Powered by Deep Web Technologies
Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource  

SciTech Connect (OSTI)

This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

Cunniff, Roy A.; Bowers, Roger L.

2005-08-01T23:59:59.000Z

2

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

SciTech Connect (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

3

GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM  

SciTech Connect (OSTI)

This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

Witcher, James

2006-08-01T23:59:59.000Z

4

E-Print Network 3.0 - animas county colorado Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

animas county colorado Search Powered by Explorit Topic List Advanced Search Sample search results for: animas county colorado Page: << < 1 2 3 4 5 > >> 1 2011 Colorado Wildfire...

5

A Geological and Hydro-Geochemical Study of the Animas Geothermal...  

Open Energy Info (EERE)

Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

6

Geology and geothermal waters of Lightning Dock region, Animas Valley and  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008)the

7

Geology: Ground water in Animas Valley, Hidalgo County, New Mexico | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008)theVolcano Jump to:GoldEnergy

8

Ground water in Animas Valley, Hidalgo County, New Mexico | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:Energy

9

Final Report: Enhanced Geothermal Systems Technology Phase II: Animas  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual Data LessonType. RetrievedValley, New

10

ANIMAS-LA PLATA PROJECT COMPACT The state of Colorado and the state of New Mexico, in order to implement the  

E-Print Network [OSTI]

ANIMAS-LA PLATA PROJECT COMPACT The state of Colorado and the state of New Mexico, in order to implement the operation of the Animas-La Plata federal reclamation project, Colorado-New Mexico, a proposed the following articles: ARTICLE I A. The right to store and divert water in Colorado and New Mexico from the La

Johnson, Eric E.

11

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

SciTech Connect (OSTI)

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

12

Bethel Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

13

Melton Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

watershed. Wastes disposed in Melton Valley reside at a variety of locations, including solid waste landfills, trenches, liquid waste tanks and pipelines, surface structures,...

14

Green Valley Galaxies  

E-Print Network [OSTI]

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

15

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

16

Case Study - Sioux Valley Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

17

Songs From Happy Valley and Other Stories  

E-Print Network [OSTI]

RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

Nagel, Lisa W.

2013-01-01T23:59:59.000Z

18

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides...

19

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

20

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge April

22

Final Report: Enhanced Geothermal Systems Technology Phase II...  

Open Energy Info (EERE)

Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New...

23

,"NM, East Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:57:21 AM" "Back to Contents","Data 1: NM, East...

24

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

25

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

26

Retrofitting the Tennessee Valley Authority  

E-Print Network [OSTI]

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

27

Transparent fluids for 157-nm immersion lithography  

E-Print Network [OSTI]

- gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

Rollins, Andrew M.

28

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

29

U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract 158 Possible redeposition of volcanic ashes in the Dry Valleys by glacier transport  

E-Print Network [OSTI]

Mexico Bureau of Geology & Mineral Resources, New Mexico Tech, Socorro NM 87801 USA (nelia and ice sheets have global-scale impacts. The Dry Valleys are a key site because they are one of the few

Dunbar, Nelia W.

30

Mechanically and optically controlled graphene valley filter  

SciTech Connect (OSTI)

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

31

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

32

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

33

Enterprise Assessments Review, West Valley Demonstration Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was...

34

Independent Oversight Review, West Valley Demonstration Project...  

Office of Environmental Management (EM)

West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

35

Roaring Fork Valley- Energy Efficient Appliance Program  

Broader source: Energy.gov [DOE]

The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

36

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

37

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References Retrieved from "http:...

38

Geophysics, Geology and Geothermal Leasing Status of the Lightning...  

Open Energy Info (EERE)

Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

39

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

40

azapa valley northern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

42

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

43

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Abstract Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble...

44

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

45

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

46

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

47

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

48

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

49

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

50

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

51

Deformation of the Long Valley Caldera, California: Inferences...  

Open Energy Info (EERE)

Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

52

AMF Deployment, Ganges Valley, India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

53

Union Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy 1n n d d e eUnion Valley

54

Town of Portola Valley 765 Portola Roac  

E-Print Network [OSTI]

, Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

55

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

56

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

57

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

58

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

59

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network [OSTI]

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the… (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

60

VALMET-A valley air pollution model  

SciTech Connect (OSTI)

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

62

25055 W. Valley Parkway Olathe, Kansas 66061  

E-Print Network [OSTI]

25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

Dyer, Bill

63

Poudre Valley REA- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

64

City of Sunset Valley- PV Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

65

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

66

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network [OSTI]

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

67

Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS  

E-Print Network [OSTI]

Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

Rathbun, Julie A.

68

A Home for Everyone San Joaquin Valley Housing  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

69

Valley wins High School Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

70

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th  

E-Print Network [OSTI]

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

California at Santa Cruz, University of

71

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

72

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

73

The Lower Rio Grande Valley Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

KFH GROUP, INC. THE LOWER RIO GRANDE VALLEY REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: Lower Rio Grande Valley Regional Transportation Coordination Plan Committee By: KFH Group, Incorporated... Page BACKGROUND..............................................................................................................................1 PLAN PROCESS...

Lower Rio Grande Valley Development Council

2006-11-30T23:59:59.000Z

74

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450  

E-Print Network [OSTI]

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

75

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

76

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

77

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

78

WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001  

SciTech Connect (OSTI)

THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

NONE

2002-09-30T23:59:59.000Z

79

Silicon Valley Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

80

The Valley Fever Corridor Year 2 Fundraising Status  

E-Print Network [OSTI]

Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

Arizona, University of

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network [OSTI]

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

82

28-nm laser damage testing of LIF  

SciTech Connect (OSTI)

We have tested several samples of LIF, both single crystal and press forged, for damage resistance to 10-ns 248-nm pulses at 35 pps. The damage thresholds - the highest levels at which no damage could be produced - ranged from 4 to 6 J/cm/sup 2/ although some test sites survived irradiation at approx. 30 J/cm/sup 2/. We observed that bulk damage is the primary failure mechanism in single crystal and press forged samples and that both types exhibit the same resistance to laser damage.

Foltyn, S.R.; Newman, B.E.

1981-01-01T23:59:59.000Z

83

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

84

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect (OSTI)

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

85

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

86

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect (OSTI)

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

87

The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels  

E-Print Network [OSTI]

We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists (Giacchetti et al. 1974; Zalubas & Corliss 1974; Zalubas 1976; Palmer & Engleman 1983; Engleman et al. 2003; Lovis & Pepe 2007; Kerber et al. 2008) to re-optimize the energy levels of neutral, singly-, and doubly-ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19679 thorium lines between 250 nm and 5500 nm (40000 1/cm to 1800 1/cm). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman (1983) and typographical errors and incorrect classifications in Kerber et al. (2008). We also found a la...

Redman, Stephen L; Sansonetti, Craig J

2013-01-01T23:59:59.000Z

88

Hudson Valley Clean Energy Office and Warehouse  

High Performance Buildings Database

Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

89

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: EnergySecondarySequachee Valley

90

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley Geothermal

91

Melton Valley Watershed | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinalMelton Valley

92

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei Valley

93

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei ValleyJump to:

94

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

95

Frequency stabilization for a 486nm dye-ring laser  

E-Print Network [OSTI]

For my thesis, I worked towards using two reference cavities to provide frequency stabilization to a 486nm dye-ring laser. After a doubling cavity doubles the frequency to 243nm, the laser beam is used to excite ground ...

Sievers, Charles A. (Charles Anders), 1979-

2004-01-01T23:59:59.000Z

96

High Plains Corporation's Portales, NM Facility  

E-Print Network [OSTI]

NREL to evaluate the opportunity for converting all or part of the High Plains Portales, NM ethanol facility to biomass feed. The Portales plant, owned by High Plains, currently produces about 10 million gallons per year of ethanol from milo feed. SWAN Biomass conversion technology is the basis for the new process design. SWAN first evaluated possible biomass feedstocks available close to the existing facility. Cotton gin trash was found to be abundant in the area, available for the cost of hauling, and suitable as a feedstock for the manufacture of ethanol. SWAN then optimized the design of the biomass plant, and performed extensive economic evaluations tailored to the specifics of the feedstock, facility site and owner. Weatherly, Inc., a process engineering company with expertise in the design and construction of ethanol plants, reviewed the existing equipment at Portales, and estimated the costs for modifying that equipment to allow the plant to run on biomass. High Plains supported both efforts, and investigated means for implementing the new technology. The proposed modifications would cost $30 million. Most of the capital cost would be for biomass pretreatment equipment and the large fermentation vessels needed to convert biomass in high yield. The modified facility would produce 11.3 million gallons per year of ethanol from 725 tons/day of cotton gin

Subcontract Zxe

97

VALMET: a valley air pollution model. Final report. Revision 1  

SciTech Connect (OSTI)

An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

Whiteman, C.D.; Allwine, K.J.

1985-04-01T23:59:59.000Z

98

Citrus Production in the Lower Rio Grande Valley of Texas.  

E-Print Network [OSTI]

LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

1930-01-01T23:59:59.000Z

99

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

100

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

102

Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

103

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

104

Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...  

Open Energy Info (EERE)

Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

105

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

106

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

107

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

108

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

109

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

110

Water geochemistry study of Indian Wells Valley, Inyo and Kern...  

Open Energy Info (EERE)

Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

111

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

112

Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)  

Broader source: Energy.gov [DOE]

Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

113

Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

114

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

115

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

116

Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...  

Open Energy Info (EERE)

Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

117

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

118

Kennebec Valley Community College's State of the Art Solar Lab  

Broader source: Energy.gov [DOE]

Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

119

Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...  

Open Energy Info (EERE)

McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

120

Lobbyist Disclosure Form - Silicon Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First Solar Interested Parties - Shipp...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

122

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

123

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

124

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

125

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

126

Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

127

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

128

Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

129

Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program  

Broader source: Energy.gov [DOE]

Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

130

Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

131

Lower Valley Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

132

Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

133

Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program  

Broader source: Energy.gov [DOE]

Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

134

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long Valley, California Michael...

