Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A project to improve the capabilities of minorities in energy fields and a cost benefit analysis of an ethyl alcohol plant  

DOE Green Energy (OSTI)

The project being reported in this document had three components: (1) a research project to carry out cost-benefit analysis of an ethyl alcohol plant at Tuskegee University, (2) seminars to improve the high-technology capabilities of minority persons, and (3) a class in energy management. The report provides a background on the three components listed above. The results from the research on the ethyl alcohol plant, are discussed, along with the seminars, and details of the energy management class.

Sara, T.S.; Jones, M. Jr.

1986-08-01T23:59:59.000Z

2

Preventing Theft of Anhydrous Ammonia  

E-Print Network (OSTI)

Anhydrous ammonia is widely used as a fertilizer. The theft of anhydrous ammonia for use in producing illegal drugs is a growing problem. This publication describes how thieves operate and how farmers and agricultural dealers can protect themselves from thieves.

Smith, David

2004-09-16T23:59:59.000Z

3

Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels  

DOE Green Energy (OSTI)

This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

Maben, G.D.; Shauck, M.E.; Zanin, M.G.

1996-12-31T23:59:59.000Z

4

Operational safety report for the cleaning of non-radioactive, sodium-wetted reactor components with ethyl alcohol  

DOE Green Energy (OSTI)

The safety aspects of the removal of sodium from nonradioactive reactor components by the alcohol process are described in detail. Pertinent properties of alcohol and hydrogen are presented. Relevant excerpts from the Occupational Safety and Health Act safety codes are presented, and a conceptual system is shown illustrating the application of these safety measures.

Humphrey, L.; Felton, L.; Goodman, L.; Pilicy, G.; Welch, F.

1974-01-01T23:59:59.000Z

5

Anhydrous hydrogen fluoride electrolyte battery. [Patent application  

DOE Patents (OSTI)

It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

Not Available

1972-06-26T23:59:59.000Z

6

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...  

Open Energy Info (EERE)

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

7

Biophysical studies of anhydrous peptide structure  

E-Print Network (OSTI)

Defining the intrinsic properties of amino acids which dictate the formation of helices, the most common protein secondary structure element, is an essential part of understanding protein folding. Pauling and co-workers initially predicted helical peptide folding motifs in the absence of solvent, suggesting that in vacuo studies may potentially discern the role of solvation in protein structure. Ion mobility-mass spectrometry (IMMS) combines a gas-phase ion separation based on collision cross-section (apparent surface area) with time-of-flight MS. The result is a correlation of collision cross-section with mass-to-charge, allowing detection of multiple conformations of the same ion. Most gas-phase peptide ions assume a compact, globular state that minimizes exposure to the low dielectric environment and maximizes intramolecular charge solvation. Conversely, a small number of peptides adopt a more extended (?-sheet or ?-helix) conformation and exhibit a larger than predicted collision cross-section. Collision cross-sections measured using IM-MS are correlated with theoretical models generated using simulated annealing and allow for assignment of the overall ion structural motif (e.g. helix vs. chargesolvated globule). Here, two series of model peptides having known solution-phase helical propensities, namely Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), are investigated using IM-MS. Both protonated ([M + H]+) and metalcoordinated ([M + X]+ where X = Li, Na, K, Rb or Cs) species were analyzed to better understand the interplay of forces involved in gas-phase helical structure and stability. The data are analyzed using computational methods to examine the influence of peptide length, primary sequence, and number of basic (Lys, K) and acidic (Glu, E) residues on anhydrous ion structure.

McLean, Janel Renee

2007-08-01T23:59:59.000Z

8

Compact anhydrous HCl to aqueous HCl conversion system  

DOE Patents (OSTI)

The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

Grossman, M.W.; Speer, R.

1993-06-01T23:59:59.000Z

9

Compact anhydrous HCl to aqueous HCl conversion system  

DOE Patents (OSTI)

The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

Grossman, Mark W. (Belmont, MA); Speer, Richard (S. Hamilton, MA)

1993-01-01T23:59:59.000Z

10

Method of synthesis of anhydrous thorium(IV) complexes  

SciTech Connect

Method of producing anhydrous thorium(IV) tetrahalide complexes, utilizing Th(NO.sub.3).sub.4(H.sub.2O).sub.x, where x is at least 4, as a reagent; method of producing thorium-containing complexes utilizing ThCl.sub.4(DME).sub.2 as a precursor; method of producing purified ThCl.sub.4(ligand).sub.x compounds, where x is from 2 to 9; and novel compounds having the structures: ##STR00001##

Kiplinger, Jaqueline L; Cantat, Thibault

2013-04-30T23:59:59.000Z

11

Rheological Study of Mutarotation of Fructose in Anhydrous State  

Science Conference Proceedings (OSTI)

Rheological measurement was employed to study the mutarotation of D-fructose in anhydrous state. By monitoring the evolution of shear viscosity with time, rate constants for mutarotation were estimated, and two different stages of this reaction were identified. One of the mutarotation stages is rapid and has a low activation energy, whereas the other is much slower and has a much higher activation energy. Possible conversions corresponding to these two phases are discussed. This work demonstrates that, in addition to the routine techniques such polarimetry and gas liquid chromatography, rheological measurement can be used as an alternative method to continuously monitor the mutarotation of sugars.

Wang, Yangyang [ORNL; Wlodarczyk, Patryk [Institute ofNon-Ferrous Metals, Sowinskiego Gliwice, POLAND; Sokolov, Alexei P [ORNL; Paluch, Marian W [ORNL

2013-01-01T23:59:59.000Z

12

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The  

Open Energy Info (EERE)

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Details Activities (0) Areas (0) Regions (0) Abstract: Olivine, pyroxene and garnet are nominally anhydrous but can accommodate tens to hundreds of parts per million (ppm) H2O or "water" in the form of protons incorporated in defects in their mineral structure. This review concerns the amount of water in nominally anhydrous minerals from mantle and mantle-derived rocks: peridotites, eclogites, megacrysts, basalts and kimberlites. Trends between internal and external parameters

13

Ethyl Lactate Solvents - Argonne National Laboratory  

Technology Development and Commemrcialization ETHYL LACTATE SOLVENTS: Low-Cost and Environmentally Friendly Argonne National Laboratory is a U.S. Department of Energy

14

Process for the preparation of ethyl benzene  

DOE Patents (OSTI)

Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1995-12-19T23:59:59.000Z

15

Process for the preparation of ethyl benzene  

DOE Patents (OSTI)

Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

Smith, Jr., Lawrence A. (Houston, TX); Arganbright, Robert P. (Houston, TX); Hearn, Dennis (Houston, TX)

1995-01-01T23:59:59.000Z

16

An investigation of the effectiveness of anhydrous mud acid to remove damage in sandstone formations  

E-Print Network (OSTI)

The goal of this experimental research was to determine the reactivity of anhydrous mud acid with clay minerals present in sandstone formations and its ability to remove damage in sandstone acidizing. Berea core flood experiments were conducted with a mixture of carbon dioxide, hydrogen chloride and hydrogen fluoride. These tests were carried out with oven dried cores and cores at irreducible water saturation. Anhydrous mud acid appears to be reactive with all the cores tested. However, it does not have the ability to reduce damage as hoped. The aqueous phase is required to transport the products of the reaction. To confirm this, other tests with a mixture of 75% C02 and 25% aqueous acid by volume were done and again found to be reactive with the cores tested but were unable to remove the products of the reactions. Salt water afterflushes were done on these cores and the dissolved material was able to be transported out of the core. Therefore, it appears aqueous acid is required in an amount greater than 25% by volume to remove damage effectively in sandstone mud acidizing treatments utilizing C02 as a conjugate fluid.

Haase, Dalan David

1998-01-01T23:59:59.000Z

17

Alcohol fired alcohol fuel still  

Science Conference Proceedings (OSTI)

The best method for using alcohol as the base for alcohol fuel distillation would be in the conservation of the initial heat input. In other words, the 20 gallon system would, at the end of a load, in effect waste a full gallon of alcohol fuel with each batch. Therefore either a continual feed system needs to be developed which would serve the 20 gallon heater or heat exchangers of some type should be designed to salvage a great portion of the heat. If, on the other hand, large amounts of fuel are not required, a large single batch still fired by alcohol would not be too wasteful. It would be adviseable that some form of alcohol fuel research both small and large scale be continued. While not necessarily an important part of the energy picture now, it may well be in the future. It could also open up overseas markets where fuels in liquid form are scarce, yet raw materials are not. Lastly, this project, while accomplishing muon, needs further study to make the system more efficient in fuel economy.

Johnson, F.

1982-01-01T23:59:59.000Z

18

Co NMR Study of the Co States in Superconducting and Anhydrous Cobaltates I. R. Mukhamedshin,1,* H. Alloul,1,  

E-Print Network (OSTI)

59 Co NMR Study of the Co States in Superconducting and Anhydrous Cobaltates I. R. Mukhamedshin,1-sur-Yvette, France (Received 11 February 2005; published 20 June 2005) 59Co NMR spectra in oriented powders of Na0 state with identical T independent NMR shift tensor. These phases differ markedly from Na0:7CoO2

Paris-Sud 11, Université de

19

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage Health Nutrition Biochemistry eChapters Health - Nu

20

Ultrasonic Relaxation in Ethanol?Ethyl Halide Mixtures  

Science Conference Proceedings (OSTI)

Ultrasonic studies in mixtures of ethanol and various ethyl halides show that maxima exist in the plots of the absorption coefficient versus concentration. These maxima are located at relatively small ethanol concentrations. The measurements made include a detailed investigation of the temperature and frequency dependence of the absorption in the ethanol?ethyl chloride system and somewhat less complete studies of the ethanol?ethyl bromide and ethanol?ethyl iodide systems. In each of the systems the measurements were made as a function of concentration. The results in the ethanol?ethyl chloride mixtures indicate the presence of a single relaxation process occurring in the range of measurement (15?165 MHz). The mechanism for this relaxation process is considered both in terms of a quasichemical association theory and in terms of a fluctuating concentration theory. The suggestion is made that the relaxational behavior may be connected with the existence azeotropic concentrations in these mixtures.

V. A. Solovyev; C. J. Montrose; M. H. Watkins; T. A. Litovitz

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PREPARATION OF ANHYDROUS F-18 FLUORIDE, T. Tewson. Journal of Labelled Compounds and Radiopharmaceuticals S165; 52, Supplement 1 2009  

SciTech Connect

The original specific aims of the grant where cut back considerably as the study section reduced both the time and the budget for the project. The objective of the grant was to show that fluorine-18 fluoride could be prepared completely anhydrous and thus substantially more reactive than conventionally dried fluoride using the method of Sun and DiMagno. This method involved using conventionally dried fluoride to prepare an aromatic fluoride in which the aromatic ring is substituted with electron withdrawing groups. The aryl fluoride is then dried and purified and the fluoride is displaced with an anhydrous nucleophile. Using fluorine-19 and macroscopic scale reactions the reactions work well and give anhydrous fluoride salts that are both more reactive and more selective in their reactions than conventionally dried fluoride. The original substrate chosen for the reaction was bromopentacyanobenzene (1). This compound proved to be easy to make but very hard to purify. As an alternative hexabromobenzene, which is commercially available in high purity, was tried. This reacted cleanly with conventionally dried F-18 fluoride in acetonitrile to give [{sup 18}F]-fluoropentabromobenzene (2), which could be dried by passage of the solution over alumina, which also removed any unreacted fluoride. The fluorine-18 fluoride could be liberated from (2) by displacement with an anhydrous nucleophilic tetra-alkylammonium salt but the anion had to be chosen with considerable care. The reaction is potentially reversible especially as, on the no carrier added scale, there is inevitably an excess of hexabromobenzene and so the displacing nucleophile is chosen to deactivate the aromatic compound to further nucleophilic displacement reactions. To this end tetrabutylammonium azide and tetrabutylammonium phenolate have been tried. Both work but the phenolate is probably the better choice. The F-18 fluoride produced by this process is substantially more reactive than conventionally dried fluoride. A solution of the 3'-anhydrothymidine-5-benzoate (3) was added to the fluoride solution and 30% of the fluoride was incorporated in less than 3 minutes at room temperature were as conventionally dried fluoride requires 10 minutes at 160 C and gives {approx}10% incorporation. These results are encouraging in that they show that the objective of truly anhydrous fluoride is worth pursuing but the problem is that you end up with too much 'stuff' in the solution. Four to five milligrams of hexabromobenzene are used for the initial fluorination reaction and enough of the tetra-alkylammonium salt has to be added to react with a substantial number of those bromides. No attempt has been made to optimize these amounts but there is clearly a lot of material in the solution before the final substrate is added. To avoid these difficulties experiments involving a different, low boiling carrier of the fluoride which can be distilled from the initial fluorination mixture have been tried. Phenyltrifluoromethane sulfonate reacts with fluoride to give trifluoromethane sulfonyl fluoride which boils at -20 C as shown. This reaction works with conventionally dried fluorine-18 fluoride and the no carrier added trifluoromethane sulphonyl fluoride distills out of the reaction as it forms. The choice of nucleophile to react it with to liberate the fluoride is limited and the obvious choice is tetrabutylammonium azide as the resulting trifluoromethane sulfonyl azide is unreactive. We have shown that this works in principle but the experimental details have not been explored.

Tewson, T.

2009-07-01T23:59:59.000Z

22

In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide  

SciTech Connect

Reactions involving scCO2 and a calcium saturated dioctahedral smectite (Ca-STX-1) were examined by in situ high-pressure x-ray diffraction over a range of temperatures (50° to 100°C) and pressures (90, 125, and 180 bar) relevant to long term geologic storage of CO2. Exposure of Ca-STX-1 containing one water of hydration (1W) to anhydrous scCO2 at 50°C and 90 bar produced an immediate increase of ~0.8 Å in the d001 basal reflection that was sustained for the length of the experiment (~44 hours). Higher ordered basal reflections displayed similar shifts. Following depressurization, positions of basal reflections and FWHM values (d001) returned to initial values, with no measurable modification to the clay structure or water content. Similar results were obtained for tests conducted at 50°C and higher pressures (125 and 180 bar). Exposure of Ca-STX-1 containing two waters of hydration (2W) to scCO2 resulted in a decrease in the d001 reflection from 14.48 Å to 12.52 Å, after pressurization, indicating a partial loss of interlayer water. In addition, the hydration state of the clay became more homogeneous during contact with anhydrous scCO2 and after depressurization. In the presence of scCO2 and water, the clay achieved a 3W hydration state, based on a d001 spacing of 18.8 Å. In contrast to scCO2, comparable testing with N2 gas indicated trivial changes in the d001 series regardless of hydration state (1W or 2W). In the presence of free water and N2, the basal spacing for the Ca-STX-1 expanded slightly, but remained in the 2W hydration state. These experiments indicate that scCO2 can intercalate hydrated clays, where the 1W hydrate state is stable when exposed to anhydrous scCO2 under conditions proposed for geologic storage of CO2. Consequently, clays can act as secondary CO2 traps where potential collapse or expansion of the interlayer spacing depends on the initial hydration state of the clay and scCO2.

Schaef, Herbert T.; Ilton, Eugene S.; Qafoku, Odeta; Martin, Paul F.; Felmy, Andrew R.; Rosso, Kevin M.

2012-01-09T23:59:59.000Z

23

Furfuryl alcohol cellular product  

DOE Patents (OSTI)

Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

Sugama, T.; Kukacka, L.E.

1982-05-26T23:59:59.000Z

24

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

25

Extracting alcohols from aqueous solutions  

DOE Patents (OSTI)

Hydrocarbon and surfactants are contacted with a solution of alcohol and water to extract the alcohol into the hydrocarbon-surfactant mixture.

Compere, Alicia L. (Knoxville, TN); Googin, John M. (Oak Ridge, TN); Griffith, William L. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

26

Alcohol | OpenEI  

Open Energy Info (EERE)

Alcohol Alcohol Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption transportation industry UN Data application/xml icon UN Data: consumption by transportation industry XML (xml, 95 KiB) text/csv icon UN Data: consumption by transportation industry XLS (csv, 21.6 KiB)

27

Fermentative alcohol production  

DOE Patents (OSTI)

An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

Wilke, Charles R. (El Cerrito, CA); Maiorella, Brian L. (Berkeley, CA); Blanch, Harvey W. (Berkeley, CA); Cysewski, Gerald R. (Kennewick, WA)

1982-01-01T23:59:59.000Z

28

EXTRACTION OF HEXAVALENT PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS WITH ETHYL SULFIDE  

DOE Patents (OSTI)

A process is described for extracting Pu>s6/sup > /om an aqueous ammonium nitrate-containing nitric acid solution with ethyl sulfide.

Seaborg, G.T.

1961-06-27T23:59:59.000Z

29

DISCOVERY OF METHYL ACETATE AND GAUCHE ETHYL FORMATE IN ORION  

SciTech Connect

We report on the discovery of methyl acetate, CH{sub 3}COOCH{sub 3}, through the detection of a large number of rotational lines from each one of the spin states of the molecule: AA species (A{sub 1} or A{sub 2}), EA species (E{sub 1}), AE species (E{sub 2}), and EE species (E{sub 3} or E{sub 4}). We also report, for the first time in space, the detection of the gauche conformer of ethyl formate, CH{sub 3}CH{sub 2}OCOH, in the same source. The trans conformer is also detected for the first time outside the Galactic center source SgrB2. From the derived velocity of the emission of methyl acetate, we conclude that it arises mainly from the compact ridge region with a total column density of (4.2 {+-} 0.5) Multiplication-Sign 10{sup 15} cm{sup -2}. The derived rotational temperature is 150 K. The column density for each conformer of ethyl formate, trans and gauche, is (4.5 {+-} 1.0) Multiplication-Sign 10{sup 14} cm{sup -2}. Their abundance ratio indicates a kinetic temperature of 135 K for the emitting gas and suggests that gas-phase reactions could participate efficiently in the formation of both conformers in addition to cold ice mantle reactions on the surface of dust grains.

Tercero, B.; Cernicharo, J.; Lopez, A.; Caro, G. M. Munoz [Department of Astrophysics, CAB, INTA-CSIC, Crta Torrejon-Ajalvir, km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Kleiner, I.; Nguyen, H. V. L., E-mail: terceromb@cab.inta-csic.es, E-mail: jcernicharo@cab.inta-csic.es, E-mail: lopezja@cab.inta-csic.es, E-mail: munozcg@cab.inta-csic.es, E-mail: isabelle.kleiner@lisa.u-pec.fr, E-mail: nguyen@pc.rwth-aachen.de [Laboratoire Interuniversitaire des Systemes Atmospheriques, CNRS/IPSL UMR7583 et Universites Paris Diderot et Paris Est, 61 av. General de Gaulle, F-94010 Creteil (France)

2013-06-10T23:59:59.000Z

30

Production of hydrogen from alcohols  

DOE Patents (OSTI)

A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

Deluga, Gregg A. (St. Paul, MN); Schmidt, Lanny D. (Minneapolis, MN)

2007-08-14T23:59:59.000Z

31

Hydrogen-bond equilibria and life times in a supercooled monohydroxy alcohol  

E-Print Network (OSTI)

Dielectric loss spectra covering 13 decades in frequency were collected for 2-ethyl-1-hexanol, a monohydroxy alcohol that exhibits a prominent Debye-like relaxation, typical for several classes of hydrogen-bonded liquids. The thermal variation of the dielectric absorption amplitude agrees well with that of the hydrogen-bond equilibrium population, experimentally mapped out using near infrared (NIR) and nuclear magnetic resonance (NMR) measurements. Despite this agreement, temperature-jump NIR spectroscopy reveals that the hydrogen-bond switching rate does not define the frequency position of the prominent absorption peak. This contrasts with widespread notions and models based thereon, but is consistent with a recent approach.

C. Gainaru; S. Kastner; F. Mayr; P. Lunkenheimer; S. Schildmann; H. J. Weber; W. Hiller; A. Loidl; R. Böhmer

2011-06-28T23:59:59.000Z

32

EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE  

DOE Patents (OSTI)

A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

Seaborg, G.T.

1961-08-01T23:59:59.000Z

33

Gene therapy in alcoholic rats  

NLE Websites -- All DOE Office Websites (Extended Search)

70 70 Sept. 9, 2001 Gene Therapy Reduces Drinking in "Alcoholic" Rats UPTON, NY - Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have shown that increasing the level of a brain protein important for transmitting pleasure signals can turn rats that prefer alcohol into light drinkers, and those with no preference into near teetotalers. The findings, published in the first September 2001 issue of the Journal of Neurochemistry (Vol. 78, No. 5), may have implications for the prevention and treatment of alcoholism in humans. "This is a preliminary study, but when you see a rat that chooses to drink 80 to 90 percent of its daily fluid as alcohol, and then three days later it's down to 20 percent, that's a dramatic drop in alcohol intake - a very clear change in behavior," said Panayotis Thanos, the lead researcher. "This gives us great hope that we can refine this treatment for future clinical use."

34

Alcoholes Biocarburantes de Extremadura Albiex | Open Energy...  

Open Energy Info (EERE)

Name Alcoholes Biocarburantes de Extremadura (Albiex) Place Spain Product Spanish bioethanol producer building a plant in Extremadura. References Alcoholes Biocarburantes de...

