National Library of Energy BETA

Sample records for animals nitrogen fertilization

  1. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  2. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V

    2015-04-14

    Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.

  3. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  4. Animations

    Broader source: Energy.gov [DOE]

    The animations shown on this page are designed and meant to help understand basic geothermal concepts, and are not meant as exhaustive and detailed depictions of technical principles. Rather, they...

  5. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1993-07-06

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  6. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1996-05-14

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

  7. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1996-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  8. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1993-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  9. Animation Requirements

    Broader source: Energy.gov [DOE]

    Animations include dynamic elements such as interactive images and games. For developing animations, follow these design and coding requirements.

  10. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products from animals (e.g., milk, honey, and eggs) Small and big game animals (e.g., rabbits, deer, and elk) on neighboring properties around LANL Deer and elk that are killed by...

  11. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  12. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  13. Over 150years of long-term fertilization alters spatial scaling of microbial biodiversity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; et al

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmorenitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P less

  14. Biomediated continuous release phosphate fertilizer

    DOE Patents [OSTI]

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  15. Biomediated continuous release phosphate fertilizer

    DOE Patents [OSTI]

    Goldstein, Alan H. (Beverly Hills, CA); Rogers, Robert D. (Idaho Falls, ID)

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  16. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  17. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNitrogen ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Nitrogen All gaseous compounds of nitrogen including N2, N2O, and NOx. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  18. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxides of Nitrogen Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oxides of Nitrogen Oxides of nitrogen, chlorofluorocarbons (CFCs), and ozone have a lesser effect on the atmosphere than carbon dioxide and methane, but as you will see they are important contributors to the greenhouse

  19. Smart Grid Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Animation Smart Grid Animation

  20. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; et al

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore » nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. In addition, by identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, the study makes fundamental contributions to predictive understanding of microbial biogeography.« less

  1. Over 150years of long-term fertilization alters spatial scaling of microbial biodiversity

    SciTech Connect (OSTI)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; Hirsch, Penny R.; Sun, Bo; Zhou, Jizhong

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. In addition, by identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, the study makes fundamental contributions to predictive understanding of microbial biogeography.

  2. Cargill Fertilizer Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleCargillFertilizerBiomassFacility&oldid397286" Feedback Contact needs updating Image needs updating...

  3. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2, 2015 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other

  4. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment...

  5. Aqueous phase removal of nitrogen from nitrogen compounds

    DOE Patents [OSTI]

    Fassbender, Alex G. (West Richland, WA)

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  6. Environmentally friendly animal litter

    DOE Patents [OSTI]

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  7. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  8. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  9. Beware of migrating animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beware of Migrating Animals Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Beware of migrating animals Keep an eye out for wildlife on roadways and in recreational areas, and take extra caution while driving or hiking. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Those who encounter injured and or aggressive

  10. Nitrogen fixation apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  11. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect (OSTI)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  12. Characterization of Nitrogen use efficiency in sweet sorghum

    SciTech Connect (OSTI)

    Dweikat, Ismail; Clemente, Thomas

    2014-09-09

    Sweet sorghum (Sorghum bicolor L. Moench) has the potential to augment the increasing demand for alternative fuels and for the production of input efficient, environmentally friendly bioenergy crops. Nitrogen (N) and water availability are considered two of the major limiting factors in crop growth. Nitrogen fertilization accounts for about 40% of the total production cost in sorghum. In cereals, including sorghum, the nitrogen use efficiency (NUE) from fertilizer is approximately 33% of the amount applied. There is therefore extensive concern in relation to the N that is not used by the plant, which is lost by leaching of nitrate, denitrification from the soil, and loss of ammonia to the atmosphere, all of which can have deleterious environmental effects. To improve the potential of sweet sorghum as a leading and cost effective bioenergy crop, the enhancement of NUE must be addressed. To this end, we have identified a sorghum line (SanChi San) that displays about 25% increase in NUE over other sorghum lines. As such, the overarching goal of this project is to employ three complementary strategies to enhance the ability of sweet sorghum to become an efficient nitrogen user. To achieve the project goal, we will pursue the following specific objectives: Objective 1: Phenotypic characterization of SanChi San/Ck60 RILs under low and moderate N-availability including biochemical profiles, vegetative growth and seed yield Objective 2: Conduct quantitative trait loci (QTL) analysis and marker identification for nitrogen use efficiency (NUE) in a grain sorghum RIL population. Objective 3: Identify novel candidate genes for NUE using proteomic and gene expression profiling comparisons of high- and low-NUE RILs. Candidate genes will be brought into the pipeline for transgenic manipulation of NUE This project will apply the latest genomics resources to discover genes controlling NUE, one of the most complex and economically important traits in cereal crops. As a result of the completion of the proposed work, we will have: 1) identified novel alleles in wild sorghum germplasm that is useful to improve both cultivated grain and sweet sorghum; 2) been able to select individuals plants that exhibit high NUE within a breeding population on the basis of these markers; 3) acquired essential information necessary to examine the roles of GS and GOGAT, AlaT, along with impact of transcription factor Dof1, on N assimilation in sweet sorghum; and 4) The information learned will provide new opportunities for improving NUE in sorghum and other cereals.

  13. Eighth international congress on nitrogen fixation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  14. High-nitrogen explosives

    SciTech Connect (OSTI)

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

  15. Animations/simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numeric data Data plots and fgures Genome/genetics data Interactive data maps Animations/simulations Still images and photos Find scientific research data resulting from DOE-funded research. u u u u u u Find www.osti.gov/dataexplorer Search DOE Data Explorer for Energy and Science Data + Advanced Search DOE/OSTI--C205 01/15 Explore DOE Data Explorer View the most recently added datasets or collections. Browse by titles or subjects. Discover the organizations sponsoring the data. Check out

  16. Animations/simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numeric data Data plots and fgures Genome/genetics data Interactive data maps Animations/simulations Still images and photos Find scientifc research data resulting from DOE-funded research. u u u u u u Find www.osti.gov/dataexplorer Search DOE Data Explorer for Energy and Science Data + Advanced Search DOE/OSTI--C205 02/16 Explore DOE Data Explorer View the most recently added datasets or collections. Browse by titles or subjects. Discover the organizations sponsoring the data. Check out

  17. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  18. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  19. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    SciTech Connect (OSTI)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soils characteristics. Most often, spatial variability in the soils fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soils fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the fields spatial variability.

  20. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  1. Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973) contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.

  2. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  3. Enclosure for small animals during awake animal imaging

    DOE Patents [OSTI]

    Goddard, Jr., James S

    2013-11-26

    An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be made with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.

  4. Environmentally-friendly animal litter

    DOE Patents [OSTI]

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  5. Environmentally-friendly animal litter

    DOE Patents [OSTI]

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  6. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (OSTI)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  7. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  8. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin

    1983-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  9. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  10. DOE - Office of Legacy Management -- Armour Fertilizer Works - FL 01

    Office of Legacy Management (LM)

    Fertilizer Works - FL 01 FUSRAP Considered Sites Site: Armour Fertilizer Works (FL.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U. S. S. Agri-Chemical U.S. Steel Corporation--Agri-Chemical FL.01-1 FL.01-2 Location: Bartow , Florida FL.01-2 Evaluation Year: 1985 FL.01-3 Site Operations: Conducted research and development on uranium recovery from phosphoric acid. FL.01-1 Site Disposition: Eliminated - No Authority FL.01-3 Radioactive Materials

  11. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  12. Kootenay Lake Fertilization Experiment, Year 15 (North Arm) and Year 3 (South Arm) (2006) Report

    SciTech Connect (OSTI)

    Schindler, E.U.; Sebastian, D.; Andrusak, G.F.

    2009-07-01

    This report summarizes results from the fifteenth year (2006) of nutrient additions to the North Arm of Kootenay Lake and three years of nutrient additions to the South Arm. Experimental fertilization of the lake has been conducted using an adaptive management approach in an effort to restore lake productivity lost as a result of nutrient uptake in upstream reservoirs. The primary objective of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are the main food source for Gerrard rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus). The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to the North Arm in 2006 was 44.7 tonnes of P and 248.4 tonnes of N. The total fertilizer load added to the South Arm was 257 tonnes of nitrogen; no P was added. Kootenay Lake has an area of 395 km{sup 2}, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. Kootenay Lake is a monomictic lake, generally mixing from late fall to early spring and stratifying during the summer. Surface water temperatures generally exceed 20 C for only a few weeks in July. Results of oxygen profiles were similar to previous years with the lake being well oxygenated from the surface to the bottom depths at all stations. Similar to past years, Secchi disc measurements at all stations in 2006 indicate a typical seasonal pattern of decreasing depths associated with the spring phytoplankton bloom, followed by increasing depths as the bloom gradually decreases by the late summer and fall. Total phosphorus (TP) ranged from 2-7 {micro}g/L and tended to decrease as summer advanced. Over the sampling season dissolved inorganic nitrogen (DIN) concentrations decreased, with the decline corresponding to nitrate (the dominant component of DIN) being utilized by phytoplankton during summer stratification. Owing to the importance of epilimnetic nitrate that is required for optimal phytoplankton growth discrete depth water sampling occurred in 2006 to measure more accurately changes in the nitrate concentrations. As expected there was a seasonal decline in nitrate concentrations, thus supporting the strategy of increasing the nitrogen loading in both arms. These in-season changes emphasize the need for an adaptive management approach to ensure the nitrogen to phosphorus (N:P) ratio does not decrease below 15:1 (weight:weight) during the fertilizer application period. Phytoplankton composition determined from the integrated samples (0-20m) was dominated by diatoms, followed by cryptophytes and chrysophytes. The contribution of cryptophytes to total biomass was higher in 2006 than in 2005. Cryptophytes, considered being edible biomass for zooplankton and Daphnia spp., increased in 2006. Phytoplankton in the discrete depth samples (2, 5, 10, 15 and 20m) demonstrated a clear north to south gradient in average phytoplankton density and biomass among the three stations sampled, with highest values at the North Arm station (KLF 2) and lowest values in the most southern station in the South Arm (KLF 7). Populations were dominated by flagellates at all stations and depths in June and July, then dominated by diatoms in August and September in the North and South arms of the lake. There were no large bluegreen (cyanobacteria) populations in either arm of the lake in 2006. Seasonal average zooplankton abundance and biomass in both the main body of the lake and in the West Arm increased in 2006 compared to 2005. Zooplankton density was numerically dominated by copepods and biomass was dominated by Daphnia spp. The annual average mysid biomass data at deep stations indicated that the North Arm of Kootenay Lake was more productive than the South Arm in 2006. Mysid densities increased through the summer and declined in the winter; mean whole lake values remain within prefertilization densities. Kokanee escapement to Meadow Creek declined in 2006 to approximately 400,000 spawners. The Lardeau River escapement also declined wit

  13. Biogeophysical effects of CO2-fertilization on global climate

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  14. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  15. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations PDF icon castingops.pdf More Documents &...

  16. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  17. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  18. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  19. Microfabricated nitrogen-phosphorus detector : chemically mediated

    Office of Scientific and Technical Information (OSTI)

    thermionic emission. (Technical Report) | SciTech Connect Technical Report: Microfabricated nitrogen-phosphorus detector : chemically mediated thermionic emission. Citation Details In-Document Search Title: Microfabricated nitrogen-phosphorus detector : chemically mediated thermionic emission. Authors: Simonson, Robert Joseph ; Hess, Ryan Falcone ; Moorman, Matthew Wallace ; Boyle, Timothy J. Publication Date: 2012-09-01 OSTI Identifier: 1055647 Report Number(s): SAND2012-7778 DOE Contract

  20. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  1. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  2. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  3. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  4. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

  5. Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the filamentous Fungus Neurospora tetrasperma

    SciTech Connect (OSTI)

    Ellison, Christoper; Stajich, Jason; Jacobson, David; Nativ, Donald; Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika; Grigoriev, Igor; Taylor, John

    2011-05-16

    A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.

  6. Nitrogen doping study in ingot niobium cavities

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  7. DOE - NNSA/NFO -- Photo Library Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animals NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Animals Coyotes, kit foxes, pronghorn antelope, desert tortoises, sidewinder snakes, bald eagles, kangaroo rats and peregrine falcons are just a few of the more than 1,500 animal species found on the Nevada National Security Site. Instructions: Click the document THUMBNAIL to view the photograph details. Click the Category, Number, or Date table header links to sort the information. Thumbnail Category Number

  8. Crybb2 deficiency impairs fertility in female mice

    SciTech Connect (OSTI)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-10-10

    Highlights: Crybb2 deletion impaired female fertility. Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup ?/?}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup ?/?} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup ?/?} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup ?/?} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup ?/?} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup ?/?} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  9. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  10. Quality Assurance Checklists for Video, Animations, and Audio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Videos, Animations, & Audio Quality Assurance Checklists for Video, Animations, and Audio Web Requirements Quality Assurance Checklists for Video, Animations, and Audio Web ...

  11. Video, Audio, and Animation Text Versions for Web Accessibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Videos, Animations, & Audio Video, Audio, and Animation Text Versions for Web Accessibility Video, Audio, and Animation Text Versions for Web Accessibility For accessibility, ...

  12. Over 150 years of long-term fertilization alters spatial scaling...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity You are accessing a document from the Department of Energy's...

  13. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

  14. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  15. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  16. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    technology (Patent) | SciTech Connect Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using microchannel process technology The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator

  17. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  18. A Decision Support System for Optimum Use of Fertilizers

    SciTech Connect (OSTI)

    Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend in the agricultural decision-making process.

  19. Plant nitrogen regulatory P-PII polypeptides

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  20. Nitrogen control of chloroplast differentiation. Final report

    SciTech Connect (OSTI)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  1. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  2. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest

    SciTech Connect (OSTI)

    Riley, R.H.; Vitousek, P.M.

    1995-01-01

    Patterns of nitrogen trace gas emissions, soil nitrogen flux, and nutrient availability were evaluated at five sites that form a chronosequence in Hawaiian montane rain forest. The estimated age of basaltic parent material from which soils developed at the Kilauea site was 200 yr, 6000 yr at the Puu Makaala site, 185000 yr at the Kohala site, 1.65 x 10{sup 6} yr at the Molokai site, and 4.5 x 10{sup 6} yr at the Kauai site. Peak net N mineralization and nitrification values were found in soils from the 185000-yr-old Kohala site. Nitrogen content of foliage and leaf litter was highest in the intermediate age sites (Puu Makaala and Kohala) and N and P retranslocation was lowest at the Puu Makaala site. Soil cores fertilized with nitrogen had significantly higher rates of root ingrowth than control cores at the two youngest sites (200 and 6000 yr old) but not in older sites (185000 and 4.5 x 10{sup 6}-yr-old sites) and total fine root growth into control cores was greatest at the Kohala site. The highest N{sub 2}O emissions were found at the 185000-yr-old Kohala site, while the highest combined flux of N{sub 2}O + NO was observed at the 4.5 x 10{sup 6}-yr-old Kauai site. While overall N{sub 2}O emission rates were correlated with rates of N transformations, soil water content appeared to influence the magnitude of emissions of N{sub 2}O and the ratios of emissions of NO vs. N{sub 2}O. N{sub 2}O emissions occurred when water-filled pore space (WFPS) values were >40%, with highest emissions in at least two sites observed at WFPS values of 75%. Among sites, high N{sub 2}O emissions were associated with high soil N transformation rates. Large NO fluxes were observed only at the Kauai site when WFPS values were <60%. 50 refs., 8 figs., 4 tabs.

  3. Animation Requirements for the Web | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Videos, Animations, & Audio » Animation Requirements for the Web Animation Requirements for the Web Animations include dynamic elements such as interactive images and games. For developing animations, follow the Office of Energy Efficiency and Renewable Energy's (EERE's) design and coding requirements. Use the multimedia quality assurance checklists to ensure your animation meets all of EERE's requirements. Designing Animations These are the guidelines for creating Section 508-compliant

  4. Farm scale electrical power production from animal waste. Volume I. Final report, 30 June 1981-30 December 1983

    SciTech Connect (OSTI)

    Carpenter, P.A.

    1984-01-31

    A 1 1/2 (dry) tons per day biodigester cogeneration plant has been designed and constructed. This project is part of a federal program to promote energy conservation and the use of non-conventional energy resources. The main purpose of the project is to demonstrate that a dairy farm can generate its own power and supply excess power to a local utility. Such a facility can produce significant energy savings to livestock farms and small communities by allowing them to get energy from raw animal and human waste. Also, an odorless by-product is produced that is nearly pathogenically free and has the possibility of several end uses such as: fertilizer and soil conditioner, protein-rich animal refeed, livestock bedding material, and aquatic food for fish farming. 53 references, 18 figures, 4 tables.

  5. Effect of oil revenue on the fertility pattern in Iran, 1952-1976

    SciTech Connect (OSTI)

    Nassirpour, M.

    1984-01-01

    Counter to expectation based on the experience of developed nations, in Iran the increase of oil revenue from 1952 to 1975 was not accompanied by a decline in the fertility rate. To identify possible determinants of fertility behavior, the following hypotheses were tested: 1) developmental factors such as urbanization, high school or higher education of females, types of occupation and female labor force participation, have a direct negative impact; 2) the developmental variables have an indirect negative effect on fertility through the mean age at first marriage; 3) mean age at first marriage has a direct negative effect on fertility; and 4) in the provinces (Central, Khuzestan, Esfahan, E. Azarbijan) where large amounts of oil revenue was allocated, the fertility rate is lower than the fertility rate in other provinces where small amounts of oil revenue were distributed. Among developmental variables, high school and college education of females aged 15-29 as well as mean age at first marriage of females, or, lower proportion of married females age 20-24 were found to be important factors in depressing the fertility rate.

  6. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup ?6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  7. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  8. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  9. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    SciTech Connect (OSTI)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2C to 4C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  10. PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN

    SciTech Connect (OSTI)

    Mandt, Kathleen E.; Mousis, Olivier; Gautier, Daniel

    2014-06-20

    The origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation. This result has important implications for the projected D/H ratio in cometary methane, nitrogen isotopic fractionation in the PSN and the source of nitrogen for Earth's atmosphere.

  11. Languages and interfaces for facial animation

    SciTech Connect (OSTI)

    Magnenat-Thalmann, N.

    1995-05-01

    This paper describes high-level tools for specifying, controlling, and synchronizing temporal and spatial characteristics for 3D animation of facial expressions. The proposed approach consists of hierarchical levels of controls. Specification of expressions, phonemes, emotions, sentences, and head movements by means of a high-level language is shown. The various aspects of synchronization are also emphasized. Then, association of the control different interactive devices and media which allows the animator greater flexibility and freedom, is discussed. Experiments with input accessories such as the keyboard of a music synthesizer and gestures from the DataGlove are illustrated.

  12. DOE - NNSA/NFO -- Plants and Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Click to subscribe to NNSS News Plants and Animals Wild Horses at the NNSS Because of its physical location, the NNSS is host to thousands of organisms that live either in the Mojave Desert, the Great Basin Desert, or in transitional habitat between these two deserts. There are 754 different species of plants, about 1200 invertebrates, 34 reptiles, 239 birds, and 60 mammals which are known to occur on the NNSS.