135

Zena conservation easement protects habitat in Willamette Valley...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

central Willamette Valley for fi sh and wildlife habitat mitigation. Located in the Eola Hills about eight miles northwest of Salem (see map), this property provides refuge for...

136

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

137

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

138

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

139

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

140

Technical Services Contract Awarded for West Valley Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

- The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

142

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

143

Sulphur Springs Valley EC- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

144

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

145

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

146

Idaho Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia Boise Clark Bonner Ada Shoshone Bingham Caribou Clearwater Fremont Power Adams Latah Twin Falls Bonneville Lincoln Oneida...

147

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date - 2004 Usefulness not indicated...

148

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

149

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

150

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

151

Static Temperature Survey At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

152

Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

153

Conservation tillage production systems compared in San Joaquin Valley cotton  

E-Print Network [OSTI]

in San Joaquin Valley cotton by Jeffrey P. Mitchell, Danielfor 25% or more of overall cotton production costs. Thesesuccessfully elsewhere in the Cotton Belt may be a viable

Mitchell, Jeffrey; Munk, Dan; Prys, Bob; Klonsky, Karen; Wroble, Jon; De Moura, Rich

2006-01-01T23:59:59.000Z

154

antarctic dry valley: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

155

antarctic dry valleys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

156

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

157

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

158

E-Print Network 3.0 - aburra valley caused Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

distribution of air pollutants in an Alpine valley Motivation: High air... pollution in Alpine valleys during wintertime Only sparse routine measurements available...

159

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

160

West Valley Site History, Cleanup Status, and Role of the West...  

Office of Environmental Management (EM)

of the West Valley Citizen Task Force More Documents & Publications EIS-0337: Draft Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

162

E-Print Network 3.0 - antelope valley california Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Antelope Valley Solar Ranch One Maricopa Sun Solar... Complex Project T-Squared Inc. California Valley Solar Ranch Topaz Solar Farm Lost Hills Synapse Solar 2... Kramer...

163

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-VerdĂ­n, Carlos

164

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect (OSTI)

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

165

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowder RiverValley

166

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to: navigation, searchValley

167

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValley Solar Jump to:

168

Boone Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVenturesCoral CapitalBoilersBoone Valley

169

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie Valley

170

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie ValleyDixie

171

Valley, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs

172

Antelope Valley Neset | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformation Anson County, NorthAntarisValley

173

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,Grid RenewableMini-GridAgencyValley

174

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexVallesValley View

175

Bethel Valley Watershed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethel Valley Watershed. Topics include: * The

176

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroup JumpValley

177

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview, Florida:WheatleyWheeler, New York:Whippany, NewValley

178

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining Company - NJ JumpValley

179

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen Energy Information 2008)Aire Valley

180

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Surprise Valley Electric Co-Op Trinity Shasta Lake  

E-Print Network [OSTI]

Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

182

TFC-0004- In the Matter of Tri-Valley CARES  

Broader source: Energy.gov [DOE]

Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. § 552.

183

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

184

New Materials for 157 nm Photoresists: Characterization and Properties  

E-Print Network [OSTI]

. The current Semiconductor Industry Association (SIA) Roadmap indicates the 100 nm technology node will be reached by 2005; however, many semiconductor manufacturers foresee the need for a technology enabling 100 by 2005. Therefore, 157 nm lithography is viewed as a potential bridge across the gap between optical

Rollins, Andrew M.

185

RF power potential of 45 nm CMOS technology  

E-Print Network [OSTI]

This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

Putnam, Christopher

186

Photoelectron Spectroscopy of Anions at 118.2 nm: Observation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of...

187

Airborne particles in the San Joaquin Valley may affect human health  

E-Print Network [OSTI]

graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

2010-01-01T23:59:59.000Z

188

Passive solar homes in Delaware Valley  

SciTech Connect (OSTI)

This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

1997-12-31T23:59:59.000Z

189

Photodissociation dynamics of CIN3 at 193nm  

SciTech Connect (OSTI)

Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN{sub 3}) under collision-free conditions. Both the molecular elimination (NCl+N{sub 2}) and the radical bond rupture channel (Cl+N{sub 3}) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN{sub 3} ({tilde C} {sup 1}A{double_prime}) state is excited, rather than the {tilde B} {sup 1}A{prime} state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and 'high energy' N{sub 3}. Hence, nearly all the additional photon energy relative to 248 nm appears as N{sub 3} internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N{sub 3} to N{sub 2}+N.

Goncher, Scott J.; Sveum, Niels E.; Moore, David T.; Bartlett,Nate D.; Neumark, Daniel M.

2006-09-28T23:59:59.000Z

190

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

191

Silicon Valley Power- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

192

Red River Valley REA- Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

193

LA Rooftop Solar Project Goes Online in San Fernando Valley ...  

Broader source: Energy.gov (indexed) [DOE]

Incentive Programs, Florida SunShot Rooftop Challenge Awardees The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home...

194

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Valley Caldera Michael L. Sorey, B. Mack Kennedy, William C. Evans, Christopher D. Farrar (1990) Increases in 3He4He in Fumarolic Gas Associated with the 1989 Earthquake Swarm...

195

Hydrologic and Geochemical Monitoring in Long Valley Caldera...  

Open Energy Info (EERE)

show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

196

Satellite imagery can support water planning in the Central Valley  

E-Print Network [OSTI]

area, Merced County County Fresno Kings Merced Sutter Timethe study area Merced County. Kings, Merced and Sutter (fig.counties are par- ticularly important to the agricultural economy of the Central Valley: Fresno, Fresno Kings

Zhong, Liheng; Hawkins, Tom; Holland, Kyle; Gong, Peng; Biging, Gregory S

2009-01-01T23:59:59.000Z

197

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

198

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

199

Present State of the Hydrothermal System in Long Valley Caldera...  

Open Energy Info (EERE)

Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

200

Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina   

E-Print Network [OSTI]

This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

Hein, Andrew S.

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...  

Energy Savers [EERE]

West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank 1 Introduction The U.S. Department of Energy (DOE) is providing responses to the comments...

202

Microsoft Word - Finely_NorthValley_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Manager - KEWM-4 Proposed Action: Finely Creek and North Valley Creek property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-58888 Categorical Exclusion...

203

Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

204

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...

205

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

206

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

207

Moreno Valley Electric Utility- Solar Electric Incentive Program  

Broader source: Energy.gov [DOE]

Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

208

Ohio River Valley Water Sanitation Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

209

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Broader source: Energy.gov [DOE]

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

210

Sulphur Springs Valley EC- SunWatts Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

211

The Owens Valley Fault Zone Eastern California and Surface Faulting...  

Open Energy Info (EERE)

base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

212

City of Sunset Valley- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that...

213

Structure of The Dixie Valley Geothermal System, a "Typical"...  

Open Energy Info (EERE)

Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

214

GRED Studies and Drilling of Americulture State 2, Americulture...  

Open Energy Info (EERE)

and Drilling of Americulture State 2, Americulture Tilapia Farm: Lightning Dock KGRA, Las Animas Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to...

215

Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...  

Open Energy Info (EERE)

DOE-funding Unknown Exploration Basis Known shallow hot spot in Animas Valley Notes Four thermal gradient holes were authorized to be drilled by AMEX, but no results were...

216

Hydrothermal system in Southern Grass Valley, Pershing County, Nevada  

SciTech Connect (OSTI)

Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

1981-01-01T23:59:59.000Z

217

Seismicity related to geothermal development in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

218

albuquerque nm 1st: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 21 22 23 24 25 Next Page Last Page Topic Index 1 Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) Multidisciplinary Databases and...

219

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

220

Effects of valley meteorology on forest pesticide spraying  

SciTech Connect (OSTI)

Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

Whiteman, C.D.

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

West Valley facility spent fuel handling, storage, and shipping experience  

SciTech Connect (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

222

RAPID/Roadmap/19-NM-h | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df <NM-h

223

RAPID/Roadmap/3-NM-f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State RightNM-f

224

RAPID/Roadmap/11-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State1-NM-d

225

RAPID/Roadmap/3-NM-e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto3-NM-d State BusinessNM-e

226

RAPID/Roadmap/8-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a7-CA-e8-HI-a TransmissionNM-c8-NM-d

227

Results of the Flowmeter-Injection Test in the Long Valley Exploratory...  

Open Energy Info (EERE)

Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

228

VWZ-0011 - In the Matter of West Valley Nuclear Services Co....  

Office of Environmental Management (EM)

- In the Matter of West Valley Nuclear Services Co., Inc. VWZ-0012 - In the Matter of Lucy B. Smith VWA-0033 - In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc....

229

EM Employees at West Valley Help Beat Goal for Food Banks  

Broader source: Energy.gov [DOE]

WEST VALLEY, N.Y. – EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

230

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results  

E-Print Network [OSTI]

After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

Panday, Arnico K.

231

The diurnal cycle of air pollution in the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

Panday, Arnico Kumar

2006-01-01T23:59:59.000Z

232

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2005-09-30T23:59:59.000Z

233

EA-1840: California Valley Solar Ranch Project in San Luis Obispo...  

Broader source: Energy.gov (indexed) [DOE]

0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final...

234

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA  

E-Print Network [OSTI]

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

235

Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada  

E-Print Network [OSTI]

component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

Beyer, H.

2010-01-01T23:59:59.000Z

236

Statistical Leakage Estimation in 32nm CMOS Considering Cells Correlations  

E-Print Network [OSTI]

Statistical Leakage Estimation in 32nm CMOS Considering Cells Correlations Smriti Joshi 1 *, Anne into account input states and process variations is proposed. The statistical leakage estimation is based components in a device depend on the transistor geometry and threshold voltage, statistical variation

Paris-Sud XI, Université de

237

Ca II 854.2 nm BISECTORS AND CIRCUMFACULAR REGIONS  

SciTech Connect (OSTI)

Active regions appear bright in Ca II 854.2 nm line core intensity while the surrounding areas, referred to as circumfacular regions, are darker than the active region or the quiet Sun. We use Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph Ca II 854.2 nm data (photospheric and chromospheric full disk magnetograms as well as high spectral resolution Stokes I and V profiles) to study the connection between magnetic canopies, circumfacular regions, and Ca II 854.2 nm bisector amplitudes (spans). The line bisector amplitude is reduced in circumfacular regions, where the 3 minute period power in chromospheric H{alpha} intensity oscillations is also reduced relative to the surrounding quiet Sun. The latter is consistent with magnetic canopies in circumfacular regions suppressing upward propagating steepening acoustic waves. Our results provide further strong evidence for shock waves as the cause of the inverse C-shaped bisector and explain the observed solar cycle variation of the shape and amplitude of Sun-as-a-star Ca II 854.2 nm bisectors.