35

Alcohol fuels program technical review  

DOE Green Energy (OSTI)

The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

Not Available

36

Alcohol fuel from Ohio farms  

Science Conference Proceedings (OSTI)

This booklet provides an introduction to technical, marketing, and regulatory issues involved in on-farm alcohol fuel production. Discussed are ethanol production provcesses, investment, potential returns, regulations and permits, and sources of financial and technical assistance. 2 figures. (DMC)

Jones, J.D.

1984-01-01T23:59:59.000Z

37

Mixed Alcohol Synthesis Catalyst Screening  

DOE Green Energy (OSTI)

National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

Gerber, Mark A.; White, James F.; Stevens, Don J.

2007-09-03T23:59:59.000Z

38

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed reactor system at Building 9212. Draft environmental assessment  

SciTech Connect

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is Iocated within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The current AHF supply and fluidized-bed reactor systems were designed and constructed more than 40 years ago. Because of their deteriorating condition, the corrosive nature of the materials processed, and the antiquated design philosophy upon which they are based, their long-term reliability cannot be assured. The current AHF supply system cannot mitigate an accidental release of AHF and vents fugitive AHF directly to the atmosphere during operations. the proposed action would reduce the risk of exposing the Y-12 Plant work force, the public, and the environment to an accidental release of AHF and would ensure the continuing ability of the Y-12 Plant to manufacture highly enriched uranium metal and process uranium from retired weapons for storage.

1995-03-01T23:59:59.000Z

39

Alcohol consumption, medical conditions and health behavior in older adults  

E-Print Network (OSTI)

Alcohol consumption In press, American JournalHealth Behavior Alcohol Consumption, Medical Conditions andin the association of alcohol consumption with health and

Satre, Derek; Gordon, Nancy P.; Weisner, Constance

2007-01-01T23:59:59.000Z

40

Tape Formulations  

Science Conference Proceedings (OSTI)

Table 6   Typical nonaqueous formulations of tape systems...g oz Oxidizing sintering atmospheres Menhaden fish oil (dispersant) 1.8 0.06 Xylene (solvent) 21.0 0.74 Anhydrous ethyl alcohol (solvent) 13.7 0.48 Aluminum oxide (ceramic powder) 100.0 3.5 Mixed phthalates (plasticizer) 3.6 0.13 Polyalkylene glycol (plasticizer) 4.3 0.15 Polyvinyl butyral (binder)...

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A new antifouling hybrid CDP formulation with ethyl heptanoate: evaluation of AF performance at Ayajin harbor, east coast of Korea  

Science Conference Proceedings (OSTI)

Antifouling (AF) efficiency of a nontoxic aliphatic ester, ethyl heptanoate was evaluated against spores of a fouling alga Ulva pertusa and a ship fouling diatom Amphora coffeaeformis. Based on the nontoxic AF activity exhibited in the laboratory bioassays, ... Keywords: antifouling, ethyl heptanoate, fouling resistance, hybrid controlled depletion paint (CDP), zinc pyrithione

M. Sidharthan; Sang Mok Jung; Haridatta Bhatta Rai; Ji Hyun Lee; Chi Young Lim; Young-Kyu Kang; N. S. Park; H. W. Shin

2006-07-01T23:59:59.000Z

42

Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and  

E-Print Network (OSTI)

1 Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters and reduced exhaust emissions have led to the emergence of new fuels and combustion devices. Over the past ten years, considerable effort has gone into understanding combustion phenomena in relation to emerging fuel

43

Autothermal Partial Oxidation of Ethanol and Alcohols  

Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon monoxide and hydrogen that can be used to synthesize other ...

44

Alcohol Fuels Program. Final technical report  

DOE Green Energy (OSTI)

The activities and accomplishments of the alcohol fuels program are reviewed briefly. Educational and promotional activities are described. (MHR)

Weiss, G.M.

1982-01-01T23:59:59.000Z

45

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

46

South Dakota alcohol fuel production handbook: permits, regulations, and assistance  

SciTech Connect

This handbook contains information on South Dakota alcohol legislation, and information on the various types of additional government program assistance available to the alcohol producer. It was prepared to assist potential alcohol producers with federal and state permit prerequisites. (DMC)

1980-01-01T23:59:59.000Z

47

Alcohol fuel research in Turkey  

Science Conference Proceedings (OSTI)

Turkey, like most of the developing countries of the world, has vast agricultural potential, yet the country is highly dependent on oil imports, which satisfy 90% of its crude oil demand. Since Turkey had an economy based on agriculture, the usage of national resources in the energy field is extremely important. In the first years of the Turkish Republic, in 1931, the usage of national resources as an alternative to conventional fuels became a subject of increasing interest. Since then a lot of research has been conducted, but only a limited amount of application has been realized. Alcohol has always occupied an important place among the alternative fuel studies. The subject has been the scope of some research institute projects and university and government development planning studies. In Turkey, one of the most important studies in this area has been undertaken by the authors` research group in their university. This study is a general review of alcohol usage as an alternative automotive fuel in Turkey. This review includes a short history of the subject, the approach of the government, the research results, possible developments on the subject in the near future, and finally, it concludes with proposals.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A. [Istanbul Technical Univ. (Turkey). Dept. of Chemical Engineering

1998-12-01T23:59:59.000Z

48

Alcohol Transportation Fuels Demonstration Program  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. (ed.)

1990-01-01T23:59:59.000Z

49

Solid alcohol fuel with hydration inhibiting coating  

Science Conference Proceedings (OSTI)

This patent describes a process for preparing a solid alcohol fuel. It comprises: mixing an alcohol solution with a cellulose derivative having a hydration inhibiting coating thereby forming a slurry and then adding an effective amount sufficient to increase the pH level above 8, of a caustic material so as to effect hydration and solidification.

Gartner, S.

1990-11-20T23:59:59.000Z

50

Alcohol Outlets and Violent Crime in Washington D.C.  

E-Print Network (OSTI)

Alcohol Availability and Crime: Evidence From Census Tractand Ontkush, M. J. Violent Crime and Alcohol Availability:Neighborhoods and Urban Crimes. Social Forces. 1996;75:619-

Franklin, F. Abron; LaVeist, Thomas A.; Webster, Daniel W.; Pan, William K.

2010-01-01T23:59:59.000Z

51

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

52

Alcoholic fermentation of sorghum without cooking  

Science Conference Proceedings (OSTI)

Sorgum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.

Thammarutwasik, P.; Koba, Y.; Ueda, S.

1986-07-01T23:59:59.000Z

53

Small-scale alcohol fuel production  

Science Conference Proceedings (OSTI)

This is the final report of a project to demonstrate the feasibility of small-scale alcohol fuel production. A list of equipment and costs incurred in contracting the still are included. No experimental results are presented. (DMC)

Evans, J.; McQueary, J.

1983-02-25T23:59:59.000Z

54

Third international symposium on alcohol fuels technology  

DOE Green Energy (OSTI)

At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

none,

1980-04-01T23:59:59.000Z

55

Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate  

DOE Green Energy (OSTI)

This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

2010-12-15T23:59:59.000Z

56

Alcohol Fuels Program technical review, Spring 1984  

DOE Green Energy (OSTI)

The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

Not Available

1984-10-01T23:59:59.000Z

57

Improved fermentative alcohol production. [Patent application  

DOE Patents (OSTI)

An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

1980-11-26T23:59:59.000Z

58

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

59

State of California BOARD OF EQUALIZATION ALCOHOLIC BEVERAGE TAX REGULATIONS  

E-Print Network (OSTI)

section 23007, is presumed to contain 0.5 percent or more alcohol by volume derived from flavors or other ingredients containing alcohol obtained from the distillation of fermented agricultural products, unless this

unknown authors

2008-01-01T23:59:59.000Z

60

Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report  

Science Conference Proceedings (OSTI)

Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and approx.30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs.

Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alcohols as hydrogen-donor solvents for treatment of coal  

DOE Patents (OSTI)

A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

Ross, David S. (Palo Alto, CA); Blessing, James E. (Menlo Park, CA)

1981-01-01T23:59:59.000Z

62

Alcohol synthesis from CO or CO.sub.2  

SciTech Connect

Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.

Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA

2010-12-28T23:59:59.000Z

63

Alcohol fuel production training program. Final report  

Science Conference Proceedings (OSTI)

The purpose of the project was to offer instruction in the small scale production of ethanol, which can be added to gasoline by about 10%. The course was designed to help farmers in particular to make ethanol to extend fuel use. This project has four objectives. They are: (1) design an alcohol fuel production course with appropriate equipment for hands-on training; (2) offer at least three training sessions on alcohol fuel production in Cumberland County each year of the project; (3) work with the Governor's Task Force on Gasohol to disseminate the necessary information on alcohol production to the public; (4) identify, in consultation with the New Jersey Department of Energy and Agriculture, other training sites in the state and offer at least three training sessions outside of Cumberland County during the second year of the project. As of March 31, 1982, Cumberland County College completed all activities and objectives outlined in its Appropriate Technology project ''Alcohol Fuel Production.'' Given the six month extension requested to accommodate farmers in other parts of the state and the growing season, this project was completed within the stated time schedule. Although the response for the course was high in the beginning of 1981, the increased supply of low cost fuels at the end of the year probably accounts for the decline in the public's willingness to take a course of this nature.

Burke, J.

1982-06-30T23:59:59.000Z

64

Developing alternative feedstocks for fuel alcohol  

Science Conference Proceedings (OSTI)

This paper briefly reviews recent research to examine the viability of energy sorghum as a feedstock for producing fuel alcohol. Energy sorghum is the name given to any sweet sorghum shown to be feasible for producing fuel alcohol. Energy sorghum can grow on a variety of soils, in 90 day cycles, with up to three crops a year. Crop rotation is rarely needed; most of the nitrogen and potassium returns to the soil. Harmon Engineering and Testing initiated an inhouse program to research sweet sorghum development. Equipment specifications and preliminary results are given. An ''energy farm'' process is explained step by step. Stalk juice, grain, and stalk fiber yields are listed. The use of bagasse and carbon dioxide is also considered.

Verma, V.K.

1982-06-01T23:59:59.000Z

65

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents (OSTI)

The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee' s Summit, MO); Hand, Thomas E. (Lee' s Summit, MO); Powers, Michael T. (Santa Rosa, CA)

1996-05-07T23:59:59.000Z

66

Limonene and tetrahydrofurfurly alcohol cleaning agent  

DOE Patents (OSTI)

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee' s Summit, MO); Hand, Thomas E. (Lee' s Summit, MO); Powers, Michael T. (Santa Rosa, CA)

1997-10-21T23:59:59.000Z

67

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents (OSTI)

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1997-10-21T23:59:59.000Z

68

The Search for Genes Related to a Low-Level Response to Alcohol Determined by Alcohol Challenges  

E-Print Network (OSTI)

Background: A low level of response (LR) to alcohol seems to relate to a substantial proportion of the risk for alcoholism and to have significant heritability. Methods: This report describes the results of a genome-wide segregation analysis for the first 139 pairs of full siblings by using an alcohol challenge protocol as a direct measure of LR. Subjects from 18 to 29 years old were selected if the original screen indicated they had an alcohol-dependent parent, reported a personal history of drinking but had no evidence of alcohol dependence, and had a full sibling with similar characteristics. Body sway and Subjective High Assessment Scale scores were measured at baseline and at regular intervals after the administration of a measured dose of alcohol. Participants and available parents were genotyped for 811 microsatellite markers, and resulting data were analyzed with a variance component method. Results: Nine chromosome regions with logarithm of the odds ratio (LOD) between 2.2 and 3.2 were identified; several had previously been implicated regarding phenotypes relevant to alcoholism and the LR to alcohol. Several regions identified in the previous linkage study by using a retrospective self-report questionnaire were potentially confirmed by this study. The strongest evidence was on chromosomes 10, 11, and 22. Conclusions: Several chromosomal areas seem to relate to the low LR to alcohol as a risk factor for alcohol dependence.

Kirk C. Wilhelmsen; Marc Schuckit; Tom L. Smith; James V. Lee; Samantha K. Segall; Heidi S. Feiler; Jelger Kalmijn

2003-01-01T23:59:59.000Z

69

Separation and concentration of lower alcohols from dilute aqueous solutions  

DOE Patents (OSTI)

A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

Moore, Raymond H. (Richland, WA); Eakin, David E. (Kennewick, WA); Baker, Eddie G. (Richland, WA); Hallen, Richard T. (Richland, WA)

1991-01-01T23:59:59.000Z

70

The Relationship Between Tobacco, Alcohol, and Marijuana Use Among Teenagers.  

E-Print Network (OSTI)

??The purpose of this study was to explore the relationship between alcohol, tobacco, and marijuana use among teenagers. This study examined three research questions: (1)… (more)

Rose, John Donald

2006-01-01T23:59:59.000Z

71

Electrocatalyst for Alcohol Oxidation at Fuel Cell Anodes - Energy ...  

Ethanol and other alcohols are nearly ideal reactants for fuel cells. Unfortunately they are difficult to oxidize, requiring breaking of carbon-carbon bonds. This ...

72

Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, R.K.; Hirschfeld, T.B.

1981-03-26T23:59:59.000Z

73

The effects of alcohol use on zinc status  

E-Print Network (OSTI)

Alcohol consumption has been shown to have adverse affects on bone growth and maintenance, although the mechanism has not been elucidated. The objective of this research was to look at the relationship between zinc and alcohol as a possible mechanism for the negative effects of ethanol consumption on bone health. Five studies were performed in order to analyze the effects of different types of alcohol consumption on female Sprague-Dawley rats of various ages. The animals were fed one of three diets (alcohol, pair-fed or chow). The rats were sacrificed at varying time intervals according to the specific study. Zinc analysis of the serum, femur and tibia was performed using atomic absorption spectrophotometry. The alcohol eventually affected the serum zinc status of the rats in the adolescent project. The zinc status of the animals in the moderate alcohol, 2-day binge, 5-day binge and short-term adult alcohol projects was not significantly altered due to the alcohol. A longer duration and/or a higher amount of ethanol was needed to consistently detect changes in the serum and bone zinc concentrations of all the animals. Although zinc status is altered by ethanol consumption, this relationship is not likely to be the sole mechanism behind the effects of alcohol on bone health.

Chapman, Lisa Louise

1998-01-01T23:59:59.000Z

74

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network (OSTI)

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

75

Electrocatalyst for alcohol oxidation in fuel cells  

DOE Patents (OSTI)

Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

Adzic, Radoslav R. (Setauket, NY); Marinkovic, Nebojsa S. (Coram, NY)

2001-01-01T23:59:59.000Z

76

Agricultural scientists cut alcohol fuel costs  

Science Conference Proceedings (OSTI)

Scientists at the US Department of Agriculture have succeeded in lowering the cost of making alcohol from corn by 15 cents to $1.64 per gallon. The cost of drying distillers' solubles dropped because at the end of each cooking/fermenting/distilling run, the solubles are used for cooking, cooling and fermenting in the next run. One evaporation of solubles is required after 10 runs, so energy cost is cut from 17 cents to 1.7 cents. The protein by-products recovered, can be used as swine and poultry feeds and as human food.

Not Available

1981-09-21T23:59:59.000Z

77

Alcohol Fuel Flexibility -- Progress And Prospects  

E-Print Network (OSTI)

This paper was prepared as the result of work by a member of the staff of the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this paper; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This paper has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this paper. SEPTEMBER 2005 CEC-600-2005-038 2 Alcohol Fuel Flexibility -- Progress and Prospects Thomas MacDonald California Energy Commission 1516 Ninth St. Sacramento, California 95814 Phone (916) 654-4120 FAX (916) 654-4753 e-mail: tmacdona@energy.state.ca.us Fifteenth International Symposium on Alcohol Fuels San Diego, CA September 26-28, 2005

Transportation Fuels Division; Thomas Macdonald; Thomas Macdonald

2005-01-01T23:59:59.000Z

78

Alcohol Transportation Fuels Demonstration Program. Phase 1  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. [ed.

1990-12-31T23:59:59.000Z

79

Alcohol and Other Drugs Office of Student Life  

E-Print Network (OSTI)

to, buy alcohol for, or furnish alcohol to anyone under 21, even if you are the parent, legal or furnishing beer or intoxicating liquor to an person under 21 years of age, or buying it for any person under,Valium) Flunitrazepam (Rohypnol) GHB Methaqualone (Quaalude) Fatigue; confusion; impaired coordination, memory, judgment

Jones, Michelle

80

Acceptorless Photocatalytic Dehydrogenation for Alcohol Decarbonylation and Imine Synthesis  

Science Conference Proceedings (OSTI)

It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H2 (see scheme). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H2.

Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D.

2012-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Use of alcohol fuel: engine-conversion demonstration. Final report  

DOE Green Energy (OSTI)

The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

Marsh, W.K. (ed.)

1982-01-01T23:59:59.000Z

82

Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation  

DOE Patents (OSTI)

Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

Tedder, Daniel W. (Marietta, GA)

1985-05-14T23:59:59.000Z

83

Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.  

SciTech Connect

In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J. [Joint BioEnergy Institute, Emeryville, CA; Beller, Harry R. [Lawrence Berkeley National Laboratory, Berkeley, CA; Keasling, Jay D. [Lawrence Berkeley National Laboratory, Berkeley, CA; Chang, Shiyan [Tsinghua University, Beijing, PR China

2013-01-01T23:59:59.000Z

84

Table Definitions, Sources, and Explanatory Notes  

U.S. Energy Information Administration (EIA)

An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in ... and EIA, Office of Coal, Nuclear, Electric and Alternate ...

85

Proceedings of the alcohol fuel production and utilization conference  

Science Conference Proceedings (OSTI)

A conference was held to provide farmers, businesses, industries, and specialty groups with the best available information on current and projected activities related to the production and utilization of biomass for alcohol fuels. All aspects of the alcohol fuel production and utilization process were discussed. From biomass sources, through conversion processes to end-use products and applications were topics discussed by numerous experts. Other experts took this basic information and put it together into total systems. Speakers presented overviews on alcohol fuel related activities on state, regional, and national levels. Finally, commercialization incentives, funding sources, environmental considerations, research developments, safety considerations, and regulatory requirements were discussed as factors which must be addressed when considering the production and utilization of alcohol fuels. Separate abstracts have been prepared for items within the scope of the Energy Data Base.

Not Available

1980-01-01T23:59:59.000Z

86

Method for producing hydrocarbon and alcohol mixtures. [Patent application  

DOE Patents (OSTI)

It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

Compere, A.L.; Googin, J.M.; Griffith, W.L.

1980-12-01T23:59:59.000Z

87

New diversification strategies for the Japanese alcohol industry  

E-Print Network (OSTI)

Japanese major alcoholic beverage companies, whose businesses are mainly the production and sale of beer products, stand at a strategic crossroads. There are several reasons: a slow decrease in the Japanese population, ...

Yoshimura, Toru, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

88

Electrogenerative oxidation of lower alcohols to useful products  

DOE Patents (OSTI)

In the disclosed electrogenerative process for converting alcohols such as ethanol to aldehydes such as acetaldehyde, the alcohol starting material is an aqueous solution containing more than the azeotropic amount of water. Good first-pass conversions (<40% and more typically <50%) are obtained at operating cell voltages in the range of about 80 to about 350 millivolts at ordinary temperatures and pressures by using very high flow rates of alcohol to the exposed anode surface (i.e. the "gas" side of an anode whose other surface is in contact with the electrolyte). High molar flow rates of vaporized aqueous alcohol also help to keep formation of undesired byproducts at a low level.

Meshbesher, Thomas M. (4507 Weldin Rd., Wilmington, DE 19803)

1987-01-01T23:59:59.000Z

89

DOE supported research in alcohol fuel technology development  

Science Conference Proceedings (OSTI)

The Department of Energy sponsored research in alcohol fuel technology development under the direction of Congress and Public Law 96-126. Twenty-seven research grants of about $50,000 each were funded to develop lower cost methods for alcohol fuel production. This paper discusses the objectives of the program and relates the accomplishments achieved by the research. A discussion of the highlights of several selected projects is included.

Dodds, J.

1984-01-01T23:59:59.000Z

90

Method of forming a dianhydrosugar alcohol  

Science Conference Proceedings (OSTI)

The invention includes methods of producing dianhydrosugars. A polyol is reacted in the presence of a first catalyst to form a monocyclic sugar. The monocyclic sugar is transferred to a second reactor where it is converted to a dianhydrosugar alcohol in the presence of a second catalyst. The invention includes a process of forming isosorbide. An initial reaction is conducted at a first temperature in the presence of a solid acid catalyst. The initial reaction involves reacting sorbitol to produce 1,4-sorbitan, 3,6-sorbitan, 2,5-mannitan and 2,5-iditan. Utilizing a second temperature, the 1,4-sorbitan and 3,6-sorbitan are converted to isosorbide. The invention includes a method of purifying isosorbide from a mixture containing isosorbide and at least one additional component. A first distillation removes a first portion of the isosorbide from the mixture. A second distillation is then conducted at a higher temperature to remove a second portion of isosorbide from the mixture.

