Sample records for annual electric utility

  1. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25T23:59:59.000Z

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  2. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  3. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  4. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  5. Annual Electric Utility Data - EIA-906/920/923 Data File

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015EnergyAnnual923

  6. The top 100 electric utilities

    SciTech Connect (OSTI)

    Warkentin, D.

    1995-10-01T23:59:59.000Z

    This has been an extremely interesting market during the past year or so due to the Energy Policy Act of 1992 (EPACT) and the US FERC actions since then to make it more competitive. A major move was a 1994 proposal to open up access to the nation`s privately owned transmission grid to make it easier for buyers and sellers of wholesale electricity to do business. Overall, the wholesale market in the US generates about $50 billion in annual revenues. That compares with a retail market about four times that size. The term retail refers to electricity sales to ultimate consumers, while wholesale refers to bulk power transactions among utilities or purchases by utilities from NUGs. The data in this report can be considered a baseline look at the major utility players in the wholesale market. Results of wholesale deregulation have not really been felt yet, so this may be the last look at the regulated market.

  7. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  8. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  9. Electric power annual 1997. Volume 2

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  10. Electric power annual 1996. Volume 1

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

  11. Electric power annual 1995. Volume I

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  12. Gas and Electric Utilities Regulation (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

  13. Electric power annual 1994. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-07-21T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels.

  14. An electric utility's adventures in commercial refrigeration

    SciTech Connect (OSTI)

    Flannick, J.A. (Wisconsin Electric Co., Milwaukee, WI (United States)); Stamm, R.H. (Industrial Refrigeration, Sandy, OR (United States)); Calle, M.M. (Technical Resources, Inc., Milwaukee, WI (United States)); Gomolla, J.C. (Gomolla (Jerry C.), Milwaukee, WI (United States))

    1994-10-01T23:59:59.000Z

    This article provides a look at the history of energy conservation efforts in supermarket refrigeration from World War II to the present and a goal for the future. A supermarket is a low profit margin business, typically netting 1 percent on annual sales. The typical supermarket's annual electric bill equals or exceeds the annual profits. With all of these data, it looked like energy conservation in the supermarket industry was going to be an easy task. Change the lighting to a more energy-efficient system and lower the head pressure and raise the suction pressure in the refrigeration. Any owner, CEO, or general manager who could easily increase his bottom-line profit by 10 to 30 percent would jump at the opportunity, especially when the electric utility was willing to support a portion of the cost for the changes.

  15. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R.L., Westinghouse Hanford, Richland, WA

    1997-09-03T23:59:59.000Z

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  16. Demonstration program for coal-oil mixture combustion in an electric utility boiler - Category III A. 1978 annual report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The 1978 annual report covers New England Power Service Company's participation in the Department of Energy coal-oil mixture (COM) program. Continued world-wide unrest resulting in an unstable fuel oil supply coupled with rapidly inflating costs have caused continued interest in a demonstrable viable solution. NEPSCO's program, while not attaining all the milestones forecast, has made considerable progress. As of January 31, 1979, ninety-five (95% percent of engineering and design has been completed. Construction of facilities and installation of required equipment was approximately 75% complete and the six-week Feasibility Testing program was expected to commence during April 1979.

  17. Deregulating the electric utility industry

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

  18. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  19. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  20. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02T23:59:59.000Z

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  1. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  2. Virginia Electric Utility Regulation Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation...

  3. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

  4. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  5. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  6. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  7. Electric power annual 1994. Volume 2, Operational and financial data

    SciTech Connect (OSTI)

    NONE

    1995-11-28T23:59:59.000Z

    This year, the annual is published in two volumes. Volume I focused on US electric utilities and contained final 1994 data on net generation, fossil fuel consumption, stocks, receipts, and cost. This Volume II presents annual 1994 summary statistics for the electric power industry, including information on both electric utilities and nonutility power producers. Included are preliminary data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold (based on form EIA-861) and for electric utility financial statistics, environmental statistics, power transactions, and demand- side management. Final 1994 data for US nonutility power producers on installed capacity and gross generation, as well as supply and disposition information, are also provided in Volume II. Technical notes and a glossary are included.

  8. Electric utility system master plan

    SciTech Connect (OSTI)

    Erickson, O.M.

    1992-10-01T23:59:59.000Z

    This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

  9. Monthly/Annual Energy Review - electricity section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

  10. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming Electricity ProfileUnderMTBEEffectiveTable

  11. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming Electricity

  12. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity Conductor

  13. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA. Summer

  14. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA. Summer net

  15. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA. SummerB

  16. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  17. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  18. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  19. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  20. Superconductivity for Electric Systems: 2008 Annual Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    for Electric Systems: 2008 Annual Peer Review Final Report Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity Delivery and...

  1. Electric power annual 1995. Volume II

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  2. Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost

    E-Print Network [OSTI]

    All POUs Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 20122013 ($) Projected Annual Cost 20132014 ($) Projected Annual Cost 20142015 ($) Legend LADWP 22,856,346 720,123 720,123 720 Attachment B Response Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 2012 2013 ($) LADWP 22

  3. Electric power annual 1998. Volume 1

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The purpose of this report, Electric Power Annual 1998 Volume 1 (EPAVI), is to provide a comprehensive overview of the electric power industry during the most recent year for which data have been collected, with an emphasis on the major changes that occurred. In response to the changes of 1998, this report has been expanded in scope. It begins with a general review of the year and incorporates new data on nonutility capacity and generation, transmission information, futures prices from the Commodity futures Trading commission, and wholesale spot market prices from the pennsylvania-new Jersey-Maryland Independent System Operator and the California Power Exchange. Electric utility statistics at the Census division and State levels on generation, fuel consumption, stocks, delivered cost of fossil fuels, sales to ultimate customers, average revenue per kilowatthour of electricity sold, and revenues from those retail sales can be found in Appendix A. The EPAVI is intended for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public.

  4. SAGEWASP. Optimal Electric Utility Expansion

    SciTech Connect (OSTI)

    Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)

    1989-10-10T23:59:59.000Z

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  5. Electric Power annual 1996: Volume II

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  6. PPL Electric Utilities- Custom Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If applicants do not have one, they should contact the utility at the phone or...

  7. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

  8. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  9. Electric Utility Demand-Side Evaluation Methodologies

    E-Print Network [OSTI]

    Treadway, N.

    , in the case of electric utilities society and the ratepayer. Commissio~ Substanti ve Rul es Sec. 23.22 stops short of specifying an evaluation methodology or requiring a benefit-cost analysis for each conservation program, but it does require that util... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

  10. Quality electric motor repair: A guidebook for electric utilities

    SciTech Connect (OSTI)

    Schueler, V.; Douglass, J.

    1995-08-01T23:59:59.000Z

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  11. Electric Utilities and Electric Cooperatives (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and...

  12. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  13. POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-052 POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT: A CROSS-NATION ANALYSIS Mario-5180 www.ucei.berkeley.edu/ucei #12;POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT: A CROSS flows are surging to levels not witnessed since before the Great Depression, the evaluation of political

  14. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  15. Cost and quality of fuels for electric utility plants 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-04T23:59:59.000Z

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

  16. Cost and quality of fuels for electric utility plants 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-04T23:59:59.000Z

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

  17. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  18. Electric utility research and development

    SciTech Connect (OSTI)

    Not Available

    1982-10-25T23:59:59.000Z

    Nineteen papers presented at a seminar held by the National Association of Regulatory Utility Commissioners (NARUC) at North Carolina State University during October, 1982 represent an opportunity for an exchange of research information among regulators, utility officials, and research planners. The topics range from a regulatory perspective of research and development to a review of new and evolving technologies. Separate abstracts were prepared for each of the papers for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis.

  19. Rate making for Electric Utilities

    E-Print Network [OSTI]

    Hanson, Carl Falster

    1911-01-01T23:59:59.000Z

    of a given size in Texas may be dif­ ferent from that of a same size town in Massachusetts. This growing demand depends upon two factors: The educating of the people to the use of electricity for light and power, and the probable growth...

  20. Grid Reliability- An Electric Utility Company's Perspective

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

  1. Updated Capital Cost Estimates for Utility Scale Electricity

    E-Print Network [OSTI]

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

  2. Annual Report 2006-07 Electrical & Computer Engineering

    E-Print Network [OSTI]

    New Mexico, University of

    Annual Report 2006-07 Electrical & Computer Engineering University of New Mexico #12;Electrical. The Electrical & Computer Engineering Department at the University of New Mexico can be reached by mail at Mail & Computer Engineering at UNM 2006-07Annual Report 2006-07Annual Report Electrical & Computer Engineering

  3. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  4. Evaluation of Heat Stress and Strain in Electric Utility Workers

    E-Print Network [OSTI]

    Brown, Eric Nicholas

    2013-01-01T23:59:59.000Z

    exposures in electric utility line workers during work intwo broad classes: utility line workers/meter technicians3 different samples: utility line workers/meter technicians,

  5. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Press. Portland General Electric Company. 2004. Renewablegreen power is Portland General Electric. The utility workswind energy use (Portland General Electric, 2004). From the

  6. 2012 Annual Planning Summary for Electricity Delivery and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity Delivery and Energy Reliability 2012 Annual Planning Summary for Electricity Delivery and Energy Reliability The ongoing and projected Environmental Assessments and...

  7. 2013 Annual Planning Summary for the Office of Electricity Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity Delivery and Energy Reliability 2013 Annual Planning Summary for the Office of Electricity Delivery and Energy Reliability The ongoing and projected Environmental...

  8. FY 2014 Annual Progress Report- Electric Drive Technologies Program

    Broader source: Energy.gov [DOE]

    FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

  9. PFBC Utility Demonstration Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 & 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP`s proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  10. Standardized equipment labeling program for electrical utilities

    SciTech Connect (OSTI)

    Not Available

    1994-07-19T23:59:59.000Z

    The purpose of this supporting document is to provide specific guidelines required for Electrical Utilities to implement and maintain a standard equipment and piping labeling program in accordance with WHC-SP-0708, Chapter 18, {open_quotes}Westinghouse Hanford Company Conduct of Operations Manual{close_quotes}. Specific guidelines include definition of program responsibilities.