  13. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  14. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  15. Institute of Laboratory Animal Resources 1983 annual report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    ILAR serves as a coordinating agency and a national and international resource for compiling and disseminating information on laboratory animals, promoting education, planning and conducting conferences and symposia, surveying facilities and resources, upgrading laboratory animal resources, and promoting high quality, humane care of laboratory animals in the US. This report diseases activities conducted in 1983, including committees on animal models and genetic stocks, infectious diseases of mice and rats, environmental conditions in animal rooms, and care and use of laboratory animals. (ACR)

  16. Method and apparatus for nitrogen oxide determination

    DOE Patents [OSTI]

    Hohorst, Frederick A. (Idaho Falls, ID)

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  17. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    SciTech Connect (OSTI)

    2002-01-01

    Development of Models will Help Predict and Control Hydrogen and Nitrogen Levels in Electric Arc Furnace and Basic Oxygen Furnace Steelmaking

  18. Modifying the response of Ehrlich ascites tumor cells to nitrogen...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES; ANTINEOPLASTIC DRUGS; BIOLOGICAL EFFECTS; ASCITES TUMOR CELLS; GROWTH; NITROGEN ...

  19. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  20. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection This fact sheet describes a new ...

  1. Convergence of microbial assimilations of soil carbon, nitrogen...

    Office of Scientific and Technical Information (OSTI)

    Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems Citation Details In-Document Search Title: Convergence of ...

  2. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This animation demonstrates the multiple safety systems in hydrogen-fueled vehicles that detect and prevent the accidental release of hydrogen. View text version of animation....

  3. Traces of natural radionuclides in animal food

    SciTech Connect (OSTI)

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) ?Sv/year, rabbit chow, with a value of 48(5) ?Sv/year, and cattle mineral salt, with a value of 69(7) ?Sv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 ?Sv/year.

  4. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Impact of mesophyll diffusion on estimated global land CO2 fertilization Citation Details In-Document Search Title: Impact of mesophyll diffusion on estimated global land CO2 fertilization Authors: Sun, Ying [1] ; Gu, Lianhong [2] ; Dickinson, Dr. Robert [1] ; Norby, Richard J [2] ; Pallardy, Stephen G. [3] ; Hoffman, Forrest M [2] + Show Author Affiliations University of Texas at Austin ORNL University of Missouri Publication Date: 2014-01-01 OSTI

  5. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, J.; Qi, X.; Souza, L.; Luo, Y.

    2015-10-20

    Nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive researches have been done to explore whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in plant and litter pools but not in soil pool. Thus, the basis of PNL occurrencemorepartially exists. However, CO2 enrichment also significantly increased the N influx via biological N fixation, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth over time was observed. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions. Moreover, our synthesis showed that CO2 enrichment increased soil ammonium (NH4+) but decreased nitrate (NO3-). The different responses of NH4+ and NO3-, and the consequent biological processes, may result in changes in soil microenvironment, community structures and above-belowground interactions, which could potentially affect the terrestrial biogeochemical cycles and the feedback to climate change.less

  6. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    SciTech Connect (OSTI)

    Dorne, Jean Lou; Vandenbroeck, Marc; Mennes, Wim; Knutsen, Helle K.; Vernazza, Francesco; Edler, Lutz; Benford, Diane

    2013-08-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melaminecyanuric acid crystals, kidney damage and deaths of cats and dogs and melamineuric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ? Melamine in food and feed. ? Forms crystals in kidney with uric acid or cyanuric acid. ? Toxicity higher with cyanuric acid. ? Recent EFSA risk assessment. ? Animal and human health.

  7. Catalyst for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  8. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  9. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  10. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  11. Energy Production from Zoo Animal Wastes

    SciTech Connect (OSTI)

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  12. Video, Audio, and Animation Text Versions for Web Accessibility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Videos, Animations, & Audio » Video, Audio, and Animation Text Versions for Web Accessibility Video, Audio, and Animation Text Versions for Web Accessibility For accessibility, Section 508 requires text versions of video, audio, and animations. Follow the Office of Energy Efficiency and Renewable Energy's (EERE's) requirements for developing a text version for a video, audio file, or animation. Requirements Follow these requirements for developing a text version for

  13. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  14. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating...

  15. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating ...

  16. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

  17. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  18. Video and Animation Requests | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video and Animation Requests Please fill in the form below. Videographer Brian Marczewski will contact you to discuss your project needs in more detail. Name * Phone Number * E-mail Address * Request * Needed by * Month Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Year Year 2014 2015 2016 2017 2018 Open popup calendar File Upload Files must be less than 2 MB. Allowed file types: gif jpg jpeg png

  19. Nitrogen-doped Graphene and Its Electrochemical Applications

    SciTech Connect (OSTI)

    Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-06-04

    Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

  20. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  1. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  2. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  3. Lighted display devices for producing static or animated visual displays, including animated facial features

    DOE Patents [OSTI]

    Heilbron, Valerie J; Clem, Paul G; Cook, Adam Wade

    2014-02-11

    An illuminated display device with a base member with a plurality of cavities therein. Illumination devices illuminate the cavities and emit light through an opening of the cavities in a pattern, and a speaker can emit sounds in synchronization with the pattern. A panel with translucent portions can overly the base member and the cavities. An animated talking character can have an animated mouth cavity complex with multiple predetermined mouth lighting configurations simulative of human utterances. The cavities can be open, or optical waveguide material or positive members can be disposed therein. Reflective material can enhance internal reflectance and light emission.

  4. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  5. Hydrogen and nitrogen control in ladle and casting operations

    SciTech Connect (OSTI)

    Fruehan, R. J.; Misra, Siddhartha

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  6. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2005-09-15

    The inclusion of dopants (such as nitrogen) in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Although most commercial diamond nanoparticles contain a small fraction of nitrogen, it is still unclear whether it is located within the core or at the surface of the nanoparticle. Presented here are density functional tight binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional nitrogen in nanodiamond and bucky-diamond particles. The results predict that nitrogen is likely to be positioned at the surface of both hydrogenated nanodiamond and (dehydrogenated) bucky-diamond, and that the coordination of the dopants within the particles is dependent upon the surface structure.

  7. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  8. Amplification of subnanosecond nitrogen laser pulses in UV dyes

    SciTech Connect (OSTI)

    Au, M.; Rayner, D.M.; Malatesta, V.; Hackett, P.A.

    1982-12-01

    The performance of a short pulse netrogen laser system have been improved by replacing the subatmospheric TE nitrogen laser amplifier with a XV xenon chloride excimer pumped dye amplifier. (AIP)

  9. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  10. Method and apparatus for animal positioning in imaging systems

    DOE Patents [OSTI]

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  11. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  12. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  13. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic

  14. Nitrogen concentration and isotope dataset for environmental samples from

    Office of Scientific and Technical Information (OSTI)

    2012 and 2013, Barrow, Alaska (Dataset) | Data Explorer Data Explorer Search Results Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Title: Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt,

  15. Quality Assurance Checklists for Video, Animations, and Audio Web

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements | Department of Energy Videos, Animations, & Audio » Quality Assurance Checklists for Video, Animations, and Audio Web Requirements Quality Assurance Checklists for Video, Animations, and Audio Web Requirements Use these quality assurance (QA) checklists to ensure your audio files, flash animations, podcasts, and videos meet all Office of Energy Efficiency and Renewable Energy (EERE) standards. For more information, see the EERE standards for multimedia applications. Audio

  16. Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Google Bookmark Alternative Fuels Data Center: CNG Vehicle

  17. Institute of Laboratory Animal Resources 1982 annual report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    ILAR serves as a coordinating agency and a national and international resource for compiling and disseminating information on laboratory animals, promoting education, planning and conducting conferences and symposia, surveying existing and required facilities and resources, upgrading laboratory animal resources, and promoting high-quality, humane care of laboratory animals in the United States. This report discusses activities conducted in 1982. (ACR)

  18. Compact conscious animal positron emission tomography scanner

    DOE Patents [OSTI]

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  19. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Miller, Michael A. (San Antonio, TX)

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  20. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  1. Impact of Radiotherapy on Fertility, Pregnancy, and Neonatal Outcomes in Female Cancer Patients

    SciTech Connect (OSTI)

    Wo, Jennifer Y.; Viswanathan, Akila N.

    2009-04-01

    Purpose: Radiation has many potential long-term effects on cancer survivors. Female cancer patients may experience decreased fertility depending on the site irradiated. Oncologists should be aware of these consequences and discuss options for fertility preservation before initiating therapy. Methods and Materials: A comprehensive review of the existing literature was conducted. Studies reporting the outcomes for female patients treated with cranio-spinal, abdominal, or pelvic radiation reporting fertility, pregnancy, or neonatal-related outcomes were reviewed. Results: Cranio-spinal irradiation elicited significant hormonal changes in women that affected their ability to become pregnant later in life. Women treated with abdomino-pelvic radiation have an increased rate of uterine dysfunction leading to miscarriage, preterm labor, low birth weight, and placental abnormalities. Early menopause results from low-dose ovarian radiation. Ovarian transposition may decrease the rates of ovarian dysfunction. Conclusions: There is a dose-dependent relationship between ovarian radiation therapy (RT) and premature menopause. Patients treated with RT must be aware of the impact of treatment on fertility and explore appropriate options.

  2. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    SciTech Connect (OSTI)

    Richard J. Fruehan; Siddhartha Misra

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the slag thickness. The model predictions are based on mathematical and empirical evidence which are derived from thermodynamic and kinetic fundamental principles.

  3. Method of detoxifying animal suffering from overdose

    DOE Patents [OSTI]

    Mehlhorn, Rolf J. (Richmond, CA)

    1997-01-01

    A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that it achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structure.

  4. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  5. METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS

    DOE Patents [OSTI]

    Frazer, J.W.

    1962-05-01

    A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)

  6. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Mllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  7. Cesium Pentazolate: a New Nitrogen-rich Energetic Material (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Citation Details In-Document Search Title: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Authors: Steele, B A ; Stavrou, E ; Prakapenka, V B ; Radousky, H B ; Zaug, J M ; Crowhurst, J C ; Oleynik, I I Publication Date: 2015-09-15 OSTI Identifier: 1223838 Report Number(s): LLNL-PROC-677378 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented

  8. Electrical conductivity and equation of state of liquid nitrogen, oxygen,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benzene, and 1-butene shocked to 60 GPa (Technical Report) | SciTech Connect Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa Citation Details In-Document Search Title: Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  9. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect (OSTI)

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  10. DOE - Office of Legacy Management -- Billings Hospital - Small Animal

    Office of Legacy Management (LM)

    Facility - University of Chicago - IL 01 Billings Hospital - Small Animal Facility - University of Chicago - IL 01 FUSRAP Considered Sites Site: Billings Hospital, Small Animal Facility, University of Chicago (IL 01) Eliminated from consideration under FUSRAP due to limited scope of activities and 15 day half-life of P-32 Designated Name: Not Designated Alternate Name: Small Animal Facility, U. of Chicago IL.01-1 Location: University of Chicago , Chicago , Illinois IL.01-1 Evaluation Year:

  11. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  12. Radio controlled release apparatus for animal data acquisition devices

    DOE Patents [OSTI]

    Stamps, James Frederick (5252 Norma Way, Livermore, Alameda County, CA 94550)

    2000-01-01

    A novel apparatus for reliably and selectively releasing a data acquisition package from an animal for recovery. The data package comprises two parts: 1) an animal data acquisition device and 2) a co-located release apparatus. One embodiment, which is useful for land animals, the release apparatus includes two major components: 1) an electronics package, comprising a receiver; a decoder comparator, having at plurality of individually selectable codes; and an actuator circuit and 2) a release device, which can be a mechanical device, which acts to release the data package from the animal. To release a data package from a particular animal, a radio transmitter sends a coded signal which is decoded to determine if the code is valid for that animal data package. Having received a valid code, the release device is activated to release the data package from the animal for subsequent recovery. A second embodiment includes floatation means and is useful for releasing animal data acquisition devices attached to sea animals. This embodiment further provides for releasing a data package underwater by employing an acoustic signal.

  13. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOE Patents [OSTI]

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  14. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    SciTech Connect (OSTI)

    Shaw, P.

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  15. Preparation of high nitrogen compound and materials therefrom

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM); Hiskey, Michael A. (Los Alamos, NM)

    2006-10-10

    The high-nitrogen compound of the formula ##STR00001## was prepared. Pyrolysis of the compound yields carbon nitrides C.sub.2N.sub.3 and C.sub.3N.sub.5. The carbon nitrides vary in their density, texture, and morphology.

  16. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  17. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  18. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  19. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, Lawrence E. (East Aurora, NY); Snyder, William J. (Ossining, NY)

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  20. Study of fuel-nitrogen reactions in rich, premixed flames

    SciTech Connect (OSTI)

    Roby, R.J.

    1988-01-01

    The formation and removal of nitrogen-containing species involved in fuel-nitrogen reactions have been studied in atmospheric-pressure fuel-rich hydrogen/oxygen/argon flames. The fuel-nitrogen reaction mechanism was investigated by addition of ammonia, nitric oxide, or hydrogen cyanide alone or with various hydrocarbons to a base flame. Profiles of stable nitrogen species and hydroxyl radical were measured in the post-flame gases. Results show that an initial rapid decay of nitric oxide added to a hydrogen/oxygen/argon flame to approximately 60% of its initial value occurs within 1.0 mm of the burner surface (0.5 msec). The primary reaction for removal of nitric oxide was found to be H + NO + M = HNO + M. The reaction of nitric oxide with various hydrocarbons to form hydrogen cyanide was found to be first order in both the initial hydrocarbon concentration and the initial nitric oxide concentration. A kinetic model was developed that only partially predicts the results obtained. Analysis showed that, by varying the heat of formation of imidogen within the limits of its uncertainty, agreement between the calculations and the data could be improved for nitric oxide and nitrogen. However, the amine, nitrous oxide and hydrogen cyanide profiles were found not to be significantly affected. The significant discrepancy between the measured and calculated ammonia profiles is discussed in terms of the model predictions of both the ammonia formation and decay rates. The reaction: NM + H = N + H/sub 2/ is identified as a key rate-controlling step for removal of amine species in these flames. Evidence from the data and theoretical calculations suggests that the rate of this reaction at the current flame conditions may be as much as a factor of ten slower than the previously reported value.

  1. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  2. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  3. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  4. Annealing Behavior of Ion-implanted Nitrogen in D9 Steel

    SciTech Connect (OSTI)

    Arunkumar, J.; David, C.; Nair, K. G. M.; Panigrahi, B. K.; Magudapathy, P.; Kennedy, John

    2011-07-15

    Nitrogen isotope N{sup 15} was implanted at the sub-surface of D9 steel. The resonance nuclear reaction analysis was used to probe the implanted nitrogen as a function of depth. The as-implanted D9 sample was isochronally annealed and by observing the broadening of nitrogen depth profile at various annealing junctures, activation energy for nitrogen diffusion in steel was deduced.

  5. Animal Welfare Act (7 U.S.C. 2031 et seq.)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  6. Animal Welfare Act (7 U.S.C. 2031 et seq.) (1966)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  7. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    DOE Patents [OSTI]

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  8. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  9. Animation: How a Wind Turbine Works | Department of Energy

    Energy Savers [EERE]

    Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more above

  10. Fuel Cell Animation (Text Version) | Department of Energy

    Energy Savers [EERE]

    Information Resources » Multimedia » Fuel Cell Animation (Text Version) Fuel Cell Animation (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on left, oxygen input on right, water and heat outputs on the back, with an electrical circuit going around the top. A fuel cell is a device that uses hydrogen (or hydrogen-rich

  11. Corn fiber hulls as a food additive or animal feed

    DOE Patents [OSTI]

    Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  12. Method for reducing nitrogen oxides in combustion effluents

    DOE Patents [OSTI]

    Zauderer, Bert (Merion Station, PA)

    2000-01-01

    Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

  13. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  14. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  15. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  16. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  17. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, William A. (Idaho Falls, ID)

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  18. Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Louisiana Caverns Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  19. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  20. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  1. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  2. Nitrogen molecule activation by excited states of copper

    SciTech Connect (OSTI)

    Sanchez-Zamora, M.; Novaro, O.; Ruiz, M.E. )

    1990-04-05

    Ab initio molecular orbital studies that include variational (with a multiconfiguration reference state of 200 states) and perturbational (including over 3 million configurations) configuration interaction calculations were addressed to the interaction of nitrogen molecules with copper. The Cu ground state {sup 2}S and first two excited states {sup 2}P and {sup 2}D were studied as they interact in different geometrical approaches (including side-on and end-on geometries) with ground-state N{sub 2} molecules.

  3. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  4. Model Captures How Nitrogen Limitation Affects Hydrological Processes |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Model Captures How Nitrogen Limitation Affects Hydrological Processes Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000

  5. The Amphimedon queenslandica genome and the evolution of animal complexity

    SciTech Connect (OSTI)

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  6. Award-Winning Animation Helps Scientists See Nature at Work ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award-Winning Animation Helps Scientists See Nature at Work August 8, 2008 A computer-aided image combines a photo of a man with a three-dimensional, computer-generated image. The...

  7. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  8. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    SciTech Connect (OSTI)

    Lee, Jong-Sook . E-mail: jong-sook.lee@fkf.mpg.de; Lerch, Martin; Maier, Joachim

    2006-01-15

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500{sup -}bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  9. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  10. Anatomic and Functional Imaging of Tagged Molecules in Animals - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Anatomic and Functional Imaging of Tagged Molecules in Animals Thomas Jefferson National Accelerator Facility Contact TJNAF About This Technology Technology Marketing SummaryA novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired.DescriptionThe apparatus comprises a

  11. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  12. High Sensitivity SPECT for Small Animals and Plants (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: High Sensitivity SPECT for Small Animals and Plants Citation Details In-Document Search Title: High Sensitivity SPECT for Small Animals and Plants Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of

  13. NREL: Transportation Research - E-Roadway Animation (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research Printable Version E-Roadway Animation (Text Version) This text version of the e-roadway animation describes how electrified roadways can reduce petroleum consumption and vehicle operating costs while extending the range of electric vehicles. Part One: E-Roadway Introduction and Benefits Reducing emissions and oil consumption are crucial worldwide goals. Many technologies can contribute to achieving these goals-efficient homes, biofuels, hybrid electric vehicles, hydrogen

  14. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Components (Text Version) Fuel Cell Animation - Fuel Cell Components (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on top, oxygen input in front, water and heat outputs out the back, with an electrical circuit going around the top. Polymer Electrolyte Membrane (PEM) in center, cathode/catalyst to the right

  15. Control of work function of graphene by plasma assisted nitrogen doping

    SciTech Connect (OSTI)

    Akada, Keishi; Terasawa, Tomo-o; Imamura, Gaku; Obata, Seiji; Saiki, Koichiro, E-mail: saiki@k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561 (Japan)

    2014-03-31

    Nitrogen doping is expected to provide several intriguing properties to graphene. Nitrogen plasma treatment to defect-free and defective highly oriented pyrolytic graphite (HOPG) samples causes doping of nitrogen atom into the graphene layer. Nitrogen atoms are initially doped at a graphitic site (inside the graphene) for the defect-free HOPG, while doping to a pyridinic or a pyrrolic site (edge of the graphene) is dominant for the defective HOPG. The work function of graphene correlates strongly with the site and amount of doped nitrogen. Nitrogen atoms doped at a graphitic site lower the work function, while nitrogen atoms at a pyridinic or a pyrrolic site increase the work function. Control of plasma treatment time and the amount of initial defect could change the work function of graphite from 4.3?eV to 5.4?eV, which would open a way to tailor the nature of graphene for various industrial applications.