Holladay, Johnathan E. (Kennewick, WA); Hu, Jianli (Kennewick, WA); Wang, Yong (Richland, WA); Werpy, Todd A. (West Richland, WA); Zhang, Xinjie (Burlington, MA)

2010-01-19T23:59:59.000Z

91

Use of alcohol in farming applications: alternative fuels utilization program  

DOE Green Energy (OSTI)

The use of alcohol with diesel fuel has been investigated as a means of extending diesel fuel supplies. The ability to use ethanol in diesel-powered farm equipment could provide the means for increasing the near-term fuels self-sufficiency of the American farmer. In the longer term, the potential availability of methanol (from coal) in large quantities could serve to further decrease the dependency on diesel fuel. This document gives two separate overviews of the use of alcohols in farm equipment. Part I of this document compares alcohol with No. 1 and No. 2 diesel fuels and describes several techniques for using alcohol in farm diesels. Part II of this document discusses the use of aqueous ethanol in diesel engines, spark ignition engines and provides some information on safety and fuel handling of both methanol and ethanol. This document is not intended as a guide for converting equipment to utilize alcohol, but rather to provide information such that the reader can gain insight on the advantages and disadvantages of using alcohol in existing engines currently used in farming applications.

Borman, G.L.; Foster, D.E.; Uyehara, O.A.; McCallum, P.W.; Timbario, T.J.

1980-11-01T23:59:59.000Z

92

High-alcohol microemulsion fuel performance in a diesel engine  

DOE Green Energy (OSTI)

Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

West, B.H.; Compere, A.L.; Griffith, W.L.

1990-01-01T23:59:59.000Z

93

The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process  

Science Conference Proceedings (OSTI)

Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m{sup 2}/gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation both as feed. The operation condition is 150 deg. C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

Widayat [Department of Chemical Engineering, Faculty of Engineering Diponegoro University, Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia); Roesyadi, A.; Rachimoellah, M. [Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

94

Geothermal source potential and utilization for alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

95

Protection against 2-chloroethyl ethyl sulfide (CEES) - induced cytotoxicity in human keratinocytes by an inducer of the glutathione detoxification pathway  

SciTech Connect

Sulfur mustard (SM or mustard gas) was first used as a chemical warfare agent almost 100 years ago. Due to its toxic effects on the eyes, lungs, and skin, and the relative ease with which it may be synthesized, mustard gas remains a potential chemical threat to the present day. SM exposed skin develops fluid filled bullae resulting from potent cytotoxicity of cells lining the basement membrane of the epidermis. Currently, there are no antidotes for SM exposure; therefore, chemopreventive measures for first responders following an SM attack are needed. Glutathione (GSH) is known to have a protective effect against SM toxicity, and detoxification of SM is believed to occur, in part, via GSH conjugation. Therefore, we screened 6 potential chemopreventive agents for ability to induce GSH synthesis and protect cultured human keratinocytes against the SM analog, 2-chloroethyl ethyl sulfide (CEES). Using NCTC2544 human keratinocytes, we found that both sulforaphane and methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) stimulated nuclear localization of Nrf2 and induced expression of the GSH synthesis gene, GCLM. Additionally, we found that treatment with CDDO-Me elevated reduced GSH content of NCTC2544 cells and preserved their viability by {approx} 3-fold following exposure to CEES. Our data also suggested that CDDO-Me may act additively with 2,6-dithiopurine (DTP), a nucleophilic scavenging agent, to increase the viability of keratinocytes exposed to CEES. These results suggest that CDDO-Me is a promising chemopreventive agent for SM toxicity in the skin. - Highlights: > CDDO-Me treatment increased intracellular GSH in human keratinocytes. > CDDO-Me increased cell viability following exposure to the half-mustard, CEES. > The cytoprotective effect of CDDO-Me was likely due to scavenging with endogenous GSH.

Abel, Erika L.; Bubel, Jennifer D.; Simper, Melissa S.; Powell, Leslie; McClellan, S. Alex [Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957 (United States); Andreeff, Michael [Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); MacLeod, Michael C. [Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957 (United States); DiGiovanni, John, E-mail: john.digiovanni@austin.utexas.edu [Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957 (United States)

2011-09-01T23:59:59.000Z

96

Generation of electricity with fuel cell using alcohol fuel  

Science Conference Proceedings (OSTI)

This patent describes a method for generating electricity in a fuel cell, the fuel cell comprising a cathode, an electrolyte, an anode comprising a first, fluid-permeable face and a second face in contact with the electrolyte, and an external circuit connecting the cathode and the anode. It comprises bringing a lower primary alcohol into contact with the first fluid-permeable face of the anode, thereby permitting the lower primary alcohol to penetrate into the cross-section of the anode toward the second face; oxidizing the lower primary alcohol essentially to carbon dioxide and water at the second face of the anode, reducing a reducible gas at the cathode, and obtaining electricity from the fuel cell.

Reddy, N.R.K.V.; Taylor, E.J.

1992-07-21T23:59:59.000Z

97

Modeling and cold start in alcohol-fueled engines  

DOE Green Energy (OSTI)

Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

Markel, A.J.; Bailey, B.K.

1998-05-01T23:59:59.000Z

98

State of California BOARD OF EQUALIZATION ALCOHOLIC BEVERAGE TAX REGULATIONS  

E-Print Network (OSTI)

Samples and donations of alcoholic beverages shall be reported as sales. Each transfer of samples between licensees authorized to possess alcoholic beverages on which the California state alcoholic beverages taxes have not been paid (manufacturers, manufacturers ’ agents, distilled spirits wholesalers and rectifiers) shall be on an ex-tax basis, and shall be recorded on an invoice marked: “Samples.” Distilled spirits taxpayers receiving samples from other licensees in California shall record the receipt in form BOE-241-A. Samples received by direct importation shall be recorded in form BOE-242-A. Distilled spirits picked up at the licensed premises of a distilled spirits rectifier or wholesaler by a representative of a manufacturer or of a manufacturer’s agent to be used by him for sampling purposes, shall not be considered to be a transfer of samples between the licensees referred to in the second paragraph of this rule. Such deliveries of distilled

Regulation Treated; As Sales

1955-01-01T23:59:59.000Z

99

STEP 1: TO BE COMPLETED BY ALCOHOL TECHNICIAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 (07/03) OMB Control No. 1910-5122 7 (07/03) OMB Control No. 1910-5122 U.S. Department of Energy (DOE) Human Reliability Program (HRP) Alcohol Testing Form (Instructions for completing this form are attached.) STEP 1: TO BE COMPLETED BY ALCOHOL TECHNICIAN A. Employee Name __________________________________________________________________ (Print) First M.I. Last B. Employee ID No. __________________________________________________________ C. Employer Name __________________________________________________________ _____________________________________(____)________________ HRP Supervisor Phone Number D. Reason for Test: Random Reasonable Susp. Post-Accident Return to Duty Follow-up Pre-employment

100

Alcohol Use among Restaurant Workers: An Examination of the Impact of Work-related Stress and Workplace Culture.  

E-Print Network (OSTI)

??Despite reports indicating high levels of alcohol use in the restaurant industry, little research has examined alcohol use among restaurant workers in an in depth… (more)

Rocheleau, Gregory Christopher

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alcohol production from various enzyme-converted starches with or without cooking  

Science Conference Proceedings (OSTI)

The effectiveness of alcoholic fermentation was compared by measuring alcoholic yields from various starch mashes, both cooked and uncooked. Alcohol yields from cooked and liquefied starch by bacterial ..cap alpha..-amylase were 93.9% for corn, 92.0% for cassava, 90.6% for potato, and 73.0% for babassu, whereas alcohol yields from raw starch were 90.0% for corn, 89.0% for cassava, 48.9% for babassu, and 11.4% for potato. (JMT)

Park, Y.K.; Rivera, B.C.

1982-02-01T23:59:59.000Z

102

Continuous Flow Oxidation of Alcohols and Aldehydes Utilizing Bleach and Catalytic Tetrabutylammonium Bromide  

E-Print Network (OSTI)

We report a method for the oxidation of a range of alcohols and aldehydes utilizing a simple flow system of alcohols in EtOAc with a stream of 12.5% NaOCl and catalytic Bu[subscript 4]NBr. Secondary alcohols are oxidized ...

Leduc, Andrew B.

103

Methods for sequestering carbon dioxide into alcohols via gasification fermentation  

SciTech Connect

The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

2013-11-26T23:59:59.000Z

104

State of California BOARD OF EQUALIZATION ALCOHOLIC BEVERAGE TAX REGULATIONS  

E-Print Network (OSTI)

Effective October 1, 2008, for purposes of tax reporting, a taxpayer will be deemed to have correctly classified an alcoholic beverage as not being a distilled spirit, as defined by Business and Professions Code section 23005, if at the time taxes are imposed, as set forth in the Revenue and Taxation Code, division 2, part 14, chapters 4, 5, and

unknown authors

2008-01-01T23:59:59.000Z

105

Plasma Concentrations of/3-Endorphin, Adrenocorticotropic Hormone, and Cortisol in Drinking and Abstinent Chronic Alcoholics  

E-Print Network (OSTI)

concentrations of l~-endorphin, adrenocorticotropic hormone, and cortisol in drinking and abstinent chronic alcoholics. ALCOHOL 12(6) 525-529, 1995.-Previous studies of the relationship between the endogenous opioid system and alcohol consumption have reported contradictory results. To shed light on this connection, we compared plasma concentrations of B-endorphin, adrenocorticotropic hormone, and cortisol in 70 alcoholic persons after different periods of abstinence and a group of 80 control subjects. Plasma B-endorphin was decreased in alcoholics (18.61 _+ 1.38 vs. 39.31 + 3.44 pg/ml), even after more than 10 years ' abstinence. This effect may be mediated by the tetrahydroisoquinoline system, and may thus result from chronic alcohol consumption. On the other hand, lowered circulating concentrations of/3-endorphin may be a cause, rather than an effect, of alcoholism. Plasma levels of adrenocorticotropic hormone and cortisol did not differ in alcoholics and controls (19.29 ± 1.66 vs. 13.27 _+ 1.85 pg/ml for ACTH, 20.37 ~ 0.78 vs. 17.22 _ 0.64 ng/ml for cortisol), and thus appear to have no relation with chronic alcohol consumption. Adrenocorticotropic hormone Alcoholism /3-Endorphins Cortisol Tetrahydroisoquinolines THE RELATIONSHIP between alcohol consumption, abuse, and dependence, and the endogenous opioid system (EOS) has been investigated frequently (7,8,10,24,28,34). Although the findings have been contradictory, it nonetheless appears clear

J. L. Del Arbol; L J. C. Aguirre; J. Raya; J. Rico; M. E. Ruiz-requenat; M. T. Miranda

1995-01-01T23:59:59.000Z

106

Mixed Alcohol Synthesis Catalyst Screening 2007 Progress Report  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) are researching the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is obtaining commercially available mixed alcohol or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. The most promising catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. After a review of the literature in 2006 and conversations with companies that produce catalysts, it was determined that no commercial mixed-alcohol synthesis catalysts were available. One manufacturer supplied a modified methanol catalyst that was tested in the PNNL laboratory-scale system and provided to NREL for further testing. PNNL also prepared and tested the behavior of 10 other catalysts representing the distinct catalyst classes for mixed alcohol syntheses. Based on those results,testing in 2007 focused on the performance of the rhodium-based catalysts. The effects of adding promoters to the rhodium catalysts in addition to the manganese already being used were examined. The iron and rhenium promoters both stood out as achieving higher carbon selectivities , followed by Cu. Iridium and Li, on the other hand, had low carbon selectivity ratios of 0.27 and 0.22, respectively. Although testing of candidate promoters is not complete, it appears that Ir and Li promoters warrant further optimization and possibly combination to further improve STYs and carbon selectivities to C2+ oxygenates. However, using these promoters, it will be necessary to incorporate a separate hydrogenation catalyst to improve the yield of C2+ alcohols with respect to the other oxygenates. Fe, Re, and Cu stand out as possible candidates in this respect, but additional research is needed to examine whether they can be combined with the other promoters on the Rh-based catalyst or need to be optimized on a separate catalyst support that is either physically mixed or used in series with the promoted Rh-based catalyst.

Gerber, Mark A.; White, J. F.; Gray, Michel J.; Stevens, Don J.

2007-11-01T23:59:59.000Z

107

CenterLineBowles Center for Alcohol Studies School of Medicine, University of North Carolina at Chapel Hill  

E-Print Network (OSTI)

the National Institute of Alcohol Abuse and Alcoholism--is designed for middle-school and high-school scienceCenterLineBowles Center for Alcohol Studies School of Medicine, University of North Carolina grant to develop a second science-based curriculum. Designed for high-school students,Fetal Alcohol

Crews, Stephen

108

Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Meeting Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to cost effectively aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, produce hydrogen from a range of feedstocks, including glycerol and sugars. The key including glycerol and sugars. The key breakthrough is a proprietary catalyst that breakthrough is a proprietary catalyst that

109

Small-scale alcohol fuel plant. Final report  

DOE Green Energy (OSTI)

The objective to decrease the cost of distillation by the use of solar heat and a vacuum system combined was achieved. My original design of a single pot type still was altered during construction by dividing the distillation tank into three sections with a condenser coil after each section so that 160+ proof alcohol can be acquired without extensive reflux. However, some reflux will still be necessary to extract the most alcohol possible from the mash. This proto-type still could be reproduced for use as an On the Farm Plant if the components are size matched and the modifications are incorporated as I have outlined in Conclusions and Recommendations on page No. 4 of this report.

Fitzcharles, H.M. III

110

Report to the Congress: strategic alcohol fuel reserve  

Science Conference Proceedings (OSTI)

The feasibility of developing a Strategic Alcohol Fuel Reserve (SAFURE) is examined in this report. The analysis compares each of three different ethanol storage program options to that portion of the currently-planned Strategic Petroleum Reserve (SPR) which could be replaced by a particular SAFURE program. These options are: Ethanol Spare Production Capacity Utilization using essentially uneconomical, existing production capacity; Market Diversion through government purchases of ethanol for SAFURE storage, and Dedicated Plants using federal contracts to procure the entire output of five new plants. Based on this most recent analysis and other information currently available, it was concluded that the costs of acquiring, storing and managing an alcohol fuel reserve are substantially higher than the costs of the current SPR program. The net economic and security benefits of the current SPR program are also higher, and the budget costs of the SPR program are lower.

Not Available

1982-12-31T23:59:59.000Z

111

Electrocatalyst for alcohol oxidation at fuel cell anodes  

DOE Patents (OSTI)

In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

2011-11-02T23:59:59.000Z

112

Alcohol-free alkoxide process for containing nuclear waste  

DOE Patents (OSTI)

Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

Pope, James M. (Monroeville, PA); Lahoda, Edward J. (Edgewood, PA)

1984-01-01T23:59:59.000Z

113

Process for reducing organic compounds with calcium, amine, and alcohol  

DOE Patents (OSTI)

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

1985-01-01T23:59:59.000Z

114

Process for reducing organic compounds with calcium, amine, and alcohol  

DOE Patents (OSTI)

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, R.A.; Laugal, J.A.; Rappa, A.

1985-08-06T23:59:59.000Z

115

State of California BOARD OF EQUALIZATION ALCOHOLIC BEVERAGE TAX REGULATIONS  

E-Print Network (OSTI)

A person may be relieved from the liability for the payment of alcoholic beverage taxes, including any penalties and interest added to those taxes, when that liability resulted from the failure to make a timely return or a payment and such failure was found by the board to be due to reasonable reliance on written advice given by the board as described in California Code of Regulations, Title 18, Section 4902.

unknown authors

2002-01-01T23:59:59.000Z

116

Energy-efficient alcohol-fuel production. Technical final report  

Science Conference Proceedings (OSTI)

The proposed utilization schedule for the alcohol fuel plant and methane generator is to produce 180 proof ethanol during the spring, summer, and fall (April to October). The ethanol will be used in the farm tractors and trucks during the planting, growing, and harvesting seasons. Some alcohol can be stored for use during the winter. The still will not be operated during the winter (November to March) when the methane from the digester will be used to replace fuel oil for heating a swine farrowing building. There are tentative plans to develop a larger methane generator, which will utilize all of the manure (dairy, beef, horses, and swine) produced on the ISU farm. If this project is completed, there will be enough methane to produce all of the alcohol fuel needed to operate all of the farm equipment, heat the buildings, and possibly generate electricity for the farm. The methane generating system developed is working so well that there is a great deal of interest in expanding the project to where it could utilize all of the livestock waste on the farm for methane production.

Not Available

1982-01-01T23:59:59.000Z

117

Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab initio molecular dynamics calculations was initiated in 2009. Computational investigations were performed first to elucidate understanding of the nature of the catalytically active site. Thermodynamic calculations revealed that Mn likely exists as a metallic alloy with Rh in Rh-rich environments under reducing conditions at the temperatures of interest. After determining that reduced Rh-Mn alloy metal clusters were in a reduced state, the activation energy barriers of numerous transition state species on the catalytically active metal particles were calculated to compute the activation barriers of several reaction pathways that are possible on the catalyst surface. Comparison of calculations with a Rh nanoparticle versus a Rh-Mn nanoparticle revealed that the presence of Mn enabled the reaction pathway of CH with CO to form an adsorbed CHCO species, which was a precursor to C2+ oxygenates. The presence of Mn did not have a significant effect on the rate of CH4 production. Ir was observed during empirical catalyst screening experiments to improve the activity and selectivity of Rh-Mn catalysts. Thus, the addition of Ir to the Rh-Mn nanoparticles also was probed computationally. Simulations of Rh-Mn-Ir nanoparticles revealed that, with sufficient Ir concentrations, the Rh, Mn and Ir presumably would be well mixed within a nanoparticle. Activation barriers were calculated for Rh-Mn-Ir nanoparticles for several C-, H-, and O-containing transitional species on the nanoparticle surface. It was found that the presence of Ir opened yet another reactive pathway whereby HCO is formed and may undergo insertion with CHx surface moieties. The reaction pathway opened by the presence of Ir is in addition to the CO + CH pathway opened by the presence of Mn. Similar to Mn, the presence of Ir was not found to not affect the rate of CH4 production.

Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

2013-08-01T23:59:59.000Z

118

Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator  

DOE Patents (OSTI)

Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

Joshi, Ashok V. (Salt Lake City, UT); Balagopal, Shekar (Sandy, UT); Pendelton, Justin (Salt Lake City, UT)

2011-12-13T23:59:59.000Z

119

Ligand Rearrangement Reactions of Cr(CO)6 in Alcohol Solutions:Experiment and Theory  

SciTech Connect

The ligand rearrangement reaction of Cr(CO)6 is studied in a series of alcohol solutions using ultrafast, infrared spectroscopy and Brownian dynamics simulations.

Shanoski, Jennifer E.; Glascoe, Elizabeth A.; Harris, Charles B.

2005-09-24T23:59:59.000Z

120

Alcohol and Marijuana Use Across the Transition to Marriage: Group Differences and Psychosocial Factors.  

E-Print Network (OSTI)

??It has been well-established that alcohol and marijuana use levels tend to decline during the transition to marriage, or the transition from single to married… (more)

Auerbach, Karen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BSA 99-05: Anodes to Oxidize Alcohol in Fuel Cells  

BSA 99-05: Anodes to Oxidize Alcohol in Fuel Cells. BNL Reference Number: BSA 99-05. Summary. ... Brookhaven National Laboratory conducts research in ...

122

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

123

REVIEW ARTICLE Alcohol and injury in Poland: review and training recommendations  

E-Print Network (OSTI)

Background Alcohol plays a significant role in accidents, injuries, and their outcomes. According to the World Health Organization (WHO), there are 76.3 million people with alcohol use disorders worldwide; in 2000, 1.8 million deaths and loss of 58.3 million disability-adjusted life years were attributed to alcohol. Methods Although the association between alcohol consumption and trauma-related morbidity and mortality is well-documented, particularly in the US, there is much less At the time this paper was written, Dr. Wozniak was a Fogarty

Piotr Wozniak; Rebecca Cunningham; Sonia Kamat; Kristen L. Barry; Frederic C. Blow; Andrzej S. Zawadzki; P. Wozniak; R. Cunningham; S. Kamat; A. S. Zawadzki; R. Cunningham

2009-01-01T23:59:59.000Z

124

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock  

Catalytic conversion of C3+ alcohols to hydrocarbon blend-stock Note: The technology described above is an early stage opportunity. Licensing rights to this ...

125

Electron and hydrogen atom transfer mechanisms for the photoreduction of o-quinones. Visible light induced photoreactions of. beta. -lapachone with amines, alcohols, and amino alcohols  

DOE Green Energy (OSTI)

{beta}-Lapachone (1), a substituted o-naphthoquinone absorbing into the visible ({lambda}{sub max} = 424 nm in benzene), is cleanly and efficiently reduced to the corresponding semiquinone radical upon photolysis in degassed solutions with alcohols, amines, and {beta}-amino alcohols. The course and products of these photoreactions have been followed by NMR, ESR, fluorescence, and absorption spectroscopy. For all three types of reductant the overall reaction involves 2e{sup {minus}} oxidation of the donor, and the quantum efficiencies show a dependence upon quinone concentration indicative of the role of a second dark reduction of 1 by products of the primary photolysis. For amines and amino alcohols the reaction is initiated by single electron transfer quenching of triplet 1. For triethylamine the mechanism is indicated to be a sequence of two electron transfer-proton transfer steps culminating in two semiquinone radicals and the enamine Et{sub 2}NCH{double bond}CH{sub 2}. For amino alcohols a C-C cleavage concurrent with deprotonation of the alcohol (oxidative photofragmentation) occurs, in competition with reverse electron transfer, following the quenching step. For both amines and amino alcohols, limiting efficiencies of reaction approach 2 (for QH{sup {sm bullet}} formation). In contrast, both 2-propanol and benzyl alcohol are oxidized by excited states of 1 with much lower efficiency. The probable mechanism for photooxidation of the alcohols involves a H atom abstraction quenching of the excited state followed by an electron transfer-proton transfer sequence in which a ground-state 1 is reduced. Lower limiting efficiencies for photoreduction of 1 by the alcohols are attributed to inefficiencies of net H-atom transfer in the quenching step. 54 refs., 3 figs., 9 tabs.