Pietarila, A.; Harvey, J. W. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)] [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

2013-02-20T23:59:59.000Z

238

NM Junior College CATALOG YEAR 2009-Transferring from New Mexico  

E-Print Network [OSTI]

2010 NM Junior College CATALOG YEAR 2009- 2010 11/9/2010 Transferring from New Mexico Junior College to the University of New Mexico #12;NMJC Course UNM Equivalent Important UNM Phone Numbers................................................................................................... http://advisement.unm.edu/ The University of New Mexico and New Mexico Junior College work closely

New Mexico, University of

239

West Valley Demonstration Project site environmental report, calendar year 1999  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None Available

2000-06-01T23:59:59.000Z

240

West Valley Demonstration Project site environmental report, calendar year 1997  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

West Valley Demonstration Project site environmental report calendar year 1998  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

NONE

1999-06-01T23:59:59.000Z

242

DOE Awards Small Business Contract for West Valley NY Services  

Broader source: Energy.gov [DOE]

CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

243

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

244

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:LongValley

245

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

246

Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene Zhenhua Wu,1  

E-Print Network [OSTI]

Valley-Dependent Brewster Angles and Goos-Hašnchen Effect in Strained Graphene Zhenhua Wu,1 F. Zhai local strains in graphene can be tailored to generate a valley- polarized current. By suitable be used to construct a valley filter in graphene without the need for any external fields. DOI: 10

247

[Having a] Life in the Happy Valley 1.2 Cris Pedregal Martin  

E-Print Network [OSTI]

[Having a] Life in the Happy Valley ­ 1.2 Cris Pedregal Martin Department of Computer Science known as ``The Happy Valley,'' henceforth simply ``the Valley.'' Specifically, we discuss food, cultural will strongly influence your well­being, your happiness, and ultimately your ability to function aca­ demically

Massachusetts at Amherst, University of

248

The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

249

February 17, 2005 Traffic: See current conditions on all Valley freeways  

E-Print Network [OSTI]

° Flagstaff 34° |Traffic Weather Site search| | | | | |Front Page Valley & State Sports Business Arizona Wheels Yes Ahwatukee Chandler Gilbert Glendale/Peoria Mesa Phoenix Scottsdale Southwest Valley Sun CitiesFebruary 17, 2005 Traffic: See current conditions on all Valley freeways PHOENIX 56° Tucson 53

McGraw, Kevin J.

250

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY  

E-Print Network [OSTI]

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY BY RICHARD THOMPSON AND ANDREW PEACE: Thompson, R (2005), Stand dynamics in Tilio-Acerion woodlands of the Clyde Valley. Highland Birchwoods, Munlochy #12;STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY by Richard Thompson* and Andrew

251

Geology and geothermal waters of Lightning Dock region, Animas...  

Open Energy Info (EERE)

(70 to 115.5sup 0C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene...

252

Las Animas County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderello Geothermal AreaLars

253

Cordis Anima Physical Modeling and Simulation System Analysis  

E-Print Network [OSTI]

internal descriptions, finite difference model, modal decomposition, electrical analogous circuits, CA equation [3] the modal approach where the vibrating structure is represented through a series physical modeling techniques. Vibrating structures like all kind of elastic bodies, strings, membranes

Kouroupetroglou, Georgios

254

anima nobile study: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Opinnytety on grafiikan carborundum-tekniikalla toteutettu lyhyt animaatio. Teoksen tavoitteena oli tuoda eloa...

255

animaes silvestres relacionados: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Opinnytety on grafiikan carborundum-tekniikalla toteutettu lyhyt animaatio. Teoksen tavoitteena oli tuoda eloa...

256

anima nobile reparacao: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Opinnytety on grafiikan carborundum-tekniikalla toteutettu lyhyt animaatio. Teoksen tavoitteena oli tuoda eloa...

257

Animas, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage|

258

City of Las Animas, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (Utility Company) JumpKirkwood, MissouriLakota,Larsen Bay,Las

259

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

Hernandez, Manuel

2011-05-06T23:59:59.000Z

260

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

Garcia, Bianca 1989-

2011-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kelly Services 1600 Valley River Drive, Suite 170  

E-Print Network [OSTI]

Kelly ServicesŸ 1600 Valley River Drive, Suite 170 Eugene, OR 97401 Phone: 541.687.9558 Fax: 541 put them on our payroll Experience 1946 ­ Present Kelly Services, Troy, MI We are a global, single to achieve results. We transform workforce challenges into opportunities. 1957 ­ Present Kelly Services

Oregon, University of

262

Sustainability of irrigated agriculture in the San Joaquin Valley, California  

E-Print Network [OSTI]

productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

Vrugt, Jasper A.

263

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden Stream and Floodplain Restoration Project Report of 2005 Project Activities to Mecklenburg County Storm Water Services and Water Quality habitat is often inhibited by a lack of organic matter in the soils of restoration project sites, organic

264

West Valley transfer cart control system design description  

SciTech Connect (OSTI)

Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

1993-01-01T23:59:59.000Z

265

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

266

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain)  

E-Print Network [OSTI]

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain): Implications Recherche Développement, Carbonate Sedimentology Group, avenue Larribau s/n, 64018 Pau Cedex - France e'Espagne) sont présentées dans cette étude. Les corps dolomitiques sont encaissés dans des carbonates de

Paris-Sud XI, Université de

267

ASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley Chapter  

E-Print Network [OSTI]

Fund awarded a grant for a new Reactor Materials Research Labora- tory (RMTL) at Queen's University electron microscopes, in­ and ex-situ mechanical testing equipment, and a radiation detection researchASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley Chapter

Ellis, Randy

268

Skagit Valley Research Collection / Ian E. Efford (collector)  

E-Print Network [OSTI]

Skagit Valley Research Collection / Ian E. Efford (collector) Compiled by Christopher Hives (1997 of Creation / Physical Description o Collector's Biographical Sketch o Scope and Content o Notes File List-1982. 13 cm of textual records. 35 photographs. Collector's Biographical Sketch Ian Efford was an ecologist

Handy, Todd C.

269

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona  

Broader source: Energy.gov [DOE]

Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

270

Citrus Variety Trends in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

Alderman, D. C. (DeForest Charles)

1951-01-01T23:59:59.000Z

271

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden Stream and Floodplain Restoration cells within a stream and floodplain restoration of a segment of Little Sugar Creek in Mecklenburg Assessment of Little Sugar Creek Restoration 2 Stream Ambient Water Quality Monitoring 2 Stream Habitat

272

Public Service Co of NM | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTempUtility, Inc. (Pennsylvania)NM

273

RAPID/Roadmap/11-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State

274

Ion transport in sub-5-nm graphene nanopores  

SciTech Connect (OSTI)

Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

Suk, Myung E.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2014-02-28T23:59:59.000Z

275

Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York  

SciTech Connect (OSTI)

The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

N /A

2004-01-16T23:59:59.000Z

276

Sub-30 nm InAs Quantum-Well MOSFETs with Self-aligned Metal Contacts and Sub-1 nm EOT HfO2 Insulator  

E-Print Network [OSTI]

performance, ability to harmoniously scale down to sub-30 nm gate length dimensions and CMOS. MOSFETs with gate length dimensions in the 20-30 nm range and outstanding electrical characteristics that yields an undercut spacer is etched through highly

del Alamo, JesĂșs A.

277

Photo Album Of FAPAC - NM Activities | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration Album Of FAPAC - NM Activities |

278

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF EnergyNM Stat. 62-9

279

DOE - Office of Legacy Management -- LASL Tract OO - NM 06  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38KerrTract OO - NM 06

280

DOE - Office of Legacy Management -- Project Gnome Site - NM 12  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19Gas Buggy Site - NM

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RAPID/Roadmap/14-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-cNM-a Nonpoint

282

RAPID/Roadmap/14-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b34-HI-b4-MT-cNM-a

283

RAPID/Roadmap/19-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-d

284

RAPID/Roadmap/19-NM-f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df <

285

RAPID/Roadmap/19-NM-j | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a9-NM-df

286

RAPID/Roadmap/3-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State Right of

287

RAPID/Roadmap/3-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State Right

288

RAPID/Roadmap/3-NM-g | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g3-NM-b State

289

RAPID/Roadmap/6-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling andNM-b Construction Storm Water

290

RAPID/Roadmap/8-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling7-HI-ce < RAPID‎ |8-NM-b

291

RAPID/Roadmap/1-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a Land-ID-a Land-NM-a

292

RAPID/Roadmap/11-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎-CA-a)1-NM-a State Cultural

293

RAPID/Roadmap/12-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a State12-ID-a State12-NM-a State

294

RAPID/Roadmap/14-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a State14-FD-c4-MT-a4-NM-c

295

RAPID/Roadmap/15-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎RAPID/Roadmap/15-CA-b < RAPID‎b5-NM-a

296

RAPID/Roadmap/15-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎RAPID/Roadmap/15-CA-b <NM-c <

297

RAPID/Roadmap/18-NM-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ |18-MT-b Hazardous Waste8-NM-b

298

RAPID/Roadmap/19-NM-i | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎g < RAPID‎NM-i Change in

299

RAPID/Roadmap/20-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎gWA-c TransferNM-a <

300

RAPID/Roadmap/3-NM-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d Foresto3-NM-d State Business

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RAPID/Roadmap/5-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State Exploration Process5-NM-a

302

RAPID/Roadmap/6-NM-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State6-CO-bc < RAPID‎ |6-NM-a

303

RAPID/Roadmap/8-NM-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a7-CA-e8-HI-a TransmissionNM-c

304

Suppression of high-order-harmonic intensities observed in aligned CO{sub 2} molecules with 1300-nm and 800-nm pulses  

SciTech Connect (OSTI)

High-order-harmonic generation from aligned N{sub 2}, O{sub 2}, and CO{sub 2} molecules is investigated by 1300-nm and 800-nm pulses. The harmonic intensities of 1300-nm pulses from aligned molecules show harmonic photon energy dependence similar to those of 800-nm pulses. Suppression of harmonic intensity from aligned CO{sub 2} molecules is observed for both 1300- and 800-nm pulses over the same harmonic photon energy range. As the dominant mechanism for the harmonic intensity suppression from aligned CO{sub 2} molecules, the present results support the two-center interference picture rather than the dynamical interference picture.