  16. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect (OSTI)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. Investigated the effects of main parameters on pyrolysis products distribution. Determined the suitable conditions for the production of the maximum of bio-oil. Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 C and a heating rate of 5 C/min. The chemical (GCMS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compoundsetc.), carboxylic acids, aldehydes, ketones, esters,etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  17. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

    1989-01-01

    A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

  18. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  19. Development of photocatalyst by combined nitrogen and yttrium doping

    SciTech Connect (OSTI)

    Khan, Matiullah; Cao, Wenbin

    2014-01-01

    Graphical abstract: The simulated compensated YN{sub SUB} co-doped TiO{sub 2} model can reasonably explain the experimental observations. Calculation results show that substitutional Y at Ti sites and substitutional N at O sites with an oxygen vacancy give stable configuration, reduced band gap, better visible light absorption and enhance separations of photoexcited charge carriers. The experimental observations confirmed the theoretical findings. - Highlights: (Y, N) codoped TiO{sub 2} was synthesized by mild one pot hydrothermal method. The Y doping concentration was varied from 0.01 to 1.38 at%. 0.05% (Y, N) codoped TiO{sub 2} shows enhanced visible light photocatalytic activity. Compensated and noncompensated ab-initio calculations were performed. Calculation results reasonably explained the experimental findings. - Abstract: Titanium dioxide co-doped with yttrium and nitrogen with different yttrium doping concentration has been synthesized by mild one pot hydrothermal method without any post calcination for crystallization. Irrespective of the yttrium doping concentration, all the synthesized samples were composed of pure anatase phase with good crystallinity. And the synthesized co-doped samples have spherical morphology with uniform particle size distribution. The absorption edge of the co-doped TiO{sub 2} was shifted toward visible light region depicting that the intrinsic band gap of TiO{sub 2} was affected by the co-doping. Among the different samples, the co-doped sample with 0.05% yttrium doping concentration exhibits enhanced visible light photocatalytic activity by degradation of methylene blue in aqueous solution. Compensated and non-compensated yttriumnitrogen co-doped TiO{sub 2} models were simulated using density functional theory to explain the experimental findings. The calculation results show that the compensated yttriumnitrogen co-doped TiO{sub 2} model may reasonably explain the experimental observations due to its stable configuration, narrowed band gap and enhanced separation of photoexcited carriers.

  20. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  1. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  2. Alignment of the diamond nitrogen vacancy center by strain engineering

    SciTech Connect (OSTI)

    Karin, Todd [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Dunham, Scott [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States); Fu, Kai-Mei [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-08-04

    The nitrogen vacancy (NV) center in diamond is a sensitive probe of magnetic field and a promising qubit candidate for quantum information processing. The performance of many NV-based devices improves by aligning the NV(s) parallel to a single crystallographic direction. Using ab initio theoretical techniques, we show that NV orientation can be controlled by high-temperature annealing in the presence of strain under currently accessible experimental conditions. We find that (89??7)% of NVs align along the [111] crystallographic direction under 2% compressive biaxial strain (perpendicular to [111]) and an annealing temperature of 970?C.

  3. Technological modifications in the nitrogen oxides tradable permit program

    SciTech Connect (OSTI)

    Linn, J.

    2008-07-01

    Tradable permit programs allow firms greater flexibility in reducing emissions than command-and-control regulations and encourage firms to use low cost abatement options, including small-scale modifications to capital equipment. This paper shows that firms have extensively modified capital equipment in the Nitrogen Oxides Budget Trading Program, which covers power plants in the eastern United States. The empirical strategy uses geographic and temporal features of the program to estimate counterfactual emissions, finding that modifications have reduced emission rates by approximately 10-15 percent. The modifications would not have occurred under command-and-control regulation and have reduced regulatory costs.

  4. Scientific documentary animation: How much accuracy is enough

    SciTech Connect (OSTI)

    Max, N.L.

    1992-02-06

    Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may even be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.

  5. Scientific documentary animation: How much accuracy is enough?

    SciTech Connect (OSTI)

    Max, N.L.

    1992-02-06

    Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may even be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.

  6. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    SciTech Connect (OSTI)

    Johnson, W. L.; Cook, C. R.

    2014-01-29

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  7. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect (OSTI)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  8. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  9. Deterministic coupling of delta-doped nitrogen vacancy centers to a

    Office of Scientific and Technical Information (OSTI)

    nanobeam photonic crystal cavity (Journal Article) | SciTech Connect Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity Citation Details In-Document Search Title: Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity The negatively charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For

  10. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace079_mukundan_2012_o.pdf More Documents & Publications Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review

  11. Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former

    Energy Savers [EERE]

    Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report | Department of Energy Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in Monument Valley, Arizona, 2004 Status Report Phytoremediation of the Nitrogen-Contaminated Subpile Soil at the Former Uranium Mill Tailings Site in

  12. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  13. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Oak Ridge National Lab.; Boguslawski, Piotr; Univ. of Warsaw; Bernholc, J.; Oak Ridge National Lab.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  14. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; Norby, Richard J.; Pallardy, Stephen G.; Hoffman, Forrest M.

    2014-10-13

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earthmore » System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.« less

  15. Patterns of Nitrogen Utilization in Deep-Sea Syntrophic Consortia (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Wiegel, Detlef

    2011-04-26

    Victoria Orphan from Caltech discusses "Patterns of nitrogen utilization in deep-sea syntrophic consortia" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanism, carbon-nitrogen and carbon-hydrogen bond formation occurs in a concerted fashion. Article Title: A Highly Enantioselective Zirconium Catalyst for Intramolecular...

  17. Nitrogen doping of chemical vapor deposition grown graphene on 4H-SiC (0001)

    SciTech Connect (OSTI)

    Urban, J. M.; Binder, J.; Wysmo?ek, A.; D?browski, P.; Strupi?ski, W.; Kopciuszy?ski, M.; Ja?ochowski, M.; Klusek, Z.

    2014-06-21

    We present optical, electrical, and structural properties of nitrogen-doped graphene grown on the Si face of 4H-SiC (0001) by chemical vapor deposition method using propane as the carbon precursor and N{sub 2} as the nitrogen source. The incorporation of nitrogen in the carbon lattice was confirmed by X-ray photoelectron spectroscopy. Angle-resolved photoemission spectroscopy shows carrier behavior characteristic for massless Dirac fermions and confirms the presence of a graphene monolayer in the investigated nitrogen-doped samples. The structural and electronic properties of the material were investigated by Raman spectroscopy. A systematical analysis of the graphene Raman spectra, including D, G, and 2D bands, was performed. In the case of nitrogen-doped samples, an electron concentration on the order of 510 10{sup 12}?cm{sup ?2} was estimated based upon Raman and Hall effect measurements and no clear dependence of the carrier concentration on nitrogen concentration used during growth was observed. This high electron concentration can be interpreted as both due to the presence of nitrogen in graphitic-like positions of the graphene lattice as well as to the interaction with the substrate. A greater intensity of the Raman D band and increased inhomogeneity, as well as decreased electron mobility, observed for nitrogen-doped samples, indicate the formation of defects and a modification of the growth process induced by nitrogen doping.

  18. Self-protecting transistor oscillator for treating animal tissues

    DOE Patents [OSTI]

    Doss, James D. (Los Alamos, NM)

    1980-01-01

    A transistor oscillator circuit wherein the load current applied to animal tissue treatment electrodes is fed back to the transistor. Removal of load is sensed to automatically remove feedback and stop oscillations. A thermistor on one treatment electrode senses temperature, and by means of a control circuit controls oscillator transistor current.

  19. Prehistoric Animal Bones Found at Pantex | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Prehistoric Animal Bones Found at Pantex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  20. Nitrite in feed: From Animal health to human health

    SciTech Connect (OSTI)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernndez, Maria-Luisa; Arcella, Davide; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.

  1. Adsorption configurations of two nitrogen atoms on graphene

    SciTech Connect (OSTI)

    Rani, Babita, E-mail: babitabaghla15@gmail.com [Department of Physics, Punjabi University, Patiala- 147 002 and Department of Physics, Panjab University, Chandigarh- 160 014 (India); Jindal, V. K.; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh- 160 014 (India)

    2014-04-24

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N{sub 2} molecule which is physisorbed at a distance 3.69 on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction.

  2. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing

    SciTech Connect (OSTI)

    Wang, Ying; Shao, Yuyan; Matson, Dean W.; Li, Jinghong; Lin, Yuehe

    2010-05-05

    Chemical doping with foreign atoms is an effective method to intrinsically modify the properties of host materials. Among them, nitrogen (N) doping plays a critical role in regulating the electronic properties of carbon materials. Recently, graphene as a true 2-dimensional carbon material has shown fascinating applications in bioelectronics and biosensors. In this paper, we report a facile strategy to prepare N-doped graphene by using plasma treatment of pristine graphene synthesized via chemical method. Meanwhile, a possible schematic diagram has been proposed to detail the structure of N-doped graphene. By controlling the exposure time, N percentage in host grapheme can be regulated ranging from 0.11% to 1.35%. Moreover, the as prepared N-doped graphene has displayed high electrocatalytic activity to hydrogen peroxide and further been used for glucose biosensing with concentration as low as 0.01 mM in the presence of interferences.

  3. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-08-19

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  4. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  5. Nitrogen oxide abatement by distributed fuel addition. Final report

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  6. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  7. Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jeff Heikoop; Heather Throckmorton

    2015-05-15

    Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt, permafrost; ammonium isotopes for active layer samples; and nitrogen isotopes for soils and dissolved organic nitrogen extracted from soil pore waters.

  8. Device for detection and identification of carbon- and nitrogen-containing materials

    DOE Patents [OSTI]

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  9. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM); Hiskey, Michael A. (Los Alamos, NM)

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  10. Video, Animation, and Audio Requirements for the Web | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video, Animation, and Audio Requirements for the Web Video, Animation, and Audio Requirements for the Web When producing videos, animations, and audio for the Web, consider the Office of Energy Efficiency and Renewable Energy (EERE's) visual and technical requirements. Learn about EERE's requirements for: Videos Animations Audio files Quality assurance checklists To comply with Section 508 requirements, these media require text versions

  11. Graphical User Interface Color Display Animation Interaction Tool

    Energy Science and Technology Software Center (OSTI)

    1999-10-05

    The Nuclear Plant Analyzer (NPA) is a highly flexible graphical user interface for displaying the results of a calculation, typically generated by RELAP5 or other code. This display consists of one or more picture, called masks, that mimic the host code input. This mask can be animated to display user-specified code output information mapped as colors, dials, moving arrows, etc., on the mask. The user can also interact with the control systems of the hostmore » input file as the execution progresses, thereby controlling aspects of the calculation. The Computer Visual System (CVS) creates, edits, and animates the the masks for use in the NPA.« less

  12. Production and characterization of a nitrogen-implanted Fe standard to calibrate PIGE measurements

    SciTech Connect (OSTI)

    Rodrigues, C. L.; Silva, T. F.; Added, N.; Santos, H. C.; Tabacniks, M. H.

    2014-11-11

    Three calibration standard was produced by ion implantation of nitrogen in samples of Armco iron (99.7% iron). The samples was irradiated with nitrogen ion beams at several different energies (between 4 keV and 40 keV), and the ion doses were adjusted to obtain an uniform depth profile, using simulations with SRIM code. Two standards, one thick and other a foil (1.62mg/cm{sup 2}), was irradiated at same time with total nominal dose of 6.610{sup ?16} atoms/cm{sup 2} distributed in a region of 100 nm in depth, with an average concentration of 9.0% nitrogen in iron. The third sample uses the same profile, but with a small dose, 1.110{sup ?16} atoms/cm{sup 2} and average concentration of 1.5% nitrogen. The characterization of the implanted samples was done using RBS and NRA techniques to quantification of nitrogen.

  13. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    Zhong, Xing; Liu, Lin; Jiang, Yu; Wang, Xinde; Wang, Lei; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jian-guo; Su, Dang S.

    2015-06-15

    The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN, could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  14. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    SciTech Connect (OSTI)

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

  15. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect (OSTI)

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. )

    1991-07-15

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  16. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  17. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  18. Investigation of formation of nitrogen compounds in coal combustion. Final report

    SciTech Connect (OSTI)

    Blair, D.W.; Crane, I.D.; Wendt, J.O.L.

    1983-10-01

    This is the final report on DOE contract number DE-AC21-80MC14061. It concerns the formation of nitrogen oxide from fuel-bound nitrogen during coal combustion. The work reported was divided into three tasks. They addressed problems of time-resolving pyrolysis rates of coal under simulated combustion conditions, the combustion of the tar that results from such pyrolysis, and theoretical modeling of the pyrolysis process. In all of these tasks, special attention was devoted to the fate of coal nitrogen. The first two tasks were performed by Exxon Research and Engineering Company. 49 references.

  19. The nature of fluctuations in a double arc argon-nitrogen plasma jet

    SciTech Connect (OSTI)

    Tu Xin; Yan Jianhua; Yu Liang; Cen, Kefa; Cheron, Bruno

    2007-09-24

    The dynamic behavior of the double arc argon-nitrogen plasma jet is investigated by combined means of the fast Fourier transform, correlation function, and Wigner distribution. The restrike mode is identified as the fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which indicates that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the power supply undulation and both arc roots motion on the anode channels. It is further found that the double anode torch could inhibit and reduce the restrike phenomenon.

  20. Nitrogen Deposition to and Cycling in a Deciduous Forest

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pryor, Sara C.; Barthelmie, Rebecca J.; Carreiro, Margaret; Davis, Melissa L.; Hartley, Anne; Jensen, Bjame; Oliphant, Andrew; Randolph, Melissa J. C.; Schoof, Justin T.

    2001-01-01

    The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m -2 day -1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH 3 ), nitric acid (HNO 3 ), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH 4 +) at themore »site, leading to a net canopy exchange (NCE) of –6 kg-N ha -1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site. « less

  1. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  2. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect (OSTI)

    Parkhurst, W.J.; Harper, J.P. ); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. ); Cropp, J.W. )

    1988-01-01

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  3. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 -- Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 -- Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to re-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  4. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

  5. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  6. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 – Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 – Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  7. Small animal electric and magnetic field exposure systems. Final report

    SciTech Connect (OSTI)

    Patterson, R.C.; Dietrich, F.M.

    1993-10-01

    Laboratory evaluation of electric and magnetic fields (EMF) and cancer in animals requires exposure of relatively large numbers of animals, usually rats or mice, to 60-Hz fields under very well controlled conditions for periods of up to two years. This report describes two exposure systems, the first of which is based on modifications of an existing electric field exposure system to include magnetic field exposure capability. In this system, each module houses 576--768 mice, which can be exposed to electric field levels of up to 100 kV/m and magnetic field levels of up to 10 Gauss. When a module was operated at 10 Gauss, measured levels of noise and vibration fell substantially below the detection threshold for humans. Moreover, temperature rise in the coils did not exceed 12{degrees}C at the 10 Gauss level. Specifications and test results for the second system, which provides magnetic field exposure capability only, are similar, except that each module houses 624--780 mice. After installation of the second system at the West Los Angeles Veterans Medical Center in Los Angeles, California, additional results were obtained. This report provides a complete description of the engineering design, specifications, and test results for the completed systems.

  8. Soil microbial responses to nitrogen addition in arid ecosystems

    SciTech Connect (OSTI)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N addition rates indicate that arid ecosystems are sensitive to modest increments in anthropogenic N deposition.

  9. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore » plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N addition rates indicate that arid ecosystems are sensitive to modest increments in anthropogenic N deposition.« less

  10. Incidence of High Nitrogen in Sintered Uranium Dioxide: A Case Study

    SciTech Connect (OSTI)

    Balakrishna, Palanki; Murty, B. Narasimha; Anuradha, M.; Yadav, R.B.; Jayaraj, R.N

    2005-05-15

    Nitrogen content, above the specified limit of 75 {mu}g(gU){sup -1}, was encountered in sintered uranium dioxide in the course of its manufacture. The cause was traced to the sintering process, wherein carbon, a degradation product of the die wall or admixed lubricant, was retained in the compact as a result of inadvertent reversal of gas flow in the sintering furnace. In the presence of carbon, the uranium dioxide reacted with nitrogen from the furnace atmosphere to form nitride. The compacts with high nitrogen were also those with low sintered density, arising from low green density. The low green density was due to filling problems of an inhomogeneous powder. The experiments carried out establish the causes of high nitrogen to be the carbon residue from lubricant when the UO{sub 2} is sintered in a cracked ammonia atmosphere.

  11. Nitrogen/oxygen separations in metal-organic frameworks for clean fossil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel combustion | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Nitrogen/oxygen separations in metal-organic frameworks for clean fossil fuel combustion

  12. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment

    Broader source: Energy.gov [DOE]

    This case study describes how Terra Nitrogen Company saved 497,000 MMBtu and $3.5 million yearly after upgrading the steam system in its ammonia plant in Verdigris, Oklahoma.

  13. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Broader source: Energy.gov [DOE]

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly

  14. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    SciTech Connect (OSTI)

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; Simonson, Robert J.

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 C. NPDs have previously been reported to be 7*104 and 105 more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (?NPD). The ?NPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of such devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of ?NPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the ?NPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The ?NPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.

  15. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes (Journal Article) | SciTech Connect Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes Citation Details In-Document Search Title: Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison

  18. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; Simonson, Robert J.

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 °C. NPDs have previously been reported to be 7*104× and 105× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of suchmore » devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.« less

  19. NITROGEN REMOVAL FROM NATURAL GAS (Technical Report) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report: NITROGEN REMOVAL FROM NATURAL GAS Citation Details In-Document Search Title: NITROGEN REMOVAL FROM NATURAL GAS × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public

  20. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOE Patents [OSTI]

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  1. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air | Department of Energy Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_bowser.pdf More Documents & Publications Membrane Technology Workshop Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Diesel Engine Alternatives

  2. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  3. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect (OSTI)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  4. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  5. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  6. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  7. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-510-37500 May 2005 Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production Susan E. Powers Quantifying Cradle-to-Farm Gate Life Cycle Impacts

  8. Anatomic and functional imaging of tagged molecules in animals

    DOE Patents [OSTI]

    Weisenberger, Andrew G. (Yorktown, VA); Majewski, Stanislaw (Grafton, VA); Paulus, Michael J. (Knoxville, TN); Gleason, Shaun S. (Knoxville, VA)

    2007-04-24

    A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.