Xiaohong Ci; Whitten, D.G. (Univ. of Rochester, NY (USA)); Silveira da Silva, R.; Nicodem, D. (Universidade Federal do Rio de Janeiro (Brazil))

1989-02-15T23:59:59.000Z

126

Optimum catalytic process for alcohol fuels from syngas  

DOE Green Energy (OSTI)

The objectives of this contract are to discover and evaluate the catalytic properties of novel homogeneous, heterogeneous, or combination catalytic systems for the production of alcohol fuel extenders from syngas, to evaluate analytically and on the bench scale novel reactor concepts for use in converting syngas to liquid fuel products, and to develop on the bench scale the best combination of chemistry, reactor, and total process configuration to achieve the minimum product cost for conversion of syngas to liquid fuel products. Methanol production and heterogeneous catalysis utilizing transition elements supported on metal oxides with spinel structure are discussed. 12 figs., 16 tabs.

Not Available

1990-04-28T23:59:59.000Z

127

Novel reactor configuration for synthesis gas conversion to alcohols  

SciTech Connect

Research continued on the conversion of synthesis gas to alcohols and reactor configuration. Objectives for this quarter: the project stated on October 1, 1989 and according to the Task Schedule provided in the original work breakdown schedule, Task I was to be completed in the first quarter and Task II to be started. Task I consisted of construction of the slurry reactor set-up to be used in Task IV for determination of the reactor kinetics and procurement of the parts for automation equipment, separators, computer activated parts etc. for automation of the trickle bed rector and GC equipment. Task II consisted of standardization and automation of GC analysis protocols. 1 fig.

Akgerman, A.; Anthony, R.G. (Texas A and M Univ., College Station, TX (USA). Dept. of Chemical Engineering)

1989-01-01T23:59:59.000Z

128

Role of osteopontin in hepatic neutrophil infiltration during alcoholic steatohepatitis  

SciTech Connect

Alcoholic liver disease (ALD) is a major complication of heavy alcohol (EtOH) drinking and is characterized by three progressive stages of pathology: steatosis, steatohepatitis, and fibrosis/cirrhosis. Alcoholic steatosis (AS) is the initial stage of ALD and consists of fat accumulation in the liver accompanied by minimal liver injury. AS is known to render the hepatocytes increasingly sensitive to toxicants such as bacterial endotoxin (LPS). Alcoholic steatohepatitis (ASH), the second and rate-limiting step in the progression of ALD, is characterized by hepatic fat accumulation, neutrophil infiltration, and neutrophil-mediated parenchymal injury. However, the pathogenesis of ASH is poorly defined. It has been theorized that the pathogenesis of ASH involves interaction of increased circulating levels of LPS with hepatocytes being rendered highly sensitive to LPS due to heavy EtOH consumption. We hypothesize that osteopontin (OPN), a matricellular protein (MCP), plays an important role in the hepatic neutrophil recruitment due to its enhanced expression during the early phase of ALD (AS and ASH). To study the role of OPN in the pathogenesis of ASH, we induced AS in male Sprague-Dawley rats by feeding EtOH-containing Lieber-DeCarli liquid diet for 6 weeks. AS rats experienced extensive fat accumulation and minimal liver injury. Moderate induction in OPN was observed in AS group. ASH was induced by feeding male Sprague-Dawley rats EtOH-containing Lieber-DeCarli liquid diet for 6 weeks followed by LPS injection. The ASH rats had substantial neutrophil infiltration, coagulative oncotic necrosis, and developed higher liver injury. Significant increases in the hepatic and circulating levels of OPN was observed in the ASH rats. Higher levels of the active, thrombin-cleaved form of OPN in the liver in ASH group correlated remarkably with hepatic neutrophil infiltration. Finally, correlative studies between OPN and hepatic neutrophil infiltration was corroborated in a simple rat peritoneal model where enhanced peritoneal fluid neutrophil infiltration was noted in rats injected OPN intraperitoneally. Taken together these data indicate that OPN expression induced during ASH may play a significant role in the pathogenesis of ASH by stimulating neutrophil transmigration.

Apte, Udayan M. [Department of Pathobiology, College of Veterinary Medicine, Texas A and M University, MS4467, College Station, TX 77843-4467 (United States); Banerjee, Atrayee [Department of Pathobiology, College of Veterinary Medicine, Texas A and M University, MS4467, College Station, TX 77843-4467 (United States); McRee, Rachel [Department of Pathobiology, College of Veterinary Medicine, Texas A and M University, MS4467, College Station, TX 77843-4467 (United States); Wellberg, Elizabeth [Department of Pathobiology, College of Veterinary Medicine, Texas A and M University, MS4467, College Station, TX 77843-4467 (United States); Ramaiah, Shashi K. [Department of Pathobiology, College of Veterinary Medicine, Texas A and M University, MS4467, College Station, TX 77843-4467 (United States)]. E-mail: sramaiah@cvm.tamu.edu

2005-08-22T23:59:59.000Z

129

Level of osteopenia and bone recovery in alcohol-fed adolescent rats  

E-Print Network (OSTI)

Adolescence is a period in human growth and development that is a time of rapid and drastic change. It is also known to be an age of widespread alcohol abuse. Studies addressing the reversibility of the deleterious effects of chronic alcohol consumption on young, actively growing adolescent bones have not been done. The objective of this study was to determine the level of bone recovery, if any, once an adolescent ceases alcohol consumption. Fifty, 4-week old, female, Sprague-Dawley rats were individually housed and maintained in an American Association for the Accreditation of Laboratory Animal Care-accredited facility at Texas A&M. The rats (n = 6 or 7 per group) were fed either alcohol (35% ethanol-derived calories), isocaloric liquid diet, or chow for 2 or 4 weeks, depending on the experimental group. The weekly blood alcohol concentrations averaged 309 [] 9 mg/dl. The rats were sacrificed 2 and 4 weeks after the experimental feeding began. The BioQuant Morphometric System was used to perform the histomorphometric analyses of the proximal tibia. Tibia bone volume per trabecular volume (BV/TV) in both age groups of alcohol and pair-fed animals was significantly less when compared to the chow 4 week animals. BV/TV was increased in the alcohol recovery group when compared to the alcohol 2 and 4 week groups, but the level of growth never reached the chow-fed 4 week group. Femur length, diameter and volume measurements increased in the alcohol recovery group when compared to both the alcohol 2 and 4 week groups. However, the length and volume parameters did not fully recover to equal those of the control chow 4 week animals, or even the some-age pair-fed animals. Femur diameter of the alcohol recovery animals was comparable to the alcohol 4 week animals, but less than the chow-fed. Alcohol also suppressed IGF-I levels. Full bone recovery did not occur within two weeks after removal of alcohol from the diet, suggesting the detrimental effects due to alcohol were not completely reversible during this time frame.

Spears, Heather Lynae

1999-01-01T23:59:59.000Z

130

Economics of producing fuel-grade alcohol from corn in western Ohio  

Science Conference Proceedings (OSTI)

The production of significant quantities of alcohol fuel will have important effects on the use of agricultural resources, including increased food prices. The two major objectives of this research were to determine (1) the potential effects of alcohol-fuel production on agriculture, and (2) the increase in energy prices needed for alcohol-fuel production to become economic. Western Ohio (the Corn Belt part of the state) was chosen for study. A quadratic-programming model with crop, livestock, and alcohol-fuel-production activities was used for analysis. Four alcohol-fuel-production levels were analyzed: 100, 200, 300 and 400 million gallons. The 400-million-gallon level represents western Ohio's share of alcohol-fuel production for a national gasohol program. The production of alcohol results in a high protein by-product feed that can substitute for soybean meal. Efficient use of this by-product is a crucial factor affecting resource use and food prices. At low alcohol-fuel production levels, 80% of the additional cropland required for increased corn production comes from the cropland released through by-product feeding. However, as alcohol-fuel production increases, livestock's ability to use efficiently this by-product feed decreases. This in turn, reduces greatly the cropland that can be released for increased corn production. Consequently, food prices increase substantially. The quantity of land released through by-product feeding, at high alcohol-fuel-production levels, can be increased if the corn is first wet milled. Wet milling produces high-protein feeds that can be used more efficiently by livestock. For alcohol-fuel production to become economic, crude oil prices must increase by ten cents per gallon for the wet-milling process and 22 cents per gallon for the conventional distillery process (1981 $).

Ott, S.L.

1981-01-01T23:59:59.000Z

131

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

SciTech Connect

During this reporting period, a ''zinc chromite'' catalyst promoted with 6 wt.% cesium (Cs) was evaluated at the following operating conditions: Temperature - 375 C and 400 C; Total Pressure--13.6 MPa (2000 psig); Gas Hourly Space Velocity (GHSV) - 5000 standard liters/kg(cat)-hr; and H{sub 2}/CO feed ratio--0.5, 1.0 and 2.0 mole/mole. Decahydronaphthalene (DHN) was used as the slurry liquid. The experiment lasted for twelve days of continuous operation. Unpromoted zinc chromite catalyst then was re-examined under the same operating conditions. Reproducible data was achieved with a continuous liquid make-up. Compared with unpromoted zinc chromite catalyst, 6 wt.% Cs-promoted catalyst shifted the product distribution from methanol to higher alcohols, even though methanol was still the major product. The effect of operating conditions was less important than the addition of promoter. However, it was observed that higher temperature favors higher alcohol synthesis, and that a higher H{sub 2}/CO ratio leads to lower oxygenates selectivity and higher hydrocarbons selectivity. These trends showed clearly with the Cs-promoted catalyst, but were not as prominent with the unpromoted catalyst. The slurry liquid did not decompose or alkylate to a measurable extent during either continuous, 12 - day experiment, even with the higher reactor temperature (400 C). There was a relatively significant loss of catalyst surface area during the experiment with the promoted catalyst, but not with the unpromoted catalyst.

Ms. Xiaolei Sun; Professor George W. Roberts

2000-12-20T23:59:59.000Z

132

Addendum: Tenth International Symposium on Alcohol Fuels, The road to commercialization  

DOE Green Energy (OSTI)

The Tenth International Symposium on ALCOHOL FUELS ``THE ROAD TO COMMERCIALIZATION`` was held at the Broadmoor Hotel, Colorado Springs, Colorado, USA November 7--10, 1993. Twenty-seven papers on the production of alcohol fuels, specifications, their use in automobiles, buses and trucks, emission control, and government policies were presented. Individual papers have been processed separately for entry into the data base.

Not Available

1994-05-01T23:59:59.000Z

133

Influence of alcohol on reliability and safety driver during driving on vehicle simulators  

Science Conference Proceedings (OSTI)

Alcohol, drugs and consequent serious attention decrease and aggression of human operators is one of the most common causes of accidents in traffic. Measure this situations are very dangerous and in real traffic. The paper describes objective methods ... Keywords: alcohol, measure, vehicle simulator, virtual reality

Roman Pieknik

2009-11-01T23:59:59.000Z

134

Objective methods of assessment of influence of alcohol on driving safety: study performed driving simulators  

Science Conference Proceedings (OSTI)

The paper is focused on an introduction of a set of experiments focused on objective methods used for detection of driving impairment caused by influence of different level of alcohol in blood. It introduces the initial experiments which were performed ... Keywords: alcohol, driver's impairment, driving simulation

Roman Piekník; Stanislav Novotny; Petr Bouchner

2007-09-01T23:59:59.000Z

135

Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation  

Science Conference Proceedings (OSTI)

In recent years, alcoholic fermentation has received much attention as an alternative energy source. In conventional alcoholic fermentation from starchy materials, precooking is necessary for liquefaction and saccharification of the broth, which requires a large amount of heat energy - about 30-40% of all energy spent for alcohol production. Ueda and his co-workers have attempted to produce ethanol from raw starch in a single-step process, which combines liquefaction, saccharification, and yeast fermentation without cooking and autoclaving by using glucoamylase preparation from Aspergillus niger in order to save the cost of energy consumption by cooking. Ueda has also reported alcoholic fermentation of sweet potato without cooking by using Rhizopus glucoamylase preparation. In the present communication, we report the effectiveness of alcoholic fermentation of sweet potato without cooking by using Endomycopsis fibuligers glucoamylase preparation. (Refs. 5).

Saha, B.C.; Ueda, S.

1983-04-01T23:59:59.000Z

136

Mechanisms of alcohol-induced neuroteratology: an examination of the roles of fetal cerebral blood flow and hypoxia  

E-Print Network (OSTI)

Hypoxia (decreased tissue oxygen levels) has long been considered as a possible mechanism of alcohol-induced developmental deficits, yet research has not conclusively disproved this hypothesis, nor has it provided substantial evidence for a mechanism of developmental alcohol insults involving hypoxia. Previous research has shown that moderate acute doses of alcohol does not induce hypoxemia (decreased arterial oxygen levels), yet these same studies have shown that this same alcohol exposure does transiently decrease cerebral blood flow (CBF). This is significant because although developmental alcohol exposure did not result in hypoxemia, the decreases in CBF seen in these previous studies may induce hypoxia within the brain. Unfortunately, these experiments were only performed after acute doses of alcohol, so it is unknown if a more chronic or repeated alcohol exposure paradigm would have similar effects. The present study examined blood flow in the sheep fetus after repeated alcohol exposure in a bingelike paradigm throughout the third trimester. Additionally, this study examined the fetal neurovascular response to a subsequent infusion of alcohol after the repeated alcohol exposure. This latter experiment was designed to examine the hypothesis that alcohol exposure throughout the third trimester affects the normal responsiveness of the neurovasculature to alcohol (compared to previous research demonstrating acute alcohol-induced decreases in CBF). The results from the present experiments indicate that although few regions were significant, the majority of the regions (especially the brain regions) exhibited a trend for increases in blood flows after alcohol exposure. This phenomenon was especially prominent in the group receiving the lower dose of alcohol. Additionally, the data from this study demonstrated that after repeated alcohol exposures the near-term sheep fetus did not respond to a subsequent dose of alcohol in a similar manner seen in previous experiments when the acute alcohol exposure was administered in alcohol naïve animals. After the final alcohol exposure the subjects in this study had either no effect in terms of blood flow or an increase in CBF. This is opposite to previous observations which demonstrated reduced blood flow in numerous brain regions. The present experiments suggest that alcohol does not induce fetal hypoxia, but does negatively affect the normal neurovascular response to alcohol. This latter phenomenon could have negative consequences on future development of the brain.

Parnell, Scott Edward

2004-12-01T23:59:59.000Z

137

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrochlore-Based Catalysts for Syngas-Derived Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis Contact NETL Technology Transfer Group techtransfer@netl.doe.gov PON-13-006 August 2013 Opportunity This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain hydrocarbons. Research is currently active on this patent-pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Improves the conversion of syngas from natural gas, coal, or biomass * Enhances the potential use of oxygenates as

138

Electrocatalysis: A Direct Alcohol Fuel Cell and Surface Science Perspective  

Science Conference Proceedings (OSTI)

In this report, we discuss some of the advances in surface science and theory that have enabled a more detailed understanding of the mechanisms that govern the electrocatalysis. More specifically, we examine in detail the electrooxidation of C-1 and C-2 alcohol molecules in both acidic and basic media. A combination of detailed in situ spectroscopic measurements along with density functional theory calculations have helped to establish the mechanisms that control the reaction paths and the influence of acidic and alkaline media. We discuss some of the synergies and differences between electrocatalysis and aqueous phase heterogeneous catalysis. Such analyses begin to establish a common language and framework by which to compare as well as advance both fields. (C) 2012 Elsevier B.V. All rights reserved.

Braunchweig, B [University of Illinois, Urbana-Champaign; Hibbitts, David D [ORNL; Neurock, Matthew [University of Virginia; Wieckowski, A. [University of Illinois, Urbana-Champaign

2013-01-01T23:59:59.000Z

139

Electrocatalysis: A direct alcohol fuel cell and surface science perspective  

Science Conference Proceedings (OSTI)

In this report, we discuss some of the advances in surface science and theory that have ena bled a more detailed understanding of the mechanisms that govern the electrocatalysis.More specifically, we examine in detail the electrooxidation ofC1 and Cz alcohol molecules in both acidic and basic media. A combination of detailed in situ spectroscopic measurements along with density functional theory calculations have helped to establish the mechanisms that control the reaction paths and the innuence of acidic and alkaline media. We discuss some of the synergies and differences between electrocatalysis and aqueous phase heterogeneous catalysis.Such analyses begin to establish a common language and framework by which to compare as well as advance both fields.

Braunchweig, B [University of Illinois, Urbana-Champaign; Neurock, Matthew [University of Virginia; Wieckowski, A. [University of Illinois, Urbana-Champaign; Hibbitts, David D [ORNL

2012-01-01T23:59:59.000Z

140

Atmospheric Pressure Low Current Plasma for Syngas Production from Alcohol  

E-Print Network (OSTI)

Abstract – Atmospheric pressure low current arc discharge between graphite electrodes with conical geometry in liquid ethanol/water mixture was investigated. Syngas production was demonstrated over large experimental conditions. In this paper we focus on discharge aspects. It is shown from pictures that the behavior of low current arc discharge with consumable electrodes represents non-stationary plasma. The energetic properties of plasmas can be used to carry out many applications, particularly in discharge based systems. Recently, research interest focuses on the Non Thermal Plasma (NTP) treatment of hydrocarbons, alcohol, or biomass aimed to improve the yield of synthetic gas (syngas: H2+CO) production at low cost [1, 4]. Experiments were performed on a plasma reactor consisting of two graphite electrodes with conical shape

Ahmed Khacef; Khadija Arabi; Olivier Aubry; Jean Marie Cormier

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Catalysts and process for hydrogenolysis of sugar alcohols to polyols  

DOE Patents (OSTI)

The present invention provides a process for preparation of low molecular weight polyols from high molecular weight polyols in a hydrogenolysis reaction under elevated temperature and hydrogen pressure. The process comprises providing in a reaction mixture the polyols, a base, and a metal catalyst prepared by depositing a transition metal salt on an inert support, reducing the metal salt to the metal with hydrogen, and passivating the metal with oxygen, and wherein the catalyst is reduced with hydrogen prior to the reaction. In particular, the process provides for the preparation of glycerol, propylene glycol, and ethylene glycol from sugar alcohols such as sorbitol or xylitol. In a preferred process, the metal catalyst comprises ruthenium which is deposited on an alumina, titania, or carbon support, and the dispersion of the ruthenium on the support increases during the hydrogenolysis reaction.

Chopade, Shubham P. (East Lansing, MI); Miller, Dennis J. (Okemos, MI); Jackson, James E. (Haslett, MI); Werpy, Todd A. (West Richland, WA); Frye, Jr., John G. (Richland, WA); Zacher, Alan H. (Richland, WA)

2001-01-01T23:59:59.000Z

142

Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide  

Science Conference Proceedings (OSTI)

Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT{sup TM}, a commercially available full-thickness human skin equivalent. CEES (100-1000 {mu}M) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 {mu}M), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE{sub 2} synthases, leukotriene (LT) A{sub 4} hydrolase and LTC{sub 4} synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

Black, Adrienne T. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Hayden, Patrick J. [MatTek Corporation, Ashland, MA (United States); Casillas, Robert P. [Battelle Memorial Institute, Columbus, OH (United States); Heck, Diane E. [Environmental Health Sciences, New York Medical College, Valhalla, NY (United States); Gerecke, Donald R. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Sinko, Patrick J. [Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

2010-12-01T23:59:59.000Z

143

Design and development of eco-friendly alcohol engine fitted with waste heat recovery system  

Science Conference Proceedings (OSTI)

The present paper discusses the design and development of an eco-friendly alcohol engine fitted with the waste heat recovery system as a remedial alternative to the existing commonly used internal combustion engine. With the present trends in Internal ...

G. Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

144

Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis  

DOE Patents (OSTI)

The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

Ingram, Lonnie O. (Gainesville, FL); Conway, Tyrrell (Gainesville, FL)

1992-01-01T23:59:59.000Z

145

Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry  

SciTech Connect

This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

1983-07-01T23:59:59.000Z

146

Use of plastic construction materials in small-scale fuel alcohol production  

Science Conference Proceedings (OSTI)

Several general designs for small-scale fuel alcohol plants that have been published primarily use conventional materials of construction (steel, copper, etc.). A fuel alcohol plant owned by Dixie Fuels, Inc. Valley Park, Mississippi, and a farm-scale alcohol plant being developed by the Tennessee Valley Authority have incorporated plastic materials in several areas of their plants; results have been excellent in terms of reduced materials, labor, and operating costs. However, plastics were not used in the distillation step. This work investigated the suitability of small-scale distillation equipment made entirely or partially from plastics. A low-cost alcohol distillation system can be constructed using chlorinated poly(viny chloride) (CPVC) pipe or poly(vinly chloride) (PVC) plastic pipe for the column and heat-exchanger shells. Although pipe made from CPVC is preferred, schedule 80 PVC pipe can be used if external supports are used to provide rigidity. 3 figures, 1 table. (DP)

Lightsey, G.R.; Kadir, O.

