immediate engineering issues, there is a need to establish topics of fundamental nature that can be pursued by the universities and the research institutions. Hence, one of the objectives of the workshop was to identify such areas for fundamental research.

Sopori, B.; Swanson, D.; Sinton, R.; Tan, T.

2003-02-01T23:59:59.000Z

410

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

411

Virtual cathode microwave generator having annular anode slit  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

Kwan, Thomas J. T. (Los Alamos, NM); Snell, Charles M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

412

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

413

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

414

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

415

PASREG 2005: The 5th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials  

Science Journals Connector (OSTI)

Large grain, (RE)BCO bulk superconductors fabricated by top-seeded melt growth (TSMG) have outstanding potential for a variety of engineering applications such as magnetic separators, flywheel energy storage, magnetic bearings and permanent magnet-like devices due to their ability to generate large magnetic fields. Recent developments in materials and systems research has led to the manufacture of proto-type devices for use in magnetron sputtering, magnetic stirrers and a mobile magnetic separator based on bulk materials technology. This issue contains selected papers presented at the 5th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials held on 21–23 October 2005 at Tokyo Marine University to report progress made in this field over the previous two years. The workshop followed those held previously in Cambridge, UK (1997), Morioka, Japan (1999), Seattle, USA (2001), and Jena, Germany (2003). A total of 76 papers were presented at this workshop, of which 27 were presented in oral form and 49 were presented as posters. This issue contains a total of 36 selected papers in the following categories of bulk (RE)BCO large grain material: processing, characterization, and applications. The editors are grateful for the support of many colleagues both within and outside the immediate bulk community who reviewed the manuscripts to guarantee their high technical quality. Finally, the attendees wish to acknowledge the efforts of Professor Mitsuru Izumi and his research staff from Tokyo Marine University for being generous hosts during the workshop, and the efforts of Professor Masato Murakami for the overall organization of the meeting. The International PASREG Board selected the following distinguished researchers as recipients of the 2005 PASREG Award of Excellence to acknowledge their contribution to the development of bulk high temperature superconductors: • Dr Michael Strasik (Boeing, Seattle, USA) • Dr Hiroshi Ikuta (Nagoya University, Japan) • Dr Pavel Diko (Institute for Experimental Physics, Kosice, Slovakia) The poster presentation awards were bestowed to: • S Haindl, F Hengstberger, H W Weber, L Shlyk, G Krabbes, N Hari Babu, D A Cardwell `Characterization of Melt Grown Bulk Superconductors by the Magnetoscan Technique' • K Zmorayova, M Sefeiiova, P Diko, H W Weber, G Krabbes `Quantitative Characterization of Oxygenation Cracks in TSMG YBCO Bulks' • I Ohtani, H Matsuzaki, Y Kimura, E Morita, M Izumi, T Ida, M Miki, M Kitano `Pulse-Field Magnetization of Bulk HTS in Twinned Rotor Assembly for Axial-type Machines' The 6th PASREG Workshop will be held in Houston, USA, in the summer of 2007.

Masato Murakami, David Cardwell, Kamel Salama and Mitsuru Izumi

2006-01-01T23:59:59.000Z

416

Surface roughness of anodized titanium coatings.  

SciTech Connect (OSTI)

Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

Dugger, Michael Thomas; Chinn, Douglas Alan

2010-10-01T23:59:59.000Z

417

Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

2009-01-07T23:59:59.000Z

418

Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing  

SciTech Connect (OSTI)

This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

Later, D.W.

1985-01-01T23:59:59.000Z

419

Corrosion rate and anodic dissolution behavior of a B2-iron aluminide alloy in sulfuric acid  

SciTech Connect (OSTI)

An electrochemical investigation was conducted to evaluate the corrosion behavior of an iron aluminide (B2-FeAl) alloy (with 24 wt% Al) in sulfuric acid (H{sub 2}SO{sub 3}) under potentiodynamic polarization conditions. Corrosion rates were determined using the polarization resistance (R{sub p}) technique, in which simultaneous computations of the Tafel slopes were obtained by a curve-fitting procedure. The corrosion rate of B2-FeAl was comparable to high-purity iron at the beginning of immersion but increased noticeably with time, showing significantly diminished corrosion resistance after several hours of immersion. At small anodic overpotentials, the polarization curve showed an active dissolution region, with the anodic current dependent upon potential and pH, which suggested an anodic process under iron dissolution control. Active corrosion of B2-FeAl was believed to follow an initial selective dissolution of the aluminum constituent. The rate-determining step of the process was the charge-transfer reaction of iron, similar to that for iron-chromium alloys. However, a significant difference between aluminum and chromium existed in the poorer performance of aluminum as an alloying element in inhibiting active dissolution of iron-based alloys.