  11. Electric power annual 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17T23:59:59.000Z

    This publication presents a summary of electric utility statistics at the national, regional and state levels. The Industry At A Glance'' section presents a profile of the electric power industry ownership and performance; a review of key statistics for the year; and projections for various aspects of the electric power industry through 2010. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue and average revenue per kilowatthour sold; financial statistics; environmental statistics; and electric power transactions. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. 24 figs., 57 tabs.

  12. Approaches to Electric Utility Energy Efficiency for Low Income...

    Open Energy Info (EERE)

    Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches to Electric...

  13. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  14. Do You Buy Clean Electricity From Your Utility? | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean...

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

  16. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  17. Page Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:Ferry CountyElectric Utility Place:

  18. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal Electric Util Jump to:

  19. Per Capita Annual Utilization and Consumption of Fish and Shellfish

    E-Print Network [OSTI]

    Per Capita Annual Utilization and Consumption of Fish and Shellfish in Hawaii, 1970-77 Table I was 5.82 kg (12.8 pounds). It has been speculated that the per capita consumption of fishery prod- ucts is that the per capita consumption rate in Hawaii for 1977 was about 77 percent higher than the U.S. average

  20. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-15T23:59:59.000Z

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  1. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01T23:59:59.000Z

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  2. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  3. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  4. Designing a Thermal Energy Storage Program for Electric Utilities

    E-Print Network [OSTI]

    Niehus, T. L.

    1994-01-01T23:59:59.000Z

    Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

  5. Future Competitive Positioning of Electric Utilities and their Customers

    E-Print Network [OSTI]

    Schrock, D.; Parker, G.; Baechler, M.

    This paper addresses the future competitive positioning of electric and gas utilities and their industrial customers. Each must respond to a dramatic reshaping of the utility industry while confronting aggressive environmental pressures and taking...

  6. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  7. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. Through the Energy Efficient Home...

  8. PPL Electric Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers numerous rebates and incentives for its residential customers. Refer to the program web site for complete details.

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  10. Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities

    Broader source: Energy.gov [DOE]

    Presentation covers the rising electricity costs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  11. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers 3 commercial energy efficiency programs to eligible customers. Available incentives are based upon the customer rate schedule. Each program has separate incentive...

  12. Other utilities, not IPPs key concern for electric executives

    SciTech Connect (OSTI)

    O'Driscoll, M.

    1994-01-12T23:59:59.000Z

    The evolving competitive electric utility world is making executives more cautious and focused on their core businesses at the expense of high-profile issues like international investment, global warming, demand side management and electric and magnetic fields, a new survey shows. The 1994 Electric Utility Outlook, conducted by the Washington International Energy Group, also shows growing concern about utility-on-utility competition and a decline of the independent power producer threat, a growing but grudging acknowledgement of retail wheeling and increasing discomfort with nuclear power.

  13. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01T23:59:59.000Z

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  14. Transmission access: The new factor in electric utility mergers

    SciTech Connect (OSTI)

    Boiler, D.S.

    1991-04-01T23:59:59.000Z

    This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

  15. FY 2014 Annual Progress Report - Electric Drive Technologies...

    Energy Savers [EERE]

    (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known...

  16. Marketing Reordering of the Electric Utility Industry

    E-Print Network [OSTI]

    Anderson, J. A.

    . Residential customers original ly used electricity to light their homes. Elec tric power now has literally thousands of uses. Similarly, commercial customers now use electricity to compute, control, provide comfort, as well as illuminate offices... generated power. However, such displacement requires "wheeling", which is the use of transmission facilities of one electric system to transmit power of and for others. Market forces are developing tremendous in dustrial interest in wheeling...

  17. Electric-utility DSM programs: 1990 data and forecasts to 2000

    SciTech Connect (OSTI)

    Hirst, E.

    1992-06-01T23:59:59.000Z

    In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

  18. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  19. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01T23:59:59.000Z

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  20. Renewable Energy For Electric Utilities (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of this rule is to implement the Renewable Energy Act, and to bring significant economic development and environmental benefits to New Mexico. This rule applies to electric public...

  1. Ashland Electric Utility- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either $0.75 per watt (residential) or $1.00 per watt (commercial), up to a maximum...

  2. Alternative Regulation for North American Electric Utilities

    SciTech Connect (OSTI)

    Lowry, Mark Newton; Kaufmann, Lawrence

    2006-06-15T23:59:59.000Z

    After a decade of favorable operating conditions, utilities find themselves faced with accelerating prices for key inputs and a growing need for new capacity. These pressures are likely to prompt increasingly frequent, and perhaps more contentious, rate cases. Steady progress in the development of alternative regulation provides hope that the utility industry will respond to these challenges much better than in 1975-85. (author)

  3. Tatitlek Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWacTampa ElectricTara

  4. Electric-utility DSM-program costs and effects, 1991 to 2001

    SciTech Connect (OSTI)

    Hirst, E.

    1993-05-01T23:59:59.000Z

    For the past three years (1989, 1990, and 1991), all US electric utilities that sell more than 120 GWh/year have been required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a rich and uniquely comprehensive picture of electric-utility DSM programs in the United States. Altogether, 890 utilities (of about 3250 in the United States) ran DSM programs in 1991; of these, 439 sold more than 120 GWh and reported details on their DSM programs. These 439 utilities represent more than 80% of total US electricity sales and revenues. Altogether, these utilities spent almost $1.8 billion on DSM programs in 1991, equal to 1.0% of total utility revenues that year. In return for these (and prior-year) expenditures, utility DSM programs cut potential peak demand by 26,700 MW (4.8% of the national total) and cut annual electricity use by 23,300 GWh (0.9% of the national total). These 1991 numbers represent substantial increases over the 1989 and 1990 numbers on utility DSM programs. Specifically, utility DSM expenditures doubled, energy savings increased by almost 50%, and demand reductions increased by one-third between 1989 and 1991. Utilities differed enormously in their DSM-program expenditures and effects. Almost 12% of the reporting utilities spent more than 2% of total revenues on DSM programs in 1991, while almost 60% spent less than 0.5% of revenues on DSM. Utility estimates of future DSM-program expenditures and benefits show continuing growth. By the year 2001, US utilities expect to spend 1.2% of revenues on DSM and to cut demand by 8.8% and annual sales by 2.7%. Here, too, expectations vary by region. Utilities in the West and Northwest plan to spend more than 2% of revenues on DSM that year, while utilities in the Mid-Atlantic, Midwest, Southwest, Central, and North Central regions plan to spend less than 1% of revenues on DSM.

  5. Publicly-Owned Electric Utilities and the California Renewables

    E-Print Network [OSTI]

    Publicly-Owned Electric Utilities and the California Renewables Portfolio Standard: A Summary Salazar Contract Manager Heather Raitt Project Manager Drake Johnson Acting Office Manager RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B. B

  6. What Does Industry Expect From An Electrical Utility

    E-Print Network [OSTI]

    Jensen, C. V.

    The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier...

  7. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  8. Electricity privatization : should South Korea privatize its state-owned electric utility?

    E-Print Network [OSTI]

    Lim, Sungmin

    2011-01-01T23:59:59.000Z

    The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

  9. 1996 International directory of electric utilities, eighth edition

    SciTech Connect (OSTI)

    Bergesen, C. [ed.

    1995-12-31T23:59:59.000Z

    This is a directory of electric utilities arranged by major geographic region and by country within region. The directory provides statistics and commentary for almost 600 major utilities in 208 countries and territories and includes their history, infrastructure, installed capacity, electric transmission and distribution systems, future plans, and privatization strategies. In addition the directory contains names, titles, addresses, etc. for hundreds of managers and executives, plus a list of major power plants per country.

  10. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  11. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  12. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  13. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville,Massachusetts:DraxProject JumpDublin Municipal

  14. UGI Utilities Electric Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey:S Army 200pxBerkley GreenUtilities

  15. Hudson Municipal Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomer Electric|SouthP PHudson

  16. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  17. The Michigan regulatory incentives study for electric utilities

    SciTech Connect (OSTI)

    Reid, M.W.; Weaver, E.M. (Barakat and Chamberlin, Inc., Oakland, CA (United States)) [Barakat and Chamberlin, Inc., Oakland, CA (United States)

    1991-06-17T23:59:59.000Z

    This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan's regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

  18. Effects of resource acquisitions on electric-utility shareholders

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.

    1994-05-01T23:59:59.000Z

    The purpose of this study is to see how shareholders fare when the utility acquires different kinds of resources. The resources considered are utility-built, -operated, and -owned power plants with different combinations of construction and operation costs; purchases of power; and DSM programs. We calculated the net present value of realized (cash) return on equity as the primary factor used to represent shareholder interests. We examined shareholder returns for these resources as functions of public utility commission regulation, taxes, and the utility`s operating environment. Our treatment of regulation considers the frequency and type (future vs historic test year) of rate cases, inclusion of construction work in progress in ratebase vs allowance for funds used during construction, ratebase vs expensing of DSM programs, book and tax depreciation schedules, possible disallowances of ``excess`` power-plant or DSM capital costs, and possible lack of adjustment for ``excess`` fuel or purchased power costs. The tax policies we studied include the existence and rates for property, sales, and income taxes and the existence and regulatory treatment of deferred taxes. The utility`s operating environment includes the overall inflation rate, load-growth rate, escalation in nonproduction expenses, and nongeneration construction (capital) requirements. Finally, given the increasingly competitive nature of electricity markets, we briefly considered alternatives to traditional cost-of-service regulation. We examined shareholder returns for the resources described above in an environment where the utility competes with other suppliers solely on the basis of electricity price.

  19. Electric Utility Strategic Planning at the PUCT: An Overview

    E-Print Network [OSTI]

    Zarnikau, J.

    . This paper provides a broad 'overview of electric utility atrategic planning activities at the PUCT, concentrating on each project's objec tives, methodology, and relationship to other projects. The role of planning activities at a regulatory agency... will be discussed. It is argued that planning projects at a regulatory agency can provide an invaluable validity check on a utility's planning programs, as well as a source of guidance, objective information, and new ideas. However, a regulatory agency...

  20. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  1. The changing focus of electric utility merger proceedings

    SciTech Connect (OSTI)

    Moot, J.S. (Meagher Flom, Washington, DC (United States))

    1994-01-01T23:59:59.000Z

    The present article examines the changes over the past few years in the Federal Energy Regulatory Commission's (FERC) review of electric utility mergers. After a brief introduction to the subject, three recent developments in section 203 proceedings are reviewed: Northeast Utilities/Public Service Co. of New Hampshire, Entergy/Gulf States Utilities, and the Cincinnati Gas and Electric Co. and PSI Energy Inc. The vitality of the [open quotes]Commonwealth[close quotes] factors is examined. Several issues bearing on the scope of the FERC's section 203 jurisdiction are discussed. The changes which have taken place in the hearing process are described. The author concludes that section 203 proceedings will continue to be protean in nature, with the applicable standards shifting and the outcomes difficult to predict.