Kato, Kosaku; Minemoto, Shinichirou; Sakai, Hirofumi [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-08-15T23:59:59.000Z

305

A simulation of the Neolithic transition in the Indus valley  

E-Print Network [OSTI]

The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

Lemmen, Carsten

2011-01-01T23:59:59.000Z

306

Ambient Radon-222 Monitoring in Amargosa Valley, Nevada  

SciTech Connect (OSTI)

As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

2008-06-05T23:59:59.000Z

307

Case histories of West Valley spent fuel shipments: Final report  

SciTech Connect (OSTI)

In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

Not Available

1987-01-01T23:59:59.000Z

308

Radiation safety at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

Hoffman, R.L.

1997-05-06T23:59:59.000Z

309

Citrus Varieties for the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

1941-01-01T23:59:59.000Z

310

Guide for Citrus Production in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

8-1002 December 1963 CONTENTS 3 VALLEY CITRUS AND ITS POTENTIAL 4 Comparison to Other Areas 4 General Description of Climate 6 SELECTING A SITE 6 Soil Factors 6 Water Quality 7 Water Availability 7 Topography Factors 8 IRRIGATION..., SALINITY, AND DRAINAGE 8 lrrigation Systems for Citrus Groves 10 Salinity Problems 10 Drainage Problems 12 KINDS OF CITRUS AND THEIR VALUE 12 Grapefruit Varieties 12 Orange Varieties 13 Tangerines and Tangelos 13 Limes, Lemons and Miscellaneous...

Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

1963-01-01T23:59:59.000Z

311

Surprise Valley Electrification Corp. (Oregon) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms |IllinoisCPASurprise Valley

312

North Valley, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley

313

NGEN Partners LLC (Silicon Valley) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA HomeValley)

314

Green Valley, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls,Group0456097°Valley

315

Yazoo Valley Elec Power Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWoodWildlifeValley Elec

316

Chariton Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalyst RenewablesChad-IAEA CooperationChariton Valley

317

Imperial Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigation District (Redirected fromValley,

318

UMTRA project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect (OSTI)

The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

Not Available

1994-04-01T23:59:59.000Z

319

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

320

Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.  

SciTech Connect (OSTI)

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

McCord, Samuel Adam

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Correlating Pulses from Two Spitfire, 800nm Lasers  

SciTech Connect (OSTI)

The E163 laser acceleration experiments conducted at SLAC have stringent requirements on the temporal properties of two regeneratively amplified, 800nm, Spitfire laser systems. To determine the magnitude and cause of timing instabilities between the two Ti:Sapphire amplifiers, we pass the two beams through a cross-correlator and focus the combined beam onto a Hamamatsu G1117 photodiode. The photodiode has a bandgap such that single photon processes are suppressed and only the second order, two-photon process produces an observable response. The response is proportional to the square of the intensity. The diode is also useful as a diagnostic to determine the optimal configuration of the compression cavity.

Colby, Eric R.; Mcguinness, C.; Zacherl, W.D.; /SLAC; Plettner, T.; /Stanford U., Phys. Dept.

2008-01-28T23:59:59.000Z

322

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

323

Fabrication of sub-15?nm aluminum wires by controlled etching  

SciTech Connect (OSTI)

We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15?nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Markovi?, N. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); McQueen, T. M. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2014-04-28T23:59:59.000Z

324

Universal conductance fluctuations as a direct probe to valley coherence and universality class of disordered graphene  

SciTech Connect (OSTI)

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India)

2013-12-04T23:59:59.000Z

325

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

326

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

327

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

328

E-Print Network 3.0 - anomaly imperial valley Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission Collection: Energy Storage, Conversion and Utilization 66 Camp Pendleton Kings Canyon Summary: Valley National Park Fort Irwin Mojave National Preserve Mono County...

329

Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

330

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

331

Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother' Metropolis Grows Up  

E-Print Network [OSTI]

Edmonton Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother urban vibe, explore life across the North Saskatchewan River. Old Strathcona, Edmon- ton's Brooklyn

Machel, Hans

332

Minnesota Valley Electric Cooperative-Residential Energy Resource Conservation Loan Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative offers low-interest loans to help residential customers finance energy efficiency improvements through the Energy Conservation Loan Program. ERC Loans can be...

333

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

334

Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

335

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

336

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A. Asher*  

E-Print Network [OSTI]

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A photochemical degradation of energetic molecules upon UV resonance Raman (UVRR) excitation of the 229 nm UVRR degradation quantum yields of UV resonance Raman, photodegradation, explosive detection

Asher, Sanford A.

337

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

338

Damage thresholds of fluoride multilayers at 355 nm  

SciTech Connect (OSTI)

Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]AlF[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had laser damage thresholds of 20, 17.9 and 7.4 (measured at 10-ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49--52%).The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]Al[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had tensile stresses of [approximately] 1.1 [times] 109, 1.3 [times] 109 and 9.3 [times] 10[sup 8] dynes/cm[sup 2], respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3[omega] applications.

Chow, R.; Kozlowski, M.R.; Loomis, G.E.; Rainer, F.

1992-10-01T23:59:59.000Z

339

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

340

Aquaculture in the Imperial Valley -- A geothermal success story  

SciTech Connect (OSTI)

The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389  

SciTech Connect (OSTI)

As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

2012-07-01T23:59:59.000Z

342

Tomato Varieties and Fertilizers for the Lower Rio Grand Valley.  

E-Print Network [OSTI]

, 1931. **In roopc.ration with U. S. Drpartmcnt of Agriculture. Tomato production is one of the leading truck-gardening enterprises in the Lower Rio Grande VaIley. The annual pro- duction of tomatoes has increased from 946 cars in 1926-27 to 2..., 1931 TOMATO VARIETIES AND FERTILIZERS FOR THE LOWER RIO GRANDE VALLEY W. H. FRIEND The production of tomatoes during the late spring and early summer is one of the most important trucking enterprises of the irrigated por- tions of the counties...

Friend, W. H. (William Heartsill)

1931-01-01T23:59:59.000Z

343

Superior Valley photovoltaic power processing and system controller evaluation  

SciTech Connect (OSTI)

Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

1995-11-01T23:59:59.000Z

344

Silicon Valley Clean Tech Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBus asShirley,Valley Clean

345

Sioux Valley SW Elec Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBusSimply Efficient JumpValley

346

Suwannee Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentral AsiaLand-useSuwannee Valley

347

Concho Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information1988) |Concho Valley Elec

348

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear FacilityWest Valley

349

Valley View, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs Pool

350

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM CommunicationsGDC PowerValley

351

Valley wins 2015 Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015 Science Bowl West Des Moines

352

Moapa Valley, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, search Name:Moapa Valley is a

353

Searles Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville, Texas:Searles Valley,

354

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:Creek Valley

355

DOE - Office of Legacy Management -- South Valley Superfund Site - 021  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannahIllinois SiteSouth Valley

356

DOE - Office of Legacy Management -- Tennessee Valley Authority - AL 01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02SuttonTennessee Valley

357

Yucca Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR Solar JumpPetroleumYucca Valley,

358

West Puente Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPointValley,

359

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP Waste

360

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Canadian Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSI Jump to: navigation,Valley Elec

362

Canton Valley, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSICorporation JumpCanton Valley,

363

File:LongValley Regional.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:

364

Caney Valley El Coop Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergy InformationForkValley

365

Cherry Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon EnterprisesGrove, Ohio: EnergyValley,

366

NRG Solar (California Valley Solar Ranch) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy Efficiency and|Solar (California Valley

367

Spring Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is a

368

Spring Valley, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is aYork:

369

Spring Valley, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is

370

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley BiofuelsEnergyInformation 6Et

371

Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman, Et Al., 2006) | Open

372

Temperature Data From Wells in Long Valley Caldera, California | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman,Telluric

373

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) JumpG,

374

Hybla Valley, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9 Jump to:Hybla Valley,

375

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

376

Indian Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAPIndianValley Hot

377

RICE UNIVERSITY 461nm Laser For Studies In Ultracold Neutral Strontium  

E-Print Network [OSTI]

RICE UNIVERSITY 461nm Laser For Studies In Ultracold Neutral Strontium by Aaron D Saenz A Thesis Houston, Texas July, 2005 #12;ABSTRACT 461nm Laser For Studies In Ultracold Neutral Strontium by Aaron D Saenz A 461 nm laser was constructed for the purposes of studying ultracold neutral strontium

Killian, Thomas C.

378

header for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV  

E-Print Network [OSTI]

new radiation damage mechanisms in previously accepted optical materials. For 157 nm pellicles, newheader for SPIE use Fluoropolymers for 157nm Lithography: Optical Properties from VUV Absorbance With the introduction of 157 nm as the next optical lithography wavelength, the need for new pellicle and photoresist

Rollins, Andrew M.