  9. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  10. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect (OSTI)

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  11. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    SciTech Connect (OSTI)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.

  12. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene

    SciTech Connect (OSTI)

    Willke, P.; Druga, T.; Wenderoth, M.; Amani, J. A.; Weikert, S.; Hofsss, H.; Thakur, S.; Maiti, K.

    2014-09-15

    We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25?eV and a fluence of approximately 5??10{sup 14?}cm{sup ?2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6??6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.

  13. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  14. Evaluation of CALPUFF nitrogen deposition modeling in the Chesapeake Bay Watershed Area using NADP data

    SciTech Connect (OSTI)

    Garrison, M.; Mayes, P.; Sherwell, J.

    1998-12-31

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. This paper discusses the results of an evaluation of predicted nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland, Wye and White Rock. Underprediction of wet deposition rates is investigated through the use of sensitivity and diagnostic evaluations of model performance. A suggested change to the calculation of NO{sub x} transformation rates involving an alternative specification of minimum NO{sub x} concentrations was made to CALPUFF and the performance evaluation was re-done. Results of the new evaluation show significantly improved model performance, and therefore the modification is tentatively proposed for use in further applications of CALPUFF to the assessment of nitrogen deposition in the Chesapeake Bay watershed.

  15. Nitrogen dioxide and respiratory illness in children. Part I: Health outcomes

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-06-01

    We have carried out a prospective cohort study to test the hypothesis that exposure to nitrogen dioxide increases the incidence and severity of respiratory infections during the first 18 months of life. Between January 1988 and June 1990, 1,315 infants were enrolled into the study at birth and followed with prospective surveillance for the occurrence of respiratory infections and monitoring of nitrogen dioxide concentrations in their homes. The subjects were healthy infants from homes without smokers; they were selected with stratification by type of cooking stove at a ratio of four to one for gas and electric stoves. Illness experience was monitored by a daily diary of symptoms completed by the mother and a telephone interview conducted every two weeks. Illnesses with wheezing or wet cough were classified as involving the lower respiratory tract; all other respiratory illnesses were designated as involving the upper respiratory tract. Exposure to nitrogen dioxide was estimated by two-week average concentrations measured in the subjects' bedrooms with passive samplers. This analysis is limited to the 1,205 subjects completing at least one month of observation; of these, 823 completed the full protocol, contributing 82.8% of the total number of days during which the subjects were under observation. Incidence rates for all respiratory illnesses, all upper respiratory illness, all lower respiratory illnesses, and lower respiratory illness further divided into those with any wheezing, or wet cough without wheezing, were examined within strata of nitrogen dioxide exposure at the time of the illness, nitrogen dioxide exposure during the prior month, and type of cooking stove. Consistent trends of increasing illness incidence rates with increasing exposure to nitrogen dioxide were not evident for either the lagged or unlagged exposure variables.

  16. Institute of Laboratory Animal Resources annual progress report, January 1-December 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    ILAR serves as a coordinating agency and a national and international resource for compiling and disseminating information on laboratory anaimals, promoting education, planning and conducting conferences and symposia, surveying facilities and resources, upgrading laboratory animal resources, and promoting high quality, humane care of laboratory animals in the US. This report discusses activities conducted in 1981, including committees, a task force on Ectromelia, and the Animal Models and Genetic Stocks Information Exchange Program. (ACR)

  17. Modifying the response of Ehrlich ascites tumor cells to nitrogen mustard

    Office of Scientific and Technical Information (OSTI)

    (HN/sub 2/) by vincristine, Ca and liposomes (Conference) | SciTech Connect Conference: Modifying the response of Ehrlich ascites tumor cells to nitrogen mustard (HN/sub 2/) by vincristine, Ca and liposomes Citation Details In-Document Search Title: Modifying the response of Ehrlich ascites tumor cells to nitrogen mustard (HN/sub 2/) by vincristine, Ca and liposomes Though vincristine (0.5mg/kg) has no significant carcinostatic effect on Ehrlich ascites tumor cells, it does modify the

  18. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Authors: Goldman, N ; Bastea, S Publication Date: 2014-07-31 OSTI Identifier: 1150034 Report Number(s): LLNL-PROC-658263 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 15th International Detonation

  19. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    SciTech Connect (OSTI)

    Miami University: Dr. Lei L. Kerr Wright State University: Dr. David C. Look and Dr. Zhaoqiang Fang

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  20. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxide Emission Standards, Model Years 2017-2025 | Department of Energy 5: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases

  1. First-principles study on the interaction of nitrogen atom with ?uranium: From surface adsorption to bulk diffusion

    SciTech Connect (OSTI)

    Su, Qiulei; Deng, Huiqiu E-mail: hqdeng@gmail.com; Xiao, Shifang; Li, Xiaofan; Hu, Wangyu; Ao, Bingyun; Chen, Piheng

    2014-04-28

    Experimental studies of nitriding on uranium surfaces show that the modified layers provide considerable protection against air corrosion. The bimodal distribution of nitrogen is affected by both its implantation and diffusion, and the diffusion of nitrogen during implantation is also governed by vacancy trapping. In the present paper, nitrogen adsorption, absorption, diffusion, and vacancy trapping on the surface of and in the bulk of ?uranium are studied with a first-principles density functional theory approach and the climbing image nudged elastic band method. The calculated results indicate that, regardless of the nitrogen coverage, a nitrogen atom prefers to reside at the hollow1 site and octahedral (Oct) site on and below the surface, respectively. The lowest energy barriers for on-surface and penetration diffusion occur at a coverage of 1/2 monolayer. A nitrogen atom prefers to occupy the Oct site in bulk ?uranium. High energy barriers are observed during the diffusion between neighboring Oct sites. A vacancy can capture its nearby interstitial nitrogen atom with a low energy barrier, providing a significant attractive nitrogen-vacancy interaction at the trapping center site. This study provides a reference for understanding the nitriding process on uranium surfaces.

  2. Permafrost carbonclimate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    SciTech Connect (OSTI)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbonnitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  3. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore » is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  4. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    SciTech Connect (OSTI)

    Jeon, Ju Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W.; Schaef, Herbert T.; Lutkenhaus, Jodie; Lemmon, John P.; Thallapally, Praveen K.; Nandasiri, Manjula I.; McGrail, B. Peter; Nune, Satish K.

    2014-05-28

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  5. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  6. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect (OSTI)

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  7. N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (late of Naperville, IL); Auciello, Orlando H. (Bolingbrook, IL); Carlisle, John A. (Plainfield, IL)

    2004-09-21

    An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 10.sup.19 atoms/cm.sup.3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.

  8. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for ...

  9. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    Highlights: Nitrogen release in digestate-amended soil depends on the digestate type. Overall N release is modulated by digestate mineral and mineralisable N contents. Microbial immobilisation does not influence overall release of digestate N in soil. Digestate physical properties and soil type interact to affect overall N recovery. High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  10. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems

    SciTech Connect (OSTI)

    Helton, Ashley; Poole, Geoffrey C.; Meyer, Judy; Wollheim, Wilfred; Peterson, Bruce; Mulholland, Patrick J; Bernhardt, Emily; Stanford, Jack; Arango, Clay; Ashkenas, Linda; Cooper, Lee W; Dodds, Walter; Gregory, Stanley; Hall, Robert; Hamilton, Stephen; Johnson, Sherri; McDowell, William; Potter, Jody; Tank, Jennifer; Thomas, Suzanne; Valett, H. Maurice; Webster, Jackson; Zeglin, Lydia

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.

  11. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron

    SciTech Connect (OSTI)

    D.N. Ruzic; M.J. Goeckner; Samuel A. Cohen; Zhehui Wang

    1999-06-01

    Energy distributions of N atoms in a hollow-cathode planar sputtering magnetron were obtained by use of optical emission spectroscopy. A characteristic line, N I 8216.3 , well-separated from molecular nitrogen emission bands, was identified. Jansson's nonlinear spectral deconvolution method, refined by minimization of {chi}w , was used to obtain the optimal deconvolved spectra. These showed nitrogen atom energies from 1 eV to beyond 500 eV. Based on comparisons with VFTRIM results, we propose that the energetic N atoms are generated from N2+ ions after these ions are accelerated through the sheath and dissociatively reflect from the cathode.

  12. Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures

    DOE Patents [OSTI]

    Laverman, Royce J. (South Holland, IL); Lai, Ban-Yen (Hinsdale, IL)

    1993-01-01

    Apparatus and methods for cooling high temperature superconducting materials (HTSC) to superconductive temperatures within the range of 27.degree. K. to 77.degree. K. using a mixed refrigerant consisting of liquefied neon and nitrogen containing up to about ten mole percent neon by contacting and surrounding the HTSC material with the mixed refrigerant so that free convection or forced flow convection heat transfer can be effected.

  13. The role of plants and animals in isolation barriers at Hanford, Washington

    SciTech Connect (OSTI)

    Link, S.O.; Cadwell, L.L.; Petersen, K.L.; Sackschewsky, M.R.; Landeen, D.S.

    1995-09-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal, and human intrusion; and wind and water erosion on buried wastes, and in minimizing the emanation of noxious gases. Plants will serve to minimize drainage and erosion, but present,the potential for growing roots into wastes. Animals burrow holes into the soil, and the burrow holes could allow water to preferentially drain into the waste. They also bring soil to the surface which, if wastes are incorporated, could present a risk for the dispersion of wastes into the environment. This report reviews work done to assess the role of plants and animals in isolation barriers at Hanford. It also reviews work done to understand the potential effects from climate change on the plants and animals that may inhabit barriers in the future.

  14. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Patents [OSTI]

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  15. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Patents [OSTI]

    Gambhir; Sanjiv (Portola Valley, CA), Pritha; Ray (Mountain View, CA)

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  16. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Patents [OSTI]

    Gambhir, Sanjiv (Portola Valley, CA); Pritha, Ray (Mountain View, CA)

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  17. 6.19 MicroPET Enhances Studies of Small Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is now a standard method for studying the metabolism of the brain, the heart, and cancer. ... R.W., Meadors, K., Phelps, M.E., "Brain imaging in small animals with MircoPET," ...

  18. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect (OSTI)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  19. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect (OSTI)

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  20. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride

    SciTech Connect (OSTI)

    Sonoda, Ken'ichiro Tsukuda, Eiji; Tanizawa, Motoaki; Yamaguchi, Yasuo

    2015-03-14

    Hydrogen incorporation into nitrogen vacancies in silicon nitride and its effects on electron trap level are analyzed using simulation based on density functional theory with temperature- and pressure-dependent hydrogen chemical potential. If the silicon dangling bonds around a nitrogen vacancy are well separated each other, hydrogen incorporation is energetically stable up to 900?C, which is in agreement with the experimentally observed desorption temperature. On the other hand, if the dangling bonds strongly interact, the incorporation is energetically unfavorable even at room temperature because of steric hindrance. An electron trap level caused by a nitrogen vacancy becomes shallow by the hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a silicon-silicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment, in which reduced hydrogen content in silicon nitride shows superior charge retention characteristics.

  1. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolongedmore » 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.« less

  2. Electrical signal analysis to assess the physical condition of a human or animal

    DOE Patents [OSTI]

    Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.

    2010-06-15

    The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.

  3. ATHENA desktop human "body" could reduce need for animal drug tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATHENA could reduce need for animal drug tests ATHENA desktop human "body" could reduce need for animal drug tests ATHENA project team is developing four human organ constructs that are based on a significantly miniaturized platform. March 26, 2014 Los Alamos National Laboratory scientist Rashi Iyer leads the ATHENA organ project. Los Alamos National Laboratory scientist Rashi Iyer leads the ATHENA organ project. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email

  4. Fuel Cell Animation - Fuel Cell Stack (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack (Text Version) Fuel Cell Animation - Fuel Cell Stack (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell stack with electrical circuit. Fuel cell: The amount of power produced by a fuel cell depends on several factors, including fuel cell type, cell size, temperature at which it operates, and pressure at which the gases are supplied to the cell. A single fuel cell

  5. Title A Review of Transuranic Elements in Soils, Plants, and Animals Copyright Issue

    National Nuclear Security Administration (NNSA)

    A Review of Transuranic Elements in Soils, Plants, and Animals Copyright Issue Author Price, Keith R. 101674 Document Date 1/1/73 Document Type Published Article (scientific or technical journals) Recipients Public ERC Index number 05.09.718 Box Number 1651-1 NTSEIS ADMINISTRATIVE RECORD A Review of Transuranic Elements in Soils, Plants, and Animals 1 NTSEIS ADMINISTRATIVE RECORD -;|B Keith R. Price 5 ABSTRACT Published information concerning the distribution and fate erf neptunium, plutonium,

  6. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  7. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  8. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show (Northbrook, IL); Li, Dong (Evanston, IL); Chung, Yin-Wah (Wilmette, IL); Sproul, William D. (Palantine, IL); Chu, Xi (Evanston, IL); Barnett, Scott A. (Evanston, IL)

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  9. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show (Northbrook, IL); Li, Dong (Evanston, IL); Chung, Yip-Wah (Wilmette, IL); Sproul, William D. (Palantine, IL); Chu, Xi (Evanston, IL); Barnett, Scott A. (Evanston, IL)

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  10. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot Don plant in Pocatello, Idaho, repaired boiler feed water pumps such as the one pictured above, and revised boiler operating practices to reduce steam venting by 17 million pounds annually. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Industrial Technologies Program Case Study Key Findings * Significant energy savings can be achieved without large capital expenditures. * While the J.R. Simplot company had an active energy

  11. Coal fly ash and phospho-gypsum mixture as an amendment to improve rice paddy soil fertility

    SciTech Connect (OSTI)

    Lee, Y.B.; Ha, H.S.; Lee, C.H.; Kim, P.J.

    2008-04-15

    Rice is a plant that requires high levels of silica (Si). As a silicate NOD source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor-gypsum (hereafter, gypsum, 50%, wt wt{sup -1}), a by-product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha{sup -1} were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg{sup -1} following the application of 60 Mg ha{sup -1} but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30-40 Mg ha{sup -1} in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.

  12. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  13. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-03-24

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trendmore » of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.« less

  14. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    SciTech Connect (OSTI)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-29

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Erguns equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.

  15. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    SciTech Connect (OSTI)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-03-24

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbonnitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbonnitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 2069% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.

  16. Analytical investigation of electrical breakdown properties in a nitrogen-SF{sub 6} mixture gas

    SciTech Connect (OSTI)

    Uhm, Han S.; Byeon, Yong S.; Song, Ki B.; Choi, Eun H.; Ryu, Han-Yong; Lee, Jaimin

    2010-11-15

    The electrical breakdown properties in nitrogen gas mixed with SF{sub 6} are analytically investigated in this article by making use of the ionization and attachment coefficients of the mixed gas. The ionization coefficients of nitrogen and SF{sub 6} gas are obtained in terms of the electron temperature T{sub e} by assuming a Maxwellian distribution of the electron energy. The attachment coefficient of SF{sub 6} gas is also obtained in terms of the gas temperature T{sub e}. An algebraic equation is obtained, relating explicitly the electron breakdown temperature T{sub b} in terms of the SF{sub 6} mole fraction {chi}. It was found from this equation that the breakdown temperature T{sub b} increases from approximately 2 to 5.3 eV as the mole fraction {chi} increases from zero to unity. The breakdown temperature T{sub b} of the electrons increases very rapidly from a small value and then approaches 5.3 eV slowly as the SF{sub 6} mole fraction increases from zero to unity. This indicates that even a small mole fraction of SF{sub 6} in the gas dominates the electron behavior in the breakdown system. The breakdown electric field E{sub b} derived is almost linearly proportional to the breakdown electron temperature T{sub b}. The experimental data agree remarkably well with the theoretical results. Therefore, it is concluded that even a small fraction of SF{sub 6} gas dominates nitrogen in determining the breakdown field. In this context, nearly 25% of the SF{sub 6} mole fraction provides a reasonable enhancement of the breakdown field for practical applications.

  17. ORIGIN OF THE UNUSUALLY LOW NITROGEN ABUNDANCES IN YOUNG POPULATIONS OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory, Mitaka-shi, Tokyo 181-8588 (Japan)

    2010-10-01

    It is a longstanding problem that H II regions and very young stellar populations in the Large Magellanic Cloud (LMC) have nitrogen abundances ([N/H]) that are a factor of {approx}7 lower than the solar value. We here discuss a new scenario in which the observed unusually low nitrogen abundances can be closely associated with recent collisions and subsequent accretion of H I high velocity clouds (HVCs) that surround the Galaxy and have low nitrogen abundances. We show that if the observed low [N/H] is limited to very young stars with ages less than {approx}10{sup 7} yr, then the collision/accretion rate of the HVCs onto the LMC needs to be {approx}0.2 M{sub sun} yr{sup -1} (corresponding to the total HVC mass of 10{sup 6}-10{sup 7} M{sub sun}) to dilute the original interstellar medium (ISM) before star formation. The required accretion rate means that even if the typical mass of HVCs accreted onto the LMC is {approx}10{sup 7} M{sub sun}, the Galaxy needs to have {approx}2500 massive HVCs within the LMC's orbital radius with respect to the Galactic center. The rather large number of required massive HVCs drives us to suggest that the HVCs are not likely to efficiently dilute the ISM of the LMC and consequently lower the [N/H]. We thus suggest the transfer of gas with low [N/H] from the Small Magellanic Cloud to the LMC as a promising scenario that can explain the observed low [N/H].

  18. Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lherbier, Aurélien; Liang, Liangbo; Charlier, Jean -Christophe; Meunier, Vincent

    2015-09-03

    Electronic structure methods are combined into a multiscale framework to investigate the electronic transport properties of recently synthesized pristine and nitrogen-doped graphene nanowiggles and their heterojunctions deposited on a substrate. The real-space Kubo-Greenwood transport calculations reveal that charge carrier mobilities reach values up to 1,000 cm2 V–1 s–1 as long as the amount of substrate impurities is sufficiently low. Owing to their type-II band alignment, atomically precise heterostructures between pristine and N-doped graphene nanowiggles are predicted to be excellent candidates for charge carrier separation devices with potential in photoelectric and photocatalytic water splitting applications.

  19. Nitrogen effects on crystallization kinetics of amorphous TiOxNy thin films

    SciTech Connect (OSTI)

    Hukari, Kyle; Dannenberg, Rand; Stach, E.A.

    2001-03-30

    The crystallization behavior of amorphous TiOxNy (x>>y) thin films was investigated by in-situ transmission electron microscopy. The Johnson-Mehl-Avrami-Kozolog (JMAK) theory is used to determine the Avrami exponent, activation energy, and the phase velocity pre-exponent. Addition of nitrogen inhibits diffusion, increasing the nucleation temperature, while decreasing the growth activation energy. Kinetic variables extracted from individual crystallites are compared to JMAK analysis of the fraction transformed and a change of 6 percent in the activation energy gives agreement between the methods. From diffraction patterns and index of refraction the crystallized phase was found to be predominantly anatase.