1982-01-01T23:59:59.000Z

147

Some economic implications of the utilization of alcohol for the production of energy  

SciTech Connect

The production rate of ethanol per unit of land was examined for different crops and the order of magnitude of the costs was calculated. Alcohol production programs in Brazil, Thailand and Sudan are described.

Bennett, M.C.

1980-01-01T23:59:59.000Z

148

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Conference Proceedings (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

149

Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide  

Science Conference Proceedings (OSTI)

Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 {mu}M) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A{sub 4} (LTA{sub 4}) hydrolase and leukotriene C{sub 4} (LTC{sub 4}) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA{sub 4} hydrolase and LTC{sub 4} synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.

Black, Adrienne T.; Joseph, Laurie B. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [Battelle Memorial Institute, Columbus, OH (United States); Heck, Diane E. [Environmental Health Sciences, New York Medical College, Valhalla, NY (United States); Gerecke, Donald R. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Sinko, Patrick J. [Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

2010-06-15T23:59:59.000Z

150

Process for the synthesis of aliphatic alcohol-containing mixtures  

DOE Patents (OSTI)

A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

Greene, Marvin I. (Oradell, NJ); Gelbein, Abraham P. (Morristown, NJ)

1984-01-01T23:59:59.000Z

151

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

DOE Green Energy (OSTI)

This report describes the analytical protocols that were developed during the last two years to analyze ''spent'' THQ (tetrahydroquinoline) slurry liquid. Identification of the components of the ''spent'' THQ should help to understand the influence of the slurry medium on the methanol synthesis reaction, and on other reactions with THQ as the slurry liquid. Silica gel liquid chromatography and high performance liquid chromatography (HPLC) were used to isolate and purify the major compounds in the ''spent'' slurry liquid. Gas chromatography/mass spectroscopy (GC/MS), Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) were applied to identify the major compounds. Methyl-, dimethyl-, and trimethyl-THQ were found to comprise more than 80% of the ''spent'' liquid. The balance was various methylated indoles. A methyl group always is attached to the N atom in the ring structure. Speculative mechanisms are presented that may help to understand the interaction between the catalyst and the alkylated THQ slurry liquid, and the effect of liquid composition on the methanol synthesis reaction. A poster entitled ''Promoted Zinc Chromite Catalyst for Higher Alcohol Synthesis in a Slurry Reactor-2. Spent Liquid Analysis'' was presented at the AIChE National Meeting, Los Angeles, CA, Nov 12-17, 2000.

Ms. Xiaolei Sun; Professor George W. Roberts

2001-06-15T23:59:59.000Z

152

Separation of alcohol-water mixtures using salts  

DOE Green Energy (OSTI)

Use of a salt (KF or Na/sub 2/SO/sub 4/) to induce phase separation of alcohol-water mixtures was investigated in three process flowsheets to compare operating and capital costs with a conventional distillation process. The process feed was the Clostridia fermentation product, composed of 98 wt % water and 2 wt % solvents (70% 1-butanol, 27% 2-propanol, and 3% ethanol). The design basis was 150 x 10/sup 6/ kg/y of solvents. Phase equilibria and tieline data were obtained from literature and experiments. Three separation-process designs were developed and compared by an incremental economic analysis (+-30%) with the conventional separation technique using distillation alone. The cost of salt recovery for recycle was found to be the critical feature. High capital and operating costs make recovery of salt by precipitation uneconomical; however, a separation scheme using multiple-effect evaporation for salt recovery has comparable incremental capital costs ($1.72 x 10/sup 6/ vs $1.76 x 10/sup 6/) and lower incremental operating costs ($2.14 x 10/sup 6//y vs $4.83 x 10/sup 6//y) than the conventional separation process.

Card, J. C.; Farrell, L. M.

1982-04-01T23:59:59.000Z

153

High octane ethers from synthesis gas-derived alcohols  

SciTech Connect

The temperature dependence of ether synthesis, particularly unsymmetric methylisobutylether (MIBE), was carried out over the Nafion-H microsaddles (MS) catalyst. The principal product formed under the rather severe reaction conditions of 1100 psig pressure and temperatures in the range of 123--157{degree}C was the expected MIBE formed directly by coupling the methanol/isobutanol reactants. In addition, significantly larger quantities of the dimethylether (DME) and hydrocarbon products were observed than were obtained under milder reaction conditions. Deactivation of the Nafion-H MS catalyst was determined by periodically testing the catalyst under a given set of reaction conditions for the synthesis of MIBE and MTBE from methanol/isobutanol = 2/1, i.e. 123{degree}C, 1100 psig, and total GHSV = 248 mol/kg cat/hr. After carrying out various tests over a period of 2420 hr, with intermittant periods of standing under nitrogen at ambient conditions, the yields of MIBE and MTBE had decreased by 25% and 41%, respectively. In order to gain insight into the role of the surface acidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are still being probed by calorimetric titrations in non-aqueous solutions. 11 refs., 13 figs., 9 tabs.

Klier, K.; Herman, R.G.; DeTavernier, S.; Johannson, M.; Kieke, M.; Bastian, R.D.

1991-07-01T23:59:59.000Z

154

Partial oxidation for improved cold starts in alcohol-fueled engines: Phase 2 topical report  

DOE Green Energy (OSTI)

Alcohol fuels exhibit poor cold-start performance because of their low volatility. Neat alcohol engines become difficult, if not impossible, to start at temperatures close to or below freezing. Improvements in the cold-start performance (both time to start and emissions) are essential to capture the full benefits of alcohols as an alternative transportation fuel. The objective of this project was to develop a neat alcohol partial oxidation (POX) reforming technology to improve an alcohol engine`s ability to start at low temperatures (as low as {minus}30 C) and to reduce its cold-start emissions. The project emphasis was on fuel-grade ethanol (E95) but the technology can be easily extended to other alcohol fuels. Ultimately a compact, on-vehicle, ethanol POX reactor was developed as a fuel system component to produce a hydrogen-rich, fuel-gas mixture for cold starts. The POX reactor is an easily controllable combustion device that allows flexibility during engine startup even in the most extreme conditions. It is a small device that is mounted directly onto the engine intake manifold. The gaseous fuel products (or reformate) from the POX reactor exit the chamber and enter the intake manifold, either replacing or supplementing the standard ethanol fuel consumed during an engine start. The combustion of the reformate during startup can reduce engine start time and tail-pipe emissions.

NONE

1998-04-01T23:59:59.000Z

155

Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase  

Science Conference Proceedings (OSTI)

Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active site of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.

Gadda, G.; Orville, A.; Pennati, A.; Francis, K.; Quaye, O.; Yuan, H.; Rungsrisuriyachai, K.; Finnegan, S.; Mijatovic, S.; Nguyen, T.

2008-06-08T23:59:59.000Z

156

Geothermal source potential and utilization for methane generation and alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

Austin, J.C.

1981-11-01T23:59:59.000Z

157

Assessment of ether and alcohol fuels from coal. Volume 2. Technical report  

DOE Green Energy (OSTI)

A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

Not Available

1983-03-01T23:59:59.000Z

158

Impact of timing of alcohol use initiation and depressed mood on risky substance use among urban minority adolescents.  

E-Print Network (OSTI)

??The current study involved the investigation of two research areas: (1) the effect of timing of alcohol use initiation on risky substance use in mid-adolescence,… (more)

Boohar, Ellen Moore

2004-01-01T23:59:59.000Z

159

Help! I need somebody (not just anybody) - the folktale's helper in personal experience narratives of recovering alcoholics.  

E-Print Network (OSTI)

??This thesis explores the personal experience narratives of nine recovering alcoholics through the lens of folktale scholarship. Using Propp's structuralist model developed for folktales, I… (more)

Baker, Jedediah, 1980-

2008-01-01T23:59:59.000Z

160

Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking  

Science Conference Proceedings (OSTI)

Using only wheat bran koji from the Rhizopus strain, raw cassava starch and cassava pellets converted reasonably well to alcohol (ethanol) without cooking at 35 degrees C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus species koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation. (Refs. 15).

Fuijo, Y.; Suyanadona, P.; Attasampunna, P.; Ueda, S.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking  

Science Conference Proceedings (OSTI)

Using only wheat bran koji from the Rhizopus strain, raw cassava starch and casava pellets converted reasonably well to alcohol (ethanol) without cooking at 35/sup 0/C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus sp. koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation.

Fujio, Y.; Suyanadona, P.; Attasampunna, P.; Ueda, S.

1984-01-01T23:59:59.000Z

162

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents (OSTI)

A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO); Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO); Rejai, Bahman (Lakewood, CO); Bain, Richard L. (Golden, CO); Overend, Ralph P. (Lakewood, CO)

1996-01-01T23:59:59.000Z

163

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents (OSTI)

A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

1996-04-02T23:59:59.000Z

164

Stability and Lifetime of K-CoMoSx Mixed Alcohol Catalysts  

SciTech Connect

Researchers have studied sulfide-type catalysts for the production of mixed alcohols from synthesis gas for several decades. Despite many advances in the art, these processes are not yet commercial, due in large part to mediocre economics and the added risk associated with uncertainty in catalyst lifetime. This talk will outline some recent studies in the lifetime and stability of K-CoMoSx-type mixed alcohol catalysts. Specifically, studies of long term operation (> 3000h), sulfiding agents, simulated methanol recycle, and morphology (probed via XRD and XPS) will be discussed, with the conclusion that these materials are likely to exhibit acceptable lifetimes in continuous operation.

Hensley, J. E.; Ruddy, D.; Schaidle, J.; Ferrell, J.; Thibodeaux, J.

2013-01-01T23:59:59.000Z

165

Peculiar points in the phase diagram of the water-alcohol solutions  

E-Print Network (OSTI)

The work is devoted to the investigation of nontrivial behavior of dilute water-alcohol solutions. The temperature and concentration dependencies of the contraction for aqueous solutions of ethanol and methanol are analyzed. The existence of a specific point, the so-called peculiar point, was established. It is shown that water-alcohol solutions of different types obey the principle of corresponding states if temperature and volume fraction are used as principal coordinates. In this case, the concentration of the peculiar point for different solutions is close to x_{\

Chechko, V E; Malomuzh, M P

2013-01-01T23:59:59.000Z

166

Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment  

SciTech Connect

The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

Oji, L.N.

1999-08-31T23:59:59.000Z

167

Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages  

Science Conference Proceedings (OSTI)

We analyze over 570 million Twitter messages from an eight month period and find that tracking a small number of keywords allows us to estimate influenza rates and alcohol sales volume with high accuracy. We validate our approach against government statistics ... Keywords: Classification, Regression, Social media

Aron Culotta

2013-03-01T23:59:59.000Z

168

Plasma Semicarbazide-Sensitive Amine Oxidase Activity in Type I and II Alcoholics  

E-Print Network (OSTI)

Semicarbazide-sensitive amine oxidase (SSAO) which catalysis the deamination of primary amines is involved in vascular endothelial or tissue damage through the formation of reactive aldehydes, hydrogen peroxide and ammonia from endogenous substrates. In the present study, plasma SSAO activity, plasma and erythrocyte lipid peroxidation status, glutathione levels and the correlation between the plasma SSAO activity and lipid peroxidation were determined to clarify the mechanism of liver injury related to the oxidative stress in early- and late-onset (Type I and II) alcoholic subtypes. Plasma SSAO activity and, plasma and erythrocyte malondialdehyde (MDA) levels as the indicators of lipid peroxidation status of alcoholics were found to be significantly higher than those of the control group. Increased plasma SSAO activity was strongly correlated with the elevated plasma and erythrocyte MDA levels and decreased reduced/oxidized glutathione (GSH/GSSG) ratio in alcoholics suggesting that enhanced plasma SSAO activity might contribute to the production of reactive oxygen species (ROS) detected in the liver of the alcoholics.

Gülberk Uçar; Ba?aran Demir; Yaz??ma Adresi

2003-01-01T23:59:59.000Z

169

Synthesis of higher alcohols from carbon monoxide and hydrogen in a slurry reactor  

DOE Green Energy (OSTI)

Higher, i.e. C{sub 2{sup +}}, alcohols are desired as gasoline additives, feedstocks for producing ethers and as alternative fuels for automobiles. In all cases, the backbone branching of an alcohol improves octane rating, which is essential for good engine performance. These types of branched, higher alcohols are the desired products for a process converting synthesis gas, a CO and H{sub 2} mixture, often generated from coal gasification. Based on this premise, promoted ZnCr oxide catalysts appear to be as one of the best avenues for further investigation. Once this investigation is complete, a natural extension is to replace the Cr in the ZnCr oxide catalyst with Mo and W, both in the same elemental triad with Cr. Mo has already been shown as an active HAS catalyst, both on a SiO{sub 2} support and in the MoS{sub 2} form. The three catalyst combinations, ZnMo, ZnW, and MnCr oxides will be tested in the stirred autoclave system. However, if none of the three indicate any comparable activity and/or selectivity toward higher alcohols as compared with other HAS catalysts, then an investigation of the effects of Cs promotion on the ZnCr oxide methanol catalysts will be executed.

McCutchen, M.S.

1992-08-28T23:59:59.000Z

170

Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites  

Science Conference Proceedings (OSTI)

The effect of incorporating cellulose nanocrystals fromcorncob (CNC) on the tensile, thermal, and barrier properties of poly(vinyl alcohol) (PVA) nanocomposites was evaluated. The CNC were prepared by sulfuric acid hydrolysis at 45°C for 60 minutes, ...

Hudson Alves Silvério, Wilson Pires Flauzino Neto, Daniel Pasquini

2013-01-01T23:59:59.000Z

171

Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermochemical Ethanol via Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass A. Dutta and S.D. Phillips Technical Report NREL/TP-510-45913 July 2009 Technical Report Thermochemical Ethanol via NREL/TP-510-45913 Direct Gasification and Mixed July 2009 Alcohol Synthesis of Lignocellulosic Biomass A. Dutta and S.D. Phillips Prepared under Task No. BB07.3710 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

172

Short-chain polymer rigidity due to the Debye process of monohydroxy alcohols  

E-Print Network (OSTI)

In addition to the ubiquitous structural relaxation of viscous supercooled liquids, monohydroxy alcohols and several other hydrogen-bonded systems display a strong single-exponential electrical low-frequency absorption. So far, this so-called Debye process could be observed only using dielectric techniques. Exploiting a combination of broad-band and high-resolution rheology experiments for three isomeric octanols, unambiguous mechanical evidence for the Debye process is found. Its spectral signature is similar to the viscoelastic fingerprint of small-chain polymers, enabling us to estimate the effective molecular weight for the supramolecular structure formed by the studied monohydroxy alcohols. This finding opens the venue for the application of further non-dielectric techniques directed at unraveling the microscopic nature of the Debye process and for an understanding of this phenomenon in terms of polymer concepts.

C. Gainaru; R. Figuli; T. Hecksher; B. Jakobsen; J. C. Dyre; M. Wilhelm; R. Böhmer

2013-05-19T23:59:59.000Z

173

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2009 Progress Report  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) has been conducting research for the United States Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). This research has involved the screening of potential catalysts, and optimization of the more promising ones, using laboratory scale reactors. During 2009, the main goal of the testing program focused on optimizing selected supported catalysts containing rhodium (Rh) and manganese (Mn). Optimization involved examining different total concentrations and atomic ratios of Rh and Mn as well as that of the more promising promoters (Ir and Li) identified in the earlier screening studies. Evaluation of catalyst performance focused on attaining improvements with respect to the space-time-yield and converted carbon selectivity to C2+ oxygenates, with additional consideration given to the fraction of the oxygenates that were C2+ alcohols.

Gerber, Mark A.; Gray, Michel J.; Stevens, Don J.; White, J. F.; Rummel, Becky L.

2010-12-21T23:59:59.000Z

174

Technoeconomic Analysis of a Lignocellulosic Biomass Indirect Gasification Process to Make Ethanol via Mixed Alcohols Synthesis  

Science Conference Proceedings (OSTI)

A technoeconomic analysis of a 2000 tonne/day lignocellulosic biomass conversion process to make mixed alcohols via gasification and catalytic synthesis was completed. The process, modeled using ASPEN Plus process modeling software for mass and energy calculations, included all major process steps to convert biomass into liquid fuels, including gasification, gas cleanup and conditioning, synthesis conversion to mixed alcohols, and product separation. The gas cleanup area features a catalytic fluidized-bed steam reformer to convert tars and hydrocarbons into syngas. Conversions for both the reformer and the synthesis catalysts were based on research targets expected to be achieved by 2012 through ongoing research. The mass and energy calculations were used to estimate capital and operating costs that were used in a discounted cash flow rate of return analysis for the process to calculate a minimum ethanol selling price of $0.267/L ($1.01/gal) ethanol (U.S.$2005).

Phillips, S. D.

2007-01-01T23:59:59.000Z

175

Fabrication of silicon field emission tips for vacuum microelectronics by KOH/Alcohol/Water etching  

Science Conference Proceedings (OSTI)

The fabrication of sharp silicon tips for field emission cathodes by KOH/Alcohol/Water (KAW) solution was investigated. The KOH/Alcohol/Water solution was found to work better and easier than the Ethylene-Diamine/Pyrocathechol/Water solution in etching silicon tips. It etched the (100) silicon surface more slowly, but in a more controllable manor. The resulting tips were usually very uniform and pretty sharp in most studies. Actually, there were some systems showing non-uniform etching behavior. However, we were able to demonstrate that the uniformity could be improved by shifting the reaction from mass transfer controlled to chemical kinetics controlled. Such technique could allow us to fabricate uniform silicon cones even in a very primitive apparatus with non-uniform mass transfer. 5 refs., 7 figs.

Hui, W.C.; Hee, E.; Ciarlo, D.

1990-11-01T23:59:59.000Z

176

Film Thickness Changes in EHD Sliding Contacts Lubricated by a Fatty Alcohol  

E-Print Network (OSTI)

This paper describes the appearance of abnormal film thickness features formed in elastohydrodynamic contacts lubricated by a fatty alcohol. Experiments were conducted by varying the slide to roll ratio between a steel ball and a glass disk in a ball-on-disk type device. Lauric alcohol was used as lubricant and film thickness was measured in the contact area by optical interferometry. Experimental results showed that the film thickness distributions under pure rolling conditions remained classical whereas the film shape changed when the slide to roll ratio was increased. The thickness in the central contact area increased and in the same time inlet and exit film thicknesses were modified. In addition, the film shapes observed when the ball surface was moving faster than the disk one and those obtained in the opposite case were different, i.e. when opposite signs but equal absolute values of the slide to roll ratio were applied.

Yagi, Kazuyuki

2006-01-01T23:59:59.000Z

177

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

DOE Green Energy (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

178

Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols  

E-Print Network (OSTI)

Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.

C. Gainaru; R. Meier; S. Schildmann; C. Lederle; W. Hiller; E. A. Rössler; R. Böhmer

2010-08-19T23:59:59.000Z

179

Hydrogenolysis Of 5-Carbon Sugars, Sugar Alcohols And Compositions For Reactions Involving Hydrogen  

DOE Patents (OSTI)

Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.

Werpy, Todd A. (West Richland, WA); Frye, Jr., John G. (Richland, WA); Zacher, Alan H. (Kennewick, WA); Miller, Dennis J. (Okemos, MI)

2004-01-13T23:59:59.000Z

180

Dual bowl metering block for alcohol and/or nitro-methane burning carburetor and method of conversion  

Science Conference Proceedings (OSTI)

An improved carburetor metering block for converting a conventional gasoline carburetor to alcohol fuel involving a carburetor metering block means adapted to attach to a conventional carburetor and replace the removable fuel bowl and standard metering block wherein the improved carburetor metering block means is adapted to accept, simultaneously, a plurality of individual and separate fuel bowls. Such a device can inexpensively convert a conventional carburetor to the use of alcohol fuel consistent with sufficient fuel flow and adequate fuel level control.

Horton, J.A.

1984-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Economic and energetic evaluation of alcohol fuel production from agriculture: Yolo County, California  

SciTech Connect

This dissertation reviews the technical aspects of alcohol fuel production and consumption, examines the set of policy-related issues that affect both the private and the public sectors, and investigates the economic and energetic feasibility of small-scale on-farm production on a representative Sacramento Valley field and vegetable crop farm. Candidate feedstocks, including both starch and sugar-rich crops, are: barley, corn, fodder beet, grain sorghum, Jerusalem artichoke, sugar beet, sweet sorghum, tomatoes, and wheat. The leading fuel crops were found to be sweet sorghum, Jerusalem artichoke, corn, fodder beet, and grain sorghum in order of declining preference. With better than average crop yields and the current mix of financial incentives, the breakeven cost of alcohol fuel is $1.03 per gallon when diesel fuel and gasoline prices are $1.30 and $1.46, respectively. Without subsidy, the breakeven cost is $1.62 per gallon. An energy analysis was calculated for each of the feedstocks under consideration. With the exception of sweet sorghum, wheat, and barley, all feedstocks showed a negative net energy balance. The use of agricultural residues as a boiler fuel, however, made a significant difference in the overall energy balance. The role of government in energy policy is reviewed and typical policy instruments are discussed. Although on-farm alcohol fuel production is not currently economically competitive with gasoline and diesel fuel, technological innovation and the return of increasing petroleum prices could alter the situation.

Meo, M.

1983-01-01T23:59:59.000Z

182

Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate  

DOE Patents (OSTI)

It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

1983-09-26T23:59:59.000Z

183

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

SciTech Connect

Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

2011-07-13T23:59:59.000Z

184

Geologic Flow Characterization Using Tracer Techniques Robert...  