  2. Cost and quality of fuels for electric utility plants, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

  3. Consumer's Guide to the economics of electric-utility ratemaking

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  4. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-07-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  5. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15T23:59:59.000Z

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  6. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-01-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  7. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. [Oak Ridge National Lab., TN (United States); Sabo, C. [Barakat and Chamberlin, Inc., Washington, DC (United States)

    1991-10-01T23:59:59.000Z

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  8. A primer on incentive regulation for electric utilities

    SciTech Connect (OSTI)

    Hill, L.J.

    1995-10-01T23:59:59.000Z

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  9. A knowledge based model of electric utility operations. Final report

    SciTech Connect (OSTI)

    NONE

    1993-08-11T23:59:59.000Z

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  10. Fuel cells for electric utility and transportation applications

    SciTech Connect (OSTI)

    Srinivasan, S.

    1980-01-01T23:59:59.000Z

    This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

  11. E-Print Network 3.0 - applying electrical utility Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales of Green Energy through Utility Green Pricing Programs (Regulated Electricity Markets Only... Table D-2. UtilityMarketer Green Power Programs in Restructured...

  12. PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC...

    Broader source: Energy.gov (indexed) [DOE]

    STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY JANUARY 2012 The Iowa Utilities Board (Board) is pleased to provide these comments as the...

  13. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  14. FORM EIA-861 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current861 ANNUAL ELECTRIC

  15. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  16. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  17. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01T23:59:59.000Z

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  18. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06T23:59:59.000Z

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  19. Financial statistics of major U.S. investor-owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues. The US electric power industry is a combination of electric utilities (investor-owned, publicly owned, Federal, and cooperatives) and nonutility power producers. Investor-owned electric utilities account for over three-fourths of electric sales and revenue. Historically, the investor-owned electric utilities have served the large consolidated markets. There is substantial diversity among the investor-owned electric utilities in terms of services, size, fuel usage, and prices charged. Most investor-owned electric utilities generate, transmit, and distribute electric power. Investor-owned electric utilities operate in all States except Nebraska; Hawaii is the only State in which all electricity is supplied by investor-owned electric utilities. 5 figs., 57 tabs.

  20. Annual Public Electric Utility data - EIA-412 data file

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8 (Million1412 Archive Data

  1. Annual Electric Utility Data - Form EIA-906 Database

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb

  2. A summary of the California Public Utilities Commission`s two competing electric utility restructuring proposals

    SciTech Connect (OSTI)

    Porter, K.

    1995-11-01T23:59:59.000Z

    In May 1995, the California Public Utilities Commission (CPUC) released two proposals for restructuring the state`s electric power industry. The two proposals follow more than a year of testimony and public comment after the CPUC issued the ``Blue Book`` (CPUC 1994a) on April 20, 1994, which called for retail wheeling to be phased in to all customers over 5 years. The majority proposal, supported by three of the four CPUC commissioners (one seat was vacant when the proposals were released), calls for creating a central pool, or ``poolco``; setting electric prices to reflect true costs of service, or ``real-time pricing``; and allowing parties to negotiate ``contracts for differences`` between the pool price and the contract price. The minority proposal, sponsored by Commissioner Jesse Knight, calls for retail wheeling, or ``direct access,`` and for utilities to divest or spin off their generating assets. This paper presents a summary of the major provisions of the two CPUC proposals and the possible implications and issues associated with each. It is aimed at researchers who may be aware that various efforts to restructure the electric power industry are under way and want to known more about California`s proposals, as well as those who want to known the implications of certain restructuring proposals for renewable energy technologies. Presented at the end of the paper is a summary of alternative proposals promoted by various stakeholder in response to the two CPUC proposals.

  3. Sixth annual coal preparation, utilization, and environmental control contractors conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  4. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect (OSTI)

    Peter McKenny

    2010-08-31T23:59:59.000Z

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

  5. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  6. Monroe County Extension Saves $2,000 Annually on Utility Bills

    E-Print Network [OSTI]

    Keinan, Alon

    antiquated tube boilers with new, high-efficiency, condensing boilers. Projected Savings Over $2,000 per year% efficiency, were replaced with 95%-efficiency condensing boilers. The new boilers use 70% less water, operateMonroe County Extension Saves $2,000 Annually on Utility Bills Heating Efficiency Upgrades Lower

  7. Ancillary-service costs for 12 US electric utilities

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.

    1996-03-01T23:59:59.000Z

    Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

  8. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect (OSTI)

    Galbreath, K.C.

    1998-07-01T23:59:59.000Z

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  9. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01T23:59:59.000Z

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  10. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  11. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  12. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    to purchase electricity from private generators, policy-behavior. Green electricity does not offer private benefits—electricity, lumber represents a case where it is difficult to bundle private

  13. Public Utility Regulatory Policies Act of 1978. Annual report to Congress

    SciTech Connect (OSTI)

    None,

    1980-05-01T23:59:59.000Z

    Titles I and III of the Public Utility Regulatory Policies Act of 1978 (PURPA) establish retail regulatory policies for electric and natural gas utilities, respectively, aimed at achieving three purposes: conservation of energy supplied by electric and gas utilities; efficiency in the use of facilities and resources by these utilities; equitable rates to electricity and natural gas consumers. PURPA also continues the pilot utility implementation program, authorized under Title II of the Energy Conservation and Production ACT (ECPA), to encourage adoption of cost-based rates and efficient energy-management practices. The purpose of this report is twofold: (1) to summarize and analyze the progress that state regulatory authorities and certain nonregulated utilities have made in their consideration of the PURPA standards; and (2) to summarize the Department of Energy (DOE) activities relating to PURPA and ECPA. The report provides a broad overview and assessment of the status of electric and gas regulation nationwide, and thus helps provide the basis for congressional and DOE actions targeted on the utility industry to address pressing national energy problems.

  14. Recent Developments in the Regulation of Electric Utility Resource Planning in Texas

    E-Print Network [OSTI]

    Totten, J.; Adib, P.; Matlock, R.; Treadway, N.

    The Texas Legislature has charged the Public Utility Commission of Texas with the responsibility to license utility power plants and transmission lines, and develop a statewide electrical energy plan. Related duties include the encouragement...

  15. System average rates of U.S. investor-owned electric utilities : a statistical benchmark study

    E-Print Network [OSTI]

    Berndt, Ernst R.

    1995-01-01T23:59:59.000Z

    Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

  16. Business Plan for a New Engineering Consulting Firm in the Electrical Utility Market

    E-Print Network [OSTI]

    Gois, Roberto Cavalcanti

    2009-05-15T23:59:59.000Z

    has been experiencing steady growth for more than ten years. Along with energy market regulatory agencies such as the Federal Energy Regulatory Commission (FERC) and Southwest Power Pool (SPP), electrical utilities must ensure that the electricity...

  17. The ICF, Inc. coal and electric utilities model : an analysis and evaluation

    E-Print Network [OSTI]

    Wood, David O.

    1981-01-01T23:59:59.000Z

    v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

  18. Liberty Utilities (Electric) – Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    '''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

  19. Liberty Utilities (Electric) – Commercial New Construction Rebate Program (New Hampshire)

    Broader source: Energy.gov [DOE]

    '''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

  20. Liberty Utilities (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    '''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

  1. Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM

    E-Print Network [OSTI]

    Baughman, Martin L.

    1981-01-01T23:59:59.000Z

    This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

  2. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  3. Ashland Electric Utility- Bright Way to Heat Water Loan

    Broader source: Energy.gov [DOE]

    The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water...

  4. Ashland Electric Utility- Bright Way to Heat Water Rebate

    Broader source: Energy.gov [DOE]

    The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water...

  5. Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution utilities

    E-Print Network [OSTI]

    Giannakis, D; Jamasb, Tooraj; Pollitt, Michael G.

    2004-06-16T23:59:59.000Z

    Cambridge Working Papers in Economics CWPE 0408 Benchmarking and Incentive Regulation of Quality of Service: an Application to the UK Electricity Distribution Utilities D. Giannakis, T. Jamasb, and M. Pollitt... and Environmental Policy Research CMI Working Paper Series UNIVERSITY OF CAMBRIDGE Department of Applied Economics BENCHMARKING AND INCENTIVE REGULATION OF QUALITY OF SERVICE: AN APPLICATION TO THE UK ELECTRICITY DISTRIBUTION UTILITIES Dimitrios Giannakis...

  6. Utility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

    E-Print Network [OSTI]

    Gupta, Rajesh

    in energy prices along with the rise of cloud computing brings up the issue of making clouds energy. In this paper, we use deferral with dynamic pricing of electricity for energy efficiency while using utilityUtility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

  7. Fifteen years later: Whither Restructuring in the American Electric Utility System?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to Power Loss: The Origins of Deregulation and Restructuring in the American Electric Utility System1 1990s. It advances the thesis of my book, Power Loss, namely that the traditional holders of political. Hirsh, Power Loss: The Origins of Deregulation and Restructuring in the American Electric Utility System

  8. Financial statistics of major US investor-owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-28T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  9. 2008 DOE Annual Merit Review Hybrid and Electric Systems and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview Drivers and Directions 2008 Annual Merit Review Results Summary - Cover and Table of Contents...

  10. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  11. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    ELECTRICITY DETAILED SURVEY DATA FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date for 2013: February 19, 2015 Next Release...

  12. Optimizing electric utility air toxics compliance with other titles of the Clean Air Act

    SciTech Connect (OSTI)

    Loeb, A.P.; South, D.W.

    1993-12-31T23:59:59.000Z

    This paper provides an overview of regulatory issues under Title III of the Clean Air Act Amendments that could affect electric utilities. Title III contains provisions relating to hazardous air pollutants (HAPs) and provides special treatment for electric utilities. Generally, this discussion documents that if utility toxic emissions are regulated, one of the chief difficulties confronting utilities will be the lack of coordination between Title III and other titles of the Act. The paper concludes that if the US Environmental Protection Agency (EPA) determines that regulation of utility HAPs is warranted under Title III, savings can be realized from flexible compliance treatment.