  20. Development of Nitrogen Oxide Closed System in the Future Reprocessing Process

    SciTech Connect (OSTI)

    Takaoku, Y.; Hattori, I.; Watanabe, T.; Moriya, N.; Sumida, Y.; Araya, S.; Homma, S.; Suzuki, Y.; Akai, Y.

    2007-07-01

    An aqueous reprocessing for spent fuels generates much wastes mainly including sodium nitrate as secondary waste, which has some kinds of difficulties in disposal. A process with salt-free reagent and complete recycle of nitric acid would resolve the problem, but development for such process is not easy. We propose the treatment system of sodium nitrate waste, which are termed 'Nitrogen Oxide Closed System' (NCS) as mentioned below. The system decomposes nitrate ion, and enables reuse of sodium in sodium nitrate with no generation of sodium nitrate waste. Accordingly, the NCS system allows the use of sodium salt reagents, and generation of excess acid in a reprocessing process. (authors)

  1. Chemically durable nitrogen containing phosphate glasses useful for sealing to metals

    DOE Patents [OSTI]

    Day, Delbert E. (Rolla, MO); Wilder, Jr., James A. (Albuquerque, NM)

    1984-01-01

    The chemical durability of alkali phosphate glasses is improved by incorporation of up to 23 weight percent of nitrogen. A typical phosphate glass contains: 10 to 60 mole % of Li.sub.2 O, Na.sub.2 O or K.sub.2 O; 5-40 mole % of BaO or CAO; 0-1 to 10 mole % of Al.sub.2 O.sub.3 ; and 40-70 mole % of P.sub.2 O.sub.5. Nitrides, such as AlN, are the favored additives.

  2. Quantum Hall effect in HgTe quantum wells at nitrogen temperatures

    SciTech Connect (OSTI)

    Kozlov, D. A. Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.; Weishupl, S.; Krupko, Y.; Portal, J.-C.

    2014-09-29

    We report on the observation of quantized Hall plateaus in a system of two-dimensional Dirac fermions, implemented in a 6.6?nm HgTe quantum well at magnetic fields up to 34?T at nitrogen temperatures. The activation energies determined from the temperature dependence of the longitudinal resistivity are found to be almost equal for the filling factors ? of 1 and 2. This indicates that the large values of the g-factor (about 3040) remain unchanged at very strong magnetic fields.

  3. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect (OSTI)

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  4. Correction of MRI-induced geometric distortions in whole-body small animal

    Office of Scientific and Technical Information (OSTI)

    PET-MRI (Journal Article) | SciTech Connect Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI Citation Details In-Document Search Title: Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is

  5. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1984-03-01

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, our data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials.

  6. Regeneration of FGD waste liquors: Production of ammonium and potassium sulfate mixed fertilizer. Quarterly technical report, July 1993--September 1993

    SciTech Connect (OSTI)

    Randolph, A.D.; Kwon, T.M.

    1993-12-01

    Regeneration of the Fe{sup II}-EDTA scrubbing liquors for simultaneous removal of SO{sub 2} and NO{sub x} in flue gas involves removing the nitrogen-sulfur (N-S) compounds accumulated in the liquor. In this paper, the authors investigated a simple regeneration process which selectively precipitates the N-S compounds as potassium salts and then hydrolyzes them to yield ammonium/potassium sulfate as a marketable byproduct. They believe this is the first report on precipitation and hydrolysis characteristics of the N-S compounds in actual waste scrubbing liquor. Precipitation of the N-S compounds was achieved by adding K{sub 2}SO{sub 4} to the scrubbing liquor. Effects of the amount of added K{sub 2}SO{sub 4} on the amount of removed N-S compounds, precipitated crystals, and the potassium left over in the scrubbing liquor were studied. Hydrolysis of the precipitated N-S compounds to ammonium sulfate was performed in a sulfuric acid environment. Effects of acidity, concentration of N-S compounds, and temperature on the hydrolysis are discussed. Analysis of the observed hydrolysis pattern showed that the reaction proceeded following first order kinetics in terms of N-S compound concentration.

  7. Terra nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment. Industrial Technologies Program (ITP) Save Energy Now Case Study.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen plant in Verdigris, Oklahoma. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Industrial Technologies Program Case Study Benefits * Saves approximately $3.5 million annually * Achieves annual natural gas savings of 497,000 MMBtu * Achieves a simple payback of 11 months Key Findings * Accurately quantifying potential energy savings can provide renewed impetus to reduce energy use. * Although Terra Nitrogen actively managed

  8. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  9. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  10. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  11. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    SciTech Connect (OSTI)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-08-31

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO{sub 2} laser to resonance with {sup 14}NH{sub 3} molecules [the 9R(30) laser line] or with {sup 15}NH{sub 3} molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the {sup 15}NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N{sub 2}, O{sub 2}, Ar) and the ammonia pressure were obtained. In the limit of low NH{sub 3} pressures (0.5-2 Torr), the dissociation selectivity {alpha}(15/14) for {sup 15}N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  12. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect (OSTI)

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10?ppm.

  13. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metalgraphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: Nitrogen defects changed the bonding mechanism between metal and graphene. Bonding character and binding results were investigated using DFT calculations. Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  14. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate

    SciTech Connect (OSTI)

    Yang Weijuan; Zhou Junhu; Liu Maosheng; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2007-09-15

    Shenmu bituminous coal with 4% sodium acetate added was used to investigate the characteristics of combustion and nitrogen oxide (NOx) release in a fixed bed reactor heated by a tube furnace. The composition of the flue gas was analyzed to investigate the effects of sodium acetate on the combustion process and NOx emission. The experiments were carried out in a partial reductive atmosphere and a strong oxidative atmosphere. The O{sub 2} valley value in the partial reductive atmosphere was reduced by the added sodium acetate. Sodium acetate accelerated the combustion and shortened the combustion process. The experimental results showed that the emissions of NO, NO{sub 2}, and N{sub 2}O were affected by the reacting atmosphere and the combustion temperature. In the strong oxidative atmosphere, sodium acetate resulted in a slight NOx reduction. In the partial reductive atmosphere, sodium acetate reduced both the peak value of NO concentration and the total NO emission significantly. An over 30% NOx reduction efficiency was achieved at 900{sup o}C in the partial reductive atmosphere, which decreased with the increase in temperature. Sodium acetate was decomposed into hydrocarbon radicals and sodium hydroxide, which can both reduce NOx emissions due to their special reactions with the nitrogen component. 17 refs., 11 figs., 2 tabs.

  15. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  16. Evidence for the formation of nitrogen-rich precious metal nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veith, Gabriel M; Lupini, Andrew R; Baggetto, Loic; Browning, Jim; Keum, Jong Kahk; Villa, Alberto; Prati, Laura; Papandrew, Alexander B; Goenaga Jimenez, Gabriel A; Mullins, David R; et al

    2014-01-01

    We report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt7.3N and Pd2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesis of these materials alongmore » with experimental evidence of the composition, oxidation state, and growth modes. The catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less

  17. Nitrogen availability as a control mechanism of secondary succession within a semiarid shrubland ecosystem

    SciTech Connect (OSTI)

    Redente, E.F.; McLendon, T.

    1992-09-25

    Three experiments were conducted within a semiarid shrubland to test the role of nitrogen availability as a control mechanism in secondary succession. Secondary succession patterns were documented for seven years and effects of increased and decreased N availability levels, fumigation, and competition by early-seral species were tested. Differential responses by seral species were determined and related to successional patterns. Nitrogen availability was found to be a primary mechanism controlling the rate of succession. Relative growth rate was an important factor determining which species initially dominated and N availability became the primary control factor by the third year. As N availability increased, the rate of succession decreased. Conversely, as N availability was decreased, the rate of succession increased. The abundance of annuals was increased and abundance of perennials decreased by increased N availability. Tissue N concentration was related to lifeform and seral position, and these relationships were important in the transition from early- to mid-seral stages. Decomposer subsystem dynamics were correlated with seral community dynamics. The effect of fumigation was minimized by initially planting with late-seral species. A conceptual model of secondary succession is presented based on N availability, relative growth rate, lifeform, and decomposition dynamics.

  18. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  19. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism

    ScienceCinema (OSTI)

    Shiller, Robert J [Yale University

    2010-09-01

    In his lecture, Shiller discusses the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. The book discusses how ?animal spirits,? or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today?s global financial crisis.

  20. Livestock grazing for management of reclaimed land at Navajo Mine: Animal response

    SciTech Connect (OSTI)

    Gamble, D.C.; Gadzia, K.L.; Raisbeck, M.F.

    1997-12-31

    Livestock responses dining grazing of reclaimed land were monitored at the Navajo Mine since 1994. The Navajo Mine Grazing Management Program (GNP) began in 1991 to prepare for bond release and return of reclaimed land to the Navajo Nation by demonstrating the ability of the land to sustain the post-mining land use of livestock grazing. Local Navajos, whose livestock are used in the GMP, are interested in the ability of the land to sustain their livestock. Sustainable livestock grazing implies the ability of animals to thrive, successfully reproduce and maintain the health of the land. Daily care and monitoring of livestock health was carried out by herders hired by the mining company. General animal health parameters including blood selenium levels were monitored quarterly. Livestock responses to grazing reclaimed land have been largely positive. Cows have produced healthy offspring and owners indicate satisfaction with calf size, and overall performance of the cows. Selenium and other blood testing parameters indicate no adverse effect on animal health to date. Hazards associated with reclamation and ongoing mining activities are important considerations for lands being reclaimed for livestock grazing as a post-mining land use and must be monitored carefully during any grazing program. Preliminary results indicate that planned grazing by cattle on reclaimed land at Navajo Mine is feasible and does not adversely affect animal health.

  1. Investigation of exposure to Extremely Low Frequency (ELF) magnetic and electric fields: Ongoing animal studies

    SciTech Connect (OSTI)

    Anderson, L.E.

    1994-03-01

    There is now convincing evidence from a large number of laboratories, that exposure to extremely low frequency (ELF) magnetic and electric fields produces biological responses in animals. Many of the observed effects appear to be directly or indirectly associated with the neural or neuroendocrine systems. Such effects include increased neuronal excitability, chemical and hormonal changes in the nervous system, altered behavioral responses, some of which are related to sensing the presence of the field, and changes in endogenous biological rhythms. Additional indices of general physiological status appear relatively unaffected by exposure, although effects have occasionally been described in bone growth and fracture repair, reproduction and development, and immune system function. A major current emphasis in laboratory research is to determine whether or not the reported epidemiological studies that suggest an association between EMF exposure and risk of cancer are supported in studies using animal models. Three major challenges exist for ongoing research: (1) knowledge about the mechanisms underlying observed bioeffects is incomplete, (2) researchers do not as yet understand what physical aspects of exposure produce biological responses, and (3) health consequences resulting from ELF exposure are unknown. Although no animal studies clearly demonstrate deleterious effects of ELF fields, several are suggestive of potential health impacts. From the perspective of laboratory animal studies, this paper will discuss biological responses to ELF magnetic and/or electric field exposures.

  2. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  3. Study of nitrogen incorporation into GaInNAs: The role of growth temperature in molecular beam epitaxy

    SciTech Connect (OSTI)

    Korpijaervi, V.-M.; Aho, A.; Tukiainen, A.; Laakso, A.; Guina, M.; Laukkanen, P.; Tuominen, M.

    2012-07-15

    GaInNAs has an important impact on developing GaAs-based optoelectronics and multijunction solar cells, but the complex nature of the nitrogen incorporation into GaInAs is still not fully understood. By combining x-ray diffraction, photoluminescence, reflection high-energy electron diffraction, and photoelectron spectroscopy measurements, we show that nitrogen incorporation is enhanced with increasing growth temperature in the range of 300-450 Degree-Sign C. We study the growth front and show that the surface reconstruction is (1 Multiplication-Sign 3) regardless of growth temperature in this range. The enhanced nitrogen incorporation can be modeled as a thermally activated process with activation energy of about 0.1 eV.

  4. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-11

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowgroundmore » respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model–observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.« less

  5. Modeling of ns and ps laser-induced soft X-ray sources using nitrogen gas puff target

    SciTech Connect (OSTI)

    Vrba, P.; Vrbova, M.; Zakharov, S. V.

    2014-07-15

    Gas puff laser plasma is studied as a source of water window radiation with 2.88?nm wavelength, corresponding to quantum transition 1s{sup 2} ? 1s2p of helium-like nitrogen ions. Spatial development of plasma induced by Nd:YAG laser beam is simulated by 2D Radiation-Magneto-Hydro-Dynamic code Z*. The results for nitrogen gas layer (0.72?mm thickness, 1?bar pressure) and two different laser pulses (600 mJ/7?ns and 525 mJ/170 ps), corresponding to the experiments done in Laser Laboratory Gottingen are presented.

  6. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect (OSTI)

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  7. Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF{sub 6} plasma treatment

    SciTech Connect (OSTI)

    Osterkamp, Christian; Lang, Johannes; Scharpf, Jochen; Mller, Christoph; McGuinness, Liam Paul; Naydenov, Boris Jelezko, Fedor; Diemant, Thomas; Behm, R. Jrgen

    2015-03-16

    Here we report the fabrication of stable, shallow (<5?nm) nitrogen-vacancy (NV) centers in diamond by nitrogen delta doping at the last stage of the chemical vapor deposition growth process. The NVs are stabilized after treating the diamond in SF{sub 6} plasma, otherwise the color centers are not observed, suggesting a strong influence from the surface. X-ray photoelectron spectroscopy measurements show the presence of only fluorine atoms on the surface, in contrast to previous studies, indicating very good surface coverage. We managed to detect hydrogen nuclear magnetic resonance signal from protons in the immersion oil, revealing a depth of the NVs of about 5?nm.

  8. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    SciTech Connect (OSTI)

    Smith, Stanley, D.; Nowak, Robert S.; Fenstermaker, Lynn, F.; Young, Michael,H.

    2007-11-30

    In order to anticipate the effects of global change on ecosystem function, it is essential that predictive relationships be established linking ecosystem function to global change scenarios. The Mojave Desert is of considerable interest with respect to global change. It contains the driest habitats in North America, and thus most closely approximates the worlds great arid deserts. In order to examine the effects of climate and land use changes, in 2001 we established a long-term manipulative global change experiment, called the Mojave Global Change Facility. Manipulations in this study include the potential effects of (1) increased summer rainfall (75 mm over three discrete 25 mm events), (2) increased nitrogen deposition (10 and 40 kg ha-1), and (3) the disturbance of biological N-fixing crusts . Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypotheses include (1) increased summer rainfall will significantly increase plant production through an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plant production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plant and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most processes responded slowly or in a lag fashion to N-deposition and with no significant response to crust disturbance. Therefore, the primary objectives of this renewal grant were to: (1) continue ongoing measurements of soil and plant parameters that assess primary treatment responses; (2) address the potential heterogeneity of soil properties and (3) initiate a new suite of measurements that will provide data necessary for scaling/modeling of whole-plot to ecosystem-level responses. Our experimental approach included soil plant-water interactions using TDR, neutron probe, and miniaturized soil matric potential and moisture sensors, plant ecophysiological and productivity responses to water and nitrogen treatments and remote sensing methodologies deployed on a radio control platform. We report here the most significant findings of our study.

  9. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    SciTech Connect (OSTI)

    Sode, M. Schwarz-Selinger, T.; Jacob, W.; Kersten, H.

    2014-11-21

    In the afterglow of an inductively coupled N{sub 2} plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time t{sub wN} from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. t{sub wN} is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10?Pa. For this conditions also the internal plasma parameters electron density n{sub e} and electron temperature T{sub e} are determined with the Langmuir probe and the rotational temperature T{sub rot}{sup N{sub 2}} of N{sub 2} is determined with the optical emission spectroscopy. For T{sub rot}{sup N{sub 2}}, a procedure is presented to evaluate the spectrum of the transition ?{sup ?}=0??{sup ?}=2 of the second positive system (C{sup 3}?{sub u}?B{sup 3}?{sub g}) of N{sub 2}. With this method, a gas temperature of 610?K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31?ms for 3?Pa to 0.82?ms for 10?Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured t{sub wN.} The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability ?{sub N} of atomic nitrogen on stainless steel was derived from t{sub wN} and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths.

  10. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect (OSTI)

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  11. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA)

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  12. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity

    SciTech Connect (OSTI)

    Lee, Jonathan C.; Cui, Shanying; Zhang, Xingyu; Russell, Kasey J.; Magyar, Andrew P.; Hu, Evelyn L.; Bracher, David O.; Ohno, Kenichi; McLellan, Claire A.; Alemn, Benjamin; Bleszynski Jayich, Ania; Andrich, Paolo; Awschalom, David; Aharonovich, Igor

    2014-12-29

    The negatively charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ?24?000 and mode volume V???0.47(?/n){sup 3} as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ?20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters.

  13. Epitaxial two-dimensional nitrogen atomic sheet in GaAs

    SciTech Connect (OSTI)

    Harada, Yukihiro, E-mail: y.harada@eedept.kobe-u.ac.jp; Yamamoto, Masuki; Baba, Takeshi; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-01-27

    We have grown an epitaxial two-dimensional nitrogen (N) atomic sheet in GaAs by using the site-controlled N ?-doping technique. We observed a change of the electronic states in N ?-doped GaAs from the isolated impurity centers to the delocalized impurity band at 1.49?eV with increasing N-doping density. According to the excitation-power- and temperature-dependent photoluminescence (PL) spectra, the emission related to localized levels below the impurity band edge was dominant at low excitation power and temperature, whereas the effects of the localized levels can be neglected by increasing the excitation power and temperature. Furthermore, a clear Landau shift of the PL-peak energy was observed at several Tesla in the Faraday configuration, in contrast to the case in the impurity limit.

  14. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198{trademark}

    SciTech Connect (OSTI)

    Klien, J.E.; Wermer, J.R.

    1995-01-01

    Glove box clean-up experiments were conducted in a nitrogen glove box using palladium deposited on zeolite (Pd/z) and a SAES St 198{trademark} getter as tritium stripping materials. Protium/deuterium samples spiked with tritium were released into a 620 liter glove box to simulate tritium releases in a 10,500 liter glove box. The Pd/z and the SAES St 198{trademark} stripper beds produced a reduction in tritium activity of approximately two to three orders of magnitude and glove box clean-up was limited by a persistent background tritium activity level. Attempts to significantly reduce the glove box activity to lower levels without purging were unsuccessful.

  15. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198

    SciTech Connect (OSTI)

    Klein, J.E.; Wermer, J.R.

    1995-10-01

    Glove box clean-up experiments were conducted in a nitrogen glove box using palladium deposited on zeolite (Pd/z) and a SAES St 198 getter as tritium stripping materials. Protium/deuterium samples spiked with tritium were released into a 620 liter glove box to simulate tritium releases in a 10,500 liter glove box. The Pd/z and the SAES St 198 stripper beds produced a reduction in tritium activity of approximately two to three orders of magnitude and glove box clean-up was limited by a persistent background tritium activity level. Attempts to significantly reduce the glove box activity to lower levels without purging were unsuccessful. 3 refs., 6 figs., 1 tab.