379

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

380

Passively mode locked c.w. dye lasers operating from 490 nm to 800 nm P. M. W. French, J. A. R. Williams and J. R. Taylor  

E-Print Network [OSTI]

1651 Passively mode locked c.w. dye lasers operating from 490 nm to 800 nm P. M. W. French, J. A. R Rhodamine 6G et DODCI. Abstract. 2014 Passively mode locked c.w. dyes lasers now represent an important/passive dyes other than the standard combination of Rhodamine 6G and DODCI. Revue Phys. Appl. 22 (1987) 1651

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Demonstration of an 8.85 nm Gain-Saturated Table-Top Soft X-Ray Laser and Lasing down to 7.4 nm  

SciTech Connect (OSTI)

We report the efficient generation of a gain-saturated 8.85 nm wavelength table-top soft x-ray laser operating at 1 Hz repetition rate and the observation of lasing at wavelengths as short as 7.36 nm in lanthanide ions.

Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

382

MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN  

E-Print Network [OSTI]

Although, many countries are utiliszing the geothermal energy for power generation, India is yet to joinMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS.NGRI-2008-EXP-637 MAGNETOTELLURIC INVESTIGATIONS IN GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

Harinarayana, T.

383

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

384

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley  

E-Print Network [OSTI]

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu-cream vendors of Kathmandu valley, Case study of Jawalakhel, Ratnapark area and Balaju area' explores

Richner, Heinz

385

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL PENNSYLVANIA  

E-Print Network [OSTI]

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL). In this study, mixed oak stands on nine different physiographic units in the Ridge and Valley Province PENNSYLVANIA Gregory J. Nowacki and Marc D. Abrams 1 Abstract: Forty-two relatively undisturbed mixed oak

Abrams, Marc David

386

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

387

Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy) Gianluca Filippa a,  

E-Print Network [OSTI]

Centre on Natural Risks in Mountain and Hilly Enviroments) UniversitĂ  degli Studi di Torino, via L. Da. In the Aosta Valley, local biogenic pollution rather than long-range transport may contribute substantially of strong anthropogenic pollution or dust deposition. Due to the fact that inner alpine valleys cover a non

Williams, Mark W.

388

Technical Services Contract Awarded for West Valley Demonstration Project Support Services  

Broader source: Energy.gov [DOE]

Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

389

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge  

E-Print Network [OSTI]

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

390

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica  

E-Print Network [OSTI]

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica of katabatic winds largely controls winter (June to August) temperatures, increasing 1°C per 1% increase of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica, J. Geophys. Res., 109, D

Fountain, Andrew G.

391

Basal melting of snow on early Mars: A possible origin of some valley Michael H. Carr  

E-Print Network [OSTI]

that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending in part by basal melting of the south polar cap [Clifford, 1987], this cannot be the only mechanismBasal melting of snow on early Mars: A possible origin of some valley networks Michael H. Carr U. S

Head III, James William

392

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO  

E-Print Network [OSTI]

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

393

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene valley  

E-Print Network [OSTI]

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene December 1994 Abstract Topographic and sedimentological evidence indicates that stagnant ice conditions position for a stagnant ice margin to develop during valley glacier retreat. In the first model, valley

Small, Eric

1995-01-01T23:59:59.000Z

394

Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2  

E-Print Network [OSTI]

TR-326 2008 Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2 Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station Guy... Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station January 21, 2004 SEEPAGE LOSS TEST RESULTS THE MAIN CANAL VALLEY MUNICIPAL UTILITY DISTRICT...

Leigh, E.; Fipps, G.

395

Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley  

E-Print Network [OSTI]

by Philip B. Williams, Elizabeth Andrews, Jeff J. Opperman,Valley Philip B. Williams 1 , Elizabeth Andrews 1 , Jeff J.

Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

2009-01-01T23:59:59.000Z

396

Ion Exclusion by Sub 2-nm Carbon Nanotube Pores  

SciTech Connect (OSTI)

Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

2008-04-09T23:59:59.000Z

397

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

398

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

399

NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J Miller, Steve A. Mizell, George Nikolich, Greg McCurdy, and Scott Campbell

2013-01-01T23:59:59.000Z

400

Geologic Results from the Long Valley Exploratory Well  

SciTech Connect (OSTI)

As a deep well in the center of a major Quaternary caldera, the Long Valley Exploratory Well (LVEW) provides a new perspective on the relationship between hydrothermal circulation and a large crustal magma chamber. It also provides an important test of models for the subsurface structure of active continental calderas. Results will impact geothermal exploration, assessment, and management of the Long Valley resource and should be applicable to other igneous-related geothermal systems. Our task is to use the cuttings and core from LVEW to interpret the evolution of the central caldera region, with emphasis on evidence of current hydrothermal conditions and circulation. LVEW has reached a depth of 2313 m, passing through post-caldera extrusives and the intracaldera Bishop Tuff to bottom in the Mt. Morrison roof pendant of the Sierran basement. The base of the section of Quaternary volcanic rocks related to Long Valley Caldera was encountered at 1800 m of which 1178 m is Bishop Tuff. The lithologies sampled generally support the classic view of large intercontinental calderas as piston-cylinder-like structures. In this model, the roof of the huge magma chamber, like an ill-fitting piston, broke and sank 2 km along a ring fracture system that simultaneously and explosively leaked magma as Bishop Tuff. Results from LVEW which support this model are the presence of intact basement at depth at the center of the caldera, the presence of a thick Bishop Tuff section, and textural evidence that the tuff encountered is not near-vent despite its central caldera location. An unexpected observation was the presence of rhyolite intrusions within the tuff with a cumulative apparent thickness in excess of 300 m. Chemical analyses indicate that these are high-silica, high-barium rhyolites. Preliminary {sup 40}Ar/{sup 39}Ar analyses determined an age of 626 {+-} 38 ka (this paper). These observations would indicate that the intrusions belong to the early post-collapse episode of volcanism and are contemporaneous with resurgence of the caldera floor. If they are extensive sills rather than dikes, a possibility being investigated through relogging of core from neighboring wells, they were responsible for resurgence. A {sup 40}Ar/{sup 39}Ar age of 769 {+-} 14 ka from Bishop Tuff at 820 m depth conforms with tuff ages from outside the caldera and indicates an absence of shallow hydrothermal activity (>300 C) persisting after emplacement. Work is proceeding on investigating hydrothermal alteration deeper in the well. This alteration includes sulfide+quartz fracture fillings, calcite+quartz replacement of feldspars, and disseminated pyrite in both the tuff and basement. Electron microprobe analysis of phases are being conducted to determine initial magmatic and subsequent hydrothermal conditions.

McConnell, Vicki S.; Eichelberger, John C.; Keskinen, Mary J.; Layer, Paul W.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

VALDRIFT 1.0: A valley atmospheric dispersion model with deposition  

SciTech Connect (OSTI)

VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

Allwine, K.J.; Bian, X.; Whiteman, C.D.

1995-05-01T23:59:59.000Z

402

Exploration ofr geothermal resources in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

403

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

404

Tennessee Valley and Eastern Kentucky Wind Working Group  

SciTech Connect (OSTI)

In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

Katie Stokes

2012-05-03T23:59:59.000Z

405

Valley pair qubits in double quantum dots of gapped graphene  

E-Print Network [OSTI]

The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

G. Y. Wu; N. -Y. Lue; L. Chang

2011-07-03T23:59:59.000Z

406

Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy  

SciTech Connect (OSTI)

To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

2009-06-05T23:59:59.000Z

407

Defects of a phosphosilicate glass exposed to the 193-nm radiation  

SciTech Connect (OSTI)

Induced absorption is measured in a hydrogen-unloaded phosphosilicate glass (PSG) in spectral ranges from 140 to 850 nm and from 1000 to 1700 nm before and after its exposure to the 193-nm radiation. It is shown that the induced-absorption bands in the range between 140 and 300 nm do not coincide with the bands observed earlier after exposing a PSG to X-rays. It is assumed that the photorefractive effect in the PSG is related to variations induced in the glass network rather than to defects responsible for the induced-absorption bands. (fiber and integrated optics)

Larionov, Yu V; Sokolov, V O; Plotnichenko, V G [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2007-06-30T23:59:59.000Z

408

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

409

CORONARY HEART DISEASE RISK STRATIFICATION IN FULL-TIME MIAMI VALLEY HOSPITAL EMPLOYEES.  

E-Print Network [OSTI]

??Streng, Vicki. M.S. College of Science and Mathematics, Department of Biological Sciences, Wright State University, 2006. Coronary Heart Disease Risk Stratification in Full-time Miami Valley… (more)

Streng, Vicki K.

2006-01-01T23:59:59.000Z

410

Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility  

SciTech Connect (OSTI)

The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

Jackson, J. G.

2010-03-01T23:59:59.000Z

411

The sprawl of the wild : a new infrastructural landscape in Silicon Valley  

E-Print Network [OSTI]

California faces an immediate and dire water shortage. The San Joaquin River Delta water supply system - which provides Silicon Valley with most of its fresh water - periodically draws down water delivery due to drought ...

Flynn, Kathleen M. (Kathleen Michele)

2008-01-01T23:59:59.000Z

412

PROFESSIONAL SERVICE Chair Technical and Economic Committee, CVSALTS Central Valley Salinity Coalition, (2008  

E-Print Network [OSTI]

-2008 Berkeley Laboratory Delegate, White House Conference on Industrial Ecology Department of Energy, Water-Energy, Central Valley Salinity Coalition, CVSALTS SOCIAL/CIVIC Yolo Polo Club Sutter Buttes Polo Club Wine

Quinn, Nigel

413

E-Print Network 3.0 - ancient buried valleys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marvel at the Step Pyramid of Zozer. Admire the iconic Pyramids... endless Valley of the Kings and Queens before embarking on a cruise of the Nile River. Continue... 's tomb and...

414

Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area  

E-Print Network [OSTI]

i Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area: an Engineering in Water Resource Management ............. 3 CALVIN Model Overview ...................................................... 26 Changes in Delivery and Scarcity Costs .................................. 35 Environmental Water

Lund, Jay R.