Frangini, S. [ENEA Centro Ricerche Energie, Rome (Italy). Div. Nuovi Materiali

1999-01-01T23:59:59.000Z

420

Designer carbons as potential anodes for lithium secondary batteries  

SciTech Connect (OSTI)

Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Special issue to “ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore”  

Science Journals Connector (OSTI)

The Symposium F on “Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells” provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada…

2010-10-01T23:59:59.000Z

422

THE EFFECT OF SEGMENTED ANODES ON THE PERFORMANCE AND PLUME OF A HALL THRUSTER  

E-Print Network [OSTI]

THE EFFECT OF SEGMENTED ANODES ON THE PERFORMANCE AND PLUME OF A HALL THRUSTER By: ALEXANDER W electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation

King, Lyon B.

423

Experimental studies of anode sheath phenomena in a Hall thruster discharge  

E-Print Network [OSTI]

Experimental studies of anode sheath phenomena in a Hall thruster discharge L. Dorf,a Y. Raitses-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified

424

Tubular alumina formed by anodization in the meniscal region S. K. Lazarouk,1,a  

E-Print Network [OSTI]

Tubular alumina formed by anodization in the meniscal region S. K. Lazarouk,1,a D. A. Sasinovich,1 by anodization of aluminum at current densities up to 1400 mA/cm2 and anodization rates up to 70 m/min has been developed. It implies anodization in the meniscal region of the sample dipping into an electrolyte

425

FIB-SEM investigation of trapped intermetallic particles in anodic oxide films  

E-Print Network [OSTI]

FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach ­ The morphology and composition of Fe-containing intermetallic particles incorporated into the anodic oxide films

Dunin-Borkowski, Rafal E.

426

Effect of anode dielectric coating on Hall thruster operation Y. Raitses, and N. J. Fisch  

E-Print Network [OSTI]

Effect of anode dielectric coating on Hall thruster operation L. Dorf,a) Y. Raitses, and N. J phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal

427

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

428

Novel Lithium Ion Anode Structures: Overview of New DOE BATT...  

Broader source: Energy.gov (indexed) [DOE]

University 200,000 Synthesis and Characterization of Polymer-Coated Layered SiO x -Graphene Nanocomposite Anodes J-G Zhang and J. Liu Pacific Northwest National Laboratory...

429

New Composite Silicon-Defect Graphene Anode Architecture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Composite Silicon-Defect Graphene Anode Architecture for High Capacity, High-Rate Li-ion Batteries Xin Zhao, Cary Hayner, Mayfair Kung, and Harold Kung, Northwestern...

430

Breakdown Anodization (BDA) for hierarchical structures of titanium oxide  

E-Print Network [OSTI]

Breakdown Anodization (BDA) of titanium dioxide is a very promising, fast fabrication method to construct micro-scale and nano-scale structures on titanium surfaces. This method uses environmentally friendly electrolytes, ...

Choi, Soon Ju, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

431

Battery Anodes > Batteries & Fuel Cells > Research > The Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all acceptable and even preferable when compared to lithium metal anode for practical cells. An important evidence for this is the commercial availability of LiCoO2carbon cells...

432

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, E.

1984-04-10T23:59:59.000Z

433

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, Eugene (Coram, NY)

1985-01-01T23:59:59.000Z

434

34 JOM May 2001 Inert Anodes  

E-Print Network [OSTI]

on three materials classes: ceramics, cermets, and metals. CERAMICS For resistance to chemical attack of aluminum production. Research is continuing on materials that would best serve that purpose. Results of studies on three possible materials are pre- sented in this paper: ceramics, cermets, and metals

Sadoway, Donald Robert

435

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect (OSTI)

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

436

Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs  

SciTech Connect (OSTI)

The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

2005-09-01T23:59:59.000Z

437

Effect of Natural Gas Fuel Addition on the Oxidation of Fuel Cell Anode Gas  

SciTech Connect (OSTI)