  16. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect (OSTI)

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  17. Draft Genome sequence of Frankia sp. Strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida

    SciTech Connect (OSTI)

    Sen, Arnab; Beauchemin, Nicholas; Bruce, David; Chain, Patrick S. G.; Chen, Amy; Davenport, Karen W.; Deshpande, Shweta; Detter, J. Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne A.; Gtari, Maher; Han, James; Huntemann, Marcel; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Markowitz, Victor; Mavromatis, K; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Wishart, Jessie; Tisa, Louis S.

    2013-01-01

    Members of actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. stain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.

  18. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-05-18

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen to about 40%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  19. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir -- East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-03-23

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 50% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen back to about 42%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  20. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  1. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, Ian C. (Bend, OR); Baker, Richard W. (Bend, OR)

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  2. Reprocessing of ices in turbulent protoplanetary disks: Carbon and nitrogen chemistry

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri

    2014-08-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon- and nitrogen-bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r ? 30 AU because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) in two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The former enhances the COMs formation in the disk surface, while the latter suppresses it in the midplane. Then, when mixing is strong, COMs are predominantly formed in the disk surface, while their parent molecules are (re)formed in the midplane. This cycle expands the COMs distribution both vertically and radially outward compared with that in the non-turbulent model. We derive the timescale of the sink mechanism by which CO and N{sub 2} are converted to less volatile molecules to be depleted from the gas phase and find that the vertical mixing suppresses this mechanism in the inner disks.

  3. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    SciTech Connect (OSTI)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen; Brooks, Paul; Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  4. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect (OSTI)

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  5. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  6. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1983-10-01

    Data have been presented for 35 elements determined by INAA for NBS oyster tissue (SRM 1566) and for 38 elements determined by INAA and RNAA for IAEA animal bone (H-5). The experimental data showed excellent agreement with published values wherever the comparison exists. Additional trace-element data in the ppb range have been presented for the elements Sc, Sb, Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W and Th in NBS oyster tissue. Also, additional trace-element data for IAEA animal bone (H-5) in the ppb range for the elements Al, Sc, Co, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, lu, Hf, Ta and Th have been presented.

  7. Animal feed compositions containing phytase derived from transgenic alfalfa and methods of use thereof

    DOE Patents [OSTI]

    Austin-Phillips, Sandra; Koegel, Richard G.; Straub, Richard J.; Cook, Mark

    2001-01-01

    A value-added composition of matter containing plant matter from transgenic alfalfa which expresses exogenous phytase activity is disclosed. The phytase activity is a gene product of an exogenous gene encoding for phytase which has been stably incorporated into the genome of alfalfa plants. The transgenic alfalfa expresses phytase activity in nutritionally-significant amounts, thereby enabling its use in animal feeds to eliminate the need for phosphorous supplementation of livestock, poultry, and fish feed rations.

  8. Animal feed compositions containing phytase derived from transgenic alfalfa and methods of use thereof

    DOE Patents [OSTI]

    Austin-Phillips, Sandra; Koegel, Richard G.; Straub, Richard J.; Cook, Mark

    1999-01-01

    A value-added composition of matter containing plant matter from transgenic alfalfa which expresses exogenous phytase activity is disclosed. The phytase activity is a gene product of an exogenous gene encoding for phytase which has been stably incorporated into the genome of alfalfa plants. The transgenic alfalfa expresses phytase activity in nutritionally-significant amounts, thereby enabling its use in animal feeds to eliminate the need for phosphorous supplementation of livestock, poultry, and fish feed rations.

  9. Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Awake Animal Imaging at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E:

  10. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in LithiumSulfur Batteries

    SciTech Connect (OSTI)

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin; Abruna, Hector D.; He, Yang; Wang, Jiangwei; Mao, Scott X.; Xiao, Xingcheng

    2015-08-19

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  11. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  12. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cows milk, sheeps milk, goats milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  13. Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism

    SciTech Connect (OSTI)

    Shiller, Robert J.

    2010-03-02

    In his lecture, Shiller will discuss the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. Winner of the getAbstract International Book Award and the 2009 TIAA-CREF Paul A. Samuelson Award for Outstanding Scholarly Writing on Lifelong Financial Security, the book, which has the same title as Shiller's lecture, discusses how "animal spirits," or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today's global financial crisis. John Maynard Keynes coined the phrase "animal spirits" to describe the changing psychology that led to the Great Depression and the recovery from it. Like Keynes, Shiller and Akerlof believe that government intervention is necessary to overcome the adverse effects on the economy brought about by unruly and irrational human emotions. In his talk, Shiller will explain how "animal spirits" lead to adverse economic effects, and he will outline his insights on how the global economy can recover from its recent setbacks.

  14. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRWs calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  15. Meta-analysis of high-latitude nitrogen-addition and warming studies imply ecological mechanisms overlooked by land models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bouskill, N. J.; Riley, W. J.; Tang, J.

    2014-08-18

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differedmore » from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.« less

  16. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    SciTech Connect (OSTI)

    Dorne, J.L.C.M.; Fink-Gremmels, J.

    2013-08-01

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ? Principles of human and animal health risk assessment. ? Data gaps for each step of animal health risk assessment. ? Implications of animal risk assessment on human risk assessment. ? Future perspectives on chemical risk assessment.

  17. Simulation of coal and char nitrogen reactions in combustion. [Final report, September 1992--August 1993

    SciTech Connect (OSTI)

    Kumpaty, S.K.

    1993-10-01

    The observed rate of increase of N{sub 2}O (0.18% to 0.26% annually) is a matter of increasing concern both because N{sub 2}O is a greenhouse gas and has a major and unfavorable influence on the ozone layer (Weiss, 1981). The combustion contribution to the overall nitrous oxide budget is difficult to assess; yet the emission of N{sub 2}O from fluidized bed combustion (FBC) has been identified in the past few years as significant. It was concluded in the European workshop, 1988 that the emission level from a coal-fired fluidized bed boiler is 50--200 ppM but it is only 1--20 ppM in boilers equipped with other types of combustion devices. For this reason it is worthwhile to investigate the emissions from FBC more thoroughly. Gaseous fuels (Miller and Bowman, 1989), but the N{sub 2}O emissions under fluidized bed conditions is poorly understood. In fluidized bed combustion, N{sub 2}O can arise from homogeneous gas phase reactions involving amines and cyano species (Hiltunen et al, 1991) or it can be formed from heterogeneous reactions (eg. char oxidation). Removal of N{sub 2}O can be brought about by gas phase reactions or by catalytic or non-catalytic heterogeneous reduction on char/limestone. This work was carried out with an objective of enhancing the fundamental understanding of coal and char nitrogen reaction pathways in fluidized bed combustion environment. The formation and destruction of HCN and N{sub 2}O under variety of influential parameters were investigated. This simulation contained a nonisothermal single particle combustion in a preheated reactor and a gas phase reaction are designed to stimulate the nitrogen chemistry in a circulating fluidzied bed. The LSODE differential equation solver used for single particle combustion and the CHEMKIN package, developed by Sandia National Laboratories, was applied for gas phase reactions. This computational work was done as an exploratory research program under the solicitation of the DOE fossil energy utilization.

  18. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    SciTech Connect (OSTI)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.

    2015-05-01

    The use of ?-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope Bi is a nuclide that has found substantial use for targeted ?-therapy (TAT). The relatively unexplored aqueous chemistry of Bi?, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ??Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi? and the generator parent ion Ac?.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi? in the presence of the parent isotope Ac?. Among the four tested, Lpy was found to exhibit optimal Bi?-binding kinetics and complex stability. Lpy complexes Bi? more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi? over Ac?. Taken together, these data implicate Lpy as a valuable chelating agent for the delivery of Bi. Its selectivity for Bi? and rapid and stable labeling properties warrant further investigation and biological studies.

  19. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; et al

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilitiesmore » to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi³⁺ over Ac³⁺. Taken together, these data implicate Lpy as a valuable chelating agent for the delivery of ²¹³Bi. Its selectivity for Bi³⁺ and rapid and stable labeling properties warrant further investigation and biological studies.« less

  20. Development of technology in the production of fertilizers in ammoniation-granulation plants. Progress report No. 12, September 1980. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Work conducted to demonstrate procedures and equipment to conserve about 83% of fuel oil used for drying and generating steam in the ammoniation-granulation plants is reported. The general mechanism of granulation is examined. Conventional ammoniation-granulation plants are described and the new pipe-cross reactor system is described and schematics of their design are presented. Results of some demonstration tests reveal that an average of 785,000 Btu's per ton of production is eliminated with the installation of the TVA pipe-cross reactor process. It also reduces atmospheric emissions. Data on investment cost and payback period of the installation of a pipe-cross reactor in an existing TVA granulation fertilizer plant are presented.

  1. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  2. High-dose radioiodine treatment for differentiated thyroid carcinoma is not associated with change in female fertility or any genetic risk to the offspring

    SciTech Connect (OSTI)

    Bal, Chandrasekhar . E-mail: csbal@hotmail.com; Kumar, Ajay; Tripathi, Madhavi; Chandrashekar, Narayana; Phom, Hentok; Murali, Nadig R.; Chandra, Prem; Pant, Gauri S.

    2005-10-01

    Background: We tried to evaluate the female fertility and genetic risk to the offspring from the exposure to high-dose {sup 131}I by assessing the pregnancy outcomes and health status of the children of female patients with differentiated thyroid cancer who had received therapeutic doses of {sup 131}I. Materials and Methods: From 1967 to 2002, a total of 1,282 women had been treated with {sup 131}I. Of these patients, 692 (54%) were in the reproductive age group (18-45 years). Forty women had a total of 50 pregnancies after high-dose {sup 131}I. Age at presentation ranged from 16 to 36 years (mean, 23 {+-} 4 years). Histopathology was papillary thyroid cancer in 32 cases and follicular thyroid cancer in 8 cases. Results: Single high-dose therapy was given in 30 cases, 2 doses were given in 7 cases, 3 doses were given in 2 cases, and four doses were given in 1 case in which lung metastases had occurred. In 37 patients (92%), disease was successfully ablated before pregnancy. Ovarian absorbed-radiation dose calculated by the MIRD method ranged from 3.5 to 60 cGy (mean, 12 {+-} 11 cGy). The interval between {sup 131}I therapy and pregnancy varied from 7 to 120 months (37.4 {+-} 28.2 months). Three spontaneous abortions occurred in 2 women. Forty-seven babies (20 females and 27 males) were born. Forty-four babies were healthy with normal birth weight and normal developmental milestones. Twenty women delivered their first baby after {sup 131}I therapy. The youngest child in our series is 11 months of age, and the oldest is 8.5 years of age. Conclusions: Female fertility is not affected by high-dose radioiodine treatment, and the therapy does not appear to be associated with any genetic risks to the offspring.

  3. Nuclear Astrophysics Animations from the Nuclear Astrophysics Group at Clemson University

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Meyer, Bradley; The, Lih-Sin

    The animations are organized into three sections. The r-Process Movies demonstrate r-Process network calculations from the paper "Neutrino Capture and the R-Process" Meyer, McLaughlin, and Fuller, Phys. Rev. C, 58, 3696-3710 (1998). The Alpha-Rich Freezeout Movies are related to the reference: Standard alpha-rich freezeout calculation from The, Clayton, Jin, and Meyer 1998, Astrophysical Journal, "Reaction Rates Governing the Synthesis of 44Ti" At the current writing, the category for Low Metallicity s-Process Movies has only one item called n, p, 13C, 14N, 54Fe, and 88Sr Time evolution in convective zone.

  4. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  5. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, Pmore » and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.« less

  6. Structural Environment of Nitrogen in N-doped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Henderson, Michael A.; Shutthanandan, V.; Ohsawa, Takeo; Chambers, Scott A.

    2010-12-31

    We employ x-ray photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED) and nuclear reaction analysis (NRA) to characterize the concentration-dependent structural properties of nitrogen doping into rutile TiO2. High quality N-doped TiO2 were prepared on rutile single crystal TiO2(110) substrates using plasma-assisted molecular beam epitaxy with an electron cyclotron resonance (ECR) plasma and Ti effusive sources. Films with N dopant concentrations at or below 2 at.% exhibited predominately substitutional doping based on NRA data, whereas films with concentrations above this limit resulted in little or no substitutional N and surfaces rich in Ti3+. The binding energy of the N 1s feature in XPS did not readily distinguish between these two extremes in N-doping, rendering features within 0.4 eV of each other and similar peak profiles. Although widely used to characterize the state of N in anion-doped TiO2 materials, we find that XPS is unsuitable for this task.

  7. Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model

    SciTech Connect (OSTI)

    Pavese, F.; Steur, P. P. M.; Giraudi, D.

    2013-09-11

    This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model of the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.

  8. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  9. Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system

    SciTech Connect (OSTI)

    Lu, Xiaoliang

    1996-03-01

    The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

  10. Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows

    SciTech Connect (OSTI)

    Guy, Aurlien Bourdon, Anne Perrin, Marie-Yvonne

    2015-04-15

    In this work, a state-to-state vibrational and electronic collisional model is developed to investigate nonequilibrium phenomena behind a shock wave in an ionized nitrogen flow. In the ionization dynamics behind the shock wave, the electron energy budget is of key importance and it is found that the main depletion term corresponds to the electronic excitation of N atoms, and conversely the major creation terms are the electron-vibration term at the beginning, then replaced by the electron ions elastic exchange term. Based on these results, a macroscopic multi-internal-temperature model for the vibration of N{sub 2} and the electronic levels of N atoms is derived with several groups of vibrational levels of N{sub 2} and electronic levels of N with their own internal temperatures to model the shape of the vibrational distribution of N{sub 2} and of the electronic excitation of N, respectively. In this model, energy and chemistry source terms are calculated self-consistently from the rate coefficients of the state-to-state database. For the shock wave condition studied, a good agreement is observed on the ionization dynamics as well as on the atomic bound-bound radiation between the state-to-state model and the macroscopic multi-internal temperature model with only one group of vibrational levels of N{sub 2} and two groups of electronic levels of N.

  11. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOE Patents [OSTI]

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  12. Effect of process parameters on properties of argonnitrogen plasma for titanium nitride film deposition

    SciTech Connect (OSTI)

    Saikia, Partha; Kakati, Bharat

    2013-11-15

    In this study, the effect of working pressure and input power on the physical properties and sputtering efficiencies of argonnitrogen (Ar/N{sub 2}) plasma in direct current magnetron discharge is investigated. The discharge in Ar/N{sub 2} is used to deposit TiN films on high speed steel substrate. The physical plasma parameters are determined by using Langmuir probe and optical emission spectroscopy. On the basis of the different reactions in the gas phase, the variation of plasma parameters and sputtering rate are explained. A prominent change of electron temperature, electron density, ion density, and degree of ionization of Ar is found as a function of working pressure and input power. The results also show that increasing working pressure exerts a negative effect on film deposition rate while increasing input power has a positive impact on the same. To confirm the observed physical properties and evaluate the texture growth as a function of deposition parameters, x-ray diffraction study of deposited TiN films is also done.

  13. Personal exposure to nitrogen dioxide and its association with respiratory illness in Hong Kong

    SciTech Connect (OSTI)

    Koo, L.C.; Ho, J.H.; Ho, C.Y.; Matsuki, H.; Shimizu, H.; Mori, T.; Tominaga, S. )

    1990-05-01

    In 1985, 362 primary schoolchildren and their 319 mothers were surveyed in Hong Kong to study the possible relationship of air pollution to respiratory illnesses. Using nitrogen dioxide (NO{sub 2}) measured by personal samplers as a measure of air pollution, the study aimed to identify the major sources of NO{sub 2} in the indoor environment and see whether its increased presence was associated with respiratory symptoms. The levels of NO{sub 2} among the mothers was found to increase by 21% if dust exposure was reported from the workplace, 18% if they used such cooking fuels as liquid petroleum gas or kerosene, 11% when kitchens did not have ventilating fans, and 10% when incense was burned at home. In terms of respiratory symptoms, an increase in NO{sub 2} levels of 19% was reported among those with allergic rhinitis and 18% among those with chronic cough. The levels of NO2 among children were correlated with levels measured in classrooms, all of which had opened windows so that the NO{sub 2} came from outdoors. No association was found between children's NO{sub 2} levels and respiratory symptoms. With the exception of smoking by the father and the children's NO{sub 2} levels, no association was found between smoking at home and NO{sub 2} levels.

  14. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  15. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  16. Gas-phase reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms

    SciTech Connect (OSTI)

    Demarais, Nicholas J.; Yang, Zhibo; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215 (United States); Snow, Theodore P., E-mail: Nicholas.Demarais@Colorado.edu, E-mail: Zhibo.Yang@ou.edu, E-mail: Veronica.Bierbaum@Colorado.edu, E-mail: Theodore.Snow@Colorado.edu [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309-0389 (United States)

    2014-03-20

    We have studied the reactions of polycyclic aromatic hydrocarbon cations and their nitrogen-containing analogs with H atoms. Reaction rate constants are measured at 300 K using a flowing afterglow-selected ion flow tube. We have implemented the laser induced acoustic desorption technique to allow the study of large, non-volatile species in the gas phase. The extension of this work from previous studies shows that the reactivity of polycyclic aromatic hydrocarbon cations with H atoms reaches a constant value for large cations. There is a small difference in reactivity when comparing molecules of different size and geometry; however, no difference in reactivity was found when nitrogen was incorporated into the ring.

  17. Analysis of New High-Q0 SRF Cavity Tests by Nitrogen Gas Doping at Jefferson Lab

    SciTech Connect (OSTI)

    Palczewski, Ari D.; Geng, Rongli; Reece, Charles E.

    2014-12-01

    In order to refine systematic understanding and establish confident process control, Jefferson Lab has joined with partners to investigate and thoroughly characterize the dramatically higher Q0 of 1.3 GHz niobium cavities first reported by FNAL in 2013[1]. With partial support from the LCLS-II project, JLab has undertaken a parametric study of nitrogen doping in vacuum furnace at 800 C followed by variable depth surface removal in the 5 - 20 ?m range. Q0 above 31010 are typical at 2.0 K and 16 MV/m accelerating field. We report observations from the single cell study and current interpretations. In addition to the parametric single cell study, we also report on the ongoing serial testing of six nitrogen-doped 9-cell cavities as baseline prototypes for LCLS-II.

  18. Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; Reboredo, Fernando A.; Bi, Z.; Bridges, Craig A.; Kidder, Michelle K.; Paranthaman, Mariappan Parans

    2015-11-06

    The composition of anatase TiO2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under both UV-vis andmore » visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO2 was significantly enhanced relative to (N) TiO2.« less

  19. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  20. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madisons Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: An archive of thousands of Lidar images acquired before 2004 Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 MPEG animations and Lidar Multiple Scattering Models

  1. Similarities of host defense mechanisms against pulmonary infectious disease in animals and man

    SciTech Connect (OSTI)

    Green, G.M.