415

Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)  

SciTech Connect (OSTI)

This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

Not Available

2009-03-01T23:59:59.000Z

416

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

SciTech Connect (OSTI)

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

2013-09-10T23:59:59.000Z

417

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations  

E-Print Network [OSTI]

During the dry season of 2004–2005 we carried out field measurements of air pollution and meteorology in the Kathmandu Valley, Nepal, a bowl-shaped urban basin in the Himalayan foothills of Nepal. We measured the trace ...

Panday, Arnico K.

418

Microsoft Word - Swan%20Valley%20-%20Palisades%20Communication...  

Broader source: Energy.gov (indexed) [DOE]

Swan Valley - Palisades Communication Upgrade Budget Information: Work Order 00253530 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

419

Control on (234 U) in lake water: A study in the Dry Valleys  

E-Print Network [OSTI]

.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply of 234 U is therefore limited by decay of 238 U, suggesting that the two uranium

Henderson, Gideon

420

A Transient Model of the Geothermal System of the Long Valley...  

Open Energy Info (EERE)

Transient Model of the Geothermal System of the Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Transient...

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

422

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

SciTech Connect (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

423

Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee  

SciTech Connect (OSTI)

This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

Birdwell, Kevin R [ORNL

2011-05-01T23:59:59.000Z

424

Study of the moisture-fertility requirements of cotton in the Brazos River Valley, 1957  

E-Print Network [OSTI]

LIBRARY II a III COLLEI:. e& 7EXAs STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAZOS RIVER VALLEY - 1957 A Thesis by CARROLL VIAYNE KEESE Submitted to the Graduate School of the Agricultural and Mechanical College... of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1958 Major Sub]ect: Agricultural Engineering STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAVOS RIVER VALLEY - 1957 A Thesis by CARROLL...

Keese, Carroll Wayne

1958-01-01T23:59:59.000Z

425

Analysis of consumer lending problems of the banks in the central Texas Brazos Valley area  

E-Print Network [OSTI]

to significant new profits for RVA bankers. A oonsuner loan of $1, 000 at seven poroont interest, repaid in twelve nonthly inetallnonto, aotuallr earns interest of 12. 9 yeroont for the lender. Therefore& surplus lendable funds now held hF BVA 1 banks... eonsuaor loanso %hat nininun siss (dollar anount) oonsunor loan Sraaos Vallqf Area bankers oonsider to bo profitable. $. Tho nethods and prooeduros used hf Breaos Valley Area bankers in asking oonsunor loansi 6. Vhat steps Sraaos Valley Area banks oan...

Old, William Donald

1963-01-01T23:59:59.000Z

426

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network [OSTI]

ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Agricultural Economics ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

427

Greenhouse space allocation in the ornamental foliage industry in the Rio Grande Valley of Texas  

E-Print Network [OSTI]

GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Agricultural Economics GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Approved as to style and content by...

Krafka, Brenda Dea Lang

1986-01-01T23:59:59.000Z

428

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

SciTech Connect (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

429

The geology of the basal sandstone-mudstone unit of the Blackhawk Landslide, Lucerne Valley, California  

E-Print Network [OSTI]

THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHAWK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHANK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Approved as to style and content by: Brann Jo...

Kuzior, Jerry Linn

1983-01-01T23:59:59.000Z

430

High power CW dye laser emission around 888 nm M. Leduc and G. Trenec  

E-Print Network [OSTI]

355 High power CW dye laser emission around 888 nm M. Leduc and G. Trenec Laboratoire de report a maximum output power of 1.5 W at 888 nm from a HITC jet stream dye laser pumped by a Kr+ laser above previously reported results. Good stability of the dye solution is observed over months

Paris-Sud XI, Université de

431

Passively modelocked 832 nm vertical-external-cavity surface-emitting  

E-Print Network [OSTI]

, focused into an optical spot with dimensions of 100 Ă? 200 mm. The SESAM consisted of an AlAs/Al0.2Ga0.8As DBR, a spacer layer of GaAs0.75P0.25, a 4.8 nm GaAs quantum well and a 2 nm-thick capping layer of Ga

Keller, Ursula

432

Magnetization switching in 70-nm-wide pseudo-spin-valve nanoelements Xiaobin Zhua)  

E-Print Network [OSTI]

Fe, respectively, in this case separated by a spacer layer. The individual elements have dimensions of 70 nm 550 nm with submicron or deep- submicron dimensions.4,5 These PSV or MTJ elements con- sist of asymmetric sandwiches is magnetically hard. For elements with micron-scale dimensions, interactions between the layers can lead

GrĂŒtter, Peter

433

Construction of a 1014.8nm fiber amplifier for quadrupling into the UV  

E-Print Network [OSTI]

A fiber amplifier is constructed at 1014.8nm and then frequency doubled to produce 507.4nm. This could then be frequency doubled again to produce 253.7 radiation. The fiber amplifier consists of Ytterbium doped double-clad fiber cooled to low...

Giuoco, Frank Joseph

2004-09-30T23:59:59.000Z

434

Faraday and Cotton-Mouton Effects of Helium at = 1064 nm A. Cad`ene1  

E-Print Network [OSTI]

Faraday and Cotton-Mouton Effects of Helium at = 1064 nm A. Cad`ene1 , D. Sordes1 , P. Berceau1 of the Faraday and the Cotton-Mouton effects of helium gas at = 1064 nm. Our apparatus is based on an up and Cotton-Mouton effect. Our measurements give for the first time the experimental value of the Faraday

Paris-Sud XI, Université de

435

Graphene quantum dots for valley-based quantum computing: A feasibility study  

E-Print Network [OSTI]

At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

G. Y. Wu; N. -Y. Lue; L. Chang

2011-04-21T23:59:59.000Z

436

New fission valley for /sup 258/Fm and nuclei beyond  

SciTech Connect (OSTI)

Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

Moeller, P.; Nix, J.R.; Swiatecki, W.J.

1986-01-01T23:59:59.000Z

437

Gravity and fault structures, Long Valley caldera, California  

SciTech Connect (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

438

Photodissociation dynamics of ClN{sub 3} at 193 nm  

SciTech Connect (OSTI)

Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN{sub 3}) under collision-free conditions. Both the molecular elimination (NCl+N{sub 2}) and the radical bond rupture channel (Cl+N{sub 3}) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN{sub 3} (C-tilde{sup 1}A{sup ''}) state is excited, rather than the B-tilde{sup 1}A{sup '} state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and 'high energy' N{sub 3}. Hence, nearly all the additional photon energy relative to 248 nm appears as N{sub 3} internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N{sub 3} to N{sub 2}+N.

Goncher, Scott J.; Sveum, Niels E.; Moore, David T.; Bartlett, Nate D.; Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2006-12-14T23:59:59.000Z

439

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

440

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lead (Pb) adsorption study by batch equilibrium tests with unconsolidated material: Eldorado Paulista city (Ribeira Valley - SP).  

E-Print Network [OSTI]

??The known history of contamination by galena (PbS) mining liabilities from Ribeira Valley region (SP) provides importance to the Pb adsorption study in order to… (more)

Bianca de Carvalho Munhoz Silva

2013-01-01T23:59:59.000Z

442

Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm  

SciTech Connect (OSTI)

We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

2010-09-13T23:59:59.000Z

443

National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

1998-08-01T23:59:59.000Z

444

Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs  

E-Print Network [OSTI]

Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...

Djomehri, Ihsan Jahed, 1976-

2002-01-01T23:59:59.000Z

445

Electrode Placement and the Fabrication of Sub-100-nm Nanopore Arrays  

E-Print Network [OSTI]

The anodization of aluminum films grown on silicon substrates under controlled conditions is used to fabricate porous alumina arrays. Such porous arrays are used as sensors or lithography masks for fabrication of sub-100-nm nanodot arrays...

Gonzales, Jacob D.

2010-07-14T23:59:59.000Z

446

Carbon nanotube assisted formation of sub-50 nm polymeric nano-structures  

E-Print Network [OSTI]

A novel processing method was developed for sub-50 nm structures by integrating quantum dots (QDs) on patterned polymer substrates. Poly(styrene-alt-maleic anhydride) (PSMa) was prepared by the initiated chemical vapor ...

Lee, Chia-Hua

2008-01-01T23:59:59.000Z

447

High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation  

E-Print Network [OSTI]

Two novel laser systems for ultrafast applications have been designed and built. For the seeding of a high energy cryogenically cooled Yb:YLF laser, a novel 1018 nm fiber laser system is demonstrated. It produces >35 nJ ...

Yang, Hongyu, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

448

Effects of 810-nm Laser on Murine Bone-Marrow-Derived Dendritic Cells  

E-Print Network [OSTI]

Objective: The purpose of this study was to Investigate the effect of 810-nm low level laser therapy (LLLT) on dendritic cells (DC) in vitro. Background data: LLLT can enhance wound healing and increase cell proliferation ...

Chen, Aaron Chih-Hao

449

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process that engaged the members of  

E-Print Network [OSTI]

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process, Dr. White held several positions at the Beaver Area School District. He began as an assistant

Sibille, Etienne

450

Front-end planning and evaluation for West Valley Demonstration Project completion  

SciTech Connect (OSTI)

In December 1988, the U.S. Department of Energy and the New York State Energy Research and Development Authority announced their intent to prepare a joint environmental impact statement (EIS) to evaluate alternatives for West Valley Demonstration Project (WVDP) completion and closure and/or long-term maintenance of the Western New York Nuclear Service Center (WNYNSC) in West Valley, New York. Planning was initiated for the eventual closure of the site, even though vitrification of the high-level waste (HLW) stored at the site was, at that time, a number of years in the future. West Valley Nuclear Services Company (WVNSC), the WVDP management and operations contractor, and their architect/engineer, Raytheon Nuclear Incorporated, were authorized to develop characterization studies and engineering evaluations of closure alternatives for the various facilities of the WNYNSC. This paper presents a summary of the status of that effort, including the resolution of unique problems.