  13. Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm

    E-Print Network [OSTI]

    Tamir, Tami

    powered vehicles [Kirsch, 2000, Anderson and Anderson, 2010]. Electric Vehicles (EVs) are currentlyBattery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online n current demands in electric vehicles. When serving a demand, the current allocation might be split

  14. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  15. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    data on two types of renewables (hydroelectric facilitiesand non-hydroelectric facilities) for utilities in each ofdifference for hydroelectric facilities. However, for those

  16. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  17. Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

  18. Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  19. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  20. Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  1. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Office of Environmental Management (EM)

    2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United...

  2. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Electricity from Renewable Resources: A Review of Utilityprovision of power from renewable resources, the end resultinvestments in renewable energy generating resources. Hence:

  3. Implications for decision making: The electric utilities` perspective

    SciTech Connect (OSTI)

    Fang, W.L. [Edison Electric Inst., Washington, DC (United States)

    1992-12-31T23:59:59.000Z

    Implications for decision making in three areas related to policy towards greenhouse gas emissions are discussed from the perspective of the electric industry. The first area addresses economic factors in the electric industry. The second concerns the interrelationship of energy, electricity and the environment, and the global climate change issue. The third addresses the global context of the issue. It is concluded that a comprehensive examination of international implications of governmental policy should be made before implementation of carbon emissions limitations, and that limiting electricity demand could negatively affect economic growth and the environment.

  4. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and annual maintenance costs for distributed generation (utility electricity and natural gas purchases plus amortized capital and annual maintenance costs for distributed generation (

  5. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  6. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05T23:59:59.000Z

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  7. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05T23:59:59.000Z

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  8. annual review supplement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY Energy Storage, Conversion and Utilization Websites Summary: -in...

  9. annual coded wire: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY Energy Storage, Conversion and Utilization Websites Summary: -in...

  10. annual planning system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY Energy Storage, Conversion and Utilization Websites Summary: -in...

  11. annual program review: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY Energy Storage, Conversion and Utilization Websites Summary: -in...

  12. annual reviews: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY Energy Storage, Conversion and Utilization Websites Summary: -in...

  13. Innovative and Progressive Electric Utility Demand-Side Management Strategies

    E-Print Network [OSTI]

    Epstein, G. J.; Fuller, W. H.

    Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

  14. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  15. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    SciTech Connect (OSTI)

    Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-06T23:59:59.000Z

    Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

  16. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  17. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  18. Electric sales and revenue 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  19. CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data

    E-Print Network [OSTI]

    Ellerman, A. Denny.; Tsukada, Natsuki.

    Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

  20. City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

  1. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01T23:59:59.000Z

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  2. Climate change adaptation in the U.S. electric utility sector

    E-Print Network [OSTI]

    Higbee, Melissa (Melissa Aura)

    2013-01-01T23:59:59.000Z

    The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

  3. Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper

    SciTech Connect (OSTI)

    Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

    1980-01-01T23:59:59.000Z

    Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

  4. City of Burlington-Electric, Vermont (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChromaIowa (UtilityBuhl

  5. Adapting state and national electricity consumption forecasting methods to utility service areas. Final report

    SciTech Connect (OSTI)

    Swift, M.A.

    1984-07-01T23:59:59.000Z

    This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

  6. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    temperatures," IEEE Transactions on Power Electronics, 22-4, pp. 1321 -1329. Chow, Y. (media contact). "AC Propulsion Partners with 7. BMW to Build 500 Electric Vehicles." Press...

  7. Costs and effects of electric-utility DSM programs: 1989--1997

    SciTech Connect (OSTI)

    Hirst, E.

    1994-06-01T23:59:59.000Z

    All US electric utilities are required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a comprehensive view of utility DSM-program costs and effects (energy savings and load reductions) for 1989, 1990, 1991, and 1992 as well as projections for 1993 and 1997.

  8. Proposal for M.Sc. Thesis Networks, Attention and Strategies of Electric Utilities

    E-Print Network [OSTI]

    energy sector. While the share of renewable energy in the electricity mix has considerably increasedProposal for M.Sc. Thesis Networks, Attention and Strategies of Electric Utilities in the German Energy Transition Over the last two decades the `Energiewende' has led to profound changes in the German

  9. The Electric Utility Industry--Change and Challenge

    E-Print Network [OSTI]

    Williams, M. H.

    , quality circles, and strategic planning are but a few of the latest buzzwords making their way around utilities these days. The terms are frequently misunderstood, are sometimes intimidating, and consequently may get in the way of implementing improved... resource needs, be estimated so that intelligent decisions regarding resource allocation, timing and trade-offs can be made. Summgry The process outlined above most closely resembles strategic planning. This procedure represents a structured...

  10. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle

  11. Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet) Year53Electricity: 30 Years of

  12. Approaches to Electric Utility Energy Efficiency for Low Income Customers

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1ProcessesAppro-Tecin a

  13. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  14. Superconductivity for Electric Systems Annual Peer Review Washington, DC July 27-29, 2004. OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 27-29, 2004. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY American Superconductor Corporation U. Schoop, M. W&D support #12;Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 27-29, 2004

  15. Superconductivity for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY American Superconductor Corporation M. W. Rupich, D-in ORNL-AMSC CRADA: Development of 2G YBCO-RABiTS Wires #12;Superconductivity for Electric Systems Annual

  16. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  17. Annual Electric Generator data - EIA-860 data file

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015EnergyAnnual

  18. FY 2014 Annual Progress Report - Electric Drive Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarchFY 2014 Annual

  19. Research for electric energy systems -- an annual report

    SciTech Connect (OSTI)

    Anderson, W.E. [ed.

    1993-10-01T23:59:59.000Z

    This report documents the technical progress in the two investigations which make up the project {open_quotes}Support of Research Projects for Electrical Energy Systems,{close_quotes} Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: (1) the measurement of dissociative electron attachment cross sections and negative ion production in S{sub 2}F{sub 10}, S{sub 2}OF{sub 10}, and S{sub 2}O{sub 2}F{sub 10}, and (2) Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF{sub 6}-insulated power systems and can be sources of gas decomposition.

  20. Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011 Regulation Governing Use of Electric/Gas Utility­Type Vehicles (EGUV): Individual operators will use their judgment on whether. · Electric vehicles will be recharged at a location appropriate for such use. Use of extension cords from

  1. The Michigan regulatory incentives study for electric utilities. Phase 1, Final report

    SciTech Connect (OSTI)

    Reid, M.W.; Weaver, E.M. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

    1991-06-17T23:59:59.000Z

    This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan`s regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

  2. Renewable Electricity in the Annual Energy Outlook (AEO)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. For Renewable Electricity

  3. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15T23:59:59.000Z

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  4. Superconductive Magnetic Energy Storage (SMES) System Studies for Electrical Utility at Wisconsin

    E-Print Network [OSTI]

    Boom, R. W.; Eyssa, Y. M.; Abdelsalem, M. K.; Huang, X.

    SUPERCONDUCTIVE MAGNETIC ENERGY STORAGE (SHES) SYSTEM STUDIES FOR ELECTRICAL UTILITY USAGE AT WISCONSIN R. W. BOOM Y. M. EYSSA M. K. ABDELSALEM X. HUANG Professor Assoc. Scientist Assoc. Scientist Asst. SCientist Applied Superconductivity Center..., University of Wisconsin Madison, Wisconsin ABSTRACT Two-layer low aspect ratio rippled and non rippled solenoids mounted in surface trenches are described for superconductive magnetic energy storage utility applications. Open pool cooling...

  5. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |MotorsReport |Progress Report

  6. Renewable Electricity in the Annual Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. For Renewable Electricity2014

  7. Spatial Ecology of and Public Attitudes toward Monk Parakeets Nesting on Electric Utility Structures in Dallas and Tarrant Counties, Texas

    E-Print Network [OSTI]

    Reed, Janet Elaine

    2014-07-29T23:59:59.000Z

    2013, we examined the spatial ecology of and public attitudes toward monk parakeets nesting on electric utility structures in Dallas and Tarrant counties, Texas, US. As nest sites, monk parakeets selected electric switchyards and substations...

  8. Wind system value analysis for electric utilities: a comparison of four methods

    SciTech Connect (OSTI)

    Harper, J.; Percival, D.; Flaim, T.

    1981-11-01T23:59:59.000Z

    There have been several studies of how much Wind Energy Conversion Systems (WECS) are worth to electric utilities. When attempting to compare the different results of these studies, questions arose concerning the effect of the different methodologies and models on the determined WECS values. This paper will report on the only known effort that used more than a single methodology for the value analysis of WECS to a specific utility. This paper will present and compare the WECS utility value analysis methodologies of Aerospace Corp., JBF Scientific Corp., and the Solar Energy Research Institute (SERI). Results of the application of these three methodologies were found for two large utilities. Breakeven values (the amount a utility can pay for a wind turbine over its lifetime and still breakeven economically) were found to be from $1600 to $2400 per kW of wind capacity in 1980 dollars. The reasons for variation in the results are discussed.

  9. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

  10. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  11. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15T23:59:59.000Z

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  12. Electrically switched cesium ion exchange. FY 1996 annual report

    SciTech Connect (OSTI)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Haight, S.M. [Washington Univ., Seattle, WA (United States); Genders, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (United States)

    1996-12-01T23:59:59.000Z

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified.

  13. A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets

    SciTech Connect (OSTI)

    Warwick, William M.

    2002-06-03T23:59:59.000Z

    This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

  14. Case Studies in Using Whole Building Interval Data to Determine Annualized Electrical Savings

    E-Print Network [OSTI]

    Effinger, M.; Anthony, J.; Webster, L.

    1 Copyright ? 2005 by ASME CASE STUDIES IN USING WHOLE BUILDING INTERVAL DATA TO DETERMINE ANNUALIZED ELECTRICAL SAVINGS Mark Effinger James Anthony Lia Webster Engineer Engineer Senior Engineer Portland Energy Conservation, Inc... Portland, OR USA ABSTRACT Whole building interval analysis to determine savings from energy reduction measures is addressed in several guidelines. The whole building method has typically focused on measured savings where baseline regression...