    1984-01-01

    Evidence linking exposure to air pollutants with increased susceptibility to infectious diseases in humans comes from epidemiological, clinical, and experimental laboratory studies. The data suggest that the most common, and perhaps the most sensitive, index of the pulmonary effect of air pollutant exposure is on post upper respiratory infection, prolonged cough, phlegm, and purulent sputum. Experimental models of these relationships for extrapolation to humans should be able to measure such minor changes in symptomatology and physiology rather than require major lethal events. The bacterial aerosol model for quantifying nonspecific defense mechanisms of the bronchopulmonary tree utilizing nonpathogenic organisms fulfills this criterion. The function of the six major components of pulmonary antimicrobial defense mechanisms - including aerodynamic filtration, secretory respiratory tract fluid, fluid transport at the alveolar and bronchial levels, the phagocytic function of alveolar macrophages, the augmenting mechanisms of blood-derived inflammatory cells, and the secretory and cellular-specific immune mechanisms and their mediator products - can all be quantified by this experimental animal model system. The defensive functions are remarkably similar across animal species, and available human data suggest that findings obtained using the model may be extrapolatred to humans.

  2. Remaining Sites Verification Package for the 100-F-54 Animal Farm Pastures, Waste Site Reclassification Form 2008-015

    SciTech Connect (OSTI)

    J. M. Capron

    2008-04-17

    The 100-F-54 waste site, part of the 100-FR-2 Operable Unit, is the soil associated with the former pastures for holding domestic farm animals used in experimental toxicology studies. Evaluation of historical information resulted in identification of the experimental animal farm pastures as having potential residual soil contamination due to excrement from experimental animals. The 100-F-54 animal farm pastures confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  3. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    DOE Patents [OSTI]

    Stetka, Steven S. (Fleetwood, PA); Nazario, Francisco N. (Parsippany, NJ)

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  4. Electrical signature analysis to quantify human and animal performance on fitness and therapy equipment such as a treadmill

    DOE Patents [OSTI]

    Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.

    2010-05-18

    The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.

  5. Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.

    SciTech Connect (OSTI)

    Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R.

    2008-01-01

    Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

  6. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect (OSTI)

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  7. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    SciTech Connect (OSTI)

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered coreshell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolonged 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.

  8. Further evaluations of the CALMET/CALPUFF modeling system for the estimation of the fate of atmospheric nitrogen

    SciTech Connect (OSTI)

    Garrison, M.; Gill, S.; Sherwell, J.

    1999-07-01

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. A previous study reported on an evaluation of predicted non-ammonia, inorganic nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland. This paper presents the results of an expanded evaluation of the performance of the modeling system. Data collected at a total of 38 monitoring stations located in or near the Chesapeake Bay Watershed, including NADP/NTN, CASTNET, and AIRS sites, have been used to conduct evaluations of the model's ability to predict concentrations of nitric acid, particulate nitrate, and NO{sub x} in addition to wet nitrate deposition. This expanded evaluation has allowed for the testing of additional model technical options in an attempt to improve the performance when compared to measured data. Results of this evaluation are expected to allow for better estimates of the impacts of nitrogen species formed from utility and other anthropogenic sources of NO{sub x} on the environment in Maryland.

  9. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  10. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  11. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-03-26

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  12. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect (OSTI)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

  13. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  14. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  15. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  16. Preparation and properties of sliver and nitrogen co-doped TiO{sub 2} photocatalyst

    SciTech Connect (OSTI)

    Zhang, Ying; Zhang, Jin; Zhu, Zhongqi; Yan, Ningning; Liu, Qingju

    2013-11-15

    Graphical abstract: - Highlights: The silver and nitrogen co-doped TiO{sub 2} photocatalysts were prepared and characterized. The light absorption threshold wavelength of AgNTiO{sub 2} is red-shifted to visible light. The recombination of the photo-generated electrons and holes of AgNTiO{sub 2} is inhibited. The photocatalytic activity of AgNTiO{sub 2} is remarkable improved. - Abstract: TiO{sub 2} photocatalysts co-doped with different content of Ag and N were prepared by solgel method combined with microwave chemical method. The samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), ultravioletvisible diffuse reflectance spectrum (UVvis) and photo-luminescence emission spectrum (PL). The photocatalytic activity was investigated by photocatalytic degradation of methylene blue (MB) under irradiation of fluorescent lamp. The results indicate that Ag and N co-doping can restrain the increase of grain size, broaden the absorption spectrum to visible light region, and inhibit the recombination of the photo-generated electronhole pairs. Moreover, the photocatalytic activity of AgNTiO{sub 2} in MB degradation is remarkable improved. The degradation rate of the sample with Ag:TiO{sub 2} = 0.05 at%, N:TiO{sub 2} = 18.50 wt% in 5 h is 93.44%, which is much higher than that of Degussa P25 (39.40%)

  17. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    SciTech Connect (OSTI)

    Jeanmaire, G.; Dehmas, M.; Redjamia, A.; Puech, S.; Fribourg, G.

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 ?m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra software. - Highlights: Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation Size of AlN precipitates can be reduced by quenching prior isothermal holding. Fine precipitation of AlN related to the ? ? ? transformation.

  18. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  19. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2005-09-15

    A significant work program was implemented from 2002 to 2004 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, though limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, and has increased 70% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area is now only about 32%, far below the 72% recycle prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Four vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Additional vertical well drilling is planned due to the success of wells drilled to date.

  20. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    SciTech Connect (OSTI)

    Hinojosa, H.

    1998-02-01

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists that were a part of the initial research for the performance of these BAs, and more recent surveys.

  1. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  2. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect (OSTI)

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of nanoscale titanate and anatase titania phases. Black-Right-Pointing-Pointer The photocatalyst displays high activity in degrading phenol under visible light. Black-Right-Pointing-Pointer Mechanisms for the sensitization to visible light are considered.

  3. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-06-30

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  4. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; et al

    2014-09-10

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has anmore » exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic – heterotrophic difference in carbon isotope compositions.« less

  5. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    SciTech Connect (OSTI)

    Zhang, Jinxin [Chinese Academy of Forestry; Gu, Lianhong [ORNL

    2014-01-01

    A longstanding puzzle in isotopic studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotopic ratios and nitrogen and phosphorous concentrations of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotopic ratios on nearby intact plants of N. tangutorum. We found that higher nitrogen concentrations in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous concentrations had no effect on the enrichment. In addition, new leaves had carbon isotopic ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic heterotrophic difference in carbon isotopic compositions.

  6. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    SciTech Connect (OSTI)

    Angelis, Georgios I. Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more advantageous. Conclusions: Motion-induced inconsistencies in the projection data and attenuation/emission mismatch are the two main causes of bias in reconstructed brain images when there is complex motion. It appears that these two factors have a synergistic effect on the qualitative and quantitative accuracy of the reconstructed images.

  7. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOE Patents [OSTI]

    Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  8. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  9. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  10. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    SciTech Connect (OSTI)

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  11. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; Wogelius, Roy A.; Manning, Phillip L.; Poduska, Kristin M.; Layne, Graham D.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Bergmann, Uwe

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ13Corg~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significant neo-formation ofmore » early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological (in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  12. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    SciTech Connect (OSTI)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; Wogelius, Roy A.; Manning, Phillip L.; Poduska, Kristin M.; Layne, Graham D.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Bergmann, Uwe

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (?13Corg~0.6) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significant neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological (in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.

  13. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema (OSTI)

    Isabelle Grenier

    2010-01-08

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  14. A study of nitrogenation of a NdFe{sub 12-x}Mo{sub x} compound by in situ neutron powder diffraction.

    SciTech Connect (OSTI)

    Ding, Y.; Lin, J.; Loong, C.-K.; Short, S. M.

    1997-11-18

    The effects on the crystal lattice of a NdFe{sub 12{minus}x}Mo{sub x}(x {approx_equal} 1.7) compound which contained {approximately}12 vol% of bcc-Fe were studied by neutron powder diffraction during controlled nitrogenation over the 25-600 C temperature range. The sample inside the furnace was connected to a closed volume of ultra-pure nitrogen gas while neutron data were collected over regular time intervals during sequential heating. Substantial nitrogen absorption occurred between 500 to 600 C. During the nitrogenation process the NdFe{sub 12{minus}x}Mo{sub x}N{sub y} lattice expanded while the bcc-Fe lattice contracted. An increasing decomposition of the compound into bcc-Fe at 600 C was observed. The average size of the NdFe{sub 12{minus}x}Mo{sub x}N{sub y} crystalline grains decreased starting at {approximately}300 C, reaching a minimum at {approximately}500 C and then increased markedly at higher temperatures. The development of lattice strains, on the other hand, showed an opposite trend, i.e., a maximum at 500 C. A correlation of structural modification of the crystalline phases and the nitrogenation process is discussed.

  15. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    SciTech Connect (OSTI)

    Trushkin, A. N.; Kochetov, I. V.

    2012-05-15

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Prime {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.

  16. Dense nitrogen-rich energetic materials: A study of 5,5{sup ?}-(1H-tetrazolyl)amine

    SciTech Connect (OSTI)

    Laniel, Dominique; Desgreniers, Serge; Sebastiao, Elena; Cook, Cyril; Murugesu, Muralee; Hu, Anguang; Zhang, Fan

    2014-05-14

    5,5{sup ?}-(1H-tetrazolyl)amine (BTA), a nitrogen rich molecular solid has been investigated under compression at room temperature. Powder x-ray diffraction using synchrotron radiation and micro-Raman spectroscopy were carried out to pressures up to 12.9 GPa. BTA conserves the crystalline structure of its room condition phase up to the highest pressure, i.e., an orthorhombic unit cell (Pbca). A fit of the isothermal compression data to the Birch-Murnaghan equation of state reveals the high compressibility of BTA. An analysis of the volume change with pressure yields a bulk modulus and its derivative similar to that of high-nitrogen content molecular crystals. Upon laser heating to approximately 1100 K, the sample decomposed while pressurized at 2.1 GPa, resulting in a graphitic compound. Finally, numerical simulations demonstrate that the minimum energy conformation is not experimentally observed since a higher energy conformation allows for a more stable dense packing of the BTA molecules.

  17. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect (OSTI)

    Li, Shou-Zhe, E-mail: lisz@dlut.edu.cn; Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang [Key Laboratory of Materials Modification by Laser, Ion, Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian 116024 (China); Wang, Yong-Xing [College of Electrical Engineering, Dalian 116024 (China); Xia, Guang-Qing [School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024 (China)

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  18. Natural Gas Quality Biogas | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Quality Biogas Transportation fuel and organic solid fertilizer from anaerobic digestion of wastewater solids and other organic wastes Organic solid fertilizer is rich in nitrogen, phosphorous, potassium, and sulfur. PDF icon NATURAL GAS-QUALITY BIOGAS

  19. EERE Assistant Secretary and BETO Director Confirmed Speakers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    involved in financing, algal ecology, genetic systems, carbon partitioning, engineering and analysis, biofuels, animal feeds, fertilizers, bioplastics, supplements, and foods. ...

  20. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition

    SciTech Connect (OSTI)

    Prathap, C.; Ray, Anjan; Ravi, M.R. [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016 (India)

    2008-10-15

    The objective of this investigation was to study the effect of dilution with nitrogen on the laminar burning velocity and flame stability of syngas fuel (50% H{sub 2}-50% CO by volume)-air (21% O{sub 2}-79% N{sub 2} by volume) mixtures. The syngas fuel composition considered in this work comprised x% N{sub 2} by volume and (100-x)% an equimolar mixture of CO and H{sub 2}. The proportion x (i.e., %N{sub 2}) was varied from 0 to 60% while the H{sub 2}/CO ratio was always kept as unity. Spherically expanding flames were generated by centrally igniting homogeneous fuel-air gas mixtures in a 40-L cylindrical combustion chamber fitted with optical windows. Shadowgraphy technique with a high-speed imaging camera was used to record the propagating spherical flames. Unstretched burning velocity was calculated following the Karlovitz theory for weakly stretched flames. Also, Markstein length was calculated to investigate the flame stability conditions for the fuel-air mixtures under consideration. Experiments were conducted for syngas fuel with different nitrogen proportions (0-60%) at 0.1 MPa (absolute), 302{+-}3K, and equivalence ratios ranging from 0.6 to 3.5. All the measurements were compared with the numerical predictions obtained using RUN-1DL and PREMIX with a contemporary chemical kinetic scheme. Dilution with nitrogen in different proportions in syngas resulted in (a) decrease in laminar burning velocity due to reduction in heat release and increase in heat capacity of unburned gas mixture and hence the flame temperature, (b) shift in occurrence of peak laminar burning velocity from {phi}=2.0 for 0% N{sub 2} dilution to {phi}=1.4 for 60% N{sub 2} dilution, (c) augmentation of the coupled effect of flame stretch and preferential diffusion on laminar burning velocity, and (d) shift in the equivalence ratio for transition from stable to unstable flames from {phi}=0.6 for 0% N{sub 2} dilution to {phi}=1.0 for 60% N{sub 2} dilution. The present work also indicated that if the fuel mole fraction in the wide range of fuel-air mixtures investigated is less than 22%, then those fuel mixtures are in the unstable regime with regard to preferential diffusion. (author)

  1. Langmuir probe diagnostics of electron energy distributions with optical emission spectroscopy in capacitively coupled rf discharge in nitrogen

    SciTech Connect (OSTI)

    Abdel-Fattah, E.; Bazavan, M.; Sugai, H.

    2011-12-01

    Measurements with a rf compensated Langmuir probe and optical emission spectroscopy are carried out in capacitively coupled rf (13.56 MHz) pure nitrogen N{sub 2} discharges at fixed rf voltage over a wide range of pressure, 30 to 400 mTorr. The electron energy probability function (EEPF) measured below 100 mTorr resembles a bi-Maxwellian-type distribution. At pressure range of 100-200 mTorr, the EEPF has non-Maxwellian distribution with a ''dip'' near 4.5 eV. At the highest pressure of 400 mTorr, the EEPF evolves into a Druyvestein-like distribution and the ''dip'' disappears. The electron density significantly decreases with increase in the N{sub 2} pressure. On the other hand, the electron temperatures gradually decrease with an increase in N{sub 2} pressure, reaching minimum at 150 mTorr, beyond which it abruptly increases. Such evolution of the EEPFs shape with gas pressure has been discussed in terms of non-local electron kinetics and heating mode transition. The emission intensities of nitrogen (0-0) band of second positive system at 337.1 nm and (0-0) band of first negative systems at 391.4 nm are used to determine the dependence of their radiative states N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) with nitrogen pressure. It is observed that the pressure influences the radiative states differently owing to their different populating mechanisms. The vibrational temperature T{sub {nu}ib} and rotational temperature T{sub rot} are measured for the sequence ({Delta}{nu}=-2) of N{sub 2} second positive system (C{sup 3}{Pi}{yields}B{sup 3}{Pi}{sub g}) using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. It was found that both T{sub {nu}ib} and T{sub rot} have similar dependences with N{sub 2} pressure; peaked at 100 mTorr beyond which it monotonically decreases with increase in the N{sub 2} pressure. The correlation between the observed maximum value of T{sub {nu}ib} around 100 mTorr and the detected ''dip'' in the EEPF in the same pressure range has been discussed.

  2. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect (OSTI)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State Universitys Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

  3. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    SciTech Connect (OSTI)

    Lindsay, P. E.; Granton, P. V.; Hoof, S. van; Hermans, J.; Gasparini, A.; Jelveh, S.; Clarkson, R.; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1; Mid-South Radiation Physics, Inc., 1801 South 54th Street, Paragould, Arkansas 72450 ; Kaas, J.; Wittkamper, F.; Sonke, J.-J.; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Qubec H3G 1A4 ; Jaffray, D. A.; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1; The TECHNA Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360 coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ?5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.

  4. Dehydrogenation of N{sub 2}H{sub X} (X = 2 ? 4) by nitrogen atoms: Thermochemical and kinetics

    SciTech Connect (OSTI)

    Spada, Rene Felipe Keidel; Araujo Ferro, Luiz Fernando de; Roberto-Neto, Orlando; Machado, Francisco Bolivar Correto

    2013-11-21

    Thermochemical and kinetics of sequential hydrogen abstraction reactions from hydrazine by nitrogen atoms were studied. The dehydrogenation was divided in three steps, N{sub 2}H{sub 4} + N, N{sub 2}H{sub 3} + N, and N{sub 2}H{sub 2} + N. The thermal rate constants were calculated within the framework of canonical variational theory, with zero and small curvature multidimensional tunnelling corrections. The reaction paths were computed with the BB1K/aug-cc-pVTZ method and the thermochemical properties were improved with the CCSD(T)/CBS//BB1K/aug-cc-pVTZ approach. The first dehydrogenation step presents the lowest rate constants, equal to 1.22 10{sup ?20} cm{sup 3}molecule{sup ?1}s{sup ?1} at 298 K.

  5. Demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Hardman, R.R.; Wilson, S.M. ); Smith, L.L.; Larsen, L. )

    1991-01-01

    This paper discusses the progress of a US Department of Energy Innovative Clean Coal Technology Project demonstrating advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of four low NO{sub x} combustion technologies applied in a stepwise fashion to a 180 MW boiler. A target of achieving fifty percent NO{sub x} reduction has been established for the project. Details of the required instrumentation including acoustic pyrometers and continuous emissions and monitoring systems are given. Results from a 1/12 scale model of the demonstration boiler outfitted with the retrofit technology are presented. Finally, preliminary baseline results are presented. 4 figs.

  6. Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma

    SciTech Connect (OSTI)

    Yu Xin; Peng Jiangbo; Yi Yachao; Zhao Yongpeng; Chen Deying; Yu Junhua [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Yang Peng; Sun Rui [Institute of Combustion Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2010-07-05

    We first investigate the effects of femtosecond-laser-induced plasma on the flame speed of a laminar premixed methane/oxygen/nitrogen flame with a wide range of the equivalence ratios (0.8-1.05) at atmospheric pressure. It is experimentally found that the flame speed increases 20.5% at equivalence ratios 1.05. The self-emission spectra from the flame and the plasma are studied and an efficient production of active radicals under the action of femtosecond (fs)-laser pulses has been observed. Based on the experimental data obtained, the presence of oxygen atom and hydrocarbon radicals is suggested to be a key factor enhancing flame speed.

  7. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    SciTech Connect (OSTI)

    Jaiswal, R.; Kothari, D. C.; Patel, N.; Miotello, A.

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  8. Chemical and electronic passivation of 4H-SiC surface by hydrogen-nitrogen mixed plasma

    SciTech Connect (OSTI)

    Liu, Bingbing; Huang, Lingqin; Zhu, Qiaozhi; Wang, Dejun; Qin, Fuwen

    2014-05-19

    We propose a low-temperature electron cyclotron resonance microwave hydrogen-nitrogen mixed plasma treatment method for passivating 4H-SiC surface and investigate the effects of treatment on the structural, chemical, and electronic properties of the surface. The results indicate that the method is highly controllable and could result in an atomically ordered, unreconstructed, smooth, and clean SiC surface. The absence of surface band bending is indicative of an electronically passivated SiC surface with a surface state density as low as 5.47??10{sup 10}?cm{sup ?2}. This effect could be attributed to the simultaneous effects of H and N passivating on SiC surface.