Gramling, J.; Sharma, V. [West Valley Nuclear Services Company, West Valley, NY (United States); Marschke, S. [Raytheon Nuclear, Inc., New York, NY (United States)

1995-12-31T23:59:59.000Z

451

A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada  

SciTech Connect (OSTI)

Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

2002-09-01T23:59:59.000Z

452

Soil Biology & Biochemistry 38 (2006) 30653082 Soil carbon turnover in the McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

Soil Biology & Biochemistry 38 (2006) 3065­3082 Soil carbon turnover in the McMurdo Dry Valleys Valleys are among the most inhospitable soil environments on Earth due to climate and substrate because likely sources of organic matter are 102 ­104 yrs old and in situ soil respiration is typically

Wall, Diana

2006-01-01T23:59:59.000Z

453

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

SciTech Connect (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

454

ATOC/CHEM 5151 Fall 2014 The San Joaquin Valley, acid rain, and a simple "box" model  

E-Print Network [OSTI]

ATOC/CHEM 5151 ­ Fall 2014 Problem 26 The San Joaquin Valley, acid rain, and a simple "box" model. In this problem, use a simple box model to estimate the formation of so-called "acid fogs" in this valley. Assume the steady-state SO2 concentration (in units of molecules cm-3 ). (2) Sulfuric acid is produced from

Toohey, Darin W.

455

4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm  

E-Print Network [OSTI]

4.1.2 NANO FOUNTAIN PROBE WITH 40 NM WRITING RESOLUTION K.-H. Kim, N. Moldovan, H. D. Espinosa; "A Novel Nano Fountain Probe with sub-100 nm Molecular Writing Resolution", Small, 2005, ASAP. Patent the first "nano-fountain pen" capable of depositing organic ink molecules in patterns as small as 40 nm

Shull, Kenneth R.

456

Cotton hedging strategies using prices for Texas High Plains and Rio Grande Valley areas  

E-Print Network [OSTI]

COTTON REDGINC STRATEGIES USING PRICES FO=". TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis by JOHN VERNON HOWARD, III Subm tted to the Graduate College of Texas A&M Universi'ty in partial fulfiiiment cf the requirement for the de...-ree o MASTER OP SC'ENCE August 1979 Major Subject: Agricultural Economics COTTON HEDGING STRATEGIES USING PRICES FOR TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis JOHN VERNON HOWARD, III Approved as to style and content by: (C irman...

Howard, John V

1979-01-01T23:59:59.000Z

457

Cotton Variety Tests in the El Paso Valley, 1943-48.  

E-Print Network [OSTI]

. COTTON VARIETY TEST IN THE EL PAS0 VALLEY, 1943-48 11 APPENDIX Table 5. Source of seed used in cotton variety tests1 Acala 4-42 (Calif). ...... .U. S. Cotton Field Station, Shafter, California Acala 11. .............. .U. S. Cotton Field Station...B* 719 LIBRARY A. & M. COLLEGE OF TE,,; Cotton Variety Tests in the El Paso Valley, 1943-48 P. J. LYERLY, L. S. STITH, G. F. HENRY and D. T. KILLOUGH :Blank Page in Original Bulletin] BULLETIN 719 MARCH 1950 Cotton Variety Tests in the El...

Killough, D.T.; Henry, G.F.; Stith, L.S.; Lyerly, P. J. (Paul J.)

1950-01-01T23:59:59.000Z

458

Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics  

SciTech Connect (OSTI)

Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

Layton, D. (ed.)

1980-07-01T23:59:59.000Z

459

THE JOURNAL OF CHEMICAL PHYSICS 138, 054301 (2013) Photodissociation dynamics of the methyl perthiyl radical at 248 nm  

E-Print Network [OSTI]

the photodissociation of the methyl perthiyl radical CH3SS at 248 nm. The radical was produced by flash pyrolysis

Neumark, Daniel M.

460

August 20, 2009 0:58 International Journal of Electronics IJEADC-90nm International Journal of Electronics  

E-Print Network [OSTI]

variation of 10.5% in the INL and 5.7% in the DNL, with both INL and DNL being less than 0.5LSB. The 90nm, the ADC has also been presented using 45nm Predictive Technology Models (PTM). At 45nm, INL = 0.46LSB, DNL

Mohanty, Saraju P.

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium-doped PPKTP  

E-Print Network [OSTI]

for high power, continuous wave and polarized laser at 946 nm (fig1.c). We demonstrate a polarized laser. Laurell, "High-power, continous-wave, second harmonic generation at 532 nm in periodically poled KTiOPO4(b)(a) (c) High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium

Boyer, Edmond

462

The SEMATECH Berkeley microfield exposure tool: learning a the 22-nm node and beyond  

SciTech Connect (OSTI)

Microfield exposure tools (METs) continue to playa dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the SEMATECH Berkeley 0.3-NA MET operating as a SEMATECH resist and mask test center. Here we present an update summarizing the latest resist test and characterization results. The relatively small numerical aperture and limited illumination settings expected from 1st generation EUV production tools make resist resolution a critical issue even at the 32-nm node. In this presentation, sub 22 nm half pitch imaging results of EUV resists are reported. We also present contact hole printing at the 30-nm level. Although resist development has progressed relatively well in the areas of resolution and sensitivity, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of system-level contributors to the LER observed from the SEMA TECH Berkeley microfield tool.

Naulleau, Patrick; Anderson, Christopher; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Hudyma, Russ; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; McClinton, Brittany; Miyakawa, Ryan; Montgomery, Warren; Roller, John; Wallow, Tom; Wurm, Stefan

2009-02-16T23:59:59.000Z

463

Gd plasma source modeling at 6.7 nm for future lithography  

SciTech Connect (OSTI)

Plasmas containing gadolinium have been proposed as sources for next generation lithography at 6.x nm. To determine the optimum plasma conditions, atomic structure calculations have been performed for Gd{sup 11+} to Gd{sup 27+} ions which showed that n = 4 - n = 4 resonance transitions overlap in the 6.5-7.0 nm region. Plasma modeling calculations, assuming collisional-radiative equilibrium, predict that the optimum temperature for an optically thin plasma is close to 110 eV and that maximum intensity occurs at 6.76 nm under these conditions. The close agreement between simulated and experimental spectra from laser and discharge produced plasmas indicates the validity of our approach.

Li Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-0072 (Japan)

2011-12-05T23:59:59.000Z

464

Lasing characteristics of Er/sup 3 +/-doped silica fibers from 1553 up to 1603 nm  

SciTech Connect (OSTI)

The laser oscillations from 1553 up to 1603 nm have been demonstrated in Er/sup 3 +/-doped silica fibers with a doping rate of 2500 ppm. Wide changes in laser oscillation wavelengths are due to broad splitting of the upper sublevels in the /sup 4/I/sub 152/ manifold, caused by the random structure of the silica matrix. It has been shown that unpumped parts of the Er/sup 3 +/ ions in the end pumped fiber laser configuration play an important role in the wavelength changes of the laser oscillation. For an absorbed pump power of 320 mW at 514 nm, output power of 0.5 mW was obtained at 1603 nm.

Kimura, Y.; Nakazawa, M.

1988-07-15T23:59:59.000Z

465

Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm  

SciTech Connect (OSTI)

The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Gur'yanov, A N; Khopin, V F [Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

2007-04-30T23:59:59.000Z

466

Photoionization rates of Cs Rydberg atoms in a 1064-nm far-off-resonance trap  

SciTech Connect (OSTI)

Experimental measurements of photoionization rates of nD{sub 5/2} Rydberg states of Cs (50{<=}n{<=}75) in a 1064-nm far off-resonance dipole trap are presented. The photoionization rates are obtained by measuring the lifetimes of Rydberg atoms produced inside of a 1064-nm far off-resonance trap and comparing the lifetimes to corresponding control experiments in a magneto-optical trap. Experimental results for the control experiments agree with recent theoretical predictions for Rydberg state lifetimes and measured photoionization rates are in agreement with transition rates calculated from a model potential.

Tallant, J.; Booth, D.; Shaffer, J. P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, Oklahoma 73019 (United States)

2010-12-15T23:59:59.000Z

467

A 4 to 0.1 nm FEL Based on the SLAC Linac  

SciTech Connect (OSTI)

The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

Pellegrini, C.; /UCLA

2012-06-05T23:59:59.000Z

468

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

West Valley Environmental Services LLC (WVES) and URS - Washington Division

2008-12-17T23:59:59.000Z

469

EA-1697: San Joaquin Valley Right-of-Way Project, California  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

470

Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation Area,  

E-Print Network [OSTI]

Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation frequency and demand acoustic adaptations to increase the signal-to-noise ratio. Selective logging represents a major threat to stream-breeding anurans in Sabah. Pollution of clear water threatens the stream

Hödl, Walter

471

Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California  

E-Print Network [OSTI]

Measuring prehistoric mobility strategies based on obsidian geochemical and technological; Lithic technology; LA-ICP-MS; Mobility strategies; Owens Valley 1. Introduction Obsidian studies compare the organization of obsidian flaked stone technologies in two different time periods at CA-INY-30

472

Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms  

E-Print Network [OSTI]

Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

Tan, Chee Wei

473

West Valley transfer cart control system design description. Environmental Restoration and Waste Management Program  

SciTech Connect (OSTI)

Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

1993-01-01T23:59:59.000Z

474

Geothermal potential for heating and cooling facilities, San Bernardino Valley College, San Bernardino, California  

SciTech Connect (OSTI)

The potential for converting to geothermal heating at the campus of San Bernardino Valley College is considered. Also considered is the possibility of using well water for water cooled condenser cooling of air conditioning equipment. To provide water supply a production well, water distribution system and an injection well would be installed for each system.

Gemeinhardt, M.A.; Tharaldson, L.C.

1981-07-01T23:59:59.000Z

475

Eroding Australia: rates and processes from Bega Valley to Arnhem Land  

E-Print Network [OSTI]

Eroding Australia: rates and processes from Bega Valley to Arnhem Land ARJUN M. HEIMSATH1*, JOHN, Australia 3 Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia *Corresponding author (e-mail: Arjun.Heimsath@asu.edu) Abstract: We report erosion

Heimsath, Arjun M.