The anode exhaust gas from a fuel cell commonly has a fuel energy density between 15 and 25% that of the fuel supply, due to the incomplete oxidation of the input fuel. This exhaust gas is subsequently oxidized (catalytically or non-catalytically), and the resultant thermal energy is often used elsewhere in the fuel cell process. Alternatively, additional fuel can be added to this stream to enhance the oxidation of the stream, for improved thermal control of the power plant, or to adjust the temperature of the exhaust gas as may be required in other specialty co-generation applications. Regardless of the application, the cost of a fuel cell system can be reduced if the exhaust gas oxidation can be accomplished through direct gas phase oxidation, rather than the usual catalytic oxidation approach. Before gas phase oxidation can be relied upon however, combustor design requirements need to be understood. The work reported here examines the issue of fuel addition, primarily as related to molten-carbonate fuel cell technology. It is shown experimentally that without proper combustor design, the addition of natural gas can readily quench the anode gas oxidation. The Chemkin software routines were used to resolve the mechanisms controlling the chemical quenching. It is found that addition of natural gas to the anode exhaust increases the amount of CH3 radicals, which reduces the concentration of H and O radicals and results in decreased rates of overall fuel oxidation.

Randall S. Gemmen; Edward H. Robey, Jr.

1999-11-01T23:59:59.000Z

438

Coke–pitch interactions during anode preparation  

Science Journals Connector (OSTI)

Abstract The information on the interactions between coke and pitch is of great value for the aluminum industry. This information can help choose the suitable coke and pitch pairs as well as the appropriate mixing parameters to be used during the production of anodes. In this study, the interaction mechanisms of pitch and coke at the mixing stage were studied by a sessile-drop test using two coal-tar pitches as the liquid and three petroleum cokes as the substrate. The results showed that the coke–pitch interactions are related to both pitch and coke chemical compositions. The contact angle of different coke–pitch systems decreased with increasing time and temperature. At high temperatures, decreasing the pitch viscosity facilitated the spreading of pitch and its penetration into the coke bed. The chemical behavior of petroleum cokes and coal tar pitches were studied using the FT-IR spectroscopy and XPS. The results showed that the wettability behavior of cokes by pitches depends on their physical properties as well as the presence of surface functional groups of coke and pitch which can form chemical bonds.

Arunima Sarkar; Duygu Kocaefe; Yasar Kocaefe; Dilip Sarkar; Dipankar Bhattacharyay; Brigitte Morais; Jérôme Chabot

2014-01-01T23:59:59.000Z

439

Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films  

Science Journals Connector (OSTI)

Abstract As one of the most promising anode materials in lithium-ion batteries (LIBs), SnO2 attracts wide research attention. The practical application of SnO2 anodes, however, is mainly hampered by huge volume variation during cycling and large initial irreversible capacity. In this paper, three-dimensional porous SnO2-Fe2O3 composite films have been fabricated using the electrostatic spray deposition technique. As an anode for LIBs, the hierarchical porous SnO2-Fe2O3 film possesses a high reversible capacity (1034.1 mAh g-1) and a high initial Coulombic efficiency of 82.9% at a current density of 0.2 A g-1. At the same time, it shows good capacity retention with a capacity of 1025.6 mAh g-1 after 240 cycles and excellent rate performance. The enhanced lithium storage performance should be attributed to the synergistic effect between SnO2 and Fe2O3, as well as the three-dimensional hierarchical porous structure. The results demonstrate that such a three-dimensional porous composite anode shows great potential for application in high-energy lithium-ion batteries.

Tianzhi Yuan; Yinzhu Jiang; Yong Li; Dan Zhang; Mi Yan

2014-01-01T23:59:59.000Z

440

Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls  

SciTech Connect (OSTI)

Highlights: ? Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ? Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ? Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China)] [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China)] [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

SciTech Connect (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

442

A decision analysis method for selection of waste minimization process options for TRU mixed material at Rocky Flats  

SciTech Connect (OSTI)

When plutonium production operations were halted at the Rocky Flats Plant, there remained a volume of material that was retained in order that its plutonium content could be reclaimed. This material, known as residue, is transuranic and mixed transuranic material with a plutonium content above what was called the ``economic discard limit,`` or EDL. The EDL was defined in terms of each type of residue material, and each type of material is given an Item Description Code, or IDC. Residue IDCs have been grouped into general category descriptions which include plutonium (Pu) nitrate solutions, Pu chloride solutions, salts, ash, metal, filters, combustibles, graphite, crucibles, glass, resins, gloves, firebrick, and sludges. Similar material exists both below and above the EDL, with material with the (previous) economic potential for reclamation of plutonium classified as residue.