  9. Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing

    SciTech Connect (OSTI)

    Zeng, Aiping; Jin, Chunyan; Cho, Sang-Jin; Seo, Hyun Ook; Kim, Young Dok; Lim, Dong Chan; Kim, Doo Hwan; Hong, Byungyou; Boo, Jin-Hyo

    2012-10-15

    Electrochemical method has been employed in this work to modify nitrogen-doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel nano-particle-modified N-DLC electrodes. The electrochemical behavior of the nickel nano-particle-modified N-DLC electrodes has been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano-particles on the N-DLC surface have been investigated using micro-Raman spectroscopy and atomic force microscopy. The nickel nano-particle-modified N-DLC electrode exhibits a high catalytic activity and low background current. This result shows that the nickel nano-particle deposition on N-DLC surface could be a promising method to fabricate novel electrode materials for glucose sensing.

  10. Identification of sediment sources in forested watersheds with surface coal mining disturbance using carbon and nitrogen isotopes

    SciTech Connect (OSTI)

    Fox, J.F.

    2009-10-15

    Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land-use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest in Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un-mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds analyzed using Monte Carlo mass balance un-mixing found that: {delta}{sup 15}N showed the ability to differentiate streambank erosion and surface soil erosion; and {delta} {sup 13}C showed the ability to differentiate soil organic matter and geogenic organic matter. This suggests that streambank erosion downstream of surface coal mining sites is a significant source of sediment in coal mining disturbed watersheds. The results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes.

  11. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect (OSTI)

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 /day, 1 d3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ? Nitrogen mustard (NM) induces acute lung injury and fibrosis. ? Pulmonary toxicity is associated with increased expression of iNOS. ? Transient inhibition of iNOS attenuates acute lung injury induced by NM.

  12. Revisiting Maxwells accommodation coefficient: A study of nitrogen flow in a silica microtube across all flow regimes

    SciTech Connect (OSTI)

    Lei, Wenwen McKenzie, David R.

    2014-12-15

    Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the NavierStokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowskis result relies on the Maxwell definition of the tangential momentum accommodation coefficient ?, recently challenged by Arya et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of ?, unlike carbon nanotubes which show flows consistent with a small value of ?. Silica capillaries are therefore not atomically smooth. The flow at small Kn has ?=0.91 and at large Kn has ? close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of ? of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: First experimental study on flow rate across all flow regimes in a well-defined microtube. Extend Cha and McCoy theory for molecular flow regime. Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.

  13. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    SciTech Connect (OSTI)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  14. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  15. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-03

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is complete. Two additional vertical infill wells were drilled, completed, and brought on production during the reporting period. These were the last two of five wells to be drilled in the pilot area. Additional drilling is planned for Budget Period 3. Overall response to the various projects continues to be very favorable. Nitrogen injection into the pilot area had doubled prior to unrelated nitrogen supply problems, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Meanwhile, pilot area oil production has increased from 300 bpd prior to development to an average of 435 bpd for January through March 2004. March production was the highest at 542 bpd due to the addition of the two new vertical wells. Production performances of the new wells continue to support the current opinion that horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost.

  16. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-12-22

    A significant work program has been implemented in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work includes the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has increased to 23% in recent months, but this is still far below the 58% recycle prior to initiation of the project. Two additional wells--EBU 65-2 and EBU 67-2--were brought on line during this reporting period. EBU 65-2 was successfully sidetracked after encountering thin pay on the edge of the reservoir, and is awaiting conversion to nitrogen injection service. The early performance of EBU 67-2 has been as predicted.

  17. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  18. Final Report - Epigenetics of low dose radiation effects in an animal model

    SciTech Connect (OSTI)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response To investigate the roles of histone modifications in the low dose radiation effects and adaptive response To dissect the roles of regulatory microRNAs and their targets in low dose radiation effects and adaptive response To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614

  20. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  1. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer used for Corn, Soybean, and Stover Production | Department of Energy Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a

  2. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanospheres insertion for electrocatalytic oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Min; Xin, Huolin L.; Wang, Jie; Wu, Zexing; Wang, Deli

    2015-03-13

    A nitrogen and sulfur co-doped graphene/carbon black (NSGCB) nanocomposite for the oxygen reduction reaction (ORR) was synthesized through a one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB showed excellent performance for the ORR with the onset and half-way potentials at 0.96 V and 0.81 V (vs. RHE), respectively. It is significantly improved over that of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanosphere (0.82 V and 0.74 V). The enhanced catalytic activity on the NSGCB electrode could be attributed to the synergistic effect of N/Smore » co-doping and the enlarged interlayer space resulted from the insertion of carbon nanosphere into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to that of the commercially Pt/C catalyst. Furthermore, the NSGCB nanocomposite was superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.« less

  3. A crossover design study to evaluate the effectiveness of appliance inspection and servicing for lowering indoor nitrogen dioxide concentrations

    SciTech Connect (OSTI)

    Colome, S.D. ); Billick, I.H. ); Baker, P.E.; Beals, S.A.; Rubio, S.A.; Cunningham, S.J. ); Wilson, A.L. )

    1988-01-01

    Some researchers have suggested that natural gas appliances are significant contributors to indoor air pollution. Indoor unvented combustion appliances, such as gas-fired ranges, unvented space heaters, and portable kerosene space heaters, have been associated with a wide variety of pollutants, including carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), sulfur dioxide (SO{sub 2}), formaldehyde (HCHO), and respirable particles. Previous indoor air quality studies have demonstrated that indoor NO{sub 2} concentrations often exceed outdoor ambient levels when gas- burning appliances are used. Cooking with gas has been the focus of many of these studies, although other unvented appliances, such as space-heaters, have also been associated with elevated NO{sub 2} concentrations. Some epidemiologic studies of exposure to NO{sub 2} in homes with gas ranges have indicated a higher prevalence of respiratory symptoms and illness. However, other studies contradicted these findings and failed to show any significant effects associated with gas cooking.

  4. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanospheres insertion for electrocatalytic oxygen reduction reaction

    SciTech Connect (OSTI)

    Wu, Min; Xin, Huolin L.; Wang, Jie; Wu, Zexing; Wang, Deli

    2015-03-13

    A nitrogen and sulfur co-doped graphene/carbon black (NSGCB) nanocomposite for the oxygen reduction reaction (ORR) was synthesized through a one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB showed excellent performance for the ORR with the onset and half-way potentials at 0.96 V and 0.81 V (vs. RHE), respectively. It is significantly improved over that of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanosphere (0.82 V and 0.74 V). The enhanced catalytic activity on the NSGCB electrode could be attributed to the synergistic effect of N/S co-doping and the enlarged interlayer space resulted from the insertion of carbon nanosphere into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to that of the commercially Pt/C catalyst. Furthermore, the NSGCB nanocomposite was superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.

  5. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect (OSTI)

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  6. LIGHT ECHOES FROM ? CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    SciTech Connect (OSTI)

    Prieto, J. L.; Knapp, G. R. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Rest, A.; Walborn, N. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianco, F. B. [Department of Physics, New York University, New York, NY 10012 (United States); Matheson, T. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Smith, N. [Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States); Hsiao, E. Y.; Campillay, A.; Contreras, C.; Gonzlez, C.; Morrell, N.; Phillips, M. M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Chornock, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Paredes lvarez, L.; James, D.; Smith, R. C. [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Kunder, A. [Leibniz-Institut fr Astrophysik Potsdam, an der Sternwarte 16, D-14482, Potsdam (Germany); Margheim, S. [Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile); Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); and others

    2014-05-20

    We present follow-up optical imaging and spectroscopy of one of the light echoes of ? Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ?0.9mag in ?1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some TypeIIn supernovae and supernova impostors. Most surprisingly, starting ?300days after peak brightness, the spectra show strong molecular transitions of CN at ? 6800 . The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.

  7. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  8. Pulse radiolysis studies of the reaction of nitrogen dioxide with the vitamin B?? complexes Cob(II)alamin and nitrocobalamin

    SciTech Connect (OSTI)

    Brasch, Nicola E.; Cabelli, Diane E.; Dassanayake, Rohan S.

    2014-10-06

    Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there few studies on the reactivity of ?NO2, including the reactions between ?NO2 and transition metal complexes. We report kinetic studies on the reaction of ?NO2 with two forms of vitamin B12 cob(II)alamin and nitrocobalamin. UV-vis spectroscopy and HPLC analysis of the product solution show that ?NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5 0.3) 10? M? s ? (pH 7.0 and 9.0, RT, I = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-vis spectroscopy and by HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv.?NO2.

  9. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  10. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    SciTech Connect (OSTI)

    Mokuno, Yoshiaki Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400?cm{sup ?2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  11. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    SciTech Connect (OSTI)

    Reece, Charles E.; Palczewski, Ari D.; Xiao, Binping

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions.1, 2 1. B. P. Xiao, C. E. Reece and M. J. Kelley, Physica C: Superconductivity 490 (0), 26-31 (2013). 2. A. Gurevich, PRL 113 (8), 087001 (2014).

  12. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for Use in the LCLS-II Baseline Prototype Cryomodule at Jefferson Laboratory

    SciTech Connect (OSTI)

    Palczewski, Ari; Geng, Rongli; Eremeev, Grigory; Reece, Charles

    2015-09-01

    Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. [1] Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q 0) of 2.7·1010 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping. Initially, five cavities achieved an average Q0 of 3.3·1010 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q 0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q 0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.

  13. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes

    SciTech Connect (OSTI)

    Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithiumsulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAhg-1after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca.6 mAhcm-2) with a high sulfur loading of approximately 5 mgcm-2, which is ideal for practical applications of the lithiumsulfur batteries.

  14. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  15. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore » speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  16. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    SciTech Connect (OSTI)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  17. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    SciTech Connect (OSTI)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (00.5 or 010 cm) across the N-amendment gradient (0, 7, and 15 kg ha1 yr1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  18. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.; Smith, Frances N.; Mausolf, Edward J.; Scheele, Randall D.

    2014-02-10

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (?70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550?C, removed molybdenum and technetium near 400?C as their volatile fluorides, and ruthenium near 500?C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-m crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-m in length.

  19. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha–1 yr–1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  20. EOS7C Version 1.0 TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas

    Energy Science and Technology Software Center (OSTI)

    2008-01-11

    EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane-carbon dioxide (CH{sub 4}-CO{sub 2}) or methane-nitrogen (CH{sub 4}-N{sub 2}) with or without an aqueous phase and H{sub 2}O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy's Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestrationmore » sites and natural gas reservoirs. EOS7C models supercritical CO{sub 2{ and subcritical CO{sub 2} as a non-condensible gas, hence EOS7C does not model the transitions to liquid or solid CO{sub 2} conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO{sub 2} or N{sub 2}. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH{sub 4} between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. EOS7C is written in FORTAN77.« less

  1. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; Woloschak, Gayle E.; Aravindan, Natarajan

    2015-12-09

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limitedmore » number of animal studies.« less

  2. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    SciTech Connect (OSTI)

    Qian, X; Wuu, C; Admovics, J

    2014-06-01

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360 with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360 to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 0.1 mm and mouse stage rotation isocentricity is about 0.91 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  3. Electron energy distribution functions measured by Langmuir probe with optical emission spectroscopy in very high frequency capacitive discharge in nitrogen

    SciTech Connect (OSTI)

    Abdel-Fattah, E.; Bazavan, M.; Sugai, H.

    2012-11-15

    By using a rf compensated Langmuir probe and optical emission spectroscopy, the effects of driving frequency (13.56-50 MHz) on the electron energy probability function (EEPF), electron density, electron temperature, and the vibrational and rotational temperatures in capacitively coupled nitrogen discharge were investigated. Measurements were performed in the pressure range 60-200 mTorr, and at a fixed voltage of 140 V (peak-to-peak). With increasing the driving frequency, the dissipated power and electron density markedly increased along with the intensity of the optical emission lines belonging to the 2nd positive (337.1 nm) and 1st negative systems (391.4 nm) of N{sub 2}. The EEPF at low pressure 60 mTorr is two-temperature (bi-Maxwellian) distribution, irrespective of the driving frequency, in contrast with argon and helium discharges in the similar conditions. The mechanism forming such bi-Maxwellian shape was explained by two combined effects: one is the collisionless sheath-heating effect enhancing the tail electron population, and the other is the collision-induced reduction of electrons at the energy 2-4 eV where the collision cross-section for the vibrational excitation has a resonantly large peak. The two-temperature EEPF structure was basically retained at moderate pressure 120 mTorr and high pressure 200 mTorr. The vibrational temperature T{sub vib} and rotational temperature T{sub rot} are measured for the sequence ({Delta}{nu}=-2) of N{sub 2} second positive system (C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g}) using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. It was found that, both of T{sub vib} and T{sub rot} are a weakly dependent on driving frequency at low pressure 60 mTorr. At higher pressure (120 and 200 mTorr), T{sub vib} rises monotonically with the driving frequency, whereas the T{sub rot} slightly decreases with frequency below 37 MHz, beyond which it relatively increases or saturated.

  4. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect (OSTI)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning systemMultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was printed using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.

  5. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect (OSTI)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.

  6. Trace rare earth element analysis of IAEA hair (HH-1), animal bone (H-5) and other biological standards by radiochemical neutron activation

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1986-03-01

    A radiochemical neutron activation analysis using a rare earth group separation scheme has been used to measure ultratrace levels of rare earth elements (REE) in IAEA Human Hair (HH-1), IAEA Animal Bone (H-5), NBS Bovine Liver (SRM 1577), and NBS Orchard Leaf (SRM 1571) standards. The REE concentrations in Human Hair and Animal Bone range from 10/sup -8/g/g to 10/sup -11/g/g and their chondritic normalized REE patterns show a negative Eu anomaly and follow as a smooth function of the REE ionic radii. The REE patterns for NBS Bovine Liver and Orchard Leaf are identical except that their concentrations are higher. The similarity among the REE patterns suggest that the REE do not appear to be fractionated during the intake of biological materials by animals or humans. 14 refs., 3 figs., 2 tabs.

  7. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect (OSTI)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  8. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.

  9. The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

    SciTech Connect (OSTI)

    Zheng, Ruijin; Po, Iris; Mishin, Vladimir; Black, Adrienne T.; Heck, Diane E.; Laskin, Debra L.; Sinko, Patrick J.; Gerecke, Donald R.; Gordon, Marion K.; Laskin, Jeffrey D.

    2013-10-15

    The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 ?M 4-HNE or 6 h with 10 ?M 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: UVB or nitrogen mustard causes rabbit corneal epithelial injury. 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. The induction of HO-1 by 4-HNE was through MAP kinase activation.

  10. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO[sub x]): Low NO[sub x] burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N. ); Baldwin, A.L. ); Smith, L.L. )

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO[sub x]) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO[sub x] combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO[sub x] reductions has been established for the project. The main focus of this paper is the presentation of the low NO[sub x] burner (LNB) short and long-term tests results.

  11. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO{sub x}): Low NO{sub x} burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N.; Baldwin, A.L.; Smith, L.L.

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO{sub x} combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO{sub x} reductions has been established for the project. The main focus of this paper is the presentation of the low NO{sub x} burner (LNB) short and long-term tests results.

  12. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    DOE Patents [OSTI]

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  13. Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature

    SciTech Connect (OSTI)

    Hong Tran, Nhung; Huy Le, Binh; Fan, Shizhao; Zhao, Songrui; Mi, Zetian; Schmidt, Benjamin A.; Savard, Michel; Gervais, Guillaume; Butcher, Kenneth Scott A.

    2013-12-23

    We report on a detailed study of the structural and optical properties of nonstoichiometric nitrogen-rich InN grown on sapphire substrates, by migration enhanced afterglow deposition. The samples were polycrystalline, with the presence of InN dots. Unusually strong photoluminescence emission was measured at cryogenic temperatures, with the peak energy at ?0.68?eV. Detailed analysis further shows that the sample has very low residual electron density in the range of ?10{sup 16}?cm{sup ?3} at temperatures below 20?K.

  14. Hydrogen passivation of nitrogen in GaNAs and GaNP alloys: How many H atoms are required for each N atom?

    SciTech Connect (OSTI)

    Buyanova, I. A.; Chen, W. M.; Izadifard, M.; Pearton, S. J.; Bihler, C.; Brandt, M. S.; Hong, Y. G.; Tu, C. W.

    2007-01-08

    Secondary ion mass spectrometry and photoluminescence are employed to evaluate the origin and efficiency of hydrogen passivation of nitrogen in GaNAs and GaNP. The hydrogen profiles are found to closely follow the N distributions, providing unambiguous evidence for their preferential binding as the dominant mechanism for neutralization of N-induced modifications in the electronic structure of the materials. Though the exact number of H atoms involved in passivation may depend on the conditions of the H treatment and the host matrixes, it is generally found that more than three H atoms are required to bind to a N atom to achieve full passivation for both alloys.

  15. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected tomore » collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  16. Identification of nitrogen- and host-related deep-level traps in n-type GaNAs and their evolution upon annealing

    SciTech Connect (OSTI)

    Gelczuk, ?.; Henini, M.

    2014-07-07

    Deep level traps in as-grown and annealed n-GaNAs layers (doped with Si) of various nitrogen concentrations (N=0.2%, 0.4%, 0.8%, and 1.2%) were investigated by deep level transient spectroscopy. In addition, optical properties of GaNAs layers were studied by photoluminescence and contactless electroreflectance. The identification of N- and host-related traps has been performed on the basis of band gap diagram [Kudrawiec, Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of electron traps of the same microscopic nature decreases with the rise of nitrogen concentration in accordance with the N-related shift of the conduction band towards trap levels. The application of this diagram has allowed to investigate the evolution of donor traps in GaNAs upon annealing. In general, it was observed that the concentration of N- and host-related traps decreases after annealing and PL improves very significantly. However, it was also observed that some traps are generated due to annealing. It explains why the annealing conditions have to be carefully optimized for this material system.

  17. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  18. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  19. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR -- EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-08-24

    Budget Period 2 of the East Binger Unit (''EBU'') DOE Project has been. Recent activities included additional data gathering and project monitoring, plus initiation of work on an SPE paper on the modeling efforts of the project. Early production performance suggests horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost. It will take more time to evaluate the impact of the horizontal wells on sweep and ultimate recovery, but it is unlikely that an improvement in recovery will be sufficient to make the overall economic value of horizontal wells greater than the economic value of vertical wells. Monitoring of overall performance of the pilot area continues. Overall response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Efforts to further disseminate knowledge gained through this project, by means of technical paper presentations to industry groups, are underway. Project monitoring and technology transfer will be focus areas of Budget Period 3.

  20. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.