  15. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  16. Rural electric power conference, papers presented at the annual conference, 24th, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The conference proceedings contains 14 papers, of which one is indexed separately. The topics discussed are the following: aspects of the Electric Power Research Institute; the Public Utility Regulatory Policies Act of 1978; the cost of Service Computer Program; appliance saturation surveys; load management; supervisory control and the data acquisition system; power system harmonics; ground potential and currents; stray voltage on the dairy farm; temporary protective grounding of distribution circuits; capacitor bank protection; fault determination; and load characteristics of electric excavators.

  17. Data and projections on US electric-utility DSM programs: 1989--1997

    SciTech Connect (OSTI)

    Hirst, E.

    1994-12-01T23:59:59.000Z

    All US electric utilities are required to report to the Energy Information Administration (EIA) data on their demand-side management (DSM) programs. These data provide a comprehensive view of utility DSM-program costs and effects (energy savings and load reductions) for 1989, 1990, 1991, and 1992 as well as projections for 1993 and 1997. For 1992, US utility DSM programs cost almost $2.4 billion, saved 31,800 GWh, and cut potential peak demand by 32,900 MW. Normalized by retail revenues, sales, and peak demand, utilities spent 1.3% of their revenues to achieve energy and demand reductions of 1.2 and 6.0%, respectively.

  18. Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management

    SciTech Connect (OSTI)

    Chowdhury, B.H.; Rahman, S.

    1988-08-01T23:59:59.000Z

    The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

  19. Supplemental financing techniques: implications for electric utilities and the investing public

    SciTech Connect (OSTI)

    Sillin, J.O. (Booz, Allen and Hamilton, Washington, DC); Connellan, D.M.

    1982-05-27T23:59:59.000Z

    In a 1981 study for the Department of Energy, the authors of this article conducted an extensive survey and analysis of financing techniques that represent a divergence from the electric utility industry's historical approach to the raising of capital. On the basis of a lengthy series of interviews with utility-industry executives and members of the financial community, they sought to determine the reasons for the changes in the traditional pattern of the industry's capital-raising efforts, the significance of the changes, and the potential benefits and risks of the new and supplemental methods of financing. Their findings are summarized in this article. 6 figures.

  20. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-04T23:59:59.000Z

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  1. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

    1995-03-01T23:59:59.000Z

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  2. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

  3. Superconductivity for Electric Systems Annual Peer Review Washington, DC July 27-29, 2004 University of Wisconsin-Madison

    E-Print Network [OSTI]

    1 Superconductivity for Electric Systems Annual Peer Review Washington, DC July 27-29, 2004. Gurevich, D. C. Larbalestier Industrial partner: American Superconductor Corporation Funding: ORNL: 225 k$ (DOE) LANL: 200 k$ (DOE) UW: 200 k$ (DOE, AFOSR-MURI) #12;2 Superconductivity for Electric Systems

  4. Financial impacts of nonutility power purchases on investor-owned electric utilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  5. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    SciTech Connect (OSTI)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01T23:59:59.000Z

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  6. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  7. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  8. C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Natural Gas Annual 1930 Through 2000 36. Prices of Natural Gas Deliveries to Electric Utilities by State, 1993-1998 (Dollars per Thousand Cubic Feet) Table State Firm Interruptible...

  9. C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Annual 1930 Through 2000 35. Average Price of Natural Gas Delivered to U.S. Electric Utilities by State, 1967-2000 (Dollars per Thousand Cubic Feet) Table Alabama...

  10. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  11. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  12. The market potential for SMES in electric utility applications. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  13. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01T23:59:59.000Z

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  14. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    E-Print Network [OSTI]

    Eto, Joseph H.

    2013-01-01T23:59:59.000Z

    6 Year 7 Year 8 Year 9 Utility Effects R 2 Without MajorReported to State Public Utility Commissions. Berkeley CA:7 Figure 2. Number of Utilities with SAIDI and SAIFI

  15. St. Louis Airport Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) are not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.

  16. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1997-01-31T23:59:59.000Z

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  17. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  18. ELECTRICITY AND NATURAL GAS DATA COLLECTION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

  19. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    E-Print Network [OSTI]

    Sullivan, M.J.

    2009-01-01T23:59:59.000Z

    kW demand and costs per annual kWh sales. Cost estimates arePer Un-served kWh Cost Per Annual kWh Small C&I Cost PerPer Un-served kWh Cost Per Annual kWh Residential Cost Per

  20. Mechanisms of electromagnetic interference between electrical networks and neighboring metallic utilities

    SciTech Connect (OSTI)

    Dawalibi, F.P.; Ma, J.; Li, Y. [Safe Engineering Services and Technologies Ltd., Montreal, Quebec (Canada)

    1999-11-01T23:59:59.000Z

    This paper examines the mechanisms of electromagnetic interference between a power line and a neighboring pipeline. An electromagnetic field theory approach is used to carry out the study. First, the field theory approach is used to model the complete conductor network under consideration as is. The inductive, capacitive and conductive interference effects between all the elements in the network are simultaneously taken into account in one single step. The computed results are then used to develop a network model whereby the inductive, capacitive and conductive interference effects can be separated. This approach allows one to better understand the effects of each individual component and compare the field-theory (inductive) based results with those obtained from a circuit model approach. The effects of a typical mitigation system on the interference levels are also studied. The results presented in this paper clearly illustrate the mechanisms of electromagnetic interference and mitigation between electrical networks and neighboring metallic utilities.

  1. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect (OSTI)

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01T23:59:59.000Z

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  2. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31T23:59:59.000Z

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  3. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01T23:59:59.000Z

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  4. IEA Agreement on the Production and utilization of hydrogen: 1998 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    1999-01-31T23:59:59.000Z

    The annual report includes an overview of the IEA Hydrogen Agreement, including its guiding principles. The Chairman's report section includes highlights of the agreement for 1998. Annex reports are given on various tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage. Lastly, a feature article by Karsten Wurr, E3M Material Consulting, GmbH, Hamburg Germany, is included titled 'Hydrogen in Material Science and Technology: State of the Art and New Tendencies'.

  5. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States)] [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J.P. [Raytheon Engineers and Constructors, New York, NY (United States)] [Raytheon Engineers and Constructors, New York, NY (United States)

    1996-07-01T23:59:59.000Z

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  6. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Volume II contains papers presented at the following sessions: combustion 2000 session; advanced research and technology development session; commercial/industrial combustion systems session; alternative fuels utilization session; environmental control poster session; and advanced combustion technology poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    -licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

  9. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  10. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  11. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  12. Annual Electric Utility Data - EIA-906/920/923 Data File

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas

  13. The Influence of Residential Solar Water Heating on Electric Utility Demand

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  14. Game Theoretic Models of Electricity Theft Detection in Smart Utility Networks

    E-Print Network [OSTI]

    Sastry, S. Shankar

    for monitoring and billing of electricity consumption can avoid sending their employees to read the meters on meters [4]. Although these techniques reduce unmeasured and unbilled consumption of electricity. Electricity theft in distribution networks Historically, widespread energy theft is characteristic

  15. Economic Assessment and Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities And Regional U.S. Power Grids

    SciTech Connect (OSTI)

    Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

    2007-01-31T23:59:59.000Z

    Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

  16. Economic Assessment And Impacts Assessment Of Plug-In Hybrid Vehicles On Electric Utilities And Regional U.S. Power Grids

    SciTech Connect (OSTI)

    Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

    2007-01-22T23:59:59.000Z

    Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

  17. Rural Electric Cooperatives Energy Efficiency Rebate Programs (Offered by 12 Utilities)

    Broader source: Energy.gov [DOE]

    The Central Iowa Power Cooperative (CIPCO) is a generation and transmission cooperative serving 12 rural electric cooperatives (REC) and one municipal electric cooperative in the state of Iowa....

  18. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

  19. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  20. TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316, 2013 DAVID L. Lawrence Convention Center Pittsburgh, Pennsylvania Page1

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316 approaches of CCS. The main concern for a geologic carbon dioxide (CO2) sequestration is sustained of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA S.Alireza Haghighat1 , Shahab D

  1. Economic Theory and Electrical public Utilities Organization in the first part of the twentieth century: French and US Experiences

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    controversies led in the sixties by the Public Choice theory and in the eighties by the new public economics and by their intervention in the new legislative framework building or directly in the firms' management. Both US experienceEconomic Theory and Electrical public Utilities Organization in the first part of the twentieth

  2. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    E-Print Network [OSTI]

    Eto, Joseph H.

    2013-01-01T23:59:59.000Z

    SAIDI SAIFI SERC SPP TRE WECC Alaska Systems CoordinatingElectricity Coordinating Council (WECC) Midwest ReliabilityCoordinating Council (WECC). Completeness of reported

  3. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  4. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    SciTech Connect (OSTI)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  5. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    SciTech Connect (OSTI)

    Hawsey, R.A.

    2000-06-13T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  6. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect (OSTI)

    Rau, N.S.

    1994-08-01T23:59:59.000Z

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  7. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    E-Print Network [OSTI]

    Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

  8. Annual energy review 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector for 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).

  9. The effects of Title IV of the Clean Air Act amendments of 1990 on electric utilities: An update

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents data and analyses related to Phase I implementation of the Clean Air Act Amendment by electric utilities. It describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on sulfur dioxide emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. The first year of Phase I demonstrated that the market-based sulfur dioxide emissions control system could achieve significant reductions in emissions at lower than expected costs. Some utilities reduced aggregate emissions below legal requirements due to economic incentives; other utilities purchased additional allowances to avoid noncompliance. More than half of the utilities switched to or blended with lower sulfur coal, due to price reductions in the coal market which were partially due to the allowance trading program. 21 figs., 20 tabs.

  10. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member...

  11. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  12. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  13. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Parametric Modeling of Concentric Fringing Electric Field Sensors

    E-Print Network [OSTI]

    Mamishev, Alexander

    of Concentric Fringing Electric Field Sensors X.B. Li, V.V. Inclan, G.I. Rowe, and A. V. Mamishev Sensors electric field (FEF) sensors are widely used for non-invasive measurement of material properties, such as porosity, viscosity, temperature, hardness, and degree of cure. FEF sensors have also been used to detect

  14. Dept of Electrical Engineering Annual Report on Patents, Papers and Projects

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    /series active filters," Electric Power Systems Research, Vol. 73, pp. 187-196, 2005. 3. S.P. Das and A Approach Using AC Transmission Congestion Distribution Factors", Electric Power System Research, Vol. 72 pp in a Competitive Electricity Market using Distribution Factors", Electric Power Components and Systems, Vol. 32

  15. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01T23:59:59.000Z

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  16. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  17. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    reduction in thermal efficiency of the boiler. Excess air bypenalty for thermal efficiencies of the boiler. Flue gasFractional Efficiency of a Utility Boiler Baghouse, Nucla

  18. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  19. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01T23:59:59.000Z

    4 Calculation of Electricity Prices 4.1 Averageaverage seasonal and annual electricity prices by region inbased annual average electricity price vs. annual energy

  20. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  1. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  2. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1.133445

  3. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download

  4. Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption

  5. Weather Factors and Performance of Network Utilities: A Methodology and Application to Electricity Distribution

    E-Print Network [OSTI]

    Jamasb, Tooraj; Orea, Luis; Pollitt, Michael G.