Williams, R.E.; Dustin, D.F.

1994-02-01T23:59:59.000Z

443

Composite Electrolyte to Stabilize Metallic Lithium Anodes  

Broader source: Energy.gov (indexed) [DOE]

- Develop composites of electrolyte materials with requisite electrochemical and mechanical properties - Fabricate thin membranes to provide good power performance and long...

444

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

445

Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working Principle of the Hollow-Anode Plasma Source Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Abstract The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 - 10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through

446

Stabilization of Photoluminescence of Porous Silicon with Nonaqueous Anodic Oxidation  

Science Journals Connector (OSTI)

In order to prevent the reduction of photoluminescence from porous silicon, we tried to form stable Si–O bonds by anodization in nonaqueous electrolyte at room temperature. Extremely strong, stable, and blue-shifted photoluminescence was obtained in porous silicon that was prepared in 1:1 solution of 49% HF and EtOH and subsequently anodized in KNO3-ethylene glycol electrolytes. The optimum condition was anodization at 20 mA cm-2 for 5 min in 0.02 M KNO3-ethylene glycol. For the formation of Si–O bonds on nanostructured surfaces, it is suggested that the electric field across the surface/electrolyte plays an important role because oxidation becomes more effective when the electrolyte is more resistive. Si–OH, which is formed as a precursor at subsequent anodization, stabilizes the nanostructured surface, converting itself to more stable Si–O bond with photoexcitation. The high current density introduced destroys nanostructured silicon by clustering with surrounding SiO2. With this clustering, wall sizes of the nanostructured silicon remain constant with anodization.

Michiko Shimura; Minoru Katsuma; Tsugunori Okumura

1996-01-01T23:59:59.000Z

447

Plastic is one of the most versatile materials available. It is cheap, flexible and easy to process, and as a result  

E-Print Network [OSTI]

Plastic is one of the most versatile materials available. It is cheap, flexible and easy to process- cations is as an insulating coating for electric wires; indeed, plastic is well known for its insulating of plastics was discovered that displayed exactly the opposite beha- viour ­ the ability to conduct

Andelman, David

448

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

449

The possibility of forming a sacrificial anode coating for Mg  

SciTech Connect (OSTI)

Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

Dudney, Nancy J [ORNL; Li, Juchuan [Oak Ridge National Laboratory (ORNL); Sacci, Robert L [ORNL; Thomson, Jeffery K [ORNL

2014-01-01T23:59:59.000Z

450

Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

451

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

452

E-Print Network 3.0 - anode image sensor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofilm, using techniques... on the anode surface have been greatly improved by the development of a real-time imaging MFC 100. This MFC... into anodic and cathodic chambers, an...

453

High-performance anode based on porous Co3O4 nanodiscs. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance anode based on porous Co3O4 nanodiscs. High-performance anode based on porous Co3O4 nanodiscs. Abstract: In this article, two-dimensional, Co3O4 hexagonal nanodiscs are...

454

Effect of Anode Impurity on the Neutron Production in a Dense Plasma Focus  

Science Journals Connector (OSTI)

In this study, neutron production characteristics were investigated by employing three different anode designs. Previously, Takao et al. in Plasma Sour Sci Technol 12:407, (2003) studied the effect of anode desig...

H. R. Yousefi; K. Masugata

2011-12-01T23:59:59.000Z

455

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

SciTech Connect (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

456

Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report  

SciTech Connect (OSTI)

The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor, using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.

Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

1996-09-01T23:59:59.000Z

457

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE  

E-Print Network [OSTI]

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE BY FOILS simpler, and low cost method to fabricate porous pattern of the anodic aluminum oxide (AAO) based applications such as sensors, optical devices, catalysts, and microfabricated fluidic devices. Anodic aluminum

Paris-Sud XI, Université de

458

Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial  

E-Print Network [OSTI]

Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms on granular activated carbon (GAC) particles. Particles were fluidized in the anode chamber for electricity was sustained by inter- mittent contact of charged particles with the anode. Higher power was obtained by flu

459

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel  

E-Print Network [OSTI]

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells Xing Xie energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC

Cui, Yi

460

Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode  

E-Print Network [OSTI]

anode X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok Center for Display Research. In this letter, we propose and demonstrate the application of boron-doped p-Si as a semi-transparent anode better performance to conventional OLEDs which use ITO as anodes. The present technique has the advantage

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode  

E-Print Network [OSTI]

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode and experimentally verify the evolution of liquid water and nitrogen fronts along the length of the anode channel in a proton exchange membrane fuel cell operating with a dead-ended anode that is fed by dry hydrogen

Stefanopoulou, Anna

462

Modification of polycrystalline silicon as efficient anode for active-matrix organic light-emitting diodes  

E-Print Network [OSTI]

Modification of polycrystalline silicon as efficient anode for active- matrix organic light silicon (p-Si) on the performance of p-Si anode OLEDs have been studied. UV-ozone treatment of p. By depositing ultra-thin high work function metal oxides, such as V2O5 and MoO3, on p-Si anode, the performance

463

Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances  

E-Print Network [OSTI]

Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different ABSTRACT: A better understanding of how anode and separator physical properties affect power production the cathode can limit power production by bacteria on the anode when using closely spaced electrodes

464

Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes  

E-Print Network [OSTI]

Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin vanadium pentoxide V2O5 layer on the p-Si anode, the performance of the OLED can be greatly

465

Anodic Behavior of Ti in KOH Solutions Ellipsometric and Micro-Raman Spectroscopy Studies  

E-Print Network [OSTI]

Anodic Behavior of Ti in KOH Solutions Ellipsometric and Micro-Raman Spectroscopy Studies A. Prusi of South Carolina, Columbia, South Carolina 29208, USA Anodic formation of oxide films on titanium surfaces of refraction of anodic oxide films have been determined. The voltage at which the oxide film breaks down

Popov, Branko N.

466

AN ELECTROANALYTICAL STUDY OF ELECTRODE REACTIONS ON CARBON ANODES DURING ELECTROLYTIC PRODUCTION OF ALUMINUM  

E-Print Network [OSTI]

AN ELECTROANALYTICAL STUDY OF ELECTRODE REACTIONS ON CARBON ANODES DURING ELECTROLYTIC PRODUCTION production of aluminum the anodic reactions have been studied on carbon microelectrodes by voltammetry and chronoamperometry. Anode gases have been analyzed by gas chromatography on-line during controlled- potential

Sadoway, Donald Robert

467

Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode  

E-Print Network [OSTI]

Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode Jason B. Siegel,a, *,z electrolyte membrane fuel cell PEMFC with a dead-ended anode is observed using neutron imaging gas diffusion layer. Even though dry hydrogen is supplied to the anode via pressure regulation

Stefanopoulou, Anna

468

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Jixin Chen,*,z  

E-Print Network [OSTI]

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations Jixin Chen,*,z Jason B. Siegel, Ann Arbor, Michigan 48109, USA This paper investigates the effects of dead-ended anode (DEA) operation of a PEM fuel cell. The presence of oxygen in the anode channel, although normally less than 5% in molar

Stefanopoulou, Anna

469

Optimization of the Readout Electronics for Microchannel Plate Delay Line Anodes  

E-Print Network [OSTI]

Optimization of the Readout Electronics for Microchannel Plate Delay Line Anodes John Vallerga and future space missions use microchannel plate (MCP) detectors with delay line anode readouts (e.g. FUSE Telescope). Delay line anodes are used to measure the position of the centroid of the charge clouds

Colorado at Boulder, University of

470

The Onset of Voltage Hash and its Relationship to Anode Spots in Magnetoplasmadynamic Thrusters  

E-Print Network [OSTI]

The Onset of Voltage Hash and its Relationship to Anode Spots in Magnetoplasmadynamic Thrusters, 08544 A phenomenological model is developed to elucidate the relationship between voltage hash and anode electromagnetic force density leads to a mass depletion in the anode region which, in turn, leads to a disparity

Choueiri, Edgar

471

Advantages of Microwave Sintering in Manufacturing of Anode Support Solid Oxide Fuel Cell  

E-Print Network [OSTI]

and facile method in the manufacturing of anode support solid oxide fuel cell(1). Two anode support SOFCsPage 5-211 Advantages of Microwave Sintering in Manufacturing of Anode Support Solid Oxide Fuel oxide fuel cell (SOFC, hereafter) has been identified as an attractive technique in the recent few