NLE Websites -- All DOE Office Websites (Extended Search)

can be used in liquids, including methanol and ethyl alcohols, acetone, MEK, formic acid, acetic acid, formaldehyde, acetaldehyde, sugar, sodium, 11 12 potassium, lithium, phenols,...

185

ENERGY DRINK CONSUMPTION (WITH AND WITHOUT ALCOHOL) AND ITS RELATIONSHIP TO RISKY BEHAVIOR, RISK AWARENESS, AND BEHAVIORAL INTENTION IN COLLEGE STUDENTS.  

E-Print Network (OSTI)

??The purpose of this study was to assess the relationships between energy drink consumption (with and without alcohol) and other risky behaviors; students’ overall awareness… (more)

Buchanan, Julia K

2012-01-01T23:59:59.000Z

186

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

Science Conference Proceedings (OSTI)

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

187

[CuCln](2-n) Ion-Pair Species in 1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid-Water Mixtures: Ultraviolet-Visible, X-ray Absorbtion Fine Structure, and Density Functional Theory Characterization  

DOE Green Energy (OSTI)

We report details of the coordination environment about Cu(II) in a pure ionic liquid, 1- ethyl-3-methylimidazolium chloride ([EMIM]Cl) and in mixtures containing varying amounts of water from 0-100% of the [EMIM]Cl. There are many stages in the ion pairing of the divalent cation, Cu(II) including the contact ion pairing of Cu2+ with multiple Cl- to form various CuCln (2-n) polyanions. Thereis also the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM+ cation. Using a combination of x-ray absorption fine structure (XAFS), UV-Vis spectroscopy and electronic structure calculations (TDDFT) we are able to follow the detailed structural changes about Cu(II). Ion pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen bond network in [EMIM]Cl/water mixtures. In the [EMIM]Cl solvent the CuCl4 2- species dominates and it’s geometry is quite similar to gas-phase structure. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.

Li, Guosheng; Camaioni, Donald M.; Amonette, James E.; Zhang, Z. Conrad; Johnson, Timothy J.; Fulton, John L.

2010-10-07T23:59:59.000Z

188

Environmental planning and assessment for highway vehicle use of alcohol fuels  

DOE Green Energy (OSTI)

Argonne National Laboratory is assisting the Office of Transportation Programs of the U.S. DOE in performing the required environmental planning and assessment for highway vehicle alcohol fuel commercialization in accordance with the National Environmental Policy Act of 1969 (NEPA). In this presentation the process for planning and assessment is given, specific documents resulting from the process are explained. NEPA requires an environmental impact statement (EIS) for every major federal action that may have a significant impact on the quality of the human environment. Three types of environmental documents record this process: the Environmental Development Plan (EDP), the Environmental Assessment (EA) and the Environmental Impact Statement (EIS). The transportation EDP describes the energy conserving technologies; identifies and ranks environmental concerns; outlines strategies to resolve the concerns on a priority basis; and proposes a research program to implement the strategies. This is done annually for the division. In addition, environmental codumentation is scheduled for each technology as it reaches different stages of development. One major document is the EA, prepared when it is not clear whether an EIS is necessary. The information to make such a decision is collected in one detailed assessment of the technology or program. An EIS may then be written if impacts are expected to be significant. An EA is being performed for alcohol (neat and blends) fuels for highway vehicles by ANL.

Bernard, III, M J; Bevilaqua, O M

1979-01-01T23:59:59.000Z

189

(100) facets of ?-Al2O3: the active surfaces for alcohol dehydration reactions  

DOE Green Energy (OSTI)

Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on ?-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T?473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ? 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of ?-Al2O3 that was predicted at 550 K DFT calculations. Theoretical DFT simulations of the mechanism of dehydration. on clean and hydroxylated ?-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of ?-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on ?-Al2O3 are the catalytic active surfaces for alcohol dehydration.

Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Szanyi, Janos

2011-05-01T23:59:59.000Z

190

Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers  

E-Print Network (OSTI)

Extensive microscopic molecular dynamics simulations have been performed to study the effects of short-chain alcohols, methanol and ethanol, on two different fully hydrated lipid bilayer systems in the fluid phase at 323 K. It is found that ethanol has a stronger effect on the structural properties of the membranes. In particular, the bilayers become more fluid and permeable: Ethanol molecules are able to penetrate through the membrane in typical time scales of about 200 ns whereas for methanol that time scale is considerably longer, at least of the order of microseconds. We find good agreement with NMR and micropipette studies. We have also measured partitioning coefficients and the rate of crossing events for alcohols, i.e., typical time scale it takes for a molecule to cross the lipid bilayer and to move from one leaflet to the other. For structural properties, two-dimensional centre of mass radial-distribution functions indicate the possibility for quasi long-range order for ethanol-ethanol correlations in contrast to liquid-like behaviour for all other combinations.

Michael Patra; Emppu Salonen; Emma Terama; Roland Faller; Bryan W. Lee; Juha Holopainen; Mikko Karttunen

2004-08-05T23:59:59.000Z

191

The potential for alcohols and related ethers to displace conventional gasoline components  

DOE Green Energy (OSTI)

The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

Hadder, G.R. [Oak Ridge National Lab., TN (United States); McNutt, B.D. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

192

Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been Contact us My IOPscience #12;Syngas production by plasma treatments of alcohols, bio-oils and wood K to recover energy from biomass. The Syngas produced from biomass can be used to power internal combustion

193

Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide  

Science Conference Proceedings (OSTI)

Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

Black, Adrienne T. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Hayden, Patrick J. [MatTek Corporation, Ashland, MA (United States); Casillas, Robert P. [Battelle Memorial Institute, Columbus, OH (United States); Heck, Diane E. [Environmental Health, New York Medical College, Valhalla, NY (United States); Gerecke, Donald R. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Sinko, Patrick J. [Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

2011-06-01T23:59:59.000Z

194

Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis  

DOE Green Energy (OSTI)

This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

2012-07-01T23:59:59.000Z

195

Experimental researches of fuelling systems and alcohol blends on combustion and emissions in a two stroke Si engine  

Science Conference Proceedings (OSTI)

Fuelling systems play a major role in the process of air-fuel mixture formation, due to this fact; the aim of this paper was to achieve an optimal mixture, which results in low exhaust emissions and best behavior of the combustion process. In order to ... Keywords: alcohols, combustion, engine, exhaust emissions, gasoline

Mihai Aleonte; Corneliu Cofaru; Radu Cosgarea; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

196

Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Work is described on the investigations of the interaction of syngas in the preparation of alcohols. The analysis of work performed on copper/cobalt/chromium catalysts and the effect of the method of preparation on magnetic properties of the catalysts is discussed.

Akundi, M.A.

1995-10-01T23:59:59.000Z

197

Investigation of syngas interaction in alcohol synthesis catalysts. Quartery technical progress report, July 1, 1995--September 31, 1995  

DOE Green Energy (OSTI)

This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work done on the effect of CO adsorption on the magnetic character of cobalt in the Cu/Co/Cr catalysts is discussed.

Akundi, M.A.

1996-02-01T23:59:59.000Z

198

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

199

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2011 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Research during FY 2011 continued to examine the performance of RhMn catalysts on alternative supports including selected zeolite, silica, and carbon supports. Catalyst optimization continued using both the Davisil 645 and Merck Grade 7734 silica supports. Research also was initiated in FY 2011, using the both Davisil 645 silica and Hyperion CS-02C-063 carbon supports, to evaluate the potential for further improving catalyst performance, through the addition of one or two additional metals as promoters to the catalysts containing Rh, Mn, and Ir.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Rummel, Becky L.

2011-10-01T23:59:59.000Z

200

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2010 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research for the U.S. Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas. In recent years this research has primarily involved the further development of a silica-supported catalyst containing rhodium and manganese that was selected from earlier catalyst screening tests. A major effort during 2010 was to examine alternative catalyst supports to determine whether other supports, besides the Davisil 645 silica, would improve performance. Optimization of the Davisil 645 silica-supported catalyst also was continued with respect to candidate promoters iridium, platinum, and gallium, and examination of selected catalyst preparation and activation alternatives for the baseline RhMn/SiO2 catalyst.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; White, J. F.; Rummel, Becky L.; Stevens, Don J.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A plant kinetic study of alcoholic fermentation using reversed-flow gas chromatography  

SciTech Connect

The reversed-flow gas chromatographic sampling technique is used to study the kinetics of alcoholic fermentation in a factory in conjunction with measurements of suspended particles in the fermenting medium. It was found that the overall process consists of four phases which have different first-order rate constants during ethanol formation. The second phase is the slowest with its rate constant being 4.3 and 13 times smaller than that of the first and third phases, respectively. There is also a decrease of suspended particles during the second phase. These results show that there is the possibility of increasing the rate constant during this phase, thereby increasing the overall production rate of ethanol significantly and thus lowering its cost of production.

Economopoulos, N.; Athanassopoulos, N. (B.G. Spiliopoulos Distilleri S.A., Patras (Greece)); Katsanos, N.A.; Karaiskakis, G.; Agathonos, P.; Vassilakos, Ch. (Univ. of Patras (Greece))

1992-12-01T23:59:59.000Z

202

Adsorption of various alcohols on Illinois No. 6 coal in aqueous solutions  

SciTech Connect

Hydrophilicity, hydrophobicity and aromacity of Illinois {number_sign}6 coal in water are relatively determined by evaluating equilibrium physical/chemical adsorption of probe compounds on the coal. Experiments on equilibrium adsorption loadings of various additives on 60--200 mesh Illinois {number_sign}6 coal (DECS-2; Randolph county) were performed to investigate relatively surface properties of the coal at 25{degree}C. The additives include various alcohols, alkanes and aromatic compounds. The main objectives of this research are to evaluate relatively surface properties of raw coals, treated coals and coal minerals with the inverse liquid chromatography technique, using various probe compounds, to analyze flotation recoveries of coals with a micro-flotation apparatus in order to relate coal floatability to evaluated coal surface properties, and to delineate roles of coal-cleaning/handling additives with the inverse liquid chromatography technique.

Kwon, K.C.; Rigby, R.R.

1993-07-01T23:59:59.000Z

203

Weak dispersive forces between glass-gold macroscopic surfaces in alcohols  

E-Print Network (OSTI)

In this work we concentrate on an experimental validation of the Lifshitz theory for van der Waals and Casimir forces in gold-alcohol-glass systems. From this theory weak dispersive forces are predicted when the dielectric properties of the intervening medium become comparable to one of the interacting surfaces. Using inverse colloid probe atomic force microscopy dispersive forces were measured occasionally and under controlled conditions by addition of salt to screen the electrostatic double layer force if present. The dispersive force was found to be attractive, and an order of magnitude weaker than that in air. Although the theoretical description of the forces becomes less precise for these systems even with full knowledge of the dielectric properties, we find still our results in reasonable agreement with Lifshitz theory.

P. J. van Zwol; G. Palasantzas; J. Th. M. DeHosson

2009-04-03T23:59:59.000Z

204

Design of a high activity and selectivity alcohol catalyst. [Design of a flow microreactor  

DOE Green Energy (OSTI)

Research on the design of a high selectivity alcohol catalyst continued. During the first quarter of this project, our goals have been to overhaul key experimental equipment used in the previous project, plan and design new equipment and to identify a person to carry out the research program. The flow microreactor, previously assembled, has been reactivated and major improvements have been made both to the reactor and its attendant analytical instrumentation. This equipment is described later in this report. In addition to this, a state-of-the-art hydrogen chemisorption instrument has been designed and the components for its construction have been ordered. Additionally, four recent publications by the principal investigators on the subject of this project have appeared. 3 figs.

Foley, H.C.; Mills, G.A.

1990-11-26T23:59:59.000Z

205

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

2011-01-01T23:59:59.000Z

206

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2012 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Testing continued in FY 2012 to further improve the Ir-promoted RhMn catalysts on both silica and carbon supports for producing mixed oxygenates from synthesis gas. This testing re-examined selected alternative silica and carbon supports to follow up on some uncertainties in the results with previous test results. Additional tests were conducted to further optimize the total and relative concentrations of Rh, Mn, and Ir, and to examine selected promoters and promoter combinations based on earlier results. To establish optimum operating conditions, the effects of the process pressure and the feed gas composition also were evaluated.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Thompson, Becky L.

2012-11-01T23:59:59.000Z

207

Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines  

DOE Green Energy (OSTI)

The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

Hodgson, J.W.; Irick, D.K. [Univ. of Tennessee, Knoxville, TN (United States)

1998-04-01T23:59:59.000Z

208

Evaluation of Promoters for Rhodium-Based Catalysts for Mixed Alcohol Synthesis  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially-available catalysts or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially-available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. A total of 28 tests were conducted to evaluate 22 different promoters as well as an unpromoted catalyst. The following general trends were observed for the test results: • The highest carbon selectivity to C2+ oxygenates occurred at the lowest reaction temperatures and accompanying lowest space time yields (STYs). • The lowest carbon selectivity to C2+ oxygenates occurred at the highest reaction temperatures because of high carbon conversion to hydrocarbons. • The highest C2+-oxygenate STYs occurred between 300°C and 325°C, with the gas hourly space velocity (GHSV) adjusted when necessary to maintain carbon conversion ranges between ~ 30 and 40 percent. Higher carbon selectivity to hydrocarbons at higher temperatures resulted in lower C2+-oxygenate STYs. • When catalysts were heated to between 300°C and 325°C the catalysts showed evidence of some deactivation with respect to C2+ oxygenate productivity, accompanied by reduced chain growth for the hydrocarbon products. The degree of deactivation and the temperature at which it occurred varied between the different catalysts tested. Of all of the catalysts evaluated, the Li-promoted catalysts had the highest carbon selectivity to C2+ oxygenates (47 percent) under the conditions at which the maximum C2+-oxygenate STYs were obtained.

Gerber, Mark A.; White, James F.; Gray, Michel J.; Stevens, Don J.

2008-12-08T23:59:59.000Z

209

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

DOE Green Energy (OSTI)

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

210

The economical production of alcohol fuels from coal-derived synthsis gas. Quarterly technical progress report number 10, 1 January 1994--31 March 1994  

DOE Green Energy (OSTI)

The WVU plug-flow microreactor system is now complete. Screening runs with this system will commence. Computer control is being installed in the second WVU unit. Additional hardware has been suggested for this system so that it can be used either to screen additional catalysts or to obtain kinetic data on selected catalyst samples. Synthetic preparations and characterizations of molybdenum-based sulfide and nitride catalysts are ongoing. Modelling studies are continuing satisfactorily. A more detailed model of the reaction kinetics, to account for individual alcohols rather than a lumped highter-alcohol, has been inserted into the model of a plug-flow reactor. A solution methodology to maximize the profitability of alcohol production, separation and blending has been developed. The temperatures, pressures, flowrates, and key component recoveries in the separation steps are the optimization variables. The probability of this process becoming economically feasible in the near future appears to be extremely small given the low return on capital investment associated with the production of alcohol from coal. If coal derived alcohols are to become alternative transportation fuels, then the capital cost associated with the process must be reduced, specifically the cost of the gasifiers, or significant changes need to be made in the composition of the mixed alcohol product. A methodology for performing Monte Carlo studies to determine quantitatively the uncertainties relevant to future decisions to build an alcohol-fuels plant is still being developed.

Not Available

1994-04-01T23:59:59.000Z

211

Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, February 1, 1994--April 30, 1994  

DOE Green Energy (OSTI)

This work presents the progress of the work done during the second quarter on {open_quotes}Investigation of syngas interaction in Alcohol Synthesis Catalysts.{close_quotes} The essential results have been presented at the second annual Historically Black Colleges and Universities/Private Sector/Energy Research and Development Technology Transfer Symposium. The primary objective of this project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. Since extensive catalytic results are available from the studies of the IFP group, the authors have undertaken to investigate the magnetic character by studying the Zero Field Nuclear Magnetic Resonance (ZFNMR) of cobalt and hysterisis character of the Cu/Co catalysts. The authors have examined three different aspects of these catalysts. (a) effect of metal ratio, (b) effect of method of preparation, and (c) effect of selectivity.

Not Available

1994-09-01T23:59:59.000Z

212

Heterogeneous catalytic process for alcohol fuels from syngas. Sixteenth quarterly technical progress report, October--December, 1995  

DOE Green Energy (OSTI)

The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. Among our previous best catalysts was the family consisting of potassium-promoted Pd on a Zn/Cr spinel oxide prepared via controlled pH precipitation. We have now examined the effect of potassium promotion on (1) a Zn/Cr/O spinel and (2) on ZnO; these two individual components are used together to make our best support. The presence of excess zinc oxide has a beneficial effect on the performance of Zn/Cr spinel oxide catalysts (1) promoted with cesium and (2) promoted with both cesium and palladium. The presence of the excess zinc oxide results in a more active and selective catalyst to total alcohols and increased isobutanol rates, demonstrating the effectiveness of zinc oxide addition to the spinel support. Potassium addition promotes higher alcohol synthesis on a commercial Zn/Cr spinel oxide methanol synthesis catalyst. Incremental potassium levels (1, 3 and 5 wt%) result in an increase in total alcohol selectivity, while isobutanol. rates are maximized at 1 wt% potassium. The commercial catalyst promoted with potassium is slightly less active for isobutanol synthesis and less selective to total alcohols when compared with our spinel formulation promoted with potassium and containing excess ZnO. Surface science studies have shown that the surface of these catalysts is predominately ZnO and alkali. With use, the ZnO is reduced to Zn metal, and Cr migrates to the surface giving increased surface acidity. In addition tends to lower the overall acidity. Hydrogen can be observed on the catalyst surface by surface science studies. Hydrogen on the active catalyst is associated with the palladium.

NONE

1996-07-01T23:59:59.000Z

213

Heterogeneous catalytic process for alcohol fuels from syngas. Quarterly technical progress report No. 8, October--December 1993  

DOE Green Energy (OSTI)

The novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. Our current targets for isobutanol-producing catalysts are to produce an equimolar mixture of methanol and isobutanol with a productivity for isobutanol of > 50 g/Kg-hr. Reactor system modifications, undertaken to improve data quality, have been completed. The changes should help eliminate differences between the two reactors and allow for more accurate determination of higher molecular weight products. To calibrate our new reactor system, we have retested our ``best`` isobutanol catalyst, 10-DAN-54 (a promoted Zn/Cr/Mn spinel oxide). Under standard test conditions (400{degrees}C, 1000 psi, 12000 GHSV and syngas ratio = 1:1), this catalyst produces 200--252 g/kg-hr of total alcohols (total alcohol selectivities of 57--68%) with an isobutanol rate of 94--130 g/kg-hr and a MeOH/i-BuOH product mole ratio of 3. These results compare with a productivity of 112 g/kg-hr of total alcohols (total alcohol selectivity of 86%) with an isobutanol rate of 38 g/kg-hr and a MeOH/i-BuOH product mole ratio of 3 observed in the original microreactor system configuration. It should be remembered that the test apparatus is designed for screening only. Detailed, more reliable data for kinetic modeling must be generated using larger catalyst charges (> 10g) and in larger scale test equipment.

Not Available

1993-12-31T23:59:59.000Z

214

Effect of Hypericum perforatum CO2 extract on the motivational properties of ethanol in alcohol-preferring rats  

E-Print Network (OSTI)

Abstract — Aims: Extracts of Hypericum perforatum (HPE) attenuate voluntary ethanol intake in different lines of alcohol-preferring rats. The present study evaluated the effect of the intragastric (IG) administration of a CO 2 Hypericum perforatum extract (HPCO 2) on operant ethanol self-administration, as well as on voluntary ethanol intake, after a period of ethanol deprivation in genetically selected Marchigian Sardinian alcohol-preferring rats. Methods: HPCO 2 was administered by means of an indwelling IG catheter, 1 h before the tests. For the self-administration experiments, the rats were trained to self-administer 10 % (v/v) ethanol in 30-min daily sessions under a fixed ratio 1 schedule of reinforcement. HPCO 2 was also tested on 0.2 % w/v saccharin self-administration. For the ethanol deprivation experiments, rats that had a previous experience with voluntary ethanol drinking were deprived of ethanol for 9 days, whereas water and food were freely available; HPCO 2 was given by IG injection 1 h before the ethanol re-presentation. Results: HPCO 2 in doses of 31 or 125 mg/kg but not 7 mg/kg, significantly reduced ethanol self-administration, while it did not modify saccharin self-administration. The same doses of the extract abolished the increased ethanol intake following ethanol deprivation. Conclusions: These findings provide evidence that HPCO 2 markedly reduces the reinforcing properties of ethanol in the selfadministration paradigm, as well as the increase of ethanol intake following ethanol deprivation. These findings further support the view that the use of HPE may represent an interesting pharmacological approach in the treatment of alcohol abuse and alcoholism.

Marina Perfumi; Laura Mattioli; Laura Forti; Maurizio Massi; Roberto Ciccocioppo

2005-01-01T23:59:59.000Z

215

Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn  

SciTech Connect

On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

Boonserm, P.