    Incentive regulation and efficiency analysis of network utilities often need to take the effect of important external factors, such as the weather conditions, into account. This paper presents a method for estimating the effect of weather conditions...

  6. Electric utility forecasting of customer cogeneration and the influence of special rates

    E-Print Network [OSTI]

    Pickel, Frederick H.

    1979-01-01T23:59:59.000Z

    Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

  7. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    1975, p. 48. "Clean Energy from Coal Technology," Office ofClean Ways to Burn Coal Estimated Busbar Power Costs for Coal-Electric TechnologiesClean Fuels from Coal," Cochran, N. P. , Office of Science and Technology,

  8. The Benefits of Restructuring: It's Not Your Grandfather's Electric Utility Anymore

    SciTech Connect (OSTI)

    Switzer, Sheldon; Straub, Mary M.

    2006-02-01T23:59:59.000Z

    The key to achieving and maintaining most of the benefits from the emerging competitive market for electricity supply is to have a workably competitive wholesale generation market. By any objective measure, the PJM regional transmission organization is fulfilling its mission.

  9. Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.

    E-Print Network [OSTI]

    Kear, Gareth

    2011-01-01T23:59:59.000Z

    ??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows… (more)

  10. Contract Provisions and Ratchets: Utility Security or Customer Equity?

    E-Print Network [OSTI]

    Penkala, B. A.

    CONTRACT PROVISIONS ANO RATCHETS: UTILITY SECURITY OR CUSTOMER EQUITY? BARBARA A. PENKALA Senior Research Analyst Houston Lighting & Power Company Houston. Texas ABSTRACT The contract provisions and ratchets con tained in an electric... of customers and the magnitude of the load served. A smaller part of the cost is dependent on kilowatt-hours. or energy supplied. The high investment required in the electric utility business relative to annual revenue has an important influence on price...

  11. Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total Inputs8.

  12. Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61 "Total PAD1.

  13. Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3. PAD

  14. Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.5 56,673.61QuantityA3. PAD0.

  15. Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5.B6.1.2.3.

  16. 2014 Annual Planning Summary for the Office of Electricity and Energy Reliability

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Office of Electricity and Energy Reliability.

  17. 2011 Annual Planning Summary for Electricity Delivery and Energy Reliability (OE)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Electricity Delivery and Energy Reliability (OE).

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  19. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    SciTech Connect (OSTI)

    LaCommare, Kristina H.; Eto, Joseph H.

    2008-10-10T23:59:59.000Z

    Large blackouts, such as the August 14-15, 2003 blackout in the northeasternUnited States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. This study examines current state and utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based primarily on reliability information for 2006 reported by 123 utilities to 37 state public utility commissions.

  20. Use of continuous emission monitoring in the electric utility industry. Paper 81. 48. 3

    SciTech Connect (OSTI)

    Van Gieson, J.

    1981-01-01T23:59:59.000Z

    Steam electric generating plants are subject to continuous monitoring regulations. Reliable emission data are recorded to be reported to regulatory agencies. The continuous monitor is being used as a diagnostic tool for optimizing operation of control equipment also. Monitored data identify the magnitude, duration, and time of any emissions exceeding compliance standards so that corrective actions may be taken.

  1. Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint

    E-Print Network [OSTI]

    Richardson, J. A.

    1984-01-01T23:59:59.000Z

    A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit...

  2. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  3. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-04T23:59:59.000Z

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  4. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 2, Appendices

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States); Hill, L.J. [Oak Ridge National Lab., TN (United States)

    1995-11-01T23:59:59.000Z

    This document contains summaries of the electric utilities performance-based rate plans for the following companies: Alabama Power Company; Central Maine Power Company; Consolidated Edison of New York; Mississippi Power Company; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation; PacifiCorp; Pacific Gas and Electric; Southern California Edison; San Diego Gas & Electric; and Tucson Electric Power. In addition, this document also contains information about LBNL`s Power Index and Incentive Properties of a Hybrid Cap and Long-Run Demand Elasticity.

  5. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.; Hill, L.J. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Oak Ridge National Lab., TN (United States). Energy Div.

    1995-11-01T23:59:59.000Z

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  6. David and the Goliaths: How a small environmental group helps reform electric-utility regulation

    SciTech Connect (OSTI)

    Hirst, E. [Oak Ridge National Lab., TN (United States); Swanson, S. [New York State Dept. of Public Services, Albany, NY (United States)

    1994-09-01T23:59:59.000Z

    In 1991 the Land and Water Fund of the Rockies (LAW Fund), a regional environmental organization, started an Energy Project with two lawyers and a scientist to challenge the energy-efficiency, renewable-resource and environmental-protection practices of utilities in the vast six-state Rocky Mountain region. Within three years, Colorado and Utah had adopted comprehensive integrated resource planning (IRP) rules, and several utilities had developed plans to expand their demand-side management (DSM) activities. The authors discuss the role that this small band of lawyers and policy analysts played in stimulating these changes, based on their first-hand experience with the LAW Fund. They also comment on the substantial influence and valuable services that such a small group can provide.

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen

  8. Neural network technology as a pollution prevention tool in the electric utility industry

    SciTech Connect (OSTI)

    Johnson, M.L.

    1998-07-01T23:59:59.000Z

    This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project was funded in part by a grant from the US Environmental Protection Agency (EPA), Region VI. combustion control is quickly becoming an emerging alternative for reducing utility plant emissions without installing costly end of pipe controls. The LCRA estimates that the technology has the potential to improve the thermal efficiency of a large utility boiler by more than 1 percent. preliminary calculations indicate that a 1% improvement in thermal efficiency at the 430 MW gas-fired utility boiler could results in an estimated energy savings of 142, 140 mmBtus and carbon dioxide (CO{sub 2}) reductions of 8,774 tons per year. This paper describes the process that were undertaken to identify and implement the pilot project at LCRA's Thomas C. Ferguson Power Plant, located in Marble Falls, Texas, Activities performed and documented include lessons learned, equipment selection, data acquisition, model evaluation and projected emission reductions.

  9. 2011 ECSE Annual Report Annual Report 2011

    E-Print Network [OSTI]

    Bystroff, Chris

    on is the only sustainable driver of economic growth. For these economies engineers are the "professional2011 ECSE Annual Report Annual Report 2011 Electrical, Computer & Systems Engineering & Systems Engineering Department Kim Boyer, Professor and Head Jonsson Engineering Center Rensselaer

  10. A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation

    E-Print Network [OSTI]

    Treadway, N.

    1987-01-01T23:59:59.000Z

    Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

  11. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  12. Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

    2012-01-01T23:59:59.000Z

    Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

  13. CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers

    E-Print Network [OSTI]

    Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

    for optimum rate design. REFERENCES 1. Kumana, J D and R Nath, "Demand Side Dispatching, Part 1 - A Novel Approach for Industrial Load Shaping Applications", IETC Proceedings (March 93) 2. R Nath, D A Cerget, and E T Henderson, "Demand Side... Dispatching, Part 2 - An Industrial Application", IETC Proceedings (March 93) 3. R Nath and J D Kumana, "NOx Dispatching in Plant Utility Systems using Existing Software Tools", IETC Proceedings (April 92) 4. R Nath, J D KUJIl3I13, and J F Holiday...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergy Information

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergy

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergyFebruary 2009 |

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergyFebruary 2009

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergyFebruary

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen EnergyEnergyEnergyEnergyFebruaryNovember

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy Information April

  1. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - August

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy Information

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - July

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy Information2008 |

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy Information2008

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy Information20082008

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 | Open Energy

  6. Category:Monthly Electric Utility Sales and Revenue Data | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd aMinutes JumpMissing

  7. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S. proved5 Electricity:

  8. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S. proved5 Electricity:6

  9. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  10. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect (OSTI)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01T23:59:59.000Z

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  11. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  12. 2004 Annual Report Conferenceon Electrical Insulation and Dielectric Phenomena Numerical simulationand optimization of electrostaticair pumps

    E-Print Network [OSTI]

    Mamishev, Alexander

    simulationand optimization of electrostaticair pumps N. E. Jewell-Larsen, D. A. Parker, 1. A. Krichtafovitch simulation results of an electrostatic air pump for the purpose of optimizing device characteristics through control of the inner pump electric field profile. A sharp-edge-to-parallel-plane electrode geomeuy

  13. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  14. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29T23:59:59.000Z

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  15. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-02-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

  16. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2009-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  17. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  18. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  19. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes speci

  20. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  1. [Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

  2. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  3. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-07-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  4. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  5. Transient Response of Strongly Correlated Materials to Large Electric Fields: Utilizing the Large Memory Capacity of ARSC's Midnight Machine in a

    E-Print Network [OSTI]

    Freericks, Jim

    . Midnight also showed improved performance over other machines in the 2GB­4GB range for the executableTransient Response of Strongly Correlated Materials to Large Electric Fields: Utilizing the Large Memory Capacity of ARSC's Midnight Machine in a Capability Applications Project J.K. Freericks Department

  6. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  7. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2011-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  10. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-07-30T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  12. Materials for coal conversion and utilization

    SciTech Connect (OSTI)

    None,

    1981-01-01T23:59:59.000Z

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  13. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    SciTech Connect (OSTI)

    Weller, G.H.

    2001-07-15T23:59:59.000Z

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  14. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    SciTech Connect (OSTI)

    none,

    1993-10-01T23:59:59.000Z

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  15. Electric sales and revenue: 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour data provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1993. Operating revenue includes energy charges, demand charges, consumer service charges, environmental surcharges, fuel adjustments, and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. Because electric rates vary based on energy usage, average revenue per kilowatthour are affected by changes in the volume of sales. The sales of electricity, associated revenue, and average revenue per kilowatthour data provided in this report are presented at the national, Census division, State, and electric utility levels.