476

Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport  

E-Print Network [OSTI]

Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport in suspended sediment transport and storage along the Sacramento River were assessed by evaluating the suspended sediment budget for the main channel accounting for all tributaries and diversions. Time series

Singer, Michael

477

Planktonic Foraminifera Record of the Mid Albian Sea Level Rise, Upper Magdalena Valley, Colombia  

E-Print Network [OSTI]

Planktonic Foraminifera Record of the Mid Albian Sea Level Rise, Upper Magdalena Valley, Colombia Cretaceous unit in southern Colombia named "TetuĂĄn Limestone", have allowed the comparison between planktic foraminifera interval zones in Colombia: Ticinella primula and Biticinella breggiensis, with late

Sukop, Mike

478

West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2006-09-21T23:59:59.000Z

479

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2007-09-27T23:59:59.000Z

480

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday)  

E-Print Network [OSTI]

The 3rd Annual Silicon Valley Social Innovation Leadership Forum April 25th, 2014 (Friday) San Jose | Director, Social Innovation Initiative, Global Leadership Advancement Center (GLAC), San José State University 8:40 ­ 9:15am Opening Panel: Social Innovation and Housing Jennifer Loving | Executive Director

Su, Xiao

Note: This page contains sample records for the topic "animas valley nm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Controls on Martian hydrothermal systems: Application to valley network and magnetic anomaly formation  

E-Print Network [OSTI]

circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlationControls on Martian hydrothermal systems: Application to valley network and magnetic anomaly

Harrison, Keith

482

Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada  

SciTech Connect (OSTI)

This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

2003-01-08T23:59:59.000Z

483

Video Observations Inside Channels of Erupting Geysers, Geyser Valley, A.Belousov1  

E-Print Network [OSTI]

Video Observations Inside Channels of Erupting Geysers, Geyser Valley, Russia A.Belousov1 , M on the internal plumbing of geyser systems. Here we present data based on video observations of interior conduit lowered a video camera (with thermal and water insulation) into the conduits of four erupting geysers

Belousov, Alexander

484

Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise  

E-Print Network [OSTI]

Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise Rik is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 depositional systems change into estuaries and eventually drown when sea-level rise overtakes the sediment

Wetzel, Andreas

485

EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

486

Lahars Deposits Architecture and Volume in the C. Lengkong Valley at Semeru volcano, Indonesia  

E-Print Network [OSTI]

1 Lahars Deposits Architecture and Volume in the C. Lengkong Valley at Semeru volcano, Indonesia. Université Paris 1 ­ Sorbonne & Univ. Gadjah Mada (Indonesia) Laboratoire de Géographie Physique CNRS UMR Lahars at Semeru volcano, Indonesia, are an ongoing phenomenon that rapidly transports large amount

Paris-Sud XI, Université de

487

On Bitcoin and Red Balloons Moshe Babaioff, Microsoft Research, Silicon Valley.  

E-Print Network [OSTI]

X On Bitcoin and Red Balloons Moshe Babaioff, Microsoft Research, Silicon Valley. moshe (finding red balloons). We focus on another prominent scenario: Bitcoin, a decentralized electronic currency system. Bitcoin represents a radical new approach to monetary systems. It has been getting a large

Fiat, Amos

488

On Bitcoin and Red Balloons Moshe Babaioff, Microsoft Research, Silicon Valley  

E-Print Network [OSTI]

On Bitcoin and Red Balloons Moshe Babaioff, Microsoft Research, Silicon Valley Shahar Dobzinski balloons). We focus on another prominent example: Bitcoin, a decentralized electronic currency system. Bitcoin represents a radical new approach to monetary systems. It has been getting a large amount

Fiat, Amos

489

Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake  

E-Print Network [OSTI]

Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake Pascal or miscellaneous. Citation: Favreau, P., and R. J. Archuleta, Direct seismic energy modeling and application models [see Peyrat et al., 2001]. 2. The Seismic Energy [3] To be universal, the seismic energy must

Archuleta, Ralph

490

Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice  

E-Print Network [OSTI]

its terminus, the ESL flows at a rate of 2.4 to 6.7 mm a-1 . The loose drift that caps the buried ice temperatures show that intermittent melting is most likely possible during summer months where buried ice is 35Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice Kate

Marchant, David R.

491

The Coachella Valley Multiple Species Habitat Conservation Plan: A Decade of Delays  

E-Print Network [OSTI]

biodiversity conservation planning process began, in 1994, local par- ticipants and supporters had numerous Biodiversity conservation Á Endangered species Á California Á Coachella Valley Introduction In 1994, residents of promoting both regional economic development and long-term biodiversity conservation. If enacted

Handy, Susan L.

492

Impacts of Irrigation on Citrus in the Lower Rio Grande Valley  

E-Print Network [OSTI]

Citrus is an important crop in the Lower Rio Grande Valley, but reduced water supplies in the area mean irrigation must be used. Citrus farmers can use different irrigation methods and practices to get the most from the available water supply....

Enciso, Juan; Sauls, Julian W.; Wiedenfeld, Robert P.; Nelson, Shad D.

2008-07-11T23:59:59.000Z

493

Sticky Cotton Workshop APWDS AND WWTEFLIES IN THE SAN JOAQUIN VALLEY OF  

E-Print Network [OSTI]

Sticky Cotton Workshop APWDS AND WWTEFLIES IN THE SAN JOAQUIN VALLEY OF CALIFORNIA IN 1995 Larry The conon aphid has developed into a key pest of cotton in California. The common pattern of seasonal dynamics of cotton aphid populations has changed repealedly over the last 15 years. The cotton aphid

Rosenheim, Jay A.

494

MCM LTER METADATA FILE TITLE: Lake ice thickness in the McMurdo Dry Valleys  

E-Print Network [OSTI]

MCM LTER METADATA FILE TITLE: Lake ice thickness in the McMurdo Dry Valleys ABSTRACT: Ice thickness was measured from the bottom of the ice cover to the piezometric water level and to the top of the ice cover-2360 achiuchiolo@montana.edu VARIABLES: Location Name, Location Code, Limno Run, Collection Date, z-water, z-ice, z

Priscu, John C.

495

Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998)  

E-Print Network [OSTI]

Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) 131.e., this is energy that does not have to #12;Proceedings of the American Solar Energy Society 98 Conference PHOTOVOLTAICS AS AN ENERGY SERVICES TECHNOLOGY: A CASE STUDY OF PV SITED AT THE UNION OF CONCERNED SCIENTISTS

Delaware, University of

496

Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm  

SciTech Connect (OSTI)

Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J., E-mail: henk.bolink@uv.es [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Roldán-Carmona, C. [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Rabanales, Ed. C3, 14014, Córdoba (Spain); Edri, E. [Department of Materials and Interfaces, Weizmann Institute of Science, Herzl St. 34, Rehovot 76100 (Israel)

2014-08-01T23:59:59.000Z

497

Measurements of the operating characteristics of a 1064 nm pumped KTP RISTRA OPO.  

SciTech Connect (OSTI)

Measurements of the operating characteristics of a 1064 nm pumped potassium titanyl phosphte (KTP) optical parametric oscillator (OPO) were carried out at the Electro Optics Systems Laboratory of Georgia Tech Research Institute (GTRI). The OPO was developed by Sandia National Laboratories and employs a nonplanar image-rotating geometry that is known by the acronym RISTRA, denoting Rotated Image Singly-Resonant Twisted RectAngle. The OPO was configured for pumping by the 1064 nm fundamental wavelength of a Q-switched Nd:YAG laser to generate a signal wavelength at 1627 nm and idler wavelength at 3074.8 nm. GTRI will be incorporate the OPO into a multi-wavelength lidar platform called the Integrated Atmospheric Characterization System (IACS). Prior to completion of the system design for the IACS platform, personnel at GTRI carried out a series of risk reduction experiments to measure the operating characteristics of the OPO. Sandia's role in this effort included technical assistance with numerical modeling of OPO performance, selection of nonlinear optical crystals, specification of cavity-mirror dielectric coatings, selection of vendors for optical components, and advice concerning integration of the RISTRA OPO into the IACS platform. This report describes results of the risk reduction measurements and it also provides some background information on the operating characteristics of RISTRA OPO's but is not intended to be a tutorial. A working knowledge of pulsed solid-state lasers, laser cavity modes, laser beam quality and beam propagation, and three-wave mixing in nonlinear crystals, is useful.

Gimmestad, Gary (Georgia Tech Research Institute, Atlanta, GA); Armstrong, Darrell Jewell; Wood, Jack (Georgia Tech Research Institute, Atlanta, GA); Roberts, David (Georgia Tech Research Institute, Atlanta, GA)

2009-07-01T23:59:59.000Z

498

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC  

E-Print Network [OSTI]

High Accuracy 65nm OPC Verification: Full Process Window Model vs. Critical Failure ORC Amandine of Mask Rule Checking (MRC) and Optical Rule Checking (ORC) have become indispensable tools for ensuring, a technique known as Critical Failure ORC (CFORC) was introduced that uses optical parameters from aerial

Boyer, Edmond

499

Laser amplification at 18. 2 nm in recombining plasma from a laser-irradiated carbon fiber  

SciTech Connect (OSTI)

Extreme ultraviolet laser amplification has been observed for the C VI Balmer-..cap alpha.. transition at 18.2 nm, with use of a novel optical system to irradiate up to 1 cm length of carbon fiber target. The measurements were time resolved and indicated peak single-transit amplification of about 30 times.

Chenais-Popovics, C.; Corbett, R.; Hooker, C.J.; Key, M.H.; Kiehn, G.P.; Lewis, C.L.S.; Pert, G.J.; Regan, C.; Rose, S.J.; Sadaat, S.

1987-11-09T23:59:59.000Z

500

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1  

E-Print Network [OSTI]

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1 , Anosh Davierwalla2 , David Mann3 IBM, Burlington, VT Abstract -- A linear high output power CMOS direct conversion transmitter for wideĂ?5 QFN. Index Terms -- direct conversion, CMOS, WCDMA, transmitter, third order distortion cancellation