Kasagi, Nobuhide

472

Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells in a micro  

E-Print Network [OSTI]

Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells utilization in the cell-stack should be reduced. Ã? 2014 Published by Elsevier Ltd. Introduction Solid-oxide Anode off-gas recycle a b s t r a c t The recycle of anode depleted gas has been employed in solid oxide

Nielsen, Mads Pagh

473

Algorithms for correcting geometric distortions in delay line anodes Erik Wilkinsona  

E-Print Network [OSTI]

Algorithms for correcting geometric distortions in delay line anodes Erik Wilkinsona , Steven V, Baltimore, MD 21218 ABSTRACT Time-delay anodes are typically used in conjunction with microchannel plates to provide photon counting and two- dimensional imaging. The anode and associated electronics are used

Colorado at Boulder, University of

474

American Institute of Aeronautics and Astronautics Anode Fall Formation in a Hall Thruster  

E-Print Network [OSTI]

American Institute of Aeronautics and Astronautics 1 Anode Fall Formation in a Hall Thruster Leonid Laboratory, Princeton, New Jersey, 08543 As was reported in our previous work, accurate, non-disturbing near-anode and emissive probes allowed the first experimental identification of both electron-repelling (negative anode

475

Onset Voltage Hash and Anode Spots in Quasi-Steady Magnetoplasmadynamic  

E-Print Network [OSTI]

Onset Voltage Hash and Anode Spots in Quasi-Steady Magnetoplasmadynamic Thrusters Luke Uribarri: Edgar Y. Choueiri November 2008 #12;ONSET VOLTAGE HASH AND ANODE SPOTS IN QUASI noise ("hash") and anode damage in a self-field, quasi-steady magnetoplasmadynamic thruster (MPDT

Choueiri, Edgar

476

Scaling of Anode Sheath Voltage Fall with the Operational Parameters in Applied-Field MPD  

E-Print Network [OSTI]

Scaling of Anode Sheath Voltage Fall with the Operational Parameters in Applied-Field MPD Thrusters (EPPDyL) Princeton University, Princeton, NJ, 08544, USA Scaling laws for the anode sheath voltage fall in applied-field MPD thrusters are derived in order to better understand the physics behind anode sheath

Choueiri, Edgar

477

Structural analysis of lignin-derived carbon composite anodes  

Science Journals Connector (OSTI)

Lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains are studied to develop a relationship of structural properties such as crystallite size, intracrystallite d spacing, crystalline volume fraction and composite density with their pair distribution functions, as obtained from both molecular dynamics simulation and neutron scattering.

McNutt, N.W.

2014-09-04T23:59:59.000Z

478

Towards Elimination of the Anode Effect and Perfluorocarbon Emissions  

E-Print Network [OSTI]

on anode effect Hall-H�roult cell produces CF4 and C2F6 (PFCs) p PFCs have high GWP p in US, Al smelting & Sadoway (1997) r CF4 = a exp (b E ), where b = 0.331 V�1 #12;Sadoway, MIT ECS Meeting, Philadelphia, May

Sadoway, Donald Robert

479

Development of processing techniques for advanced thermal protection materials. Annual progress report, 1 June 1994-31 May 1995  

SciTech Connect (OSTI)

The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

Selvaduray, G.S.

1995-06-01T23:59:59.000Z

480

Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics  

SciTech Connect (OSTI)

The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anode material process" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

In situ X-ray Characterization of Energy Storage Materials | Stanford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-ray Characterization of Energy Storage Materials X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high specific capacity required for EVs to travel 300+ miles on a single charge with a number of possible earth abundant anode and cathode materials; however, set backs such as capacity fading hinder the full capability of these rechargeable batteries. In order to accurately characterize the dynamic electrochemical processes at the

482

Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors  

SciTech Connect (OSTI)

The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

Simon Phillpot; James Tulenko

2011-09-08T23:59:59.000Z

483

Polyaniline: characterization as a cathode active material in rechargeable batteries in aqueous electrolytes  

Science Journals Connector (OSTI)

An analytically pure form of chemically synthesized polyaniline having the emeraldine oxidation state has been used as a cathode active material together with a Zn anode in the...2 electrolyte (pH?4). The experim...

N. L. D. Somasiri; A. G. Macdiarmid

1988-01-01T23:59:59.000Z