  16. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

  17. Electric sales and revenue 1992, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-20T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1992. The electric revenue reported by each electric utility includes the applicable revenue from kilowatthours sold; revenue from income; unemployment and other State and local taxes; energy, demand, and consumer service charges; environmental surcharges; franchise fees; fuel adjustments; and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  18. Electric Power Monthly, June 1988

    SciTech Connect (OSTI)

    NONE

    1988-06-15T23:59:59.000Z

    The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants{sup ;} and the Form EIA-826, {sup M}onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent of the electricity sales in the United States. Sources of data are described in more detail in the Technical Notes of the Electric Power Annual (DOE/EIA-0348).

  19. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  20. Colonie Interim Storage Site: Annual site environmental report, Colonie, New York, Calendar year 1986: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    During 1986, the environmental monitoring program continued at the Colonie Interim Storage Site (CISS), a US Department of Energy (DOE) facility located in Colonie, New York. The CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action is being conducted at the site and at vicinity properties by Bechtel National Inc. (BNI), Project Management Contractor for FUSRAP. The environmental monitoring program is also carried out by BNI. The monitoring program at the CISS measures external gamma radiation levels as well as uranium and radium-226 concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess the potential effect of the site on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 5% of the DOE radiation protection standard of 100 mrem/y. Results of 1986 monitoring show that the CISS is in compliance with the DOE radiation protection standard. 14 refs., 9 figs., 9 tabs.

  1. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at Texas A&M University – Texarkana (TAMU–T) Texarkana, Texas

    E-Print Network [OSTI]

    Zhu, Y.; Turner, W. D.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    System Submitted by Yeqiao Zhu Dan Turner David Claridge Energy Systems Laboratory The Texas A&M University System December, 1999 Acknowledgement The Electric Utility Regulation and Energy Efficiency Study for all universities in the TAMU System... was initiated in May 1999 and is funded through an interagency agreement between the Chancellor's office and TEES's Energy Systems Laboratory. Detailed site visits were made to all system universities throughout the summer and fall. The Energy Systems Laboratory...

  2. Electric Power Annual 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998DescriptionRefineriesYearFeet)(MillionA.

  3. Electric Power Annual

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-0 Year-1 Year-2 Year-3

  4. Electric Power Annual 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-0 Year-1 Year-2A. Summer

  5. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  6. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  7. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    state-based renewable energy policies have significantlyin renewable electricity and energy-efficiency policy.s renewable energy sources and energy efficiency policy

  8. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  9. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  10. Techniques for analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Regulatory laws and policies. [State by state

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is a legal study prepared to provide a review of the substantive and procedural laws of each regulatory jurisdiction that may affect implementation of the PURPA standards, and to summarize the current state of consideration and implementation of policies and rate designs similar or identical to the PURPA standards by state regulatory agencies and nonregulated utilities. This report is divided into three sections. The first section, the Introduction, summarizes the standards promulgated by PURPA and the results of the legal study. The second section, State Regulatory Law and Procedure, summarizes for each state or other ratemaking jurisdiction: (1) general constitutional and statutory provisions affecting utility rates and conditions of service; (2) specific laws or decisions affecting policy or rate design issues covered by PURPA standards; and (3) statutes and decisions governing administrative procedures, including judicial review. A chart showing actions taken on the policy and rate design issues addressed by PURPA is also included for each jurisdiction, and citations to relevant authorities are presented for each standard. State statutes or decisions that specifically define a state standard similar or identical to a PURPA standard, or that refer to one of the three PURPA objectives, are noted. The third section, Nonregulated Electric Utilities, summarizes information available on nonregulated utilities, i.e., publicly or cooperatively owned utilities which are specifically exempted from state regulation by state law.

  11. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  12. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

  13. Electric Vehicle Research Group

    E-Print Network [OSTI]

    Liley, David

    .................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

  14. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  15. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  16. This project was funded by Nova Scotia Power. The views and opinions expressed in the report are those of the Do Electric Vehicles Make Carbon-Sense in Nova Scotia?

    E-Print Network [OSTI]

    Hughes, Larry

    the EPRI report, Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions (EPRI, 2007), which determines annual emissions based on the vehicle's Utility Factor (UF), the distance driven electrically and non-electrically (i.e., with gasoline). In the EPRI

  17. Utility spot pricing study : Wisconsin

    E-Print Network [OSTI]

    Caramanis, Michael C.

    1982-01-01T23:59:59.000Z

    Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

  18. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  19. Trends in Regional Electricity Demands 1995-2012

    E-Print Network [OSTI]

    to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

  20. A Response to Two Recent Studies that Purport to Calculate Electric Utility Restructuring Benefits Captured by Consumers

    SciTech Connect (OSTI)

    Spinner, Howard M.

    2006-02-01T23:59:59.000Z

    Recent studies by Global Energy Decisions and Cambridge Energy Research Associates offered high 'headline impact' in finding that wholesale electric competition is fulfilling its promises and restructuring is benefiting consumers to the tune of billions of dollars. But both studies share a fundamental problem tied to the fact that portions of those 'savings' to consumers accrue from losses suffered by the competitive generation sector.

  1. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  2. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  3. Daylighting, dimming, and the electricity crisis in California

    SciTech Connect (OSTI)

    Rubinstein, Francis; Neils, Danielle; Colak, Nesrin

    2001-09-17T23:59:59.000Z

    Dimming controls for electric lighting have been one of the mainstays of the effort to use daylighting to reduce annual lighting energy consumption. The coincidence of daylighting with electric utility peak demand makes daylighting controls an effective strategy for reducing commercial building peak electric loads. During times of energy shortage, there is a greatly increased need to reduce electricity use during peak periods, both to ease the burden on electricity providers and to control the operating costs of buildings. The paper presents a typical commercial building electric demand profile during summer, and shows how daylighting-linked lighting controls and load shedding techniques can reduce lighting at precisely those times when electricity is most expensive. We look at the importance of dimming for increasing the reliability of the electricity grid in California and other states, as well as examine the potential cost-effectiveness of widespread use of daylighting to save energy and reduce monthly electricity bills.

  4. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  5. NARUC Annual Meeting

    Broader source: Energy.gov [DOE]

    The National Association of Regulatory Utility Commissioneers (NARUC) is hosting its annual meeting in San Fransisco, CA, from Nov. 16-19, 2014. Registration and housing begins Aug. 27. 

  6. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01T23:59:59.000Z

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  7. Annual Energy Review, 2008

    SciTech Connect (OSTI)

    None

    2009-06-01T23:59:59.000Z

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  8. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report for 1982

    SciTech Connect (OSTI)

    Bowman, D.E.

    1983-08-01T23:59:59.000Z

    Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation. (LEW)

  9. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  10. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOE Patents [OSTI]

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16T23:59:59.000Z

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Markets: October 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  12. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Markets: September 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  13. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishment

  14. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  15. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  16. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  17. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following

  18. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2007-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  19. Uniform System of Accounts for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

  20. 2001 annual report 2001 annual report

    E-Print Network [OSTI]

    New Mexico, University of

    2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual reportelectrical & computer engineering 2001 annual report the university of new mexico department of 2001 annual report 2001 annual report 2001 annual report 2001 annual

  1. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    (megawatts) 32,547 9 Electric utilities 23,615 7 Independent power producers & combined heat and power 8,933 11 Net generation (megawatthours) 152,878,688 6 Electric utilities...

  3. EIA - State Electricity Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    16,355 24 Electric Utilities 13,131 20 Independent Power Producers & Combined Heat and Power 3,225 30 Net Generation (megawatthours) 65,005,678 24 Electric Utilities...

  4. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

  5. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

  6. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  7. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  8. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  9. National Utility Financial Statement model (NUFS). Volume I of III: Model overview and description. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-29T23:59:59.000Z

    The National Utility Financial Statement (NUFS) model which takes the output for the electric utility sector from the Midterm Energy Forecasting System (MEFS) model and forecasts electric utility financial statements is described. NUFS forecasts separately for public and investor owned utilities, the following tables for each region on an annual basis: income statement; balance sheet; sources and uses of funds; development of revenue requirement on an annual basis; reconciliation of tax expenses, current taxes and income taxes at a 46% statutory rate; interest coverage; external financing as a percent of total uses of funds; AFUDC as a percentage of total uses of funds; book value and market to book rate; dividends per share; and actual return on equity. In addition, NUFS has been designed to supply inputs to the MEFS iterative solution process. The first such input is the fixed charge rates for each plant type. This quantity is used to form the objective function for the MEFS electric utility model. The second set of inputs are for the existing MEFS electricity price forecasting module. These inputs are referred to as pricing coefficients and old money revenue requirements.

  10. 2014 Annual Merit Review Results Report - Power Electronics and...

    Energy Savers [EERE]

    Power Electronics and Electrical Machines Technologies 2014 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies Merit review of DOE Vehicle...

  11. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  12. The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-

    E-Print Network [OSTI]

    Fisher, Kathleen

    The key to fully tapping the promise of the smart grid in the electric utility industry is highly grid a reality. AT&T already has teamed up with Itron, SmartSynch, Cooper Power Systems and Silver will be better positioned to complete the smart grid rollout. The smart grid is often mistakenly thought

  13. Helping Utilities Make Smart Solar Decisions Utility Barriers

    E-Print Network [OSTI]

    Homes, Christopher C.

    Helping Utilities Make Smart Solar Decisions Utility Barriers Key issues facing deployment of utility-scale solar PV plants. Sandra Burton Regional Director March 8 ­ 9, 2011 Brookhaven National Lab #12;About SEPA Developed by utilities to facilitate the integration of solar electric power. SEPA

  14. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Broader source: Energy.gov [DOE]

    '''''Note: The municipal electric utilities serving New Castle, Clayton, Lewes, Middletown, Smyrna, and Seaford do not offer any rebates for individual renewable energy systems. Please see the...

  15. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  16. Cogeneration Assessment Methodology for Utilities

    E-Print Network [OSTI]

    Sedlik, B.

    1983-01-01T23:59:59.000Z

    A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

  17. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    All electric utilities operating in Iowa, including those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow...

  18. International energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  19. Niagara Falls Storage Site, Lewiston, New York: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1987 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 13 refs., 10 figs., 20 tabs.