1985-01-01T23:59:59.000Z

216

Development of miscella refining process for cottonseed oil-isopropyl alcohol system: laboratory-scale evaluations  

E-Print Network (OSTI)

A technologically feasible cottonseed oil-isopropyl alcohol (IPA) miscella refining process was developed to produce high quality cottonseed oil. Individual steps necessary to refine cottonseed oil-IPA miscella were determined and improved. These were: 1) homogenization of the cottonseed oil-IPA miscella with caustic solution; 2) centrifugation; 3) separation of miscella layers; 4) desolventization, 5) water washing and drying; and 6) bleaching. In neutralization, the miscella was mixed with 20 Be' caustic solution (50% excess) by using a Sonolator for 15 times. The refined oils from both the bottom and top layers were water washed using 12.5% and 20% (w/w) hot water, respectively. The water washing efficiently recovered the oil from the top layer miscella and reduced the soap and phosphorus content. The water washed and dried oils from the bottom and top layers were treated with 0.5% and 4% (w/w) acid activated bleaching clay, respectively. Good quality refined and bleached oil was obtained. However, the quality of the bleached oil produced from bottom layer was better than that from the top layer. Comparative experiments with both IPA and hexane systems showed that the new refining process developed in this study could produce a higher quality refined oil from the cottonseed oil-IPA miscella than from the cottonseed oil-hexane miscella.

Chau, Chi-Fai

1994-01-01T23:59:59.000Z

217

Long-Term Testing of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2013 Progress Report  

SciTech Connect

The U.S. Department of Energy’s Pacific Northwest National Laboratory has been conducting research since 2005 to develop a catalyst for the conversion of synthesis gas (carbon monoxide and hydrogen) into mixed alcohols for use in liquid transportation fuels. Initially, research involved screening possible catalysts based on a review of the literature, because at that time, there were no commercial catalysts available. The screening effort resulted in a decision to focus on catalysts containing rhodium and manganese. Subsequent research identified iridium as a key promoter for this catalyst system. Since then, research has continued to improve rhodium/manganese/iridium-based catalysts, optimizing the relative and total concentrations of the three metals, examining baseline catalysts on alternative supports, and examining effects of additional promoters. Testing was continued in FY 2013 to evaluate the performance and long-term stability of the best catalysts tested to date. Three tests were conducted. A long-term test of over 2300 hr duration at a single set of operating conditions was conducted with the best carbon-supported catalyst. A second test of about 650 hr duration at a single set of operating conditions was performed for comparison using the same catalyst formulation on an alternative carbon support. A third test of about 680 hr duration at a single set of operating conditions was performed using the best silica-supported catalyst tested to date.

Gerber, Mark A.; Gray, Michel J.; Thompson, Becky L.

2013-09-23T23:59:59.000Z

218

Batch Microreactor Studies of Lignin Depolymerization by Bases. 1. Alcohol Solvents  

DOE Green Energy (OSTI)

Biomass feedstocks contain roughly 10-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels (ethanol) assume that the lignin coproduct will be utilized as boiler fuel to provide heat and power to the process. However, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller molecular units. From fiscal year 1997 through fiscal year 2001, Sandia National Laboratories was a participant in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to utilize rapidly heated batch microreactors to perform kinetic studies, examine the reaction chemistry, and to develop alternate catalyst systems for the BCD process. This report summarizes the work performed at Sandia during FY97 and FY98 with alcohol based systems. More recent work with aqueous based systems will be summarized in a second report.

MILLER, JAMES E.; EVANS, LINDSEY; LITTLEWOLF, ALICIA; TRUDELL, DANIEL E.

2002-05-01T23:59:59.000Z

219

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

Science Conference Proceedings (OSTI)

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

220

Potential sources of non-petroleum based alcohols for vehicular fleet testing  

DOE Green Energy (OSTI)

The quantity of alcohol required to supply all of the US Department of Energy's vehicular fleet test fuel needs during the period fiscal year 1980 through 1982 could reach on the order of 1.5 and 1.6 million gallons per year of 200 proof ethanol and fuel-grade methanol, respectively. During the time frame of fiscal year 1982 through 1987, vehicular fleet testing fuel needs could approach 8 and 10 million gallons per year of ethanol and methanol, respectively. In terms of supply, all of the ethanol fleet test fuel requirements can be satisfied by domestic fermentation ethanol from non-petroleum/non-natural gas resources. Initially, the major ethanol fermentation firms are potentially capable of supplying the necessary quantity of ethanol. As the test project progresses and fleet size expands, the outlook for ethanol supply from the major firms as well as from other private sources, both existing and planned, is very promising. This supply outlook could be altered significantly if an expanding Gasohol market demands a major portion of the available ethanol production. It is in the Federal Government's best interest to arrange for ethanol supply agreements as soon as possible so that fleet test volume requirements can be assured. The supply situation for methanol from non-petroleum/non-natural gas resources is not very promising. It appears that methanol produced from coal or biomass will not be available before 1985 at the earliest, assuming that a decision to construct a sizeable plant is made immediately. As such, fuel grade methanol for use in the reliability fleet test project will most likely have to be obtained from the existing petroleum/natural gas-based methanol market. This market is currently operating at a level below maximum capacity and several older mothballed plants can be reactivated if the economic situation warrants.

Not Available

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993  

DOE Green Energy (OSTI)

Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

Not Available

1993-10-01T23:59:59.000Z

222

Heterogeneous catalytic process for alcohol fuels from syngas. Fifteenth quarterly technical progress report, July--September 1995  

DOE Green Energy (OSTI)

The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The previous best catalysts consisted of potassium-promoted Pd on a Zn/Cr spinel oxide prepared via controlled pH precipitation. The authors have now examined the effect of cesium addition to the Zn/Cr spinel oxide support. Surprisingly, cesium levels required for optimum performance are similar to those for potassium on a wt% basis. The addition of 3 wt% cesium gives isobutanol rates > 170 g/kg-hr at 440 C and 1,500 psi with selectivity to total alcohols of 77% and with a methanol/isobutanol mole ratio of 1.4: this performance is as good as their best Pd/K catalyst. The addition of both cesium and palladium to a Zn/Cr spinel oxide support gives further performance improvements. The 5 wt% cesium, 5.9 wt% Pd formulation gives isobutanol rates > 150 g/kg-hr at 440 C and only 1,000 psi with a selectivity to total alcohols of 88% and with a methanol/isobutanol mole ratio of 0.58: this is their best overall performance to date. The addition of both cesium and palladium to a Zn/Cr/Mn spinel oxide support that contains excess Zn has also been examined. This spinel was the support used in the synthesis of 10-DAN-54, the benchmark catalyst. Formulations made on this support show a lower overall total alcohol rate than those using the spinel without Mn present, and require less cesium for optimal performance.

NONE

1995-12-31T23:59:59.000Z

223

Heterogeneous catalytic process for alcohol fuels from syngas. Twelfth quarterly technical progress report, October--December 1994  

DOE Green Energy (OSTI)

The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The authors have prepared an improved version of 10-DAN-54, a Zn/Cr/Mn spinel oxide promoted with Pd and K. This material (16-DMM-68) has acceptable elemental analysis for the expected composition and possesses the desired high surface area of >80 m{sup 2}/g. The catalyst has extra added potassium vs. the standard catalyst, 10-DAN-54, as previous work had indicated that more potassium is required for optimal performance. In tests under standard conditions (400 C, 1,000 psi, GHSV = 12,000, syngas ratio = 1), this catalyst shows a selectivity to total alcohols of 84% and produces > 100 g/kg/hr of isobutanol with a MeOH/i-BuOH mole ratio = 4.7. The authors have tested 16-DMM-68 at temperatures above 400 C and pressures up to 1,500 psi (GHSV = 12,000, syngas ratio = 1). At 440 C and 1500 psi, this catalyst shows a selectivity to total alcohols of 64% and produces 179 g/kg/hr of isobutanol with a MeOH/i-BuOH mole ratio = 2.2. This is their best overall performance to data. The catalyst operates at syngas conversions up to 28% with good selectivity to total alcohols due to the extra added alkali. This performance can be compared with 10-DAN-54, which could only operate up to 20% conversion before hydrocarbon formation became a serious inefficiency.

NONE

1995-12-31T23:59:59.000Z

224

Heterogeneous catalytic process for alcohol fuels from syngas. Fourteenth quarterly technical progress report, April--June 1995  

DOE Green Energy (OSTI)

The project objectives are: (1) To discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. In particular, novel heterogeneous catalysts will be studied and optimized for the production of: (a) C{sub 1}-C{sub 5} alcohols using conventional methanol synthesis conditions, and (b) methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. (2) To explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (3) To develop on the bench scale the best combination of chemistry, catalyst, reactor, and total process configuration to achieve the minimum product cost for the conversion of syngas to liquid products. The authors have prepared a comparative Zn/Cr spinel oxide support that contains excess ZnO and have looked at the catalytic performance of (a) the bare support, (b) a potassium traverse on the bare support to determine the effect of alkali addition in the absence of Pd and (c) a potassium traverse on the support impregnated with 6 wt% Pd. The bare support is an inefficient methanol catalyst. Alkali addition results in an increase in selectivity to total alcohols vs. the bare support and a dramatic increase higher alcohol synthesis. Pd addition results in further improvements in performance. Selectivities increase with K loading. The 5 wt% K, 5.9 wt% Pd catalyst produces > 100 g/kg-hr of isobutanol at 440 C and 1,000 psi, with 85% selectivity to total alcohols and with a methanol/isobutanol mole ratio of <2. The authors intend to continue formulation screening using K/Pd formulations on ZnO and ZnCr{sub 2}O{sub 4} prepared conventionally and via controlled pH precipitation. They will also examine the effect of Cs in place of K as the alkali promoter and the use of Rh instead of Pd as a promoter.

NONE

1995-12-31T23:59:59.000Z

225

Poly(vinyl alcohol)-based buffering membranes for isoelectric trapping separations  

E-Print Network (OSTI)

Isoelectric trapping (IET) in multicompartment electrolyzers (MCE) has been widely used for the electrophoretic separation of ampholytic compounds such as proteins. In IET, the separation occurs in the buffering membranes that form a step-wise pH gradient in the MCE. Typically, buffering membranes have been made by copolymerizing acrylamide with Immobiline compounds, which are acidic and basic acylamido buffers. One major problem, however, is that these buffering membranes are not stable when exposed to high concentrations of acid and base due to hydrolysis of the amide bonds. Poly(vinyl alcohol)-based, or PVA-based, membranes were made as an alternative to the polyacrylamide-based membranes since they provide more hydrolytic and mechanical stability. Four mid-pH, PVA-based buffering membranes that contain single ampholytes were synthesized. These buffering membranes were used to trap small molecular weight pI markers for up to three hours, and were also used in desalting experiments to remove strong electrolytes from a solution of ampholytes. Additionally, the membranes were used in IET experiments to separate mixtures of pI markers, and to fractionate the major proteins in chicken egg white. The membranes did not show any degradation when stored in 3 M NaOH for up to 6 months and were shown to tolerate current densities as high as 16 mA/cm2. In addition, six series of PVA-based membranes, whose pH values can be tuned over the 3 < pH < 10 range, were synthesized by covalently binding aminodicarboxylic acids, and monoamines or diamines to the PVA matrix. These tunable buffering membranes were used in trapping experiments to trap ampholytes for up to three hours, and in desalting experiments to remove strong electrolytes from a solution of ampholytes. These tunable buffering membranes were also used in IET experiments to separate proteins, some with pI values that differ by only 0.1 pH unit. The tunable buffering membranes did not show any signs of degradation when exposed to 3 M NaOH for up to 3 months, and could be used in IET experiments with current densities as high as 20 mA/cm2. These tunable buffering membranes are expected to broaden the application areas of isoelectric trapping separations.

Craver, Helen C.

2007-05-01T23:59:59.000Z

226

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 12, July 1--September 30, 1994  

DOE Green Energy (OSTI)

Both plug-flow microreactor systems at WVU are now functioning. Screening runs on these systems were started using carbide and nitride catalysts first, to avoid any question of contamination of the system with sulfur. The carbide and nitride catalysts are characterized by high activity but low selectivity towards alcohols. The Chevrel-phase catalysts tested have much lower activities but may be more selective to alcohols. Catalyst synthesis procedures are attempting to offset this tendency, and also to characterize and prepare sulfide catalyst by other approaches. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Modeling studies have concentrated on the catalytic membrane reactor. The topical report, originally submitted last quarter, was revised after some errors were found. This report includes the design and economics for the seven cases discussed in previous quarterly reports. In the topical report, it is shown that a judicious choice of coal:natural gas feed ratio to the alcohol synthesis process allows the Shell Gasifier to be nearly competitive with natural gas priced at of $3.00/MMBtu. The advantage of the Shell Gasifier over the Texaco Gasifier is that the former produces a syngas with a lower H{sub 2}:CO ratio. When the feed to the process is coal only, there is no difference in the projected economics that would favor one gasifier over the other. The potential of co-generation of electric power with high alcohol fuel additives has been investigated. Preliminary results have revealed that a once-through alcohol synthesis process with minimal gas clean-up may provide an attractive alternative to current designs given the prevailing economic status of IGCC units.

NONE

1994-10-01T23:59:59.000Z

227

Bismuth as a modifier of Au Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction  

SciTech Connect

Bi has been widely employed as a modifier for Pd and Pt based catalyst mainly in order to improve selectivity. We found that when Bi was added to the bimetallic system AuPd, the effect on activity in alcohol oxidation mainly depends on the amount of Bi regardless its position, being negligible when Bi was 0.1 wt% and detectably negative when the amount was increased to 3 wt%. However, the selectivity of the reactions notably varied only when Bi was deposited on the surface of metal nanoparticles suppressing parallel reaction in both benzyl alcohol and glycerol oxidation. After a careful characterization of all the catalysts and additional catalytic tests, we concluded that the Bi influence on the activity of the catalysts could be ascribed to electronic effect whereas the one on selectivity mainly to a geometric modification. Moreover, the Bi-modified AuPd/AC catalyst showed possible application in the production of tartronic acid, a useful intermediate, from glycerol.

Villa, Alberto [Universita di Milano, Italy; Wang, Di [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Veith, Gabriel M [ORNL; Prati, Laura [Universita di Milano, Italy

2012-01-01T23:59:59.000Z

228

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly report, October 1, 1996--December 31, 1996  

DOE Green Energy (OSTI)

The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extender and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory and equipment setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis. Parallel research carried out at Union Carbide Corporation (UCC) is focused on transition-metal-oxide catalysts. During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products when reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction spectra for C- supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS{sub 2}/C catalyst. We have compared the results of methanol synthesis using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalysts has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.

NONE

1997-01-01T23:59:59.000Z

229

Thermal Decomposition of Bulk K-CoMoSx Mixed Alcohol Catalyst Precursors and Effects on Catalyst Morphology and Performance  

Science Conference Proceedings (OSTI)

Cobalt molybdenum sulfide-type mixed alcohol catalysts were synthesized via calcination of precipitated bulk sulfides and studied with temperature programmed decomposition analysis. Precursors containing aqueous potassium were also considered. Precipitates thermally decomposed in unique events which released ammonia, carbon dioxide, and sulfur. Higher temperature treatments led to more crystalline and less active catalysts in general with ethanol productivity falling from 203 to 97 g (kg cat){sup -1} h{sup -1} when the calcination temperature was increased from 375 to 500 C. The addition of potassium to the precursor led to materials with crystalline potassium sulfides and good catalytic performance. In general, less potassium was required to promote alcohol selectivity when added before calcination. At calcination temperatures above 350 C, segregated cobalt sulfides were observed, suggesting that thermally decomposed sulfide precursors may contain a mixture of molybdenum and cobalt sulfides instead of a dispersed CoMoS type of material. When dimethyl disulfide was fed to the precursor during calcination, crystalline cobalt sulfides were not detected, suggesting an important role of free sulfur during decomposition.

Menart, M. J.; Hensley, J. E.; Costelow, K. E.

2012-09-26T23:59:59.000Z

230

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

231

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

232

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998  

SciTech Connect

This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

1999-03-01T23:59:59.000Z

233

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998  

DOE Green Energy (OSTI)

This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

None

1999-03-01T23:59:59.000Z

234

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 16, July 1, 1995--September 30, 1995  

DOE Green Energy (OSTI)

The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis (HAS). Parallel research carried out at Union Carbide Chemicals and Plastics (UCC&P) is focused on transition-metal-oxide catalysts. Accomplishments to date are discussed in this report. In Task 2, during the past three months, much has been accomplished in fuel testing. Several tests have been run on pure indolene, and the data have been analyzed from these tests. The two limiting alcohol blends have been made, sent out for analysis and the results obtained. The emissions sampling system is undergoing changes necessary for running alcohol fuels. A cylinder pressure measurement system has been installed.

NONE

1995-10-01T23:59:59.000Z

235

Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Lignocellulosic Conversion of Lignocellulosic Biomass to Ethanol Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis A. Dutta, M. Talmadge, and J. Hensley National Renewable Energy Laboratory Golden, Colorado M. Worley and D. Dudgeon Harris Group Inc. Atlanta, Georgia and Seattle, Washington D. Barton, P. Groenendijk, D. Ferrari, and B. Stears The Dow Chemical Company Midland, Michigan E.M. Searcy, C.T. Wright, and J.R. Hess Idaho National Laboratory Idaho Falls, Idaho Technical Report NREL/TP-5100-51400 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard

236

Heterogeneous catalytic process for alcohol fuels from syngas. Thirteenth quarterly technical progress report, January--March 1995  

DOE Green Energy (OSTI)

The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The authors have tested a number of K/Pd promoted Zn/Mn/Cr spinel oxide catalysts within an experimental design to determine the effect of K, Pd, temperature and pressure on catalyst performance. High temperature operation (at 440 C) results in drastic loss in selectivities to total alcohols (down to 18--30%), and this obscures the effect of the catalyst formulation variables. It appears that at higher temperatures, the tube walls can also catalyze syngas conversion with a more hydrogen-rich syngas mix. Comparison with tests in a copper-lined tube with 1:1 syngas confirm this hypothesis. The design suggested that higher Pd loadings would be beneficial for isobutanol synthesis. The 6 wt% and a 9 wt% Pd formulation were tested with 1:2 syngas in copper-lined tubes. The 6 wt% Pd catalyst, at 440 C and 1,500 psi, produced 71 g/kg-hr of isobutanol with a methanol/isobutanol product mole ratio < 1. Under the same conditions, the 9 wt% Pd catalyst is again inferior, producing 52 g/kg-hr of isobutanol with a methanol/isobutanol product mole ratio = 1.7. Of particular interest here is that the 6 wt% Pd catalyst produces more higher alcohols than methanol on a molar basis at good rates using a syngas mix that could be derived from a Shell gasifier.

NONE

1995-12-31T23:59:59.000Z

237

The Non-alcoholic Beverage Market in the United States: Demand Interrelationships, Dynamics, Nutrition Issues and Probability Forecast Evaluation  

E-Print Network (OSTI)

There are many different types of non-alcoholic beverages (NAB) available in the United States today compared to a decade ago. Additionally, the needs of beverage consumers have evolved over the years centering attention on functionality and health dimensions. These trends in volume of consumption are a testament to the growth in the NAB industry. Our study pertains to ten NAB categories. We developed and employed a unique cross-sectional and time-series data set based on Nielsen Homescan data associated with household purchases of NAB from 1998 through 2003. First, we considered demographic and economic profiling of the consumption of NAB in a two-stage model. Race, region, age and presence of children and gender of household head were the most important factors affecting the choice and level of consumption. Second, we used expectation-prediction success tables, calibration, resolution, the Brier score and the Yates partition of the Brier score to measure the accuracy of predictions generated from qualitative choice models used to model the purchase decision of NAB by U.S. households. The Yates partition of the Brier score outperformed all other measures. Third, we modeled demand interrelationships, dynamics and habits of NAB consumption estimating own-price, cross-price and expenditure elasticities. The Quadratic Almost Ideal Demand System, the synthetic Barten model and the State Adjustment Model were used. Soft drinks were substitutes and fruit juices were complements for most of non-alcoholic beverages. Investigation of a proposed tax on sugar-sweetened beverages revealed the importance of centering attention not only to direct effects but also to indirect effects of taxes on beverage consumption. Finally, we investigated factors affecting nutritional contributions derived from consumption of NAB. Also, we ascertained the impact of the USDA year 2000 Dietary Guidelines for Americans associated with the consumption of NAB. Significant factors affecting caloric and nutrient intake from NAB were price, employment status of household head, region, race, presence of children and the gender of household food manager. Furthermore, we found that USDA nutrition intervention program was successful in reducing caloric and caffeine intake from consumption of NAB. The away-from-home intake of beverages and potential impacts of NAB advertising are not captured in our work. In future work, we plan to address these limitations.

Dharmasena, Kalu Arachchillage Senarath

2010-05-01T23:59:59.000Z

238

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 18, January 1, 1996--March 31, 1996  

DOE Green Energy (OSTI)

At West Virginia University, preliminary studies were completed on the use of a membrane reactor for a BASF methanol synthesis catalyst, and the results were compared qualitatively with those from a non- permeable stainless steel tubular reactor. Promising non-sulfided Mo- based catalyst was screened and detailed parametric studies begun on selected non-sulfided catalysts. Kinetic study of a sulfided carbon- supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor continued. Post analyses of screening runs of previous promising non-sulfide molybdenum-based catalysts were completed by analyzing the liquid products collected using a GC/MS. At Union Carbide Corporation, the effect of high-temperature heat treatments of selected catalysts was tested. In all cases, heat treatments resulted in decreased total alcohol selectivity and decreased space time yield to all products affected. Also, catalyst screening was completed. Reduced Mo-Ni-K/C materials were found to be promising catalysts for high alcohol synthesis.

NONE

1996-04-01T23:59:59.000Z

239

Novel approaches to the production of higher alcohols from synthesis gas. Quarterly technical progress report No. 16, July 1, 1994-- September 30, 1994  

DOE Green Energy (OSTI)

Accomplishments for Task 2, liquid-phase, higher alcohol process with recycle of lower alcohols, are as follows: (1) a new reactor overhead system design has significantly improved retention of slurry oil during reactor operation at high temperature, ca. 375{degrees}C; (2) a series of ``blank`` (without catalyst) runs were made at 375{degrees}C to evaluate thermal stability of three potential slurry liquids, Drakeol{reg_sign}, Ethylflo{reg_sign} 180 and perhydrofluorene; and (3) the rate of methanol formation with the Cu/ZnO BASF S3-86 ``low temperature`` methanol synthesis catalyst was a strong function of stirrer speed at a ``standard`` set of operating conditions. This result suggest that the reaction rate is influenced or controlled by gas/liquid mass transfer, and may explain the previously-observed discrepancy between results from this laboratory and those from Air Products.

Roberts, G.W.

1996-03-01T23:59:59.000Z

240

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 19, April 1, 1996--June 30, 1996  

DOE Green Energy (OSTI)

The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor. The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.

NONE

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 9, October 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Catalysts based on molybdenum are being prepared using four different approaches. These materials have been characterized by IR, XRD and single-crystal studies. Modeling studies are continuing satisfactorily. The overall efficiency of each base case has been calculated and tested as a screening method to select feasible technologies. A methodology to determine the effects and influences of process variable uncertainties on the performance of a design has been developed. Input variables in the model to be considered include the reaction product distribution, the operating temperatures of equipment (e.g., gasifiers, separators, etc.), and the estimates of the thermodynamic model used in the computer aided design simulation of the process. The efficiency of the process can be modeled by calculation of output variables such as the payback period or the energy efficiency of the plant. The result will be a range of expected operating conditions for the process and an indication of which variables` uncertainties are most likely to affect process operating conditions. The stream exiting the reactor consists of alcohols, esters and water. The separation block consists of a network of distillation columns which separate the various alcohols and water. The choice and order of separation, operating conditions, degree of separation and amount to be bypassed are the random variables to be optimized by simulated annealing. The value of the above variables controls the mix of the alcohol streams to be used as gasoline additives exiting the network of distillation column. The total profitability is the price obtained by selling the various blended products after accounting for the cost of production of various alcohols.

Not Available

1994-01-01T23:59:59.000Z

242

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

DOE Green Energy (OSTI)

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

243

Catalysis for Mixed Alcohol Synthesis from Biomass Derived Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-08-292  

SciTech Connect

The Dow Chemical Company (Dow) developed and tested catalysts for production of mixed alcohols from synthesis gas (syngas), under research and development (R&D) projects that were discontinued a number of years ago. Dow possesses detailed laboratory notebooks, catalyst samples, and technical expertise related to this past work. The National Renewable Energy Laboratory (NREL) is conducting R&D in support of the United States Department of Energy (DOE) to develop methods for economically producing ethanol from gasified biomass. NREL is currently conducting biomass gasification research at an existing 1/2 ton/day thermochemical test platform. Both Dow and NREL believe that the ability to economically produce ethanol from biomass-derived syngas can be enhanced through collaborative testing, refinement, and development of Dow's mixed-alcohol catalysts at NREL's and/or Dow's bench- and pilot-scale facilities. Dow and NREL further agree that collaboration on improvements in catalysts as well as gasifier operating conditions (e.g., time, temperature, upstream gas treatment) will be necessary to achieve technical and economic goals for production of ethanol and other alcohols.

Hensley, J.

2013-04-01T23:59:59.000Z

244

Development of alcohol-based synthetic transportation fuels from coal-derived synthesis gases. First quarterly progress report, September 14-December 31, 1979  

DOE Green Energy (OSTI)

Chem Systems is carrying out an experimental program for the conversion of coal-derived synthesis gases to a mixture of C/sub 1/-C/sub 4/ alcohols. The objectives of this contract are to: (1) develop a catalyst and reactor system for producing a mixture of C/sub 1/-C/sub 4/ alcohols, which we call Alkanol fuel, to be used as a synthetic transportation fuel and (2) assess the technical and economic feasibility of scaling the process concept to a commercial-scale application. Some of the accomplishments made this quarter were: (1) a small (75cc) fixed-bed, plug-flow, vapor phase reaction system was set up and operated utilizing catalyst bed dilution with inert media to help limit the large exotherm associated with the synthesis gas conversion reactions; (2) a total of fifteen (15) catalysts containing varying amounts of Cu, Co, Zn, Cr and K were prepared and seven of these catalysts were tested; (3) we have identified at least one promising catalyst composition which has resulted in a 30% conversion of carbon monoxide per pass (synthesis gas had a 3.5 H/sub 2//CO ratio) with a carbon selectivity to alcohols of about 80%.

None

1980-04-08T23:59:59.000Z

245

ELECTRONIC SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATION STATES (III) TO (VI) IN ANHYDROUS HYDROGEN FLUORIDE  

E-Print Network (OSTI)

SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATIONSOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATIONfluoride (AHF) of uranium and neptunium in oxidation

Baluka, M.

2013-01-01T23:59:59.000Z

246

Experimental Pathology Laboratories, Inc. Ethyl-Tertiary-Butyl Ether  

E-Print Network (OSTI)

a plantation about 15-year-old in the Les Cedres area, near Montreal (45820H N, 73854H W). Trees in open

Bandettini, Peter A.

247

Alcohol processing speed  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Valley Jr. Academy Central Valley Jr. Academy Location: N/A Country: N/A Date: N/A Question: Our class has been studying about big cats. We studied cats' eyes. We learned why cats' eyes seem to glow in the dark. The back of each cat's eyes has mirror-like cells that reflect light. We used a coffee can and some construction paper to make a model of a cat's eye. We made the pupil oval shaped like a cat's eye. We shone a flashlight in the pupil and we saw the reflection. A book that we read said that nocturnal hungers mostly have long, oval-shaped pupils and daytime hunters have round pupils. We w want to know what difference that makes to an animal in being able to see.j Why do daytime hunters have round pupils and nocturnal hunters have oval shaped pupils. Do you know why?

248

Oil droplet in alcohol  

E-Print Network (OSTI)

The elegant patterns formed by fluid droplets falling through a dissimilar liquid were first studied over a century ago.1 The emerging patterns are driven by hydrodynamic instabilities set up by velocity and density gradients ...

La Foy, Roderick R.

249

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 13, October 1--December 31, 1994  

DOE Green Energy (OSTI)

At WVU, Mo{sub 2}S{sub 3} was produced from gas-phase reactions at 1,100 C. The gas-phase reactor was modified to increase product yields and to decrease particle size. Four Chevrel phases were synthesized for catalytic evaluation. In addition, four supported alkali-modified MoS{sub 2} materials were prepared from a single-source precursor, K{sub 2}Mo{sub 3}S{sub 13}. Screening runs have been carried out on some of these materials and others prepared earlier. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Significant progress has been made on the Monte Carlo uncertainty analysis. Frequency distributions have been determined for all of the equipment blocks for the Texaco gasifier cases. For these cases, there is a 10% chance that the actual installed capital cost could exceed the estimated installed capital cost by $40 million dollars. This work will continue with inclusion of variable costs and prediction of the uncertainties in the return on investment. Modifications to the simulated annealing optimization program have been underway in order to increase the level of certainty that the final result is near the global optimum. Alternative design cases have been examined in efforts to enhance the economics of the production of high alcohols. One such process may be the generation of electric power using combustion turbines fueled by synthesis gas.

NONE

1995-01-01T23:59:59.000Z

250

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

DOE Green Energy (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburg, Corinne

2009-05-01T23:59:59.000Z

251

Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway. PLoS One 5: e8757  

E-Print Network (OSTI)

Objectives: Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods: ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Results: Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O2 N2. Myocardium from ethanoltreated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-a, Fas receptor, Fas L and cytosolic AIF. Conclusions: Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression

Rui Guo; Jun Ren

2010-01-01T23:59:59.000Z

252

Liver Hypertrophy After Percutaneous Portal Vein Embolization: Comparison of N-Butyl-2-Cyanocrylate Versus Sodium Acrylate-Vinyl Alcohol Copolymer Particles in a Swine Model  

Science Conference Proceedings (OSTI)

Purpose: Percutaneous portal vein embolization (PPVE) induces hypertrophy of the future liver remnant before hepatic resection. The ideal embolic material has not yet been determined. We compared N-butyl-2-cyanocrylate (NBCA) with sodium acrylate-vinyl alcohol copolymer particles using a swine model. Materials and Methods: Twelve pigs underwent PPVE. Six pigs (group A) were embolized with NBCA, and 6 pigs (group B) were embolized with sodium acrylate-vinyl alcohol copolymer particles. Computed tomographic volumetry of the embolized lobe (EL) and the nonembolized lobe (NEL), along with liver function tests, was performed before and at 14 and 28 days after embolization. Tissue samples from both lobes were taken 14 and 28 days after PPVE. Results: NEL-volume and NEL-ratio increases were significantly higher in group A at 14 and 28 days after PPVE (78 and 52% and 91 and 66%, respectively) than in group B (32 and 12% and 28 and 10%, respectively) (p < 0.05). Percent change of the EL-volume was significantly higher for group A at 28 days after PPVE. No statistically significant difference was found between the groups regarding hepatocyte proliferation on the NEL and apoptosis on the EL at both time intervals. Conclusion: PPVE using NBCA is more efficient and causes more NEL hypertrophy than microspheres.

Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece); Theocharis, Stamatis, E-mail: theocharis@ath.forthnet.gr [National and Kapodistrian University of Athens, Department of Forensic Medicine and Toxicology, Medical School (Greece); Ptohis, Nikolaos, E-mail: nikptohis@yahoo.gr; Alexopoulou, Efthimia, E-mail: ealex64@hotmail.com [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece); Mantziaras, George, E-mail: gmantziaras@yahoo.com [Academy of Athens, Biomedical Research Foundation (Greece); Kelekis, Nikolaos L., E-mail: kelnik@med.uoa.gr; Brountzos, Elias N., E-mail: ebrountz@med.uoa.gr [National and Kapodistrian University of Athens, 2nd Department of Radiology, Medical School, General University Hospital Attikon (Greece)

2011-10-15T23:59:59.000Z

253

Adsorption of organic molecules at the mercury-solution interface: effect of anion specific adsorption on double layer properties. [Benzyl alcohol  

Science Conference Proceedings (OSTI)

Adsorption of iso-pentanol, pentanoic acid, and benzyl alcohol at the mercury-solution interface was studied in HC1O/sub 4/, H/sub 2/SO/sub 4/, NaNO/sub 3/, and NaF electrolytes. The Frumkin isotherm equation Ba = (theta/(1-theta))exp(2..cap alpha..theta) together with the implied charge vs. surface excess relation: q = (1-theta)q/sub w/ + thetaQ were used to analyze the experimental data. Linear charge vs surface excess plots were obtained for the aliphatic compounds over the entire potential region studied; for benzyl alcohol, plots were linear only at anodic potentials. The slopes of these lines agreed with those predicted by the above equation, with Q = C/sub org/(V-V/sub n/), for cathodic potentials. At potentials anodic to the electrocapillary maximum, deviations between experimental and theoretical slopes appeared. In the model proposed, the double layer consists of two parts. The layer closest to the surface is restricted to water molecules and specifically adsorbed ions. The second layer contains organic molecules exclusively; any charge necessary to balance the surface charge is considered to be in a monolayer adjacent to the organic layer. From the slope of the charge vs surface excess plots, it is possible to calculate the charge on the covered portion of the surface and then calculate the amount of specific adsorption. The relative amounts of specific adsorption are in agreement with known strengths of adsorption of the anions of the electrolyte. Capacity curves were also calculated and were in good agreement with experimental curves.

Buckfelder, J.J. III

1980-08-01T23:59:59.000Z

254

Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols  

DOE Green Energy (OSTI)

The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.

Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

1993-03-01T23:59:59.000Z

255

Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation  

Science Conference Proceedings (OSTI)

The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C?N/C?H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-iPr,Me2}){sub 2}}Zr(NMe{sub 2}){sub 2} ({S-2}Zr(NMe{sub 2}){sub 2}) displays highest activity and enantioselectivity. Interestingly, {S-2}Zr(NMe{sub 2}){sub 2} also desymmetrizes olefin moieties of achiral non-conjugated aminodienes and aminodiynes during cyclization. The cyclization of aminodienes catalyzed by {S-2}Zr(NMe{sub 2}){sub 2} affords diastereomeric mixture of cis and trans cylic amines with high diasteromeric ratios and excellent enantiomeric excesses. Similarly, the desymmetrization of alkyne moieties in {S-2}Zr(NMe{sub 2}){sub 2}-catalyzed cyclization of aminodiynes provides corresponding cyclic imines bearing quaternary stereocenters with enantiomeric excesses up to 93%. These stereoselective desymmetrization reactions are significantly affected by concentration of the substrate, temperature, and the presence of a noncyclizable primary amine. In addition, both the diastereomeric ratios and enantiomeric excesses of the products are markedly enhanced by N-deuteration of the substrates. Notably, the cationic zirconium-monoamide complex [{S-2}Zr(NMe{sub 2})][B(C{sub 6}F{sub 5}){sub 4}] obtained from neutral {S-2}Zr(NMe{sub 2}){sub 2} cyclizes primary aminopentenes providing pyrrolidines with S-configuration; whereas {S-2}Zr(NMe{sub 2}){sub 2} provides R-configured pyrrolidines. The yttrium complex {S-2}YCH{sub 2}SiMe{sub 3} also affords S-configured pyrrolidines by cyclization of aminopentenes, however the enantiomeric excesses of products are low. An alternative optically active yttrium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-tBu}){sub 2}}YCH{sub 2}SiMe{sub 3} ({S-3}YCH{sub 2}SiMe{sub 3}) is synthesized, which displays highly enantioselective in the cyclization of aminoalkenes at room temperature affording S-configured cyclic amines with enantiomeric excesses up to 96%. A noninsertive mechanism involving a six-membered transition state by a concerted C?N bond formation and N?H bond cleavage is proposed for {S-3}YCH{sub 2}SiMe{sub 3} system based on the kinetic, spectroscopic, and stereochemical features. In the end, a series of bis- and tris(oxazolinyl)borato iridium and rhodium complexes are synthesized with bis(oxazolinyl)phenylborane [PhB(Ox{sup Me2}){sub 2}]{sub n}, tris(oxazolinyl)borane [B(Ox{sup Me2}){sub 3}]n, and tris(4,4-dimethyl-2-oxazolinyl)phenylborate [To{sup M}]{sup ?}. All these new an

Manna, Kuntal [Ames Laboratory

2012-12-17T23:59:59.000Z

256

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 15, April 1, 1995--June 30, 1995  

DOE Green Energy (OSTI)

In Task 1, during this reporting period, the plug-flow reactor used for sulfided systems was converted to a Berty-type reactor. Subsequent to the conversion, we stopped screening sulfide catalysts. Prior to the conversion, six sulfide catalysts were prepared and evaluated: MoS{sub 2}, K{sub 0.7}MoS{sub 2}, Rb{sub 0.7}MoS{sub 2}, Cs{sub 0.7}MoS{sub 2}, Fe{sub 1-x}S/SiO{sub 2} and K{sub 0.8}Fe{sub 1-x}S/SiO{sub 2}. These catalysts were all produced by vapor-phase reactions, followed by alkali addition using incipient wetness techniques. The alkali/molybdenum catalysts all satisfied the project requirements for product selectivity and activity. The iron sulfides were poor catalysts, with conversion rates less than 1% and product distributions strongly favoring hydrocarbons. Materials produced subsequent to the conversion were all transition-metal nitrides or carbides. We tested a commercial Zn/Cr catalyst support, both bare and impregnated with potassium and cesium at various loadings. None of these catalysts looks promising for the production of higher alcohols. We also manufactured two new Zn/Cr supports which are available for testing now.

NONE

1995-07-01T23:59:59.000Z

257

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 20, July 1--September 30, 1996  

DOE Green Energy (OSTI)

During this time period, at WVU, the authors have obtained models for the kinetics of the HAS (higher alcohol synthesis) reaction over the Co-K-MoS{sub 2}/C catalyst. The Rotoberty reactor was then replaced in the reactor system by a plug-flow tubular reactor. Accordingly, the authors re-started the investigations on sulfide catalysts. The authors encountered and solved the leak problem from the sampling valve for the non-sulfided reactor system. They also modified the system to eliminate the condensation problem. Accordingly, they are continuing their kinetic studies on the reduced Mo-Ni-K/C catalysts. They have set up an apparatus for temperature-programmed reduction (TPR) studies, and have obtained some interesting results on TPR characterizations. At UCC, the complete characterization of selected catalysts has been started. The authors sent nine selected types of ZnO, Zn/CrO and Zn/Cr/MnO catalysts and supports for BET surface area, SEM, XRD and ICP. They also sent fresh and spent samples of the Engelhard Zn/CrO catalyst impregnated with 3 wt% potassium for ISS and XPS testing. In Task 2, work on the design and optimization portion of this task, as well as on the fuel testing, is completed. All funds have been expended and there are no personnel working on this project.

NONE

1996-10-01T23:59:59.000Z

258

Composition and method for corrosion inhibition utilizing an epoxy resin, an amine curing agent, and alcohol and optionally a hydrocarbon diluent  

SciTech Connect

This patent describes a method for treating metal surfaces of drilling equipment in a well for the recovery of natural fluids from a subterranean reservoir. It comprises an epoxy resin having more than one vicinal epoxide group per molecule; an N-tallow-1,3 diaminopropane curing agent for the epoxy resin, the curing agent and epoxy being present in an equivalent ratio of from about 1.5:1 to about 5:1; a hydrocarbon diluent present in an amount to maintain the composition in an essentially fluid state; and an alcohol selected from the group consisting of ethanol, 1-propanol, 2-proponal, n-butanol, n-pentanol, n-hexanol, n-heptanol, and combinations of any two or more thereof, present in an amount of about 10 to about 60 weight percent, based on the weight of the composition, into the well and allowing the composition to contact the metal surfaces for a time sufficient to form a corrosion-inhibiting film thereon.

Wu, Y.

1992-01-07T23:59:59.000Z

259

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 17, September 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

During this reporting period, there were three major thrusts in the WVU portion. First, we started a preliminary investigation on the use of a membrane reactor for HAS. Accordingly, the plug-flow reactor which had been isolated from sulfides was substituted by a membrane reactor. The tubular membrane was first characterized in terms of its permeation properties, i.e., the fluxes, permeances and selectivities of the components. After that, a BASF methanol-synthesis catalyst was tested under different conditions on the membrane reactor. The results will be compared with those from a non-permeable stainless steel tubular reactor under the same conditions. Second, we started a detailed study of one of the catalysts tested during the screening runs. Accordingly, a carbon-supported potassium-doped molybdenum-cobalt catalyst was selected to be run in the Rotoberty reactor. Finally, we have started detailed analyses of reaction products from some earlier screening runs in which non-sulfide molybdenum-based catalysts were employed and much more complicated product distributions were generally observed. These products could not hitherto be analyzed using the gas chromatograph which was then available. A Varian gas chromatograph/mass spectrometer (GC/MS) is being used to characterize these liquid products. At UCC, we completed a screening of an Engelhard support impregnated with copper and cesium. We have met or exceeded three of four catalyst development targets. Oxygenate selectivity is our main hurdle. Further, we tested the effect of replacing stainless-steel reactor preheater tubing and fittings with titanium ones. We had hoped to reduce the yield of hydrocarbons which may have been produced at high temperatures due to Fischer-Tropsch catalysis with the iron and nickel in the preheater tube walls. Results showed that total hydrocarbon space time yield was actually increased with the titanium preheater, while total alcohol space time yield was not significantly affected.

NONE

1996-01-01T23:59:59.000Z

260

CAMPUS SAFETY, DRUGS AND ALCOHOL  

E-Print Network (OSTI)

and may do so on a confidential basis. The UWPD monitors and records, on an annual basis, criminal also conducts petty cash assessments and physical security surveys. You can register your #12;3 bicycle Facilities" and WAC 478­136 www.washington.edu/provost/specialprograms/uuf.html WEAPONS The possession or use

Kaminsky, Werner

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

METHOD OF DISSOLVING REFRACTORY ALLOYS  

DOE Patents (OSTI)

This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

Helton, D.M.; Savolainen, J.K.

1963-04-23T23:59:59.000Z

262

ORNL/TM-2000/191 ULTRA-CLEAN DIESEL FUEL  

E-Print Network (OSTI)

Coke 2.8 Electricity 39.0 Charcoal 1.8 Ethyl Alcohol 3.1 Petroleum Derivatives 35.2 Other Secondaries 0 to respond to the needs with reasonable costs and environmental impact. Among the options for the expansion will be the least-cost solution for this expansion and the net change in CO2 emissions? The answer

263

UNITED STATES Calendar Year 2004  

E-Print Network (OSTI)

Coke 2.8 Electricity 39.0 Charcoal 1.8 Ethyl Alcohol 3.1 Petroleum Derivatives 35.2 Other Secondaries 0 to