Powered by Deep Web Technologies
Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind: monthly and annual average wind GIS data at one-degree...  

Open Energy Info (EERE)

monthly and annual average wind GIS data at one-degree resolution of the World from NASASSE

(Abstract):   Wind Speed At 50 m Above The Surface Of The Earth (m...

2

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

and atmospheric effects may cause the wind speed to depart from the map estimates. Expert advice should be sought in placing wind turbines and estimating their energy production....

3

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

80 m 01-APR-2011 2.1.1 Wind Speed ms >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for...

4

Wind: monthly and annual average wind GIS data at one-degree resolution of  

Open Energy Info (EERE)

monthly and annual average wind GIS data at one-degree resolution of monthly and annual average wind GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Wind Speed At 50 m Above The Surface Of The Earth (m/s)NASA Surface meteorology and Solar Energy (SSE) Release 5 Data Set (Jan. 2005)10-year Monthly & Annual Average (July 1983 - June 1993) Parameter: Wind Speed At 50 m Above The Surface Of The Earth (m/s) Internet: http://eosweb.larc.nasa.gov/sse/ Note: SSE Methodology & Accuracy sections online Created: October 4, 2005 See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format.

5

NREL GIS Data: Alaska High Resolution Wind Resource Annual average...  

Open Energy Info (EERE)

were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with...

6

Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime  

DOE Green Energy (OSTI)

Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

Carlin, P.W.

1996-12-01T23:59:59.000Z

7

Improving Wind Profiler–Measured Winds Using Coplanar Spectral Averaging  

Science Conference Proceedings (OSTI)

A method is presented that increases the detectability of weak clear-air signals by averaging Doppler spectra from coplanar wind profiler beams. The method, called coplanar spectral averaging (CSA), is applied to both simulated wind profiler ...

Robert Schafer; Susan K. Avery; Kenneth S. Gage; Paul E. Johnston; D. A. Carter

2004-11-01T23:59:59.000Z

8

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

9

,"U.S. Natural Gas Average Annual Consumption per Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Average Annual Consumption per Commercial Consumer (Mcf)",1,"Annual",2011...

10

,"U.S. Natural Gas Average Annual Consumption per Industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Average Annual Consumption per Industrial Consumer (Mcf)",1,"Annual",2011...

11

Vehicle Technologies Office: Fact #87: May 4, 1999 Average Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 4, 1999 Average Annual Miles per Vehicle by Vehicle Type and Age to someone by E-mail Share Vehicle Technologies Office: Fact 87: May 4, 1999 Average Annual Miles per...

12

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network (OSTI)

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective “wind year ” is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the “wind year ” in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rückversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the “Scientific Measurement and Evaluation Programme ” (WMEP), which accompanies the “250 MW Wind ” project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

13

NREL: Wind Research - Wind Powering America Hosts 12th Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Powering America Hosts 12th Annual All-States Summit: A Wind Powering America Success Story May 21, 2013 In 2012, the wind energy industry saw great expansion in capacity as...

14

Climate: monthly and annual average relative humidity GIS data...  

Open Energy Info (EERE)

Climate: monthly and annual average relative humidity GIS data at one-degree resolution of the World from NASASSE

(Abstract):  
Relative Humidity at 10 m...

15

Measurement strategies for estimating long-term average wind speeds  

DOE Green Energy (OSTI)

The uncertainty and bias in estimates of long-term average wind speeds inherent in continuous and intermittent measurement strategies are examined by simulating the application of the strategies to 40 data sets. Continuous strategies have smaller uncertainties for fixed duration measurement programs, but intermittent strategies make more efficient use of instruments and have smaller uncertainties for a fixed amount of instrument use. Continuous strategies tend to give biased estimates of the long-term annual mean speed unless an integral number of years' data is collected or the measurement program exceeds 3 years in duration. Intermittent strategies with three or more month-long measurement periods per year do not show any tendency toward bias.

Ramsdell, J.V.; Houston, S.; Wegley, H.L.

1980-10-01T23:59:59.000Z

16

Wind Energy Department Annual Progress Report 2002  

E-Print Network (OSTI)

Wind Energy Department Annual Progress Report 2002 Edited by Birgitte D. Johansen and Ulla Riis The new Test Station at Høvsøre Risø National Laboratory December 2003 Risø-R-1419(EN) #12;Wind Energy December 2003 Risø-R-1419(EN) 2 #12;Wind Energy Department, Annual Report 2002 Introduction Research

17

Figure 88. Annual average Henry Hub spot prices for natural ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 88. Annual average Henry Hub spot prices for natural gas in five cases, 1990-2040 (2011 dollars per million Btu) Reference

18

Figure 86. Annual average Henry Hub spot natural gas prices ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 86. Annual average Henry Hub spot natural gas prices, 1990-2040 (2011 dollars per million Btu) Henry Hub Spot Price 1990.00

19

Solar: monthly and annual average global horizontal irradiance...  

Open Energy Info (EERE)

b>  
Global Horizontal Irradiance
NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)
22-year Monthly & Annual Average...

20

Solar: monthly and annual average direct normal irradiance GIS...  

Open Energy Info (EERE)

>  
Direct Normal Irradiance (kWhm2day)
NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)
22-year Monthly & Annual Average...

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar: monthly and annual average latitude tilt irradiance GIS...  

Open Energy Info (EERE)

& Annual Average (July 1983 - June 2005)
Parameter: Latitude Tilt Radiation (kWhm2day)
Internet: http:eosweb.larc.nasa.govsse
Note 1:...

22

A Statistical Averaging Method for Wind Profiler Doppler Spectra  

Science Conference Proceedings (OSTI)

A new method is presented for Doppler spectral averaging that more reliably identifies the profiler radar return from clear air in the presence of contamination—for example, from migrating bird echoes. These very sensitive radars profile the wind ...

David A. Merritt

1995-10-01T23:59:59.000Z

23

Implication of Spatial Averaging in Complex-Terrain Wind Studies  

Science Conference Proceedings (OSTI)

Studies of wind over complex terrain have been conducted at three times and two locations in Northern California. Instrumentation included conventional cup-vane anemometers and optical anemometers with spatial averaging over path lengths of 0.6-1 ...

W. M. Porch

1982-09-01T23:59:59.000Z

24

Wind Energy Department Annual Progress Report 2003  

E-Print Network (OSTI)

Wind Energy Department Annual Progress Report 2003 Edited by Birgitte D. Johansen and Ulla Riis Turbines (VIM) p. 36 Wind Energy Systems (VES) p. 41 Test and Measurements (TEM) p. 53 Sparkær Blade Test #12;Introduction The primary objective of the activities of the Wind Energy Department at Risø

25

Effect of generalized wind characteristics on annual power estimates from wind turbine generators  

SciTech Connect

A technique is presented for estimating the average power output of a wind turbine using, as the wind characteristic input, only the mean annual wind magnitude. Hourly wind speeds are assumed to have a Rayleigh frequency distribution which requires a single parameter input (e.g., the mean value, variance or higher moment values). Based upon a general shape, for the wind speed versus machine output, a generic set of curves is developed to estimate the average power output of wind turbines. Also, estimates of the percent of time the wind turbine would not produce power (percent down time) and the percent of time the wind turbine would be operating at its rated power are presented.

Cliff, W.C.

1977-10-01T23:59:59.000Z

26

annual average heating degree days | OpenEI  

Open Energy Info (EERE)

average heating degree days average heating degree days Dataset Summary Description (Abstract): Heating Degree Days below 18° C (degree days)The monthly accumulation of degrees when the daily mean temperature is below 18° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Heating Degree Days Below 18 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/ Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords annual average heating degree days climate GIS NASA SWERA UNEP Data application/zip icon Download Shapefile (zip, 2.7 MiB)

27

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

East Asia from NREL East Asia from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

28

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Africa from NREL Africa from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

29

IEA Wind Energy Annual Report 2000  

DOE Green Energy (OSTI)

The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

Not Available

2001-05-01T23:59:59.000Z

30

Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorofluorocarbons » Chlorofluorocarbons » Atmospheric CFC-11 Concentrations Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual Data for the Period 1975-1992 DOI: 10.3334/CDIAC/atg.db1010 data Data (DB1010) Investigator M. A. K. Khalil and R. A. Rasmussen Description This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the

31

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

South America from NREL South America from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

32

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Central America and the Carribean from NREL Central America and the Carribean from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

33

Wind resource analysis. Annual report  

SciTech Connect

FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

Hardy, D. M.

1978-12-01T23:59:59.000Z

34

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

Wind Powering America (EERE)

  Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 006 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 7% in 006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9

35

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 27% in 2006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9 Utility Interest in Wind Asset Ownership Strengthens; Community Wind Grows Modestly . . . . . . . . . . . .

36

Climate: monthly and annual average relative humidity GIS data at  

Open Energy Info (EERE)

relative humidity GIS data at relative humidity GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Relative Humidity at 10 m Above The Surface Of The Earth (%)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Relative Humidity at 10 m Above The Surface Of The Earth (%)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of

37

Climate: monthly and annual average atmospheric pressure GIS data at  

Open Energy Info (EERE)

atmospheric pressure GIS data at atmospheric pressure GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract):Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are

38

Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting ...

J. McLean Sloughter; Tilmann Gneiting; Adrian E. Raftery

2013-06-01T23:59:59.000Z

39

Smart Interpolation of Annually Averaged Air Temperature in the United States  

Science Conference Proceedings (OSTI)

Two “smart” interpolation procedures are presented and assessed with respect to their ability to estimate annual-average air temperatures at unsampled points in space from available station averages. Smart approaches examined here improve upon ...

Cort J. Willmott; Kenji Matsuura

1995-12-01T23:59:59.000Z

40

Solar: monthly and annual average global horizontal (GHI) GIS...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar: monthly and annual average direct normal (DNI), global...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

42

Solar: monthly and annual average direct normal (DNI) GIS data...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

43

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionRhodeIslandWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Rhode...

44

CT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionConnecticutWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

45

MA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionMassachusettsWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

46

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionVermontWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Vermont...

47

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

48

IA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDataTechnologySpecificUnitedStatesWindHighResolutionIowaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Iowa at...

49

ME_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

SDataTechnologySpecificUnitedStatesWindHighResolutionMaineWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Maine...

50

ga_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionGeorgiaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Georgia...

51

ny_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ataTechnologySpecificUnitedStatesWindHighResolutionNewYorkWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for New York at a 50...

52

Detection of an Annual Westward Propagating Signal in the Meridional Wind Component along 8°N in the Pacific  

Science Conference Proceedings (OSTI)

A westward propagating signal with the annual period is detected in anomalies of the zonally averaged meridional wind component along 8°N across the Pacific Ocean. The propagating signal in the “eddy” (defined as the departure from the zonally ...

Shoshiro Minobe

1996-07-01T23:59:59.000Z

53

Solar: annual and seasonal average global horizontal (GHI) GIS data  

Open Energy Info (EERE)

global horizontal (GHI) GIS data global horizontal (GHI) GIS data (contours) for Brazil from INPE and LABSOLAR Dataset Summary Description (Abstract): Annual and seasonal mean of Global Horizontal Solar Radiation in kWh/m2/day based on data from 1995 to 2002 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The cross-calibration process worked with data from 3 ground stations: CaicĂł (located in the Northeast of Brazil), FlorianĂłpolis (located in the South) and Balbina (located in Amazonia). These data have been used for validation and comparison of radiation transfer models operated in SWERA to estimate the incidence of solar radiation on the surface of the country from satellite images

54

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

to Drive Wind Development. . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with SiemensAnnual Report on U.S. Wind Power Installation, Cost, and

2008-01-01T23:59:59.000Z

55

NREL GIS Data: Alaska Low Resolution Wind Resource Annual average...  

Open Energy Info (EERE)

and data instances (values) within the dataset do not contradict each other.

    National Renewable Energy Lab (NREL) 4 DISCLAIMER NOTICE This GIS data was developed by...

56

Figure 21. Annual average spot price for Brent crude oil in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 21. Annual average spot price for Brent crude oil in three cases, 1990-2040 (2011 dollars per barrel) Reference Low Oil Price

57

Idealized Annually Averaged Macroturbulent Hadley Circulation in a Shallow-Water Model  

Science Conference Proceedings (OSTI)

The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of ...

Ori Adam; Nili Harnik

2013-01-01T23:59:59.000Z

58

Variation in the annual average radon concentration measured in homes in Mesa County, Colorado  

Science Conference Proceedings (OSTI)

The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

Rood, A.S.; George, J.L.; Langner, G.H. Jr.

1990-04-01T23:59:59.000Z

59

Bottom Stress in Wind-Driven Depth-Averaged Coastal Flows  

Science Conference Proceedings (OSTI)

The relationship between depth-averaged velocity and bottom stress for purely wind-driven flows in unstratified coastal waters is examined using a one-dimensional (vertically resolving) current model. Results indicate that conventional drag laws ...

Harry L. Jenter; Ole Secher Madsen

1989-07-01T23:59:59.000Z

60

The Global Distribution of the Time-Average Wind Stress Curl from NSCAT  

Science Conference Proceedings (OSTI)

The time-average wind stress curl field for the global ocean is computed from the wind retrievals of the NASA Scatterometer (NSCAT) mission spanning the period 1 October 1996–29 June 1997. Particular attention is paid to large-amplitude, small-...

Ralph F. Milliff; Jan Morzel

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

62

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

22 22 Varnish cache server Solar: monthly and annual average direct normal (DNI) GIS data at 40km resolution for Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is

63

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at  

E-Print Network (OSTI)

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at larger heights above ground level? The wind resource at a wind farm can be estimated in two ways: by measurement or by modeling

64

Annual Report on U.S. Wind Power Installation, Cost, and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 Title Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007...

65

Annual Report on U.S. Wind Power Installation, Cost, and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006 Title Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006...

66

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

49031 49031 Varnish cache server Solar: monthly and annual average direct normal (DNI) GIS data at 40km resolution for China from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to

67

Figure 4.16 Offshore Wind Resources - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 4.16 Offshore Wind Resources U.S. Energy Information Administration / Annual Energy Review 2011 123 Notes: • Data are annual average wind speed at 90 meters.

68

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Brazil. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

69

Solar: monthly and annual average direct normal (DNI) GIS data at 40km for  

Open Energy Info (EERE)

km for km for Sri Lanka from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Sri Lanka (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

70

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Kenya. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

71

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

72

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to

73

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Ethiopia. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

74

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

75

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

76

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Mexico, Central America, and the Caribbean Islands from NREL Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

77

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

78

Solar: monthly and annual average direct normal (DNI) GIS data at 40km  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Brazil. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

79

Solar: annual average direct normal (DNI) GIS data at 10km resolution for  

Open Energy Info (EERE)

GIS data at 10km resolution for GIS data at 10km resolution for Cuba from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Cuba (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model. This

80

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Kenya. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Sri Lanka from NREL Sri Lanka from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Sri Lanka (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

82

Annual Report on U.S. Wind Power Installation, Cost, and  

E-Print Network (OSTI)

industry trends · Evolution of wind pricing · Installed wind project costs · Wind turbine transaction turbines and projects over 50 kW in size · Data sources include AWEA, EIA, FERC, SEC, etc. (see full report PercentofAnnualCapacityAdditions 0 20 40 60 80 100 TotalAnnualCapacityAdditions(GW) Wind Other Renewable Gas

83

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

2008-01-01T23:59:59.000Z

84

Low Wind Speed Technologies Annual Turbine Technology Update (ATTU) Process for Land-Based, Utility-Class Technologies  

SciTech Connect

The Low Wind Speed Technologies (LWST) Project comprises a diverse, balanced portfolio of industry-government partnerships structured to achieve ambitious cost of energy reductions. The LWST Project goal is: ''By 2012, reduce the cost of energy (COE) for large wind systems in Class 4 winds (average wind speed of 5.8 m/s at 10 m height) to 3 cents/kWh (in levelized 2002 dollars) for onshore systems.'' The Annual Turbine Technology Update (ATTU) has been developed to quantify performance-based progress toward these goals, in response to OMB reporting requirements and to meet internal DOE program needs for advisory data.

Schreck, S.; Laxson, A.

2005-06-01T23:59:59.000Z

85

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Mexico, Central America, and the Caribbean Islands from NREL Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate

86

Solar: annual average global horizontal (GHI) GIS data at 10km resolution  

Open Energy Info (EERE)

global horizontal (GHI) GIS data at 10km resolution global horizontal (GHI) GIS data at 10km resolution for Cuba from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate solar collectors for Cuba (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a horizontal flat-plate solar collector, such as a Photovoltaic (PV) solar panel. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model. This model uses information on hourly satellite observed visible irradiance, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total of the normal or beam insolation falling on a tracking concentrator pointed

87

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Ethiopia. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the

88

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

89

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations

90

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

601 601 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142256601 Varnish cache server Solar: monthly and annual average direct normal (DNI) GIS data at 10km resolution for Ethiopia from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for Ethiopia for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country.

91

File:QuikSCAT - Annual Wind Speed at 10 m.pdf | Open Energy Information  

Open Energy Info (EERE)

QuikSCAT - Annual Wind Speed at 10 m.pdf QuikSCAT - Annual Wind Speed at 10 m.pdf Jump to: navigation, search File File history File usage QuikSCAT - Annual Wind Speed at 10 m Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.19 MB, MIME type: application/pdf) Title Annual Wind Speed at 10 m Description QuikSCAT - Annual Wind Speed at 10 m Sources NREL, National Aeronautics and Space Administration Extent International Coordinates 0°, 0° Scatterometer measurements of the state of the ocean surface are used to estimate 10-m ocean winds in the QuikSCAT satellite data set. The QuikSCAT data are produced by Remote Sensing Systems and sponsored by the U.S. National Aeronautics and Space Administration Ocean Vector Winds Science

92

Application of Radar Wind Observations for Low-Level NWP Wind Forecast Validation  

Science Conference Proceedings (OSTI)

The Finnish Meteorological Institute has produced a new numerical weather prediction model–based wind atlas of Finland. The wind atlas provides information on local wind conditions in terms of annual and monthly wind speed and direction averages. ...

Kirsti Salonen; Sami Niemelä; Carl Fortelius

2011-06-01T23:59:59.000Z

93

Solar: monthly and annual average global horizontal irradiance GIS data at  

Open Energy Info (EERE)

irradiance GIS data at irradiance GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Global Horizontal IrradianceNASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Insolation Incident On A Horizontal Surface (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of

94

Solar: monthly and annual average latitude tilt irradiance GIS data at  

Open Energy Info (EERE)

irradiance GIS data at irradiance GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Latitude Tilt Irradiance NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Latitude Tilt Radiation (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.

95

Solar: monthly and annual average direct normal irradiance GIS data at  

Open Energy Info (EERE)

irradiance GIS data at irradiance GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Direct Normal Irradiance (kWh/m^2/day)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Direct Normal Radiation (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are

96

Climate: monthly and annual average cooling degree days above 10° C GIS  

Open Energy Info (EERE)

cooling degree days above 10° C GIS cooling degree days above 10° C GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Cooling Degree Days above 10° C (degree days)The monthly accumulation of degrees when the daily mean temperature is above 10° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Cooling Degree Days Above 10 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180,

97

Climate: monthly and annual average air temperature at 10 m GIS data at  

Open Energy Info (EERE)

air temperature at 10 m GIS data at air temperature at 10 m GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Air Temperature at 10 m Above The Surface Of The Earth (deg C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Air Temperature at 10 m Above The Surface Of The Earth (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of

98

Climate: monthly and annual average heating degree days below 18° C GIS  

Open Energy Info (EERE)

heating degree days below 18° C GIS heating degree days below 18° C GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Heating Degree Days below 18° C (degree days)The monthly accumulation of degrees when the daily mean temperature is below 18° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Heating Degree Days Below 18 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180,

99

Climate: monthly and annual average Earth skin temperature GIS data at  

Open Energy Info (EERE)

Earth skin temperature GIS data at Earth skin temperature GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Earth Skin Temperature (° C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Earth Skin Temperature (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are

100

Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction  

Science Conference Proceedings (OSTI)

Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and ensemble postprocessing ...

Le Bao; Tilmann Gneiting; Eric P. Grimit; Peter Guttorp; Adrian E. Raftery

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Surged by 46% in 2007, with 5,329 MW Added and $9 Billion Invested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Wind Power Contributed 35% of All New U.S. Electric Generating Capacity in 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 The United States Continued to Lead the World in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Texas Easily Exceeded Other States in Annual Capacity Growth . . . . . . .6 Data from Interconnection Queues Demonstrate that an Enormous Amount of Wind Capacity Is Under Development . . . . . . . . . .9 GE Wind Remained the Dominant Turbine Manufacturer, but a Growing Number of Other Manufacturers Are Capturing Market Share .

102

Dynamic average-value modeling of doubly-fed induction generator wind energy conversion systems.  

E-Print Network (OSTI)

??In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a… (more)

Shahab, Azin

2013-01-01T23:59:59.000Z

103

Solar: annual average direct normal (DNI) GIS data at 10km resolution...  

Open Energy Info (EERE)

visible irradiance, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total of the normal or beam...

104

Solar: monthly and annual average latitude tilt GIS data at 40km...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

105

Average Diurnal Behavior of Surface Winds during Summer at Sites in Complex Terrain  

Science Conference Proceedings (OSTI)

Mean diurnal wind distributions from five surface stations in the rugged Geysers area of northern California were examined to determine how they were affected by the terrain. The one dimensional slope-flow model of Garrett was able to simulate ...

Alfred J. Garrett; Frank G. Smith III

1985-02-01T23:59:59.000Z

106

Solar: annual average global horizontal (GHI) GIS data at 10km...  

Open Energy Info (EERE)

at 10km resolution for Cuba from SUNY

(Abstract):  Monthly Average Solar Resource for horizontal flat-plate solar collectors for Cuba

(Purpose):<...

107

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Ethiopia from DLR Ethiopia from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Ethiopia for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR Ethiopia GEF GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 2.8 MiB) text/csv icon Download Data (csv, 5.6 MiB)

108

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Nepal from DLR Nepal from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Nepal for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GEF GHI GIS Nepal solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 593.8 KiB) text/csv icon Download Data (csv, 1.2 MiB)

109

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Sri Lanka from DLR Sri Lanka from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Sri Lanka for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GHI GIS solar Sri Lanka SWERA UNEP Data text/csv icon Download Data (csv, 296.1 KiB) application/zip icon Download Shapefile (zip, 153.7 KiB)

110

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

China from DLR China from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for China for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords China CRED CREIA DLR DNI GEF GIS solar SWERA UNEP Data text/csv icon Download Data (csv, 8.8 MiB) application/zip icon Download Shapefile (zip, 4.4 MiB)

111

Solar: annual and seasonal average latitude tilt GIS data (contours) for  

Open Energy Info (EERE)

latitude tilt GIS data (contours) for latitude tilt GIS data (contours) for Brazil from INPE and LABSOLAR Dataset Summary Description (Abstract): Annual and seasonal mean of Latitude Tilt Solar Radiation in kWh/m2/day based on data from 1995 to 2002 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The cross-calibration process worked with data from 3 ground stations: CaicĂł (located in the Northeast of Brazil), FlorianĂłpolis (located in the South) and Balbina (located in Amazonia). These data have been used for validation and comparison of radiation transfer models operated in SWERA to estimate the incidence of solar radiation on the surface of the country from satellite images

112

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

Kenya from DLR Kenya from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for Kenya for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GEF GIS Kenya solar SWERA UNEP Data text/csv icon Download Data (csv, 2.5 MiB) application/zip icon Download Shapefile (zip, 1.3 MiB)

113

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

Ghana from DLR Ghana from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for Ghana for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI Ghana solar SWERA UNEP Data text/csv icon Download Data (csv, 1 MiB) application/zip icon Download Shapefile (zip, 519.6 KiB)

114

Solar: annual and seasonal average direct normal (DNI) GIS data (contours)  

Open Energy Info (EERE)

direct normal (DNI) GIS data (contours) direct normal (DNI) GIS data (contours) for Brazil from INPE and LABSOLAR Dataset Summary Description (Abstract): Annual and seasonal mean of Direct Normal Solar Radiation in kWh/m2/day based on data from 1995 to 2002 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The cross-calibration process worked with data from 3 ground stations: CaicĂł (located in the Northeast of Brazil), FlorianĂłpolis (located in the South) and Balbina (located in Amazonia). These data have been used for validation and comparison of radiation transfer models operated in SWERA to estimate the incidence of solar radiation on the surface of the country from satellite images obtained from 1995 to 2002

115

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

West China from DLR West China from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for China for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords China CRED CREIA DLR GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 4.4 MiB) text/csv icon Download Data (csv, 8.9 MiB)

116

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Ghana from DLR Ghana from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Ghana for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR Ghana GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 504 KiB) text/csv icon Download Data (csv, 1 MiB)

117

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

Nepal from DLR Nepal from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for Nepal for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GIS Nepal solar SWERA UNEP Data text/csv icon Download Data (csv, 1.2 MiB) application/zip icon Download Shapefile (zip, 600.4 KiB)

118

Solar: monthly and annual average direct normal (DNI) GIS data at 10km  

Open Energy Info (EERE)

Sri Lanka from DLR Sri Lanka from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Direct Normal Irradiance (DNI) for Sri Lanka for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional background information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GEF GIS solar Sri Lanka SWERA UNEP Data application/zip icon Download Shapefile (zip, 155.1 KiB) text/csv icon Download Data (csv, 295.7 KiB)

119

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Kenya from DLR Kenya from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Kenya for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum fĂĽr Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GEF GHI GIS Kenya NREL solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 1.3 MiB) text/csv icon Download Data (csv, 2.5 MiB)

120

Annual and Nonseasonal Variability of Monthly Low-Level Wind Fields over the Southeastern Tropical Pacific  

Science Conference Proceedings (OSTI)

The time and space variability of low-level winds over the Southeast Tropical Pacific (SETP) region is described for the 6-year period 1974–80. The data set consists of monthly averaged low-level cloud-motion vector winds supplemented by coastal ...

David B. Enfield

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar: annual average direct normal (DNI) map at 40km resolution for  

Open Energy Info (EERE)

map at 40km resolution for map at 40km resolution for Central America from NREL Dataset Summary Description (Abstract): A map depicting model estimates of monthly average daily total radiation using inputs derived from satellite and surface observations of cloud cover, aerosol optical depth, precipitable water vapor, albedo, atmospheric pressure and ozone sampled at a 40km resolution. (Purpose): A visual depiction of solar energy resource for concentrating solar power systems. Source NREL Date Released December 11th, 2003 (11 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Central America direct normal DNI map NREL solar SWERA UNEP Data application/pdf icon Download Map (pdf, 67.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency

122

A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada  

Science Conference Proceedings (OSTI)

Changes in the extreme annual wind speed in and around the Gulf of St. Lawrence (Canada) were investigated through a nonstationary extreme value analysis of the annual maximum 10-m wind speed obtained from the North American Regional Reanalysis (...

Y. Hundecha; A. St-Hilaire; T. B. M. J. Ouarda; S. El Adlouni; P. Gachon

2008-11-01T23:59:59.000Z

123

Wind River Watershed Restoration 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder (PIT) tags to track growth and movement of individuals. We snorkeled nine stream sections during 2004. Juvenile steelhead populations have varied greatly between streams and between years. Numbers of age-0 steelhead have increased substantially since 2000 within the MINE reach (rkm 35.0-40.0) section of the upper Wind River. Because of potential negative interactions with steelhead, naturally spawned populations of introduced juvenile Chinook salmon are of concern in the mainstem of the Wind River. During 2004, we deployed over 3,000 PIT tags in the Wind River subbasin, primarily in juvenile steelhead, but also in juvenile Chinook. We are compiling a dataset of recapture information on these tagged fish as well as interrogation information from Bonneville Dam and other sites. The habitat and fish data collected have been used in Ecosystem Diagnosis and Treatment modeling efforts, the Wind River Subbasin Plan, and the Total Maximum Daily Load report from Washington Department of Ecology. Continued monitoring of changes in habitat, combined with data on fish populations, will help guide planning efforts of land and fish managers. As long-term active and passive restoration actions are implemented in the Wind River and its tributaries, these data will provide the ability to measure change. Because the Wind River subbasin has no steelhead hatchery or supplementation, these data will be useful to compare population trends in subbasins with hatchery or supplementation management.

Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

2008-11-10T23:59:59.000Z

124

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

DOE Green Energy (OSTI)

This report--the first in what is envisioned to be an ongoing annual series--attempts to fill this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2006.

Wiser, R.; Bolinger, M.

2007-05-01T23:59:59.000Z

125

Wind River Watershed Restoration, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie [U.S. Geological Survey

2008-11-10T23:59:59.000Z

126

Sandia wind program FY94 annual operating plan  

SciTech Connect

This document presents the objectives, accomplishments and activity plan for the Sandia Wind Energy Technology Program. The status of the current program is summarized and the planned FY94 activities are defined. Appendices detailing the cost, performance and schedule associated with these activities are also included. Funding requirements are given for several scenarios in order to reflect the impact of funding variability on program progress.

Dodd, H.M.

1993-10-01T23:59:59.000Z

127

The Effects of the Variations In Sea Surface Temperature and Atmospheric Stability in the Estimation of Average Wind Speed by SEASAT-SASS  

Science Conference Proceedings (OSTI)

Wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT averaged over 2° latitude by 2° longitude and a 92-day period are compared with wind speeds from ship reports in the western North Atlantic and the eastern North ...

W. Timothy Liu

1984-02-01T23:59:59.000Z

128

Average Vertical Motions in the Tropical Atmosphere Observed by a Radar Wind Profiler on Pohnpei (7°N Latitude, 157°E Longitude)  

Science Conference Proceedings (OSTI)

Average vertical profiles of the vertical wind obtained under clear sky conditions as weal as under conditions of both light-to-moderate and heavy rainfall am presented from data obtained using a radar wind profiler located on the island of ...

B. B. Balsley; W. L. Ecklund; D. A. Carter; A. C. Riddle; K. S. Gage

1988-02-01T23:59:59.000Z

129

Wind River Watershed Restoration, 2006-2007 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S. [U.S. Geological Survey

2008-11-04T23:59:59.000Z

130

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Price Average Commercial Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

131

Candidate wind turbine generator site, Culebra, Puerto Rico. Annual data summary, October 1978-September 1979  

DOE Green Energy (OSTI)

This report summarizes wind speed and direction data collected on meteorological towers at 14 candidate and wind turbine generator installation sites from October 1978 through September 1979. The basic method of data collection is by digital data cassette recording systems. For the digital data reported, an instantaneous sample is recorded every 2 minutes. An explanation is provided for each data summary table as well as information on how specific values were computed. The rest of the report presents the annual summarized data for each site.

Not Available

1980-07-01T23:59:59.000Z

132

Candidate wind turbine generator site, Culebra, Puerto Rico. Annual data summary, January-December 1979  

DOE Green Energy (OSTI)

This report summarizes wind speed and direction data collected on meteorological towers at 14 candidate and wind turbine generator installation sites from January 1979 through December 1979. The basic method of data collection is by digital data cassette recording systems. For the digital data reported, an instantaneous sample is recorded every 2 minutes. An explanation is included for each data summary table as well as information on how specific values were computed. The rest of the report presents the annual summarized data for each site.

None

1980-06-01T23:59:59.000Z

133

The 20th Annual National Science Bowl Competition Winds into Action | U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

The 20th The 20th Annual National Science Bowl Competition Winds into Action News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.10.09 The 20th Annual National Science Bowl Competition Winds into Action Students from Across the Country Prepare for Regional Science Competitions Print Text Size: A A A Subscribe FeedbackShare Page For the past 20 years students have descended on Washington, D.C., every May to compete in the National Science Bowl sponsored by the U.S. Department of Energy's Office of Science. This academic competition began in 1991 to encourage middle and high school-aged students to take a more

134

Zoning for Small Wind: The Importance of Tower Height  

Wind Powering America (EERE)

1 1 Zoning for Small Wind: The Importance of Tower Height An ASES Small Wind Webinar Mick Sagrillo-Wisconsin's Focus on Energy © 2008 by Mick Sagrillo 2 Definitions: rotor L&S Tech. Assoc., Inc. Rotor = "collector" for a wind system 3 Definitions: wind * Wind = the 'fuel' * Wind has two 'components' - Quantity = wind speed (velocity or V) - Quality = 'clean' flowing wind 4 Quantity * = average annual wind speed * Climate, not weather * Akin to annual average sun hours for PV or head and flow for hydro * Wind speed increases with height above ground... * ...Due to diminished ground drag (friction) 5 Power in the wind V³ * Wind speed = V * Power available is proportional to wind speed x wind speed x wind speed - or P ~ V x V x V - or P ~ V ³ * Therefore, 10% V = 33% P * Lesson !

135

Generation of Annual-Period Rossby Waves in the South Atlantic Ocean by the Wind Stress Curl  

Science Conference Proceedings (OSTI)

The properties of first-mode annual-period baroclinic Rossby waves generated by the observed wind stress curl in a numerical model of the South Atlantic and Southwest Indian oceans are presented. The forcing wind field for the area 15°–51°S, 45°W–...

Christopher J. C. Reason; Lawrence A. Mysak; Patrick F. Cummins

1987-11-01T23:59:59.000Z

136

Bursting-Layer Modeling Based on the Assumption of the Averaged Sea Surface for Strong Wind-Driven Currents  

Science Conference Proceedings (OSTI)

In the sea, which is affected by strong winds that cover the water surface with wind-wave breakers, the sea surface layer, called the bursting layer by authors, is generated immediately below the mean water level. For treatment of strong wind-...

Tomokazu Murakami; Takashi Yasuda

2008-04-01T23:59:59.000Z

137

Wind capacity additions slowed during 2010 - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Growth in wind-powered electric generating capacity slowed in 2010, increasing by 11% from 2009 after increasing 40% on an average annual basis from 2005-2009.

138

14th Annual international meeting of wind turbine test stations: Proceedings  

DOE Green Energy (OSTI)

These proceedings are of the 14th Annual International Meeting of Test Stations. As the original charter states these meetings are intended to be an international forum for sharing wind turbine testing experiences. By sharing their experiences they can improve testing skills and techniques. As with all new industries the quality of the products is marked by how well they learn from their experiences and incorporate this learning into the next generation of products. The test station`s role in this process is to provide accurate information to the companies they serve. This information is used by designers to conform and improve their designs. It is also used by certification agencies for confirming the quality of these designs. By sharing of experiences they are able to accomplished these goals, serve these customers better and ultimately improve the international wind energy industry.

Not Available

1994-11-01T23:59:59.000Z

139

Annual report of the Wind Characteristics Program Element, October 1979-September 1980  

DOE Green Energy (OSTI)

This annual report briefly describes the technical progress within each segment of the WCPE from October 1979 through September 1980. It includes the progress accomplished directly by the Pacific Northwest Laboratory (PNL) and by subcontractors funded directly by DOE or through PNL. To expedite the management of the activities to produce the required information, the WCPE has been divided into three program areas: Wind Energy Prospecting, Support for Design and Operations, and Site Evaluation. Accomplishments in each of these program areas provide a highlight of WCPE activities in FY 1980.

Wendell, L.L.; Barchet, W.R.; Connell, J.R.; Miller, A.H.; Pennell, W.T.; Renne, D.S.

1981-09-01T23:59:59.000Z

140

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The role of wind generation in European power sector decarbonization : a general equilibrium analysis  

E-Print Network (OSTI)

Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications ...

Karkatsouli, Ioanna

2013-01-01T23:59:59.000Z

142

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Results from Major Wind Integration Studies Completed 2003-a mini- mum) show that wind integration costs are generallyA number of additional wind integration analyses are planned

2008-01-01T23:59:59.000Z

143

OpenEI - wind speed  

Open Energy Info (EERE)

NREL GIS Data: Global NREL GIS Data: Global Offshore Wind http://en.openei.org/datasets/node/869 GIS data for offshore wind speed (meters/second).  Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m.  Annual average  >= 10 months of data, no nulls. License

Type of License:  Other (please specify below)

144

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

result, these prices do not represent wind energy generationprices presumably reflect only the value of energy, whereas wind

2008-01-01T23:59:59.000Z

145

Wind energy systems application to regional utilities. [SERIES code; WINDS code; PHASES code; AVERAGE code; NETLOAD code; GENSYS code; PROCOST code; CAP6 code; EVEN code  

DOE Green Energy (OSTI)

A methodology for analyzing the economic impact of WECS on a utility is described in Volume I of this report. The methodology requires extrapolating both historical utility load data and historical wind power into a year of analysis; calculating the total amount of funds made available in that year, as a result of the inclusion of wind power in the utility mix; and then estimating the present value of the total funds made available to the utility over the life of the WECS. To apply the methodology to a specific case, it was necessary to develop various computer programs. The following sections in this report list the programs developed for this study, briefly summarize their contents, and explain how they are used. Wherever possible, a typical input/output file is shown.

Not Available

1979-09-01T23:59:59.000Z

146

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

basis. Text Box 1. Offshore Wind Development Activities Inis some interest in offshore wind in several parts of theGeorgia TOTAL Proposed Offshore Wind Capacity 735 MW 650 MW

2008-01-01T23:59:59.000Z

147

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

not represent wind energy generation costs, and generationXcel-UWIG We Energies Wind Capacity Penetration Cost ($/MWh)Wind Energy Program is currently funding additional efforts to better understand the drivers for O&M costs and

2008-01-01T23:59:59.000Z

148

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Prices. . . . . 14 Installed Project Costs Are On the Rise,of Decline. . 15 Project Cost Increases Are a Function ofin installed wind project costs, wind turbine transaction

2008-01-01T23:59:59.000Z

149

DOE/NREL Wind Farm Monitoring: Annual Report, July 2000-July 2001  

Science Conference Proceedings (OSTI)

The Wind Program and the wind power industry currently do not have the ability to accurately assess ancillary service burdens or benefits of wind-powered electricity. This evaluation can help in determining if efforts should be expended in beginning to examine possible mitigation strategies by including detailed data analysis from two wind farm facilities.

Smith, J. W.

2002-04-01T23:59:59.000Z

150

Seasonal variability of wind electric potential in the United States  

DOE Green Energy (OSTI)

Seasonal wind electric potential has been estimated for the contiguous United States based on the methods previously used to estimate the annual average wind electric potential. National maps show estimates of the seasonal wind electric potential averaged over the state as a whole, and gridded maps show the distribution of the seasonal wind electric potential within a state. The seasons of winter and spring have highest wind electric potential for most windy areas in the United States. Summer is the season with the least potential for most of the contiguous United States. Wind electric potential patterns in autumn generally resemble the annual average potential map. Excellent matches between seasonal wind electric potential and electric energy use occur during winter for the northern parts of the nation. California has a good match between summer wind potential and electric use.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1993-07-01T23:59:59.000Z

151

Wind Energy Resource Atlas of the Dominican Republic  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; Kline, J.

2001-10-01T23:59:59.000Z

152

NNSA Awards Contract for Largest Federal Wind Farm to Siemens...  

National Nuclear Security Administration (NNSA)

turbines located on 1,500 acres of government-owned property east of the Pantex Plant. Energy savings from the wind farm average 2.9 million annually over a 20-year contract...

153

Candidate wind turbine generator site: annual data summary, January 1981-December 1981  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

1982-07-01T23:59:59.000Z

154

Techno-economics analysis of a wind/PV hybrid system to provide electricity for a household in Malaysia  

Science Conference Proceedings (OSTI)

This paper is study on techno-economics analysis of a wind/PV hybrid system for a household in Malaysia. One year recorded wind speed and solar radiation are used for the design of a hybrid energy system. In 2004 average annual wind speed in Kuala Terengganu ... Keywords: electrical load, techno-economics analysis, wind/PV hybrid system

Ahmad Fudholi; Mohd Zamri Ibrahim; Mohd Hafidz Ruslan; Lim Chin Haw; Sohif Mat; Mohd Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2012-01-01T23:59:59.000Z

155

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 006 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  

E-Print Network (OSTI)

that Value . . . . . . . . . . . . . . . . . . . . . . . . . .13 Project Performance and Capital Costs Drive Wind Power Prices . . . . .14 Installed Project Costs Are On the Rise, After a Long Period of Decline. .15 Project Cost Increases Are a Function of Turbine Prices . . . . . . . . . . . .16 Wind Project

156

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 (Revised)  

DOE Green Energy (OSTI)

This report focuses on key trends in the U.S. wind power market, with an emphasis on the latest year, and presents a wealth of data, some of which has not historically been mined by wind power analysts.

Wiser, R.; Bolinger, M.

2008-05-01T23:59:59.000Z

157

Annual Report on U.S. Wind Power Installation, Cost, and  

E-Print Network (OSTI)

transaction prices · Wind project performance · O&M cost trends · Integration/transmission/policy · Coming up is Reasonably Broad #12;10 Interest in Offshore Wind Continues in the U.S., but No Such Projects Are Yet Online · All wind projects installed in the U.S. to date are land-based · Some interest exists in offshore wind

158

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Rankings: The Top 20 States Cumulative Capacity (end of 2006, MW) Texas California Iowa Minnesota Washington Oklahoma

2008-01-01T23:59:59.000Z

159

Candidate wind turbine generator site annual data summary for January 1980 through December 1980  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for fourteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Renne, D.S.

1981-04-01T23:59:59.000Z

160

Candidate wind turbine generator site annual data summary for January 1979 through December 1979  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for fifteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Renne, D.S.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Definition: Wind rose | Open Energy Information  

Open Energy Info (EERE)

rose rose Jump to: navigation, search Dictionary.png Wind rose A diagram that shows the average percentage of time that the wind blows from different directions, typically on a monthly or annual basis.[1][2] View on Wikipedia Wikipedia Definition A wind rose is a graphic tool used by meteorologists to give a succinct view of how wind speed and direction are typically distributed at a particular location. Historically, wind roses were predecessors of the compass rose, as there was no differentiation between a cardinal direction and the wind which blew from such a direction. Using a polar coordinate system of gridding, the frequency of winds over a long time period are plotted by wind direction, with color bands showing wind ranges. The directions of the rose with the longest spoke show the wind direction with

162

Technical and management support for the development of small wind systems. Annual report, October 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The FY 1978 Annual Report of the Rocky Flats Wind Systems Program describes the objectives, approach, and achievements of the program and each of its tasks areas during the period October 1, 1977-September 30, 1978. During this period, additional testing of ten small wind energy conversion systems (SWECS) was conducted and the Test Center was expanded to accommodate up to 30 SWECS. Work on nine design and analysis projects for advanced prototypes in three size ranges progressed through a series of design reviews, with prototype delivery scheduled to begin in mid-1979. Supporting activities included a Systems Engineering project which analyzed the cost of SWECS components and fabrication, a task effort in technical support to standards development, and the dissemination of information.

None

1979-02-01T23:59:59.000Z

163

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

businesses to use renewable and energy efficient systems.incentives, state renewable energy standards and incentives,Wind Force Atlantic Renewable Energy Corp. SeaWest Zilkha (

2008-01-01T23:59:59.000Z

164

wind speed | OpenEI  

Open Energy Info (EERE)

speed speed Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

165

The Annual Wind-driven Rossby Wave in the Subthermocline Equatorial Pacific  

Science Conference Proceedings (OSTI)

The annual cycle of temperature in the subthermocline equatorial Pacific is studied using a new compilation of historical hydrographic profiles. The observations have several characteristics suggestive of a vertically propagating, first ...

William S. Kessler; Julian P. McCreary

1993-06-01T23:59:59.000Z

166

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

167

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Price Source: FERC 2006 and 2004 “State of the12 projects 691 MW Source: FERC 2006 "State of the Market"the strong competi- Source: FERC 2006 "State of the Market"

2008-01-01T23:59:59.000Z

168

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

2003-2006 Date Study Xcel-UWIG We Energies Wind Capacitybeen a considerable 2004 Xcel-MNDOC na na amount of analysisconcerns about whether the 2006 Xcel-PSCo na electrical grid

2008-01-01T23:59:59.000Z

169

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Production as % of Electricity Consumption (approximate, end of 2006) Denmark Spain Portugal Germany Indiawind capacity additions (Table 1), with roughly 16% of the worldwide market (Figure 2). Germany, India,

2008-01-01T23:59:59.000Z

170

Wind River Watershed Project; Volume I of III Reports A thru E, 1998 Annual Report.  

DOE Green Energy (OSTI)

This report describes the ongoing efforts to document life history strategies of steelhead in the Wind River watershed and to formulate criteria for ranking restoration needs and proposed projects.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

171

Annual report of the Wind Characteristics Program Element, July 1978-September 1979  

DOE Green Energy (OSTI)

As a service element within the Federal Wind Energy Program, the Wind Characteristics Program Element (WCPE) is established to provide the appropriate wind characteristics information to those involved in: the design and evaluation of wind energy conversion systems (WECS); energy program planning; selecting sites for WECS installation; and the operation of WECS. To effectively produce the information needed in these four categories, the WCPE, for which the Pacific Northwest Laboratory (PNL) has the responsibility for management and technical assistance, has been divided into four technical program areas. During this reporting period PNL was also assigned the management responsibility for the data collection at the US Department of Energy's (DOE's) candidate sites, as well as the task of providing technical assistance to DOE evaluation and site selection panels for new candidate sites.

Wendell, L.L.; Barchet, W.R.; Connell, J.R.; Miller, A.H.; Pennell, W.T.; Renne, D.S.

1980-05-01T23:59:59.000Z

172

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

incentives, state renewable energy standards and incentives,State renewable energy funds (in existence in more than 15 states), state tax incentives,state renewable energy funds provide support for wind projects, as do a variety of state tax incentives.

2008-01-01T23:59:59.000Z

173

annual generation | OpenEI  

Open Energy Info (EERE)

generation generation Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

174

Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions favorable for a fish parasite, Heteropolaria lwoffi. Educational activities further the likelihood that future generations will continue to understand and enjoy the presence of native fish stocks in the Wind River basin.

White, Jim

2004-02-01T23:59:59.000Z

175

Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

19 19 th Annual Triple "E" Seminar Presented by U.S. Department of Energy National Energy Technology Laboratory and Spectroscopy Society of Pittsburgh Thursday, January 20, 2011 8:00 a.m. Registration & Breakfast 8:30 a.m. Opening Remarks/Welcome Michael Nowak, Senior Management & Technical Advisor National Energy Technology Laboratory 8:35 a.m. Overview of Energy Issues Michael Nowak, Senior Management & Technical Advisor National Energy Technology Laboratory 8:45 a.m. Introduction of Presenters McMahan Gray National Energy Technology Laboratory 8:50 a.m. Jane Konrad, Pgh Regional Center for Science Teachers "Green - What Does it Mean" 9:45 a.m. Break 10:00 a.m. John Varine, Spectroscopy Society of Pittsburgh

176

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

177

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

178

Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.  

DOE Green Energy (OSTI)

This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

Bair, Brian; Olegario, Anthony; Powers, Paul

2002-06-01T23:59:59.000Z

179

Partial CO2 Column-Averaged Dry-Air Mixing Ratio from Measurements by Coherent 2-?m Differential Absorption and Wind Lidar with Laser Frequency Offset Locking  

Science Conference Proceedings (OSTI)

A coherent 2-?m differential absorption and wind lidar (Co2DiaWiL) with a 2-?m single-frequency Q-switched laser with laser frequency offset locking was used for long-range CO2 measurement. The frequency stabilization of the single-frequency ? on ...

Shoken Ishii; Kohei Mizutani; Philippe Baron; Hironori Iwai; Ryoko Oda; Toshikazu Itabe; Hirotake Fukuoka; Takayoshi Ishikawa; Mizuki Koyama; Tomoaki Tanaka; Isamu Morino; Osamu Uchino; Atsushi Sato; Kazuhiro Asai

2012-09-01T23:59:59.000Z

180

Colorado Wind Resource at 50 Meters Above Ground Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource at 50 Meters Above Ground Level Wind Resource at 50 Meters Above Ground Level Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: December 2003 Title: Colorado Wind Resource at 50 Meters Above Ground Level Geospatial_Data_Presentation_Form: vector digital data Online_Linkage: Description: Abstract: Annual average wind resource potential for the state of Colorado,

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind River Watershed Project; Volume II of III Reports F and G, 1998 Annual Report.  

DOE Green Energy (OSTI)

The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

182

2008 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Service Company. Flagstaff, Arizona: Northern Arizona University. American Wind Energy Association (AWEA). 2009a. Annual Wind Industry Report: Year Ending 2008. Washington,...

183

Semi-annual report of the Wind Characteristics Program Element for the period July 1977 through December 1977  

DOE Green Energy (OSTI)

Within the Federal Wind Energy Program, the Wind Characteristics Program Element (WCPE) is a service element established to provide the appropriate wind characteristics information to those involved in energy program planning, design and evaluation of wind energy conversion systems (WECS), selection of sites for the installation of WECS, and the operation of WECS. The program contributions are to consist of reliable estimates of wind characteristics pertinent to WECS design, effective analyses and methods for the determination of wind energy potential over large areas, dependable and cost-effective methodologies for the siting of WECS, and descriptions of the day-to-day variability and predictability of wind energy for WECS operations. To accomplish these goals, the WCPE has been divided into four technical program areas: wind characteristics for design and performance evaluation; mesoscale wind characteristics; development of siting methodologies; and wind characteristics for WECS operations.

Elderkin, C.E.; Wendell, L.L.

1978-01-01T23:59:59.000Z

184

EIA Renewable Energy- Average Energy Conversion Efficiency of ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Average Energy ...

185

IEA WIND 2012 Annual Report Executive Committee of the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems  

E-Print Network (OSTI)

of the cooperative research, development, and deployment (R,D&D) efforts of our member governments and organizations. IEA Wind helps advance wind energy in countries representing 85 % of the world's wind generating capacity. In 2012 record capacity additions (MW) were seen in nine member countries, and cooperative research produced five final technical reports as well as many journal articles and conference papers. The technical reports include:

unknown authors

2013-01-01T23:59:59.000Z

186

Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 12, 2004 8: July 12, 2004 Expected Average Annual Miles to someone by E-mail Share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Facebook Tweet about Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Twitter Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Google Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Delicious Rank Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Digg Find More places to share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on AddThis.com... Fact #328: July 12, 2004 Expected Average Annual Miles Twenty-five percent of the respondents to a nationwide survey said that

187

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

2010-05-01T23:59:59.000Z

188

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

189

Wind Monitoring Report for Fort Wainwright's Donnelly Training Area  

DOE Green Energy (OSTI)

Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

Orrell, Alice C.; Dixon, Douglas R.

2011-01-18T23:59:59.000Z

190

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

market for new wind power additions in 2011. India, Germany,wind-powered generating sets were: Denmark (42%), Spain (16%), Japan (13%), India (Wind Power Capacity Annual Capacity (2011, MW) China U.S. India

Bolinger, Mark

2013-01-01T23:59:59.000Z

191

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

192

A Review of Wind Project Financing Structures in the USA  

E-Print Network (OSTI)

Mark Bolinger. 2007. Wind Project Financing Structures: A2008. Annual Report on U.S. Wind Power Installation, Cost,James. 2005. “Invenergy Wind Finance Company Portfolio

Bolinger, Mark A

2009-01-01T23:59:59.000Z

193

Final Environmental Assessment, Burleigh County Wind Energy Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1542 August 2005 Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN ELECTRIC POWER COOPERATIVE Central Power Electric Cooperative, Inc. Introduction 1-1 Burleigh County Wind Energy Center Environmental Assessment CHAPTER 1 INTRODUCTION The Burleigh County Wind Energy Center is a wind generation project proposed by FPL Energy Burleigh County Wind, LLC (Burleigh County Wind). The proposed project would produce up to 50 megawatts (MW) of electricity, averaged annually. The proposed project is located in Burleigh County, North Dakota, approximately 3 miles south and 2 miles east of the town of Wilton, North Dakota (Figures 1-1

194

NREL GIS Data: Indiana High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Indiana High Resolution Wind Resource Indiana High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Indiana at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Indiana. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 16 datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

195

NREL GIS Data: Hawaii High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Wind Resource Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Hawaii at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Hawaii. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 4, datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by TrueWind Solutions using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

196

Control algorithms for effective operation of variable-speed wind turbines  

DOE Green Energy (OSTI)

This report describes a computer code, called ASYM and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

Not Available

1993-10-01T23:59:59.000Z

197

Wind Turbine Productivity Improvement and Procurement Guidelines  

Science Conference Proceedings (OSTI)

Proper selection of equipment specifications during wind turbine procurement and careful operation and maintenance procedures are keys to maximizing wind project availability and annual energy generation and revenues.

2002-03-28T23:59:59.000Z

198

NREL GIS Data: Minnesota High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Minnesota High Resolution Wind Resource Minnesota High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for Minnesota at a 50 meter height. Purpose: Provide information on the wind resource development potential in Minnesota. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. Data from http://www.state.mn.us/portal/mn/jsp/content.do?contentid=536887066&contenttype=EDITORIAL&agency=Commerce average the 30 and 80 m wind speed values and then converted it to power density assuming a Weibull K of 2.0 and using elevation to estimate air density. Other_Citation_Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants.

199

Wind Energy Resource Assessment of the Caribbean and Central America  

DOE Green Energy (OSTI)

A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

1987-04-01T23:59:59.000Z

200

Wind Power Outlook 2004  

DOE Green Energy (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Brazil Wind Data (40km) from CEPEL | OpenEI  

Open Energy Info (EERE)

40km) from CEPEL 40km) from CEPEL Dataset Summary Description (Abstract): Annual average of the aeolic potential at 50m. Content: wind speed in m/s, power class (7 classes), power density in W/m2 and Weibull k value organized into cells with 40km x 40km (Purpose): The thematic map by code of colors permits quick viewing of all the Brazilian territory dataset. That map indicates, for the height of 50m, the annual average, in W/m2, of wind speed, power class, power density and Weibull k value. (Supplemental Information): The information is organized into cells measuring 10 x 40km. The wind potential maps were calculated from simulations produced by the MesoMap(*) for 360 days, extracted of a period of 15 years of data. The days were chosen by means of random sampling at several heights, so that each month and season be considered in a representative way.

202

2 Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  

E-Print Network (OSTI)

and Capital Costs Drive Wind Power Prices . . . . .20 Installed Project Costs Continued to Rise in 2007, After. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Project Cost Increases Are a Function of Turbine Prices, and Turbine Prices Have Increased . . . . . . . . . . . . . . .23 Operations and Maintenance Costs Are Affected by the Age and Size of the Project, Among Other

203

Wind power outlook 2006  

DOE Green Energy (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

204

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2008. “Annual Report on US Wind Power Installation, Cost,Feed Sequestration Site Wind Power Figure ES-1. AdvancedFeed Sequestration Site Wind Power Figure 1. Advanced-Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

205

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

wind-powered generating sets were: Denmark (41%), Spain (17%), Japan (14%), India (Wind Power Capacity Annual Capacity (2010, MW) China U.S. Indiawind capacity additions in 2010 would have shrunk considerably relative to 2009. India,

Wiser, Ryan

2012-01-01T23:59:59.000Z

206

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

reduced near-term price expectations, wind energy?s primaryweighted-average price of wind energy in 1999 was roughly $electricity prices in 2009 pushed wind energy to the top of

Wiser, Ryan

2012-01-01T23:59:59.000Z

207

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

over the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (natural gas prices), pushed wind energy from the bottom to

Wiser, Ryan

2010-01-01T23:59:59.000Z

208

Wind Energy and Spatial Technology  

E-Print Network (OSTI)

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers (existing transmission lines)? #12;2/3/2011 3 US Energy Transmission Grid US Wind Map #12;2/3/2011 4

Schweik, Charles M.

209

Table AP7. Average Expenditures for Home Appliances and Lighting ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

210

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

211

VOLUME 46 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY NOVEMBER 2007 Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms  

E-Print Network (OSTI)

Wind is the world’s fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same time. The array consequently behaves more and more similarly to a single farm with steady wind speed and thus steady deliverable wind power. In this study, benefits of interconnecting wind farms were evaluated for 19 sites, located in the midwestern United States, with annual average wind speeds at 80 m above ground, the hub height of modern wind turbines, greater than 6.9 m s ?1 (class 3 or greater). It was found that an average of 33 % and a maximum of 47 % of yearly averaged wind power from interconnected farms can be used as reliable, baseload electric power. Equally significant, interconnecting multiple wind farms to a common point and then connecting that point to a far-away city can allow the long-distance portion of transmission capacity to be reduced, for example, by 20 % with only a 1.6 % loss of energy. Although most parameters, such as intermittency, improved less than linearly as the number of interconnected sites increased, no saturation of the benefits

Cristina L. Archer; Mark; Z. Jacobson

2006-01-01T23:59:59.000Z

212

Wind Development on Tribal Lands  

SciTech Connect

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

213

Factors driving wind power development in the United States  

SciTech Connect

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-05-15T23:59:59.000Z

214

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

215

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

DOE Green Energy (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

216

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

217

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

218

Fourth Annual Progress Report on the Electrofluid Dynamic Wind Generator: Final Report for the Period 1 April 1979 - 31 August 1980  

SciTech Connect

Conventional wind energy systems are limited in wind turbine diameter by allowable rotor stresses at power levels of several megawatts. In contrast, the Electrofluid Dynamic (EFD) wind driven generator has no fundamental limits on cross sectional area. It is a direct energy conversion device which employs unipolar charged particles transported by the wind against a retarding voltage gradient to a high potential. As no moving parts are exposed to the wind, extremely large power units may be feasible.

Minardi, J. E.; Lawson, M. O.; Wattendorf, F. L.

1981-08-01T23:59:59.000Z

219

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

The Annual Report on U.S. Wind Power Installation, Cost, andState of the U.S. Wind Power Market Intro Sidebar: The U.S.Annual Report on U.S. Wind Power Installation, Cost, and

Bolinger, Mark A

2009-01-01T23:59:59.000Z

220

Economic Development Benefits from Wind Energy in Nebraska: A Report for the Nebraska Energy Office (Revised)  

DOE Green Energy (OSTI)

This report focuses on the economic development impacts estimated from building and operating 7,800 MW of new wind power in Nebraska. This level of development is on the scale envisioned in the Department of Energy (DOE) report 20% Wind Energy by 2030. A practical first step to building 7,800 of wind is completing 1,000 MW. We also include the estimated economic impacts to Nebraska from building 1,000 MW of wind power. Our primary analysis indicates that the development and construction of approximately 7,800 MW of wind energy in Nebraska by 2030 will support 20,600 to 36,500 annual full-time equivalents (AFTE). In addition, operating the full 7,800 MW of wind energy could support roughly 2,000 to 4,000 full-time workers throughout the operating life of the wind facilities (LFTE). Nebraska's economy is estimated to see an average annual boost in economic activity ranging from $140 million to $260 million solely from construction and development related activities between 2011 and 2030. An additional boost of $250 - $442 million annually is estimated from operating 7,800 MW of wind capacity.

Lantz, E.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A simple method to downscale daily wind statistics to hourly wind data  

E-Print Network (OSTI)

Wind is the principal driver in the wind erosion models. The hourly wind speed data were generally required for precisely wind erosion modeling. In this study, a simple method to generate hourly wind speed data from daily wind statistics (daily average and maximum wind speeds together or daily average wind speed only) was established. A typical windy location with 3285 days (9 years) measured hourly wind speed data were used to validate the downscaling method. The results showed that the overall agreement between observed and simulated cumulative wind speed probability distributions appears excellent, especially for the wind speeds greater than 5 m s-1 range (erosive wind speed). The results further revealed that the values of daily average erosive wind power density (AWPD) calculated from generated wind speeds fit the counterparts computed from measured wind speeds well with high models' efficiency (Nash-Sutcliffe coefficient). So that the hourly wind speed data can be predicted from daily average and maximu...

Guo, Zhongling

2013-01-01T23:59:59.000Z

222

AVERAGE SHIFTED HISTOGRAM  

Science Conference Proceedings (OSTI)

... LET YPPF = XCDF LET XPPF = YCDF. Default: None Synonyms: ASH is a synonym for the AVERAGE SHIFTED HISTOGRAM command. ...

2010-12-06T23:59:59.000Z

223

Table US14. Average Consumption by Energy End Uses, 2005 Million ...  

U.S. Energy Information Administration (EIA)

a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

224

NREL GIS Data: New York High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

New York High Resolution Wind Resource New York High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for New York at a 50 meter height. Purpose: Provide information on the wind resource development potential in New York. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 18, datum WGS 84 projection system. Other_Citation_Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants. Source National Renewable Energy Laboratory (NREL) Date Released November 30th, 2003 (10 years ago)

226

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Wind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma,Oklahoma – all with more than 2,000 MW. Twenty-nine states had more than 100 MW of windWind Power Rankings: The Top 20 States Capacity (MW) Percentage of In-State Generation Annual (2011) California Illinois Iowa Minnesota Oklahoma

Bolinger, Mark

2013-01-01T23:59:59.000Z

227

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Data Wind Data The available datasets are 50-meter height state-level and regional coverages and 25-kilometer national coverage. Please note that a 50-meter height national coverage is not available. We do not have data or contacts for Alabama, Florida, Louisiana or Mississippi. If you have questions, please contact the Webmaster. State and national 30-meter, 80-meter and offshore data at 80-meter height data used in the maps located at the Wind Powering America and U.S. DOE EERE websites can be purchased from AWS TruePower. 50-Meter Resolution (50-meter height above surface) These datasets are geographic shapefiles generated from the original raster data. The original raster data varied in resolution from 200-meter to 1000-meter cell sizes. The data provide an estimate of annual average wind

228

Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest  

DOE Green Energy (OSTI)

Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

Fripp, Matthias; Wiser, Ryan

2006-05-31T23:59:59.000Z

229

DOE Report Tracks Maturation of U.S. Wind Industry  

E-Print Network (OSTI)

the Growth of the U.S. Wind Industry The U.S. Department ofAnnual Report on U.S. Wind Power Installation, Cost, andkey trends in the U.S. wind industry, in many cases using

Bolinger, Mark; Wiser, Ryan

2007-01-01T23:59:59.000Z

230

A Review of Wind Project Financing Structures in the USA  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andand Cumulative Growth in U.S. Wind Power Capacity CumulativeAbstract The rapid pace of wind power development in the

Bolinger, Mark A

2009-01-01T23:59:59.000Z

231

DOE Report Tracks Maturation of U.S. Wind Industry  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andNational Laboratory The wind power industry is in an era ofof developments in the U.S. wind power market, with a

Bolinger, Mark; Wiser, Ryan

2007-01-01T23:59:59.000Z

232

Wind Power Today and Tomorrow  

DOE Green Energy (OSTI)

Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

Not Available

2004-03-01T23:59:59.000Z

233

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

234

Small Packages, Big Benefits: Economic Advantages of Local Wind Projects  

E-Print Network (OSTI)

The sun heats the earth’s surface unevenly creating areas of high and low pressure. Air molecules flow away from areas of high pressure towards areas of low pressure. We know this phenomenon by sight, sound and touch as wind. The speed and duration of wind are unpredictable, but what is predictable is that in many places the wind will eventually blow with enough force to be a significant power source. This fact has been relied on and wind’s kinetic energy has been harnessed for centuries to do things such as pump water and grind grain. Windmills that helped Americans from settlement times until the 1930s are still visible on much of the nation’s rural landscape – including Iowa’syet they are now found in various states of disrepair. Today the relic sentinels of the countryside are being joined in their towering positions by sleek new wind turbines. These modern machines and the clean power they generate are a sign of the prosperity they can bring to their landowners and communities. Although wind power only accounted for one-tenth of 1 percent of the nation’s total electric power generation capacity in 2003, this is four times the capacity that was in place in 1990. From 1999 to 2003, wind power capacity had an average annual growth rate of 28 percent, a

Teresa Welsh; Teresa Welsh

2005-01-01T23:59:59.000Z

235

Workforce Development and Wind for Schools (Poster)  

DOE Green Energy (OSTI)

As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

Newcomb, C.; Baring-Gould, I.

2012-06-01T23:59:59.000Z

236

Astronomical Site Ranking Based on Tropospheric Wind Statistics  

E-Print Network (OSTI)

We present comprehensive and reliable statistics of high altitude wind speeds and the tropospheric flows at the location of five important astronomical observatories. Statistical analysis exclusively of high altitude winds point to La Palma as the most suitable site for adaptive optics, with a mean value of 22.13 m/s at the 200 mbar pressure level. La Silla is at the bottom of the ranking, with the largest average value 200 mbar wind speed(33.35 m/s). We have found a clear annual periodicity of high altitude winds for the five sites in study. We have also explored the connection of high to low altitude atmospheric winds as a first approach of the linear relationship between the average velocity of the turbulence and high altitude winds (Sarazin & Tokovinin 2001). We may conclude that high and low altitude winds show good linear relationships at the five selected sites. The highest correlation coefficients correspond to Paranal and San Pedro Martir, while La Palma and La Silla show similar high to low altitude wind connection. Mauna Kea shows the smallest degree of correlation, which suggests a weaker linear relationship. Our results support the idea of high altitude winds as a parameter for rank astronomical sites in terms of their suitability for adaptive optics, although we have no evidence for adopting the same linear coefficient at different sites. The final value of this linear coefficient at a particular site could drastically change the interpretation of high altitude wind speeds as a direct parameter for site characterization.

B. Garcia-Lorenzo; J. J. Fuensalida; C. Munoz-Tunon; E. Mendizabal

2004-10-25T23:59:59.000Z

237

Petroleum Marketing Annual 2004  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2004-08-01T23:59:59.000Z

238

Petroleum Marketing Annual 2008  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2009-08-27T23:59:59.000Z

239

Petroleum Marketing Annual 2003  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2003-09-01T23:59:59.000Z

240

Petroleum Marketing Annual 1997  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Petroleum Marketing Annual 2005  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2006-08-25T23:59:59.000Z

242

Petroleum Marketing Annual 1998  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

1999-05-01T23:59:59.000Z

243

Petroleum Marketing Annual 2009  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2010-08-06T23:59:59.000Z

244

Petroleum Marketing Annual 1995  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

1995-09-01T23:59:59.000Z

245

Petroleum Marketing Annual 1996  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

1997-10-01T23:59:59.000Z

246

Petroleum Marketing Annual 2002  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2003-09-01T23:59:59.000Z

247

Petroleum Marketing Annual 2001  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2002-09-01T23:59:59.000Z

248

Petroleum Marketing Annual 2000  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2001-08-01T23:59:59.000Z

249

Petroleum Marketing Annual 2007  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2008-08-29T23:59:59.000Z

250

Petroleum Marketing Annual 1999  

Reports and Publications (EIA)

Final monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Annual totals and averages have been calculated from these monthly data.

Information Center

2000-08-01T23:59:59.000Z

251

On the Wind Power Input to the Ocean General Circulation  

Science Conference Proceedings (OSTI)

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically varying wind. Power ...

Xiaoming Zhai; Helen L. Johnson; David P. Marshall; Carl Wunsch

2012-08-01T23:59:59.000Z

252

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

253

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

254

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

255

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

256

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

257

average | OpenEI  

Open Energy Info (EERE)

average average Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (7 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

258

Annual Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Occupational Radiation Exposure Occupational Radiation Exposure Home Welcome What's New Register Dose History Request Data File Submittal REMS Data Selection HSS Logo Annual Reports User Survey on the Annual Report Please take the time to complete a survey on the Annual Report. Your input is important to us! The 2012 Annual Report View or print the annual report in PDF format The 2011 Annual Report View or print the annual report in PDF format The 2010 Annual Report View or print the annual report in PDF format The 2009 Annual Report View or print the annual report in PDF format The 2008 Annual Report View or print the annual report in PDF format The 2007 Annual Report View or print the annual report in PDF format The 2006 Annual Report View or print the annual report in PDF format The 2005 Annual Report

259

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History District of Columbia 13.69 13.90 12.99 12.26 12.24 11.19 1980-2012 Florida 13.07 14.45 11.09 10.60 11.14 10.41 1967-2012 Georgia 13.21 14.30 11.70 10.95 10.51 9.74 1967-2012 Maryland 12.30 13.12 10.87 9.87 10.29 10.00 1967-2012 Michigan 10.02 10.66 9.38 8.95 9.14 8.35 1967-2012 New Jersey 12.10 13.38 10.20 10.11 9.51 8.50 1967-2012 New York 11.82 12.86 10.72 10.88 9.32 7.84 1967-2012 Ohio 11.74 12.77 10.42 9.25 8.55 7.11 1967-2012 Pennsylvania 12.77 14.29 11.83 10.47 10.42 10.24 1967-2012 Virginia

260

Wind Energy – The Case of Denmark  

E-Print Network (OSTI)

Executive summary PART 1: The real state-of-play and its hidden costs Denmark generates the equivalent of about 19 % of its electricity demand with wind turbines, but wind power contributes far less than 19 % of the Nation’s electricity demand. The claim that Denmark derives about 20 % of its electricity from wind overstates matters. Being highly intermittent, wind power has recently (2006) met as little as 5 % of Denmark’s annual electricity consumption with an average over the last five years of 9.7%. In the absence of large-scale electricity storage, any modern electricity system must continuously balance electricity supply and demand, because even small variations in system voltage and frequency can cause damage to modern electronic equipment and other electrical equipment. Wind power is stochastic,especially in the very short term (e.g., over any given hour, 30 minute, or 15 minute period). This has created a completely new challenge that transmission system operators (TSOs) all over the World are only now learning how to handle. Some draw from Denmark’s experience. But Denmark’s special circumstances make its experience of limited transferability elsewhere. Denmark manages to keep the electricity systems balanced due to having the benefit of its

The Case; Of Denmark; Cepos L

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

262

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

263

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

264

,"Selected National Average Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected National Average Natural Gas Prices" Selected National Average Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Average Natural Gas Prices",11,"Monthly","11/2013","1/15/1973" ,"Data 2","Annual Average Natural Gas Prices",11,"Annual",2012,"6/30/1922" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm03vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html"

265

average air temperature | OpenEI  

Open Energy Info (EERE)

average air temperature average air temperature Dataset Summary Description (Abstract): Air Temperature at 10 m Above The Surface Of The Earth (deg C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Air Temperature at 10 m Above The Surface Of The Earth (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords average air temperature

266

Analysis of Surface Wind and Its Gradient In a Mesoscale Wind Observation Network  

Science Conference Proceedings (OSTI)

The surface wind is analysed with an optimum interpolation method. Covariances and long-term averages of wind observations are parameterized from data in the fairly dense synoptic wind observation network in the Netherlands.

G. J. Cats

1980-08-01T23:59:59.000Z

267

Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)  

DOE Green Energy (OSTI)

Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

Baring-Gould, I.

2011-05-01T23:59:59.000Z

268

Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana  

DOE Green Energy (OSTI)

A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

Gaustad, K.L.; De Steese, J.G.

1993-07-01T23:59:59.000Z

269

Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

270

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance wind turbine performance and reliability. February 3, 2009 U.S. Wind Industry Takes Global Lead The U.S. wind energy industry broke another global record in 2008 by installing 8,358 megawatts (MW) of new capacity, bringing our nation's total wind energy capacity to 25,170 MW. The United States now claims the largest wind energy capacity in the world, taking the lead from Germany.

271

DOE Average Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE DOE Average Results FY 12 DOE Target FY 12 Customer Perspective: Customer Satisfaction: -Timeliness 92 88 -Quality 94 92 Effective Service Partnership: -Extent of Customer Satisfaction with the responsiveness, etc. 90 92 Internal Business Perspective: Acquisition Excellence: -Extent to which internal quality control systems are effective 90 88 Most Effective Use of Contracting Approaches to Maximize Efficiency and Cost Effectiveness: Use of Competition: -% of total $'s obligated on competitive acquisitions >$3000 (Agency Level Only) 94 85 -% of acquisition actions competed for actions > $3000 (Agency Level Only) 65 68 Performance Based Acquisition: - % PBA actions relative to total eligible new acquisition actions (applicable to new actions > $25K) 82

272

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

273

Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

Not Available

1981-08-01T23:59:59.000Z

274

Variation in Nimbus-7 Cloud Estimates. Part I: Zonal Averages  

Science Conference Proceedings (OSTI)

Zonal averages of low, middle and total cloud amount estimates derived from measurements from Nimbus-7 have been analyzed for the six-year period April 1979 through March 1985. The globally and zonally averaged values of six-year annual means and ...

Bryan C. Weare

1992-12-01T23:59:59.000Z

275

Census Division Number of Average Monthly Average Retail Price...  

Gasoline and Diesel Fuel Update (EIA)

Average Monthly Average Retail Price Average Monthly Bill State Consumers Consumption (kWh) (Cents per Kilowatthour) (Dollar and cents) New England 34,271 67,907 12.55 8,520.25...

276

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

analysis. Further, turbines with higher rotor diameter havethe wind turbine, the average hub-height and rotor diameterand larger rotor diameters allows wind turbines to sweep

Phadke, Amol

2012-01-01T23:59:59.000Z

277

Analysis of Wind Power Ramping Behavior in ERCOT  

DOE Green Energy (OSTI)

This report analyzes the wind power ramping behavior using 10-minute and hourly average wind power data from ERCOT and presents statistical properties of the large ramp events.

Wan, Y. H.

2011-03-01T23:59:59.000Z

278

WIND DATA REPORT Truro, Massachusetts  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. April 4, 2007 Renewable Energy Research - Location of Truro Wind Tower April 4, 2007 Renewable Energy Research Laboratory Page 5 University average plots, and wind roses are included in APPENDIX B. April 4, 2007 Renewable Energy Research

Massachusetts at Amherst, University of

279

WIND DATA REPORT Gardner NCCI  

E-Print Network (OSTI)

­ Diurnal Average Wind Speed, September 1, 2007 ­ November 30, 2007 February 7, 2008 Renewable Energy 2520151050 Figure 7 ­ Wind Rose, September 1, 2007 ­ November 30, 2007 February 7, 2008 Renewable Energy. A wind direction standard February 7, 2008 Renewable Energy Research Laboratory Page 13 University

Massachusetts at Amherst, University of

280

WIND DATA REPORT Chester, MA  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. July 14, 2007 Renewable Energy Research square. Figure 1 - Map of Chester wind tower site July 14, 2007 Renewable Energy Research Laboratory Page average wind speeds are plotted against time. July 14, 2007 Renewable Energy Research Laboratory Page 8

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

WIND DATA REPORT Gardner NCCI  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. SECTION 1 October 18, 2007 Renewable Energy of the gustiness of a wind resource. Lower October 18, 2007 Renewable Energy Research Laboratory Page 6 University and diurnal average plots, and wind roses are included in APPENDIX B. October 18, 2007 Renewable Energy

Massachusetts at Amherst, University of

282

WIND DATA REPORT Wellfleet, MA  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. July 10, 2007 Renewable Energy Research Distributions Figure 3 - Wind Speed Distribution, March 1, 2007 ­ May 31, 2007 July 10, 2007 Renewable Energy Figure 5 - Diurnal Average Wind Speed, March 1, 2007 ­ May 31, 2007 July 10, 2007 Renewable Energy

Massachusetts at Amherst, University of

283

WIND DATA REPORT Wellfleet, MA  

E-Print Network (OSTI)

from a given direction and the average wind speed in that May 2, 2007 Renewable Energy Research Wind Speed, December 1, 2006 ­ February 28, 2007 May 2, 2007 Renewable Energy Research Laboratory PageWIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared

Massachusetts at Amherst, University of

284

Table SH9. Average Expenditures for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

285

Table AC9. Average Cooled Floorspace by Equipment Type, 2005 Air ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

286

Table 35. Average Price of Natural Gas Delivered to U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Historical Natural Gas Annual 1930 Through 2000 353 35. Average Price of Natural Gas Delivered to U.S. Electric ...

287

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

288

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

DOE Green Energy (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

289

NREL GIS Data: Illinois High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Illinois High Resolution Wind Resource Illinois High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential of Illinois at a 50 meter height. Purpose: Provide information on the wind resource development potential within Illinois. Supplemental_Information: This data set was produced and validated by NREL using their WRAM model. This shapefile was generated from a raster dataset with a 1000 m resolution, in a Transverse Mercator projection with the following parameters: Projection: TRANSVERSE Zunits NO Units METERS Spheroid CLARKE1866 Xshift 0.0000000000 Yshift 0.0000000000 Parameters 1.00000000 /* scale factor at central meridian -89 30 0.000 /* longitude of central meridian 39 45 0.000 /* latitude of origin 0.00000 /* false easting (meters) 0.00000 /* false northing (meters)

290

NREL GIS Data: South Carolina High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

646 646 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278646 Varnish cache server NREL GIS Data: South Carolina High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of South Carolina at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of South Carolina. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a WGS 84 projection system.

291

Brazil Wind Data (10km) from CEPEL | OpenEI  

Open Energy Info (EERE)

10km) from CEPEL 10km) from CEPEL Dataset Summary Description (Abstract): Annual average of the aeolic potential at 50m. Content: wind speed in m/s, power class (7 classes), power density in W/m2 and Weibull k value organized into cells with 10km x 10km (Purpose): The thematic map by code of colors permits quick viewing of all the Brazilian territory dataset. That map indicates, for the height of 50m, the annual average, in W/m2, of wind speed, power class, power density and Weibull k value (Supplemental Information): The information is organized into cells measuring 10 x 10km. The wind potential maps were calculated from simulations produced by the MesoMap(*) for 360 days, extracted of a period of 15 years of data. The days were chosen by means of random sampling at several heights, so that each month and season be considered in a representative way. MesoMap(*) for 360 days, extracted of a period of 15 years of data. The days were chosen by means of random sampling at several heights, so that each month and season be considered in a representative way.

292

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

The Annual Report on U.S. Wind Power Installation, Cost, andExpectations: State of the U.S. Wind Power Market IntroSidebar: The U.S. wind industry experienced unprecedented

Bolinger, Mark A

2009-01-01T23:59:59.000Z

293

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

Wiser, Ryan H

2009-01-01T23:59:59.000Z

294

Climate: monthly and annual average cooling degree days above...  

Open Energy Info (EERE)

at one-degree resolution of the World from NASASSE

(Abstract):  
Cooling Degree Days above 10 C (degree days)
The monthly accumulation of degrees when...

296

Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

297

International energy annual 1996  

SciTech Connect

The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

NONE

1998-02-01T23:59:59.000Z

298

NREL: Education Programs - Wind for Schools Project Enters 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

299

NREL: Technology Deployment - Wind for Schools Project Enters...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

300

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

shore annual wind resource potential in the United States map. Thumbnail image of the 90m offshore wind resource potential in the United States. Thumbnail image of the national 50m...

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Critique of “Trees as a Local Climatic Wind Indicator”  

Science Conference Proceedings (OSTI)

This comment reviews many of the problems associated with using deformed vegetation as an indicator of mean annual wind speed and wind power potential. It critiques the Wade and Hewson (1979) use of a “jackknife technique” to estimate prediction ...

Joseph P. Hennessey Jr.

1980-08-01T23:59:59.000Z

302

Planned wind turbine additions rise in advance of ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual ... Search EIA.gov. A-Z ... Wind plant developers reported increasing amounts of new capacity scheduled to enter ...

303

EIA - Annual Energy Outlook 2014 Early Release  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... with annual growth averaging 0.8 million ...

304

Global Wind Stress and Sverdrup Circulation from the Seasat Scatterometer  

Science Conference Proceedings (OSTI)

Three months of vector wind observations from the Seasat-A satellite scatterometer (SASS) are used to construct gridded fields of monthly average wind stress and wind stress curl over the global ocean. These fields are examined to identify ...

Dudley B. Chelton; Alberto M. Mestas-Nuńez; Michael H. Freilich

1990-08-01T23:59:59.000Z

305

On the Wind Power Input to the Ocean General Circulation  

E-Print Network (OSTI)

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

306

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

307

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

308

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

309

Technical and management support for the development of wind systems for farm, remote, and rural use. Annual report, October 1976--September 1977  

DOE Green Energy (OSTI)

During FY1977, the Test Center has been established and a total of eight WTG's have been mounted on towers for testing. At year end, five were undergoing tests, two had been returned to the manufacturers for retrofit of design improvement, and one had been destroyed in a wind storm. In addition, two WTG's were being assembled and prepared for testing and one machine was on order. Specific design improvements have been identified and implemented on two WTG's as a direct result of rf testing. The high-speed data acquisition system at the test center is not yet operational, though the hardware and software are both nearing completion. The system, when completed, will be capable of continuous monitoring of the performance of all the machines at the site as well as intensive testing for measurement of engineering data on any given WTG. Efforts under Task V (Standards Development) have resulted in an informal survey of the wind energy community's opinions on the direction Standards Development should take. Information dissemination has resulted in distribution of approximately 25,000 brochures, with a potential exposure of nearly 200,000 persons, construction of a traveling display, and continuous interface with local and national news media.

Not Available

1977-10-01T23:59:59.000Z

310

HRDI Observations of Mean Meridional Winds at Solstice  

Science Conference Proceedings (OSTI)

High Resolution Doppler Imager (HRDI) measurements of daytime and nighttime winds at 95 km are used to deduce seasonally averaged Eulerian mean meridional winds during six solstice periods. These estimates are compared with seasonally averaged ...

R. S. Lieberman; W. A. Robinson; S. J. Franke; R. A. Vincent; J. R. Isler; D. C. Fritts; A. H. Manson; C. E. Meek; G. J. Fraser; A. Fahrutdinova; W. Hocking; T. Thayaparan; J. MacDougall; K. Igarashi; T. Nakamura; T. Tsuda

1998-05-01T23:59:59.000Z

311

Wind Energy – The Case of Denmark Executive summary  

E-Print Network (OSTI)

PART 1: The real state-of-play and its hidden costs Denmark generates the equivalent of about 19 % of its electricity demand with wind turbines, but wind power contributes far less than 19 % of the Nation’s electricity demand. The claim that Denmark derives about 20 % of its electricity from wind overstates matters. Being highly intermittent, wind power has recently (2006) met as little as 5 % of Denmark’s annual electricity consumption with an average over the last five years of 9.7%. In the absence of large-scale electricity storage, any modern electricity system must continuously balance electricity supply and demand, because even small variations in system voltage and frequency can cause damage to modern electronic equipment and other electrical equipment. Wind power is stochastic,especially in the very short term (e.g., over any given hour, 30 minute, or 15 minute period). This has created a completely new challenge that transmission system operators (TSOs) all over the World are only now learning how to handle. Some draw from Denmark’s experience. But Denmark’s special circumstances make its experience of limited transferability elsewhere. Denmark manages to keep the electricity systems balanced due to having the benefit of its

unknown authors

2009-01-01T23:59:59.000Z

312

Coastal zone wind energy. Part I. Potential wind power density fields based on 3-D model simulations of the dominant wind regimes for three east and Gulf coast areas  

DOE Green Energy (OSTI)

The results of applying a numerical model of the atmosphere to the problem of locating areas of maximum wind power are presented. Three US coastal regions, of approximately 10/sup 5/ km/sup 2/ area each, are investigated. For each region the spatial distribution of daily average power density (W m/sup -2/) for the lowest 100 m of the atmosphere is given for the three most prevalent weather regimes. These distributions are then combined to form an estimate of the annual average power density for each region. Comparisons with long-term climatological data at stations within each region show good agreement between model estimated and observed wind power density for two of the three regions studied.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-04-01T23:59:59.000Z

313

2012 Wind Technologies Market Report Summary  

Wind Powering America (EERE)

Efficiency & Renewable Energy eere.energy.gov Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov WIND AND WATER POWER PROGRAM 1 2012 Wind Technologies Market Report Summary Ryan Wiser, Ph.D. Lawrence Berkeley National Laboratory WPA All-States Summit May 8, 2013 WIND AND WATER POWER PROGRAM 2 2012 Wind Technologies Market Report Purpose, Scope, and Data: * Publicly available annual report summarizing key trends in the U.S. wind power market, with a focus on 2012 * Scope primarily includes wind turbines over 100 kW in size * Separate DOE-funded annual reports on distributed and offshore wind * Data sources include AWEA, EIA, FERC, SEC, etc. (see full report) Report Authors: * Primary authors: Ryan Wiser and Mark Bolinger, Berkeley Lab * Contributions from others at Berkeley Lab, Exeter Associates, NREL

314

Wind Energy Forecasting Technology Update: 2004  

Science Conference Proceedings (OSTI)

This report describes the status of wind energy forecasting technology for predicting wind speed and energy generation of wind energy facilities short-term (minutes to hours), intermediate-term (hours to days), and long-term (months to years) average wind speed and energy generation. The information should be useful to companies that are evaluating or planning to incorporate wind energy forecasting into their operations.

2005-04-26T23:59:59.000Z

315

Wind shear climatology for large wind turbine generators  

DOE Green Energy (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

316

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

317

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Historical Natural Gas Annual 1930 Through 2000 37. Average Price of Natural Gas Delivered to All Consumers by State, 1967-1986 (Dollars per Thousand Cubic Feet) Table...

318

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

319

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

Build a Durable Market for Wind Power in the United States”Learning Curves for Wind Power. ” Energy Policy, 30: 1181-Annual Report on U.S. Wind Power Installation, Cost, and

Bolinger, Mark A

2009-01-01T23:59:59.000Z

320

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State South Dakota Program Type Solar/Wind Access Policy Provider S.D. Energy Management Office Any South Dakota property owner may grant a wind easement with the same effect as a conveyance of an interest in real property. Easements must be established in writing, and must be filed, recorded and indexed in the office of the register of deeds of the county in which they are granted. The maximum term of an easement is 50 years. Any payments associated with an easement must be made on an annual basis to the owner of the real property. An easement must include the following information:

322

Wind Power Variability, Its Cost, and Effect on Power Plant Emissions  

E-Print Network (OSTI)

no additional emissions. Pairing multiple turbines with a wind plant achieves ~77 to 95% of the emissions.4 DATA 9 2.5 METHODS 13 2.5.1 INTERCONNECTING WIND PLANTS 13 2.5.2 MISSING DATA 14 2.5.3 SCALING WIND. .................................................................................... 32 FIGURE 2-11 ­ NORMALIZED PREDICTED ANNUAL WIND ENERGY PRODUCTION FROM 16 WIND TURBINES LOCATED

323

Investigation of vortex generators for augmentation of wind turbine power performance  

SciTech Connect

This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

1996-12-01T23:59:59.000Z

324

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

325

Stakeholder Engagement and Outreach: Where Is Wind Power?  

Wind Powering America (EERE)

Where Is Wind Power? Where Is Wind Power? Wind Powering America offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These maps have been developed using the same mathematical models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if wind power were developed there.

326

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

327

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

in average turbine hub height and rotor diameter have beenInformation on turbine hub heights and rotor diameters werehub height and rotor diameter of wind turbines installed in

Wiser, Ryan

2010-01-01T23:59:59.000Z

328

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

in average turbine hub height and rotor diameter have beenInformation on turbine hub heights and rotor diameters wereStates; wind turbine size, hub height, and rotor diameter;

Wiser, Ryan

2012-01-01T23:59:59.000Z

329

Contracting for wind generation  

E-Print Network (OSTI)

they would reduce the financial risk facing new entrants to the electricity market seeking new sources of funds. Nuclear power 1 This has been criticised by the House of Commons Energy and Climate Change... is considerably lower for transmission zones that only cover a part of the country, and that averaging over wider areas increases forecast accuracy. If all wind were dispatched by a single System Operator (SO) then the country-wide average would...

Newbery, David

330

Grid-Averaged Surface Fluxes  

Science Conference Proceedings (OSTI)

This study examines the inadequacies of formulations for surface fluxes for use in numerical models of atmospheric flow. The difficulty is that numerical models imply spatial averaging over each grid area. Existing formulations am based on the ...

L. Mahrt

1987-08-01T23:59:59.000Z

331

High average power pockels cell  

DOE Patents (OSTI)

A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

Daly, Thomas P. (Pleasanton, CA)

1991-01-01T23:59:59.000Z

332

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

333

WIND DATA REPORT Ragged Mt Maine  

E-Print Network (OSTI)

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. This report covers wind Average Wind Speeds, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy Research ­ Turbulence Intensity vs. Wind Speed, September 1, 2007 ­ November 30, 2007. January 22, 2008 Renewable Energy

Massachusetts at Amherst, University of

334

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

335

Small Wind Standards and Policy  

Wind Powering America (EERE)

Small Wind Standards and Policy Small Wind Standards and Policy September 18, 2013 Coordinator: Thank you all for standing by. All lines been placed on a listen mode only throughout the duration of today's conference. Today's conference is being recorded. If you do have any objections you may disconnect at this time. I'd now like to turn the call over to Ian Baring-Gould. Thank you may begin. Ian Baring-Gould: Hello. Thank you and thank you everybody for joining the September - we're already in September, the September Wind Powering America Webinar and this one building off last month's webinar which was focused on the small wind annual report. This one is focusing on standards and policy in regards to the small wind industry and providing updates on that and just to be complicated we're going

336

Annual Cycle of Equatorial East-West Circulation over the Indian and Pacific Oceans  

Science Conference Proceedings (OSTI)

Along the equator, annual mean 200-mb zonal wind is approximately in phase with annual mean outgoing longwave radiation (OLR); namely, easterlies are strongest above the convective center over the maritime continent, while westerlies reach their ...

Takio Murakami; Bin Wang

1993-05-01T23:59:59.000Z

337

Policies and Market Factors Driving Wind Power Development in the United States  

DOE Green Energy (OSTI)

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24% annually during the past five years. With this growth, an increasing number of states are experiencing investment in wind energy. Wind installations currently exist in about half of all U.S. states. This paper explores the policies and market factors that have been driving utility-scale wind energy development in the United States, particularly in the states that have achieved a substantial amount of wind energy investment in recent years. Although there are federal policies and overarching market issues that are encouraging investment nationally, much of the recent activity has resulted from state-level policies or localized market drivers. In this paper, we identify the key policies, incentives, regulations, and markets affecting development, and draw lessons from the experience of leading states that may be transferable to other states or regions. We provide detailed discussions of the drivers for wind development in a dozen leading states-California, Colorado, Iowa, Kansas, Minnesota, New York, Oregon, Pennsylvania, Texas, Washington, West Virginia, and Wyoming.

Bird, L.; Parsons, B.; Gagliano, T.; Brown, M.; Wiser, R.; Bolinger, M.

2003-07-01T23:59:59.000Z

338

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

339

International energy annual 1997  

Science Conference Proceedings (OSTI)

The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

NONE

1999-04-01T23:59:59.000Z

340

Ris-R-1317(EN) Wind Energy Department  

E-Print Network (OSTI)

Risø-R-1317(EN) Wind Energy Department Annual Progress Report 2001 Birthe Skrumsager, Søren E The report describes the work of the Wind Energy Department at Risø National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On the Annual Cycle of the Tropical Pacific Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The annual cycle in sea surface temperature (SST), surface wind and other atmospheric variables in the tropical Pacific are described. The primary data sets of SST and surface wind are derived from ship observations in the Pacific between 29°N ...

John D. Horel

1982-12-01T23:59:59.000Z

342

LIDAR wind speed measurements of evolving wind fields  

E-Print Network (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor’s frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor’s hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios. Nomenclature a decay parameter for exponential coherence al decrement parameter for transverse coherence (l ? {u, v, w}) bl offset parameter for transverse coherence (l ? {u, v, w}) D longitudinal distance between two points or measurement preview distance F focal distance f frequency (Hz) ? LIDAR measurement angle off of longitudinal direction k wind velocity wavenumber (m?1) ? wavelength (m) R range along LIDAR beam r scan radius for spinning LIDAR scenario ri,j distance between two points in the yz plane U mean wind speed (m/s) ?i,j average mean wind speed between two points in the yz plane ? azimuth angle in the rotor plane ?2 xy(f) Coherence between signals x and y

Eric Simley; Lucy Y. Pao; Neil Kelley; Bonnie Jonkman; Rod Frehlich

2012-01-01T23:59:59.000Z

343

2011 Cost of Wind Energy Review  

SciTech Connect

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

344

2011 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

345

Core Measure Average KTR Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measure Measure Average KTR Results FY 12 Target FY 12 DOE M&O CONTRACTOR (KTR) BSC RESULTS FY 2012 Customer Perspective and level of communication provided by the procurement office 95 92 Internal Business Perspective: Assessment (%) of the degree to which the purchasing system is in compliance with stakeholder requirements 97 Local Goals % Delivery on-time (includes JIT, excludes Purchase Cards) 88 84 % of total dollars obligated, on actions > $150K , that were awarded using effective competition 73 Local Goals Rapid Purchasing Techniques: -% of transactions placed by users 77 Local Goals -% of transactions placed through electronic commerce 62 Local Goals Average Cycle Time: -Average cycle time for <= $150K 8 6 to 9 days

346

Renewable energy annual 1996  

DOE Green Energy (OSTI)

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

347

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

348

West Texas Intermediate Spot Average ............................  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil (dollars per barrel) Crude Oil (dollars per barrel) West Texas Intermediate Spot Average ............................ 102.88 93.42 92.24 87.96 94.34 94.10 105.84 96.30 95.67 95.33 95.67 93.33 94.12 97.64 95.00 Brent Spot Average ........................................................... 118.49 108.42 109.61 110.09 112.49 102.58 110.27 108.29 106.33 105.00 103.00 102.00 111.65 108.41 104.08 Imported Average .............................................................. 108.14 101.18 97.18 97.64 98.71 97.39 103.07 100.03 99.64 99.33 99.69 97.35 101.09 99.85 99.04 Refiner Average Acquisition Cost ...................................... 107.61 101.44 97.38 97.27 101.14 99.45 105.24 100.44 100.15 99.82 100.18 97.83 100.83 101.61 99.50 Liquid Fuels (cents per gallon) Refiner Prices for Resale Gasoline .........................................................................

349

"Table HC1.1.3 Housing Unit Characteristics by Average Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

350

Table HC1.1.2 Housing Unit Characteristics by Average Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

351

WIND DATA REPORT June 1, 2007 August 31, 2007  

E-Print Network (OSTI)

and diurnal average plots, and wind roses are included in APPENDIX B. October 18, 2007 Renewable Energy ­ Diurnal Average Wind Speed, June 2007 ­ August 2007 October 18, 2007 Renewable Energy Research Laboratory Figure 7 ­ Wind Rose, June 2007 ­ August 2007 October 18, 2007 Renewable Energy Research Laboratory Page

Massachusetts at Amherst, University of

352

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

353

Wind power resource assessment in complex urban environments  

E-Print Network (OSTI)

in availability of small-scale wind turbines for dense urban environments highlight the need for detailed wind installation of a small wind turbine. The procedure of resource assessment includes estimation of the average wind power available for energy production on campus and identification of optimal location for turbine

354

On spatial estimation of wind energy potential in Malaysia  

Science Conference Proceedings (OSTI)

Statistical distribution for describing the wind speed at a particular location provides information about the wind energy potential which is available. In this paper, five different statistical distributions are fitted to the data of average hourly ... Keywords: inverse distance weighting method, kriging, semivariogram, spatial estimation, wind energy, wind speed distribution

Nurulkamal Masseran; Ahmad Mahir Razali; Kamarulzaman Ibrahim; Wan Zawiah Wan Zin; Azami Zaharim

2011-07-01T23:59:59.000Z

355

WIND DATA REPORT December 01, 2007 February 29, 2008  

E-Print Network (OSTI)

01003 #12;Wind Roses Figure 7 ­ Wind Rose, December 2007 ­ February 2008 April 2, 2008 Renewable Energy 22.5 0 23.5 0 24.5 0 Table 3 - Wind Speed Distribution, 49 m April 2, 2008 Renewable Energy Research - Diurnal Average Wind Speeds, 49 m April 2, 2008 Renewable Energy Research Laboratory Page 20 University

Massachusetts at Amherst, University of

356

Distribution of Extreme Winds in the Bonneville Power Administration Service Area  

Science Conference Proceedings (OSTI)

Annual extreme 1 min wind speeds at 78 Pacific Northwest locations were analyzed using the Fisher-Tippet type II extreme value function. From computed mean recurrence intervals, we could easily determine the wind speed likely to recur in a ...

J. William Wantz; Robert E. Sinclair

1981-12-01T23:59:59.000Z

357

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

358

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

359

Wind industry installs almost 5,300 MW of capacity in ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual ... Search EIA.gov. ... Wind plant developers reported throughout 2012 increasing amounts of new capacity scheduled ...

360

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

States, new large-scale wind turbines were installed in 18The average size of wind turbines installed in the Uniteddominant manufacturer of wind turbines supplying the U.S.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Technique for Removing the Effect of Migrating Birds in 915-MHz Wind Profiler Data  

Science Conference Proceedings (OSTI)

A method is described and evaluated for decreasing artifacts in radar wind profiler data resulting from overflying, migrating birds. The method processes the prerecorded, averaged spectral data of a wind profiler to derive hourly wind profiles ...

M. S. Pekour; R. L. Coulter

1999-12-01T23:59:59.000Z

362

The Diagnosis of Upper Tropospheric Divergence and Ageostrophic Wind Using Profiler Wind Observations  

Science Conference Proceedings (OSTI)

Wind fields derived from a network of three VHF Doppler radars are used to calculate the mean kinematic properties of the wind field over Colorado and an area-averaged geostrophic and ageostrophic wind. A numerical technique that is equivalent to ...

R. J. Zamora; M. A. Shapiro; C. A. Doswell III

1987-04-01T23:59:59.000Z

363

Microsoft Word - 080530Wind.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR IMMEDIATE RELEASE FOR IMMEDIATE RELEASE Jennifer Scoggins, (202) 586-4940 Thursday, May 29, 2008 U.S. Continues to Lead the World in Wind Power Growth DOE Report Shows Rapidly Growing U.S. Wind Power Market WASHINGTON - The U.S. Department of Energy (DOE) today released the 2007 edition of its Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends, which provides a comprehensive overview of developments in the rapidly evolving U.S. wind power market. Notably, the report finds that U.S. wind power capacity increased by 46 percent in 2007, with $9 billion invested in U.S. wind plants in 2007 alone, making the U.S. the fastest-growing wind power market in the world for the third straight

364

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

365

Arizona Cool Season Surface Wind and Pressure Gradient Study  

Science Conference Proceedings (OSTI)

The average sea-level pressure gradients that produce sustained surface winds above 8 kt for at least six consecutive hours during the cool season at predetermined key stations in or adjacent to Arizona are investigated. Only wind directions ...

Ira S. Brenner

1980-02-01T23:59:59.000Z

366

Annual ENSO  

Science Conference Proceedings (OSTI)

Using various observational data, the seasonal cycle of the tropical Pacific is investigated, suggesting the existence of an “annual El Nińo–Southern Oscillation (ENSO).” A positive sea surface temperature anomaly (SSTA) appearing off Peru in ...

Tomoki Tozuka; Toshio Yamagata

2003-08-01T23:59:59.000Z

367

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

368

2009 Wind Technologies Market Report  

Science Conference Proceedings (OSTI)

The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

Wiser, R.; Bolinger, M.

2010-08-01T23:59:59.000Z

369

Evolution Dynamics of Tropical Ocean-Atmosphere Annual Cycle Variability  

Science Conference Proceedings (OSTI)

The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based ...

Sumant Nigam; Yi Chao

1996-12-01T23:59:59.000Z

370

Energy Generation by State, by Technology (2009) Provides annual...  

Open Energy Info (EERE)

Technology (2009) Provides annual energy generation for all states by fuel source (e.g. coal, gas, solar, wind) in 2009, reported in MWh. Also includes facility-level data...

371

Diagnosing Heat and Vorticity Budgets of Annual Coupled Rossby Waves  

Science Conference Proceedings (OSTI)

Annual coupled Rossby waves are generated at the west coast of Australia and propagate westward across the eastern Indian Ocean from 10° to 30°S in covarying sea level height (SLH), sea surface temperature (SST), and meridional surface wind (MSW) ...

Warren B. White; Jeffrey L. Annis

2005-07-01T23:59:59.000Z

372

On the Annual Cycle in the Tropical Eastern Central Pacific  

Science Conference Proceedings (OSTI)

In the tropical eastern central Pacific Ocean, the annual cycle in sea surface temperature (SST), surface winds and pressure, and clouds are alternatively dominated by an antisymmetric (with respect to the equator) monsoonal mode in February and ...

Bin Wang

1994-12-01T23:59:59.000Z

373

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

374

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

375

U.S. West Coast Surface Heat Fluxes, Wind Stress, and Wind Stress Curl from a Mesoscale Model  

Science Conference Proceedings (OSTI)

Monthly averages of numerical model fields are beneficial for depicting patterns in surface forcing such as sensible and latent heat fluxes, wind stress, and wind stress curl over data-sparse ocean regions. Grid resolutions less than 10 km ...

T. Haack; S. D. Burk; R. M. Hodur

2005-11-01T23:59:59.000Z

376

Annual Energy Outlook | OpenEI  

Open Energy Info (EERE)

Annual Energy Outlook Annual Energy Outlook Dataset Summary Description Supplemental Table 147 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook barrel btu conversion EIA energy Energy Information Administration kWh TEF transportation Transportation Energy Futures Data text/csv icon Conversion_Factors.csv (csv, 153.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

377

Wind Farm Recommendation Report  

Science Conference Proceedings (OSTI)

On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

John Reisenauer

2011-05-01T23:59:59.000Z

378

Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool  

E-Print Network (OSTI)

and statewide average residential electricity rates below $Average statewide residential electricity rates were takenFor Residential Wind Systems state electricity rates, which

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

379

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

380

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Achronal averaged null energy condition  

Science Conference Proceedings (OSTI)

The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent spacetime in semiclassical gravity in which ANEC is violated on a complete, achronal null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out closed timelike curves and wormholes connecting different asymptotically flat regions.

Graham, Noah; Olum, Ken D. [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States) and Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

2007-09-15T23:59:59.000Z

382

Achronal averaged null energy condition  

E-Print Network (OSTI)

The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent space-time in semiclassical gravity in which ANEC is violated on a complete, {\\em achronal} null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out wormholes and closed timelike curves.

Noah Graham; Ken D. Olum

2007-05-22T23:59:59.000Z

383

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

384

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Average sales price of U.S. coal by State and disposition, 2011 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2011 Table 33. Average sales...

385

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

386

New England Wind Forum: Wind Compared to the Cost of Other Electricity  

Wind Powering America (EERE)

Wind Compared to the Cost of Other Electricity Generation Options Wind Compared to the Cost of Other Electricity Generation Options Figure 1: Average Cumulative Wind and Wholesale Power Prices by Region The chart shows average cumulative wind and wholesale power prices by region. Click on the graph to view a larger version. View a larger version of the graph. In terms of direct costs, larger wind farms in windier areas are now considered economically competitive with "conventional" fossil fuel power plants in many locations. In New England, direct costs for wind power at larger sites with strong winds are approaching the cost of alternatives, particularly given the recent high natural gas and oil prices. Figure 1 compares wind contract prices1 with wholesale electricity market prices in different U.S. regions for 2006. Although not directly comparable to wind prices due to wind's production timing and intermittence, the value of wind Renewable Energy Credits and carbon offsets, and the cost of wind integration and transmission, the average wholesale market energy price is a good indicator of the cost of alternative generation options. This graph demonstrates several points:

387

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

388

Equatorward Propagation of Coupled Air–Sea Disturbances with Application to the Annual Cycle of the Eastern Tropical Pacific  

Science Conference Proceedings (OSTI)

A simple coupled ocean–atmospheric boundary layer model is used to study the annual variability in the eastern tropical Pacific. The air–sea coupling, particularly the feedback of the total wind speed effect on evaporation and wind mixing ...

Zhengyu Liu; Shangping Xie

1994-12-01T23:59:59.000Z

389

Large Wind Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Wind Technology Large Wind Technology Large Wind Technology The Wind Program works with industry partners to increase the performance and reliability of large wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to 35% for turbines installed between 2004 and 2007. Wind energy costs have been reduced from over 55 cents (current dollars) per kilowatt-hour (kWh) in 1980 to under six cents/kWh today. To ensure future industry growth, the technology must continue to evolve, building on earlier successes to further improve reliability, increase capacity factors, and reduce costs. This page describes the goal of the

390

Wind climatology of Schiphol Andrew Stepek, Xueli Wang and Dirk Wolters  

E-Print Network (OSTI)

Wind climatology of Schiphol Andrew Stepek, Xueli Wang and Dirk Wolters De Bilt, May 2012 #12;2 Contents Summary 2 Introduction 3 Data 3 Hourly wind measurements 3 Yearly averages of wind speed measurements 4 Quality and sources of error 6 Method 7 Trends in wind speed 7 Definition of cross and tail wind

Haak, Hein

391

NERSC Annual Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Annual Reports NERSC Annual Reports Sort by: Default | Name anrep2000.png NERSC Annual Report 2000 Download Image: anrep2000.png | png | 203 KB Download File:...

392

Wind Energy Career Development Program  

Science Conference Proceedings (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

393

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

394

Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 09 THROUGH 09/30/2010 The following Annual Freedom of Information Act report covers the Period 10/01/2009, through 09/30/2010, as required by 5 U.S.C. 552. I. BASIC INFORMATION REGARDING REPORT 1. Kevin T. Hagerty, Director Office of Information Resources, MA-90 U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 202-586-5955 Alexander Morris, FOIA Officer Sheila Jeter, FOIA/Privacy Act Specialist FOIA Office, MA-90 Office of Information Resources U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 202-586-5955 2. An electronic copy of the Freedom of Information Act (FOIA) report can be obtained at http://management.energy.gov/documents/annual_reports.htm. The report can then be accessed by clicking FOIA Annual Reports.

395

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

396

Wind Powering America FY06 Activities Summary  

DOE Green Energy (OSTI)

The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

Not Available

2007-02-01T23:59:59.000Z

397

Technical and Economic Feasibility Study of Utility-Scale Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

&spv0&st0&srp1&stateKS. vii Table ES-1. Turbine Performance and Economics, Including Job Creation Estimates 5 Annual Cost Savings (year) Payback Period (years) Wind System...

398

Dual-speed wind turbine generation  

SciTech Connect

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

399

Radiological and Environmental Research Division annual report, January-- December 1972  

SciTech Connect

Results are reported from: measurements of nocturnal wind flow over St. Louis; measurement of wind velocity and pressure at Chicago Midway Airport; micrometeorological measurements and determination of the average diurnal surface budgets and evaporation rate of the Great Lakes; and applications of wind turbulence statistics to predict pollution dispersions over water. (CH)

1972-01-01T23:59:59.000Z

400

Subhourly wind forecasting techniques for wind turbine operations  

DOE Green Energy (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Spectral and Parametric Averaging for Integrable Systems  

E-Print Network (OSTI)

We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos - spectral averaging and parametric averaging. For spectral averaging, we introduce a new procedure - rescaled spectral averaging. Unlike traditional spectral averaging, it can describe the correlation function of spectral staircase and produce persistent oscillations of the interval level number variance. Parametric averaging, while not as accurate as rescaled spectral averaging for the correlation function of spectral staircase and interval level number variance, can also produce persistent oscillations of the global level number variance and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.

Tao Ma; R. A. Serota

2013-06-03T23:59:59.000Z

402

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

403

Evaluation of CMIP3 and CMIP5 Wind Stress Climatology Using Satellite Measurements and Atmospheric Reanalysis Products  

Science Conference Proceedings (OSTI)

Wind stress measurements from the Quick Scatterometer (QuikSCAT) satellite and two atmospheric reanalysis products are used to evaluate the annual mean and seasonal cycle of wind stress simulated by phases 3 and 5 of the Coupled Model ...

Tong Lee; Duane E. Waliser; Jui-Lin F. Li; Felix W. Landerer; Michelle M. Gierach

2013-08-01T23:59:59.000Z

404

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

405

Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.  

DOE Green Energy (OSTI)

CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundations for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.

United States. Bonneville Power Administration; Klickitat County (Wash.)

1995-09-01T23:59:59.000Z

406

Solar energy program. Annual report, 1978  

DOE Green Energy (OSTI)

this annual report describes the work done at Argonne National Laboratory on the Solar Energy Program during FY 1978 (July 1, 1977 to June 30, 1978). Areas included in this report are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, satellite power systems, bioconversion, central receiver solar thermal power, and wind energy conversion.

None

1979-02-01T23:59:59.000Z

407

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

408

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is today’s most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

409

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

410

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Natural Gas Annual 1930 Through 2000 2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars...

411

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual 1930 Through 2000 35. Average Price of Natural Gas Delivered to U.S. Electric Utilities by State, 1967-2000 (Dollars per Thousand Cubic...

412

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Historical Natural Gas Annual 1930 Through 2000 28. Average Price of Natural Gas Delivered to U.S. Commercial Consumers by State, 1967-1992 (Dollars per Thousand Cubic...

413

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual 1930 Through 2000 31. Average Price of Natural Gas Delivered to U.S. Industrial Consumers by State, 1967-1992 (Dollars per Thousand Cubic...

414

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Historical Natural Gas Annual 1930 Through 2000 34. Average Price of Natural Gas Delivered to U.S. Vehicle Fuel Consumers by State, 1990-2000 (Dollars per Thousand...

415

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Historical Natural Gas Annual 1930 Through 2000 26. Average Price of Natural Gas Delivered to U.S. Residential Consumers by State, 1967-1994 (Dollars per Thousand Cubic...

416

The solar wind in the outer heliosphere  

E-Print Network (OSTI)

The solar wind evolves as it moves outward due to interactions with both itself and with the circum-heliospheric interstellar medium. The speed is, on average, constant out to 30 AU, then starts a slow decrease due to the ...

Richardson, John D.

417

k-? turbulence modeling for a wind turbine.  

E-Print Network (OSTI)

?? In this report we discuss the use of k-? RANS (Reynolds-averaged Navier-Stokes equations) turbulence model for wind turbine applications. This model has been implemented… (more)

EREK, ERMAN

2011-01-01T23:59:59.000Z

418

Winds at an Interior Alaska Summit  

Science Conference Proceedings (OSTI)

One purpose of this study was to compare anemometer-based average wind speeds at a well-exposed interior Alaskan summit with those deduced from local rawinsonde data at the same summit altitude. The second purpose was to evaluate the wind power ...

Tunis Wentink Jr.

1982-06-01T23:59:59.000Z

419

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis quantifies the relative merit of various technological advancements in improving the long-term average performance of parabolic trough concentrating collectors and presents them graphically as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. Substantial annual energy gains (exceeding 50% at 350/sup 0/C) are shown to be attainable with improved parabolic troughs.

Gee, R.; Gaul, H.; Kearney, D.; Rabl, A.

1979-10-01T23:59:59.000Z

420

Fort Peck Reservations Wind Project  

DOE Green Energy (OSTI)

The research area adds to the understanding of the area investigated by installing two 50kW Wind Turbines in a distributed generation project to save money by reducing the annual bill from the local utility. These turbines have been producing power and reducing the kWh consumed at the Tribal Headquarters Building for approximately 11 months. The Turbines are almost one year old and the Tribe is conducting regular maintenance checks and inspections to keep the Turbines in good working order. These Turbines are the impetus for the development of an Energy Department to serve as the focal point for wind development on the Reservation and to provide management for the business side of wind energy, (i.e. green tag sales, O & M contracts, and Power Purchase Agreements).

Walter White Tail Feather

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

422

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

423

Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

11) | April 2011 11) | April 2011 with Projections to 2035 Annual Energy Outlook 2011 For further information . . . The Annual Energy Outlook 2011 was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.gov, 202-586-2222), Assistant Administrator of Energy Analysis; Paul D. Holtberg (paul.holtberg@eia.gov, 202/586-1284), Co-Acting Director, Office of Integrated and International Energy Analysis, and Team Leader, Analysis Integration Team; Joseph A. Beamon (joseph.beamon@eia.gov, 202/586-2025), Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis; A. Michael Schaal (michael.schaal@eia.gov, 202/586-5590), Director, Office of Petroleum, Gas, and Biofuel Analysis;

424

ANNUAL ENERGY  

Gasoline and Diesel Fuel Update (EIA)

(93) (93) ANNUAL ENERGY OUTLOOK 1993 With Projections to 2010 EIk Energy Information Administration January 1993 For Further Information ... The Annual Energy Outlook (AEO) is prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (202/586-2222). General questions concerning energy demand or energy markets may be addressed to Mark E. Rodekohr (202/586-1130), Director of the Energy Demand and Integration Division. General questions regarding energy supply and conversion activities may be addressed to Mary J. Hutzler (202/586-2222), Acting Director of the Energy Supply and Conversion Division. Detailed questions may be addressed to the following EIA analysts: Framing the 1993 Energy Outlook ............. Susan H. Shaw (202/586-4838)

425

Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 2011 Annual Report to the Oak Ridge Community Annual Report to the Oak Ridge Community DOE/ORO/2399 Progress Cleanup P Progress Cleanup P 2 This report was produced by URS | CH2M Oak Ridge LLC, DOE's Environmental Management contractor for the Oak Ridge Reservation. About the Cover After recontouring and revegetation, the P1 Pond at East Tennessee Technology Park is flourishing. The contaminated pond was drained, recontoured, and restocked with fish that would not disturb the pond sediment. 1 Message from the Acting Manager Department of Energy Oak Ridge Office To the Oak Ridge Community: Fiscal Year (FY) 2011 marked many accomplishments in Oak Ridge. Our Environmental Management (EM) program completed a majority of its American Recovery and Reinvestment Act (ARRA)-funded projects,

426

Trends and Interannual Variability of Wind Speed Distributions in Minnesota  

Science Conference Proceedings (OSTI)

Near-surface wind speed variability is investigated at seven stations in and surrounding Minnesota for recent climate records of 22–35 yr in length. Analyses focus on mean annual wind speeds and on the 10th, 25th, 50th, 75th, and 90th percentiles ...

Katherine Klink

2002-11-01T23:59:59.000Z

427

LIDAR Wind Speed Measurements of Evolving Wind Fields  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

428

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network (OSTI)

procedure (IEC 61400-12) for power performance charac- terization of a single wind turbines is shown by the standard IEC 61400-12 3 [12]. In this standard procedure the power curve of a single wind turbine of the blade pitch angle system of a wind turbine [9]. The phase averaged P(t,t ) function depends on the time

Peinke, Joachim

429

WIND DATA REPORT December 01, 2006 February 27, 2007  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. April 12, 2007 Renewable Energy Research - Wind Speed Averages at 50 m April 12, 2007 Renewable Energy Research Laboratory Page 18 University Energy Research Laboratory Page 19 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Rose

Massachusetts at Amherst, University of

430

WIND DATA REPORT Upper Cape Cod Regional Technical School  

E-Print Network (OSTI)

difference between the two wind speeds is greater than Factor 1. At high August 29, 2005 Renewable Energy average wind speed of 5.87 m/s (13.15 mph) in December 2004. August 29, 2005 Renewable Energy Research - Wind Speed Time Series, December 2004 ­ February 2005 August 29, 2005 Renewable Energy Research

Massachusetts at Amherst, University of

431

WIND DATA REPORT Upper Cape Cod Regional Technical School  

E-Print Network (OSTI)

wind speed of 5.06 m/s (11.33 mph). June 28, 2005 Renewable Energy Research Laboratory Page 9 Renewable Energy Research Laboratory Page 10 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Figure 4 - Diurnal Average Wind Speed, March 2005 ­ May 2005 June 28, 2005 Renewable Energy Research

Massachusetts at Amherst, University of

432

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

433

Milwaukee Reaps Benefits of Wind Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy February 11, 2013 - 2:28pm Addthis The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What does this project do? The 154-foot wind turbine produces between 109,00 and 152,000 kWh of energy annually -- more than enough energy to power the Port Administration

434

Milwaukee Reaps Benefits of Wind Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy February 11, 2013 - 2:28pm Addthis The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What does this project do? The 154-foot wind turbine produces between 109,00 and 152,000 kWh of energy annually -- more than enough energy to power the Port Administration

435

Georgia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Georgia/Wind Resources/Full Version Georgia/Wind Resources/Full Version < Georgia‎ | Wind Resources Jump to: navigation, search Print PDF Georgia Wind Resources GeorgiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

436

California/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

California/Wind Resources/Full Version California/Wind Resources/Full Version < California‎ | Wind Resources Jump to: navigation, search Print PDF California Wind Resources CaliforniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

437

Kansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources/Full Version Kansas/Wind Resources/Full Version < Kansas‎ | Wind Resources Jump to: navigation, search Print PDF Kansas Wind Resources KansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

438

Wisconsin/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources/Full Version Wisconsin/Wind Resources/Full Version < Wisconsin‎ | Wind Resources Jump to: navigation, search Print PDF Wisconsin Wind Resources WisconsinMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

439

Nebraska/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources/Full Version Nebraska/Wind Resources/Full Version < Nebraska‎ | Wind Resources Jump to: navigation, search Print PDF Nebraska Wind Resources NebraskaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

440

Michigan/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Michigan/Wind Resources/Full Version Michigan/Wind Resources/Full Version < Michigan‎ | Wind Resources Jump to: navigation, search Print PDF Michigan Wind Resources MichiganMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Texas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Texas/Wind Resources/Full Version Texas/Wind Resources/Full Version < Texas‎ | Wind Resources Jump to: navigation, search Print PDF Texas Wind Resources TexasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

442

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

443

Mississippi/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Wind Resources/Full Version Mississippi/Wind Resources/Full Version < Mississippi‎ | Wind Resources Jump to: navigation, search Print PDF Mississippi Wind Resources MississippiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

444

Washington/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources/Full Version Washington/Wind Resources/Full Version < Washington‎ | Wind Resources Jump to: navigation, search Print PDF Washington Wind Resources WashingtonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

445

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < Vermont‎ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

446

Missouri/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources/Full Version Missouri/Wind Resources/Full Version < Missouri‎ | Wind Resources Jump to: navigation, search Print PDF Missouri Wind Resources MissouriMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

447

Idaho/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources/Full Version Idaho/Wind Resources/Full Version < Idaho‎ | Wind Resources Jump to: navigation, search Print PDF Idaho Wind Resources IdahoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

448

Louisiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources/Full Version Louisiana/Wind Resources/Full Version < Louisiana‎ | Wind Resources Jump to: navigation, search Print PDF Louisiana Wind Resources LouisianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

449

Massachusetts/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources/Full Version Massachusetts/Wind Resources/Full Version < Massachusetts‎ | Wind Resources Jump to: navigation, search Print PDF Massachusetts Wind Resources MassachusettsMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

450

Connecticut/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Connecticut/Wind Resources/Full Version Connecticut/Wind Resources/Full Version < Connecticut‎ | Wind Resources Jump to: navigation, search Print PDF Connecticut Wind Resources ConneticutMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

451

Tennessee/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Tennessee/Wind Resources/Full Version Tennessee/Wind Resources/Full Version < Tennessee‎ | Wind Resources Jump to: navigation, search Print PDF Tennessee Wind Resources Tennessee.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

452

Pennsylvania/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources/Full Version Pennsylvania/Wind Resources/Full Version < Pennsylvania‎ | Wind Resources Jump to: navigation, search Print PDF Pennsylvania Wind Resources PennsylvaniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

453

Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Virginia/Wind Resources/Full Version Virginia/Wind Resources/Full Version < Virginia‎ | Wind Resources Jump to: navigation, search Print PDF Virginia Wind Resources VirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

454

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < Kentucky‎ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

455

Utah/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Utah/Wind Resources/Full Version Utah/Wind Resources/Full Version < Utah‎ | Wind Resources Jump to: navigation, search Print PDF Utah Wind Resources UtahMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

456

Hawaii/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources/Full Version Hawaii/Wind Resources/Full Version < Hawaii‎ | Wind Resources Jump to: navigation, search Print PDF Hawaii Wind Resources HawaiiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

457

Oklahoma/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Oklahoma/Wind Resources/Full Version Oklahoma/Wind Resources/Full Version < Oklahoma‎ | Wind Resources Jump to: navigation, search Print PDF Oklahoma Wind Resources OklahomaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

458

Maryland/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources/Full Version Maryland/Wind Resources/Full Version < Maryland‎ | Wind Resources Jump to: navigation, search Print PDF Maryland Wind Resources MarylandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

459

Indiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Indiana/Wind Resources/Full Version Indiana/Wind Resources/Full Version < Indiana‎ | Wind Resources Jump to: navigation, search Print PDF Indiana Wind Resources IndianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

460

Illinois/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Illinois/Wind Resources/Full Version Illinois/Wind Resources/Full Version < Illinois‎ | Wind Resources Jump to: navigation, search Print PDF Illinois Wind Resources IllinoisMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

462

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

463

Wind Forcing over the Southwest Atlantic: Comparison between Observations and ECMWF Analyses  

Science Conference Proceedings (OSTI)

Oceanic variability in the southwest Atlantic is dominated by temporal scales at the annual, semiannual, and few-month periods. It is now examined if the timescales present in the local wind forcing (wind vector and wind stress curl) match the ...

Christelle Escoffier; Christine Provost

1995-05-01T23:59:59.000Z

464

A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS  

E-Print Network (OSTI)

LBNL-44070 TP-28529 A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION and market penetration on the U.S. Department of Energy's Annual Energy Outlook (AEO) forecast for wind supply mix remains fairly steady, and renewable energy technologies such as wind do not achieve

465

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

466

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

467

Amplitude modulation of wind turbine noise  

E-Print Network (OSTI)

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

468

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

469

Petroleum Supply Annual, Volume 1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 With Data for 2012 | Release Date: September 27, 2013 | Next Release Date: August 28, 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Re-release of the Petroleum Supply Annual with data for 2011 Volume 1 - Final annual data for the supply and disposition of crude oil and petroleum products. Volume 1 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products PDF CSV 2 U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products PDF CSV Supply and Disposition of Crude Oil and Petroleum Products 3 PAD District 1 PDF CSV 4 Daily Average PAD District 1 PDF CSV

470

WIND DATA REPORT March 01, 2007 May 31, 2007  

E-Print Network (OSTI)

2007 Wind Roses Figure 7 ­ Wind Rose, March 2007 ­ May 2007 July 16, 2007 Renewable Energy Research 22.5 0 23.5 0 24.5 0 Table 1 - Wind Speed Distribution, 50 m July 16, 2007 Renewable Energy Research.84 23.5 5.96 Table 3 - Diurnal Average Wind Speeds, 50 m July 16, 2007 Renewable Energy Research

Massachusetts at Amherst, University of

471

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

472

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

473

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

474

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

475

Annual Reports | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Documents Documents » Annual Reports Annual Reports Note: Some of the following documents are in PDF and will require Adobe Reader for viewing. Freedom of Information Act Annual Reports Annual Report for 2012 Annual Report for 2011 Annual Report for 2010 Annual Report for 2009 Annual Report for 2008 (pdf) Annual Report for 2007 (pdf) Annual Report for 2006 (pdf) Annual Report for 2005 (pdf) Annual Report for 2004 (pdf) Annual Report for 2003 (pdf) Annual Report for 2002 (pdf) (Revised 11/03/03) Annual Report for 2001 (pdf) Annual Report for 2000 (pdf) Annual Report for 1999 (pdf) Annual Report for 1998 (pdf) Annual Report for 1997 (pdf) Annual Report for 1996 (pdf) Annual Report for 1995 (pdf) Annual Report for 1994 (pdf) Chief FOIA Officers Reports Aviation Management Green Leases

476

Simulation of wind-speed time series for wind-energy conversion analysis.  

DOE Green Energy (OSTI)

In order to investigate operating characteristics of a wind energy conversion system it is often desirable to have a sequential record of wind speeds. Sometimes a long enough actual data record is not available at the time an analysis is needed. This may be the case if, e.g., data are recorded three times a day at a candidate wind turbine site, and then the hourly performance of generated power is desired. In such cases it is often possible to use statistical characteristics of the wind speed data to calibrate a stochastic model and then generate a simulated wind speed time series. Any length of record may be simulated by this method, and desired system characteristics may be studied. A simple wind speed simulation model, WEISIM, is developed based on the Weibull probability distribution for wind speeds with a correction based on the lag-one autocorrelation value. The model can simulate at rates from one a second to one an hour, and wind speeds can represent short-term averages (e.g., 1-sec averages) or longer-term averages (e.g., 1-min or 1 hr averages). The validity of the model is verified with PNL data for both histogram characteristics and persistance characteristics.

Corotis, R.B.

1982-06-01T23:59:59.000Z

477

NERSC Annual Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Reports NERSC Annual Reports Sort by: Default | Name annrep2011.png NERSC Annual Report 2011 Download Image: annrep2011.png | png | 2.7 MB Download File: annrep2011.pdf |...

478

Modeling and Analysis of the Wind-Waves Field Variability in the Indian Ocean During 1998-2009 Years  

E-Print Network (OSTI)

To calculate the wind-waves in the Indian Ocean (IO), the wind field for the period from 1998 to 2009 was used, obtained from the NCEP/NOAA archive, and numerical model WAM (Cycle-4) was applied, modified by the new source function proposed in Polnikov (2005). Based on buoy data for the Indian Ocean, the fitting of the modified model WAM was done, which provides the win in accuracy of calculations on 35%, in comparison with the original model. All the further calculations of the wave fields in IO were made for these model settings. At the first stage, the analysis of the simulation results involves a) mapping the fields of the significant wave height and the wave energy , calculated with different scales of averaging in time T and space R; b) estimating the fields of seasonal, annual and long-term variability; and c) determining the 12-year trend of the annually averaged fields. The analysis was carried out taking into account the previously introduced zoning the ocean area, provided by the spatial inhomogen...

Polnikov, V G; Sannasiraj, S A; Sundar, V

2011-01-01T23:59:59.000Z

479

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

480

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "annual average wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

482

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching  

E-Print Network (OSTI)

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

Genton, Marc G.

483

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

484

OHA 2010 ANNUAL REPORT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 ANNUAL REPORT 0 ANNUAL REPORT OHA 2010 ANNUAL REPORT Report on the FY 2010 operations of the Office of Hearings and Appeals (OHA). Here are highlights for the past year: Personnel security hearings. Under DOE's personnel security program, OHA conducts administrative hearings concerning individuals' eligibility for access to classified information or special nuclear material. In FY 2010, our average time for processing a case reached a 10 year low, 25 percent below the averages of the last five and ten fiscal years. For the second year in a row, we had no cases older than 180 days in our end-of-year inventory. By the end of FY 2010, our average time for issuing a decision after the receipt of the hearing transcript stood at less than 30 days. Whistleblower cases. Under the DOE Contractor Employee Protection

485

OHA 2012 ANNUAL REPORT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 ANNUAL REPORT 2 ANNUAL REPORT OHA 2012 ANNUAL REPORT Report on the FY 2011 operations of the Office of Hearings and Appeals (OHA). Here are highlights for the past year: Personnel security hearings. Under DOE's personnel security program, OHA conducts administrative hearings concerning individuals' eligibility for access to classified information or special nuclear material. By the end of FY 2012, our average time for issuing a decision after the receipt of the hearing transcript stood at 24 days, its lowest level in any of the last ten years, over 36 percent below our average over the last five years, and over 57 percent below our average for FY 2003-2012. For the fourth year in a row, we had no cases older than 180 days in our end-of-year inventory. Whistleblower cases. Under the DOE Contractor Employee Protection Program,

486

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

U.S. Energy Information Administration | Annual Energy Outlook 2012 Energy Information Administration Annual Energy Outlook 2012 - DRAFT - June 12, 2012 1 Table B1. Total energy...

487

Annual Energy Outlook  

Annual Energy Outlook 2012 (EIA)

4) January 2004 Annual Energy Outlook 2004 With Projections to 2025 January 2004 For Further Information . . . The Annual Energy Outlook 2004 (AEO2004) was prepared by the Energy...

488

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

489

2007 TEPP Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Report United States Department of Energy Transportation Emergency Preparedness Program 1 Transportation Emergency Preparedness Program 2007 Annual Report US Department of...

490

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

to purchase and install an Enertech 1500 wind an elevationabout $100 annually. The Enertech 1500 that would have beenthan by the utility. Enertech estimates that a similarly

Kay, J.

2009-01-01T23:59:59.000Z

491

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

492

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

493

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

494

Modeling access to wind resources in the United States  

DOE Green Energy (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Short, W.D.

1999-10-20T23:59:59.000Z

495

Optimization Online - String-Averaging Projected Subgradient ...  

E-Print Network (OSTI)

Aug 29, 2013 ... Optimization Online. String-Averaging Projected Subgradient Methods for Constrained Minimization. Yair Censor(yair ***at*** math.haifa.ac.il)

496

Average Stock Levels: Crude Market & Propane  

U.S. Energy Information Administration (EIA)

This graph shows that propane was not alone in experiencing excess supply in 1998 and extraordinary stock builds. Note that the graph shows average stock levels ...

497

Choosing wind power plant locations and sizes based on electric reliability measures using multiple-year wind speed measurements  

DOE Green Energy (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Milligan, M.R.; Artig, R.

1999-07-08T23:59:59.000Z

498

Dynamic Multiscale Averaging (DMA) of Turbulent Flow  

SciTech Connect

A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

Richard W. Johnson

2012-09-01T23:59:59.000Z