  20. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  1. Ocala Utility Services- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ocala Utility Services Electric and Telecommunications is a community owned utility that serves around 50,000 customers in Ocala and Marion County area. Ocala Utility Services offers rebates on A/C...

  2. 1979 year-end electric power survey. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The status of electric power supply, generating facility expansion, and electric power equipment manufacture is presented for 1979 on the basis of an industry survey covering investor-owned systems, public systems, and rural electric cooperatives as well as industrial installations which are interconnected with and supply power to utility systems. A 3.2 increase in generating capacity brought the total to 576.2 million kilowatts, 86 percent of which is thermal and the remainder hydro. Survey data for Hawaii is shown separately. December and summer peak capabilities, peak loads, and capability margins are presented for each of the nine regions. Their relationships to each other, to annual load factor, and to annual kilowatt hour requirements are also shown. Details of the orders placed with manufacturers for heavy power equipment are presented for the years 1975 to 1979. The manufacturing schedules of conventional and nuclear equipment are presented for the years 1979 to 1985. 28 tables. (DCK)

  3. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  4. Electricity - Annual Disturbance Events Archive

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826 detailed data The

  5. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  6. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  7. International Energy Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-14T23:59:59.000Z

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  8. 48th Annual Distinguished

    E-Print Network [OSTI]

    Gelfond, Michael

    Electrical Engineering Technology » 1993 Wade Smith Mechanical Engineering » 1989 Presentation respected international energy consultancy. Baker & O'Brien, Inc. currently has offices in Dallas, Houston48th Annual Distinguished Engineer Awards Luncheon Friday, April 11, 2014 11:15 a.m. Sunset

  9. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  10. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides commercial electric incentives for the following Michigan utilities:

  11. Vertical Integration in Restructured Electricity Markets: Measuring Market Efficiency and Firm Conduct

    E-Print Network [OSTI]

    Mansur, Erin T.

    2003-01-01T23:59:59.000Z

    Power, Easton Utilities, UGI Development, Allegheny ElectricPower, Easton Utilities, UGI Development, Edison ( Homer

  12. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  13. International energy annual 1997

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  14. Economic Consequences of Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets

    E-Print Network [OSTI]

    Sioshansi, Ramteen; O'Neill, Richard; Oren, Shmuel S

    2008-01-01T23:59:59.000Z

    commitment in competitive electricity markets,” Util. Pol. ,of market design,” in Electricity Market Reform: Anrestructured competitive electricity markets. and variable

  15. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    contributor to annual electricity consumption, and certainplay in “Other” electricity consumption in new homes, andor range. “Other” electricity consumption was derived by

  16. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

  17. The Paradox of Regulatory Development in China: The Case of the Electricity Industry

    E-Print Network [OSTI]

    Tsai, Chung-min

    2010-01-01T23:59:59.000Z

    zhongguo dianli chanye (China‘s Electricity Industry at themulti_page.pdf. State Electricity Regulatory Commission.The Annual Report on Electricity Regulation (2006). Beijing:

  18. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    E-Print Network [OSTI]

    Weller, G.H.

    2001-01-01T23:59:59.000Z

    Issues for Transition of a Utility Load Management ProgramSCE’s load management system is to transition from providinga transition from SCE’s current load management system to an

  19. Economic regulation of electricity distribution utilities under high penetration of distributed energy resources : applying an incentive compatible menu of contracts, reference network model and uncertainty mechanisms

    E-Print Network [OSTI]

    Jenkins, Jesse D. (Jesse David)

    2014-01-01T23:59:59.000Z

    Ongoing changes in the use and management of electricity distribution systems - including the proliferation of distributed energy resources, smart grid technologies (i.e., advanced power electronics and information and ...

  20. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  1. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    ternative Approaches for Power Capacity Markets”, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions”, available at

  2. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and...

  3. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

  5. 2003 Annual Superconductivity2003 Annual Superconductivity Peer ReviewPeer Review

    E-Print Network [OSTI]

    2003 Annual Superconductivity2003 Annual Superconductivity Peer ReviewPeer Review Raghu;Superconductivity Program at NREL for Electric SystemsSuperconductivity Program at NREL for Electric Systems Non) Industry CRADA:Industry CRADA: Oxford Superconducting Technologies (Ken Marken, Miao Hanping) *University

  6. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at Texas A&M International University (TAMIU) Laredo, Texas

    E-Print Network [OSTI]

    Zhu, Y.; Turner, W. D.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    Targets Ranked by Potential Energy Savings 1. Plant 2. Library 3. Building C 4. Building B 5. Gym 6. Building E 7. Building F 8. Building H Metering Recommendations for Electric Deregulation Several options exist -split the signal from the main meter... and the Commissioning Targets 2 Summary of Building Information and Major Recommended Energy Measures.... 2 Killam Library 2 Bullock Hall 3 Building C 4 Kinesiology Building 5 Pellegrino Hall 5 Canseco Hall-Building F 6 Physical Plant Building-Building H 7 Electricity...

  7. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  8. Industrial coal utilization: third annual symposium

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Twelve articles of this DOE-sponsored symposium have been entered individually into the Energy Data Base and Energy Research Abstracts (ERA); three of the abstracts will appear in Energy Abstracts for Policy Analysis (EAPA).

  9. Physical Plant Utility Department

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of Massachusetts Amherst Electrical Distribution & Outdoor Lighting 3.0 Table of Contents Page 1 UMass Medium buses at the Eastside sub-station. The Eastside sub-station is comprised of two separate buses with a normally open bus tie. Each bus is automatically backed up by separate utility feeds. The Eastside Sub-station

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -burning electricity gene-ration is the current principal energy source. The total amounts of fly ash and bottom ash, University of Wisconsin - Milwaukee #12;The bar graph (Fig. 1) compares the production and utilization of fly shows the percentage of various usage of fly ash in China in 1988 [1]. Fig. 2 Percentage of Fly Ash

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization University of Wisconsin-Milwaukee ABSTRACT This project consisted of performance testing at a typical electric power plant. One of the goals of this project was to determine the feasibility of using. The carbonation reaction of the CLSM would also have the potential to reduce carbon dioxide emissions at a coal-fired

  12. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable...

    Broader source: Energy.gov (indexed) [DOE]

    Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy...

  13. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30T23:59:59.000Z

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  14. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect (OSTI)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01T23:59:59.000Z

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  15. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  16. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible...

  17. NSLS annual report 1984

    SciTech Connect (OSTI)

    Klaffky, R.; Thomlinson, W. (eds.)

    1984-01-01T23:59:59.000Z

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  18. International energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  19. Spot pricing of public utility services

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

  20. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01T23:59:59.000Z

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  1. annual circarhythms activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Institute of Transportation Engineers ANNUAL REPORT OF STUDENT CHAPTER ACTIVITIES Energy Storage, Conversion and Utilization Websites Summary: Institute of Transportation...

  2. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  3. U.S. Energy Information Administration | Annual Energy Outlook...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration | Annual Energy Outlook 2011 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  4. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration | Annual Energy Outlook 2013 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  5. Annual Federal Government Energy Use and Costs by Agency, 1975...

    Open Energy Info (EERE)

    energy use, and is further broken down by energy type, electricity, natural gas, petroleum types, coal, steam, and others. Data and Resources Annual Federal Government Energy...

  6. Dover Public Utilities- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  7. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01T23:59:59.000Z

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  8. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01T23:59:59.000Z

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  9. Greg Rutherford Executive Director Global Power & Utilities Investment...

    Broader source: Energy.gov (indexed) [DOE]

    Director Global Power & Utilities Investment Banking Morgan Stanley Bankability of Electricity Transmission, Storage and Distribution Infrastructure Investment Opening...

  10. Status of State Electric Industry Restructuring Activity

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Presents an overview of the status of electric industry restructuring in each state. Restructuring means that a monopoly system of electric utilities has been replaced with competing sellers.

  11. Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report

    SciTech Connect (OSTI)

    Chen, M.S.; Shoults, R.R.

    1985-07-01T23:59:59.000Z

    Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

  12. 45th annual Reed rig census

    SciTech Connect (OSTI)

    Stokes, T.A.; Rodriguez, M.R. [Reed Tool Co., Houston, TX (United States)

    1997-10-01T23:59:59.000Z

    Since 1983, Reed Tool Co.`s annual rotary rig census has reported 14 consecutive annual reductions in the U.S. rig fleet. This year, the downward trend has reversed and more rigs have been added to the available fleet than have left. Robust drilling activity has also spurred higher rig utilization in 1997. Utilization climbed to 86.9% this year, more than ten percentage points higher than a year ago and the highest since 1981. Data and trends are discussed.

  13. 44. Annual Reed rig census

    SciTech Connect (OSTI)

    Stokes, T.A.; Rodriguez, M.R. [Reed Tool Co., Houston, TX (United States)

    1996-10-01T23:59:59.000Z

    Reed Tool Company`s 44th annual rotary rig census found a spirit of increased optimism in the US oil and gas drilling industry. Rig utilization rose to 77% this year, the highest since the boom times of 15 years ago. A combination of a higher number of active rigs and another decline in available units to a historical low, led to this higher-than-average utilization rate. The paper discusses results from the survey.

  14. FORMS AND INSTRUCTIONS FOR PUBLICLY-OWNED UTILITIES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION FORMS AND INSTRUCTIONS FOR PUBLICLY-OWNED UTILITIES SUBMITTING RETAIL as a Commission Report, and selected publicly-owned electric utilities will be required to provide the specified for Publicly-Owned Utility Forms........................................................... 11 Instructions

  15. Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program

    E-Print Network [OSTI]

    Stewart, James

    2013-01-01T23:59:59.000Z

    A Review. Energy Policy 38 PPL Electric. 2012. First AnnualBased Programs: Evidence from PPL Electric’s Behavior andreports on the effects of PPL Electric’s behavior-based

  16. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  17. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

  18. VT Electric Services VTES 601 Energy Dr.

    E-Print Network [OSTI]

    Buehrer, R. Michael

    VT Electric Services Location VTES 601 Energy Dr. Blacskburg, VA 24061 (540) 231-6437 Office Hours Electric Services is to provide adequate, reliable and economical electric service to the buildings; Street & Sidewalk Illumination Annual Operating Budget $38 million (approx.) Electric Services

  19. Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-04-01T23:59:59.000Z

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  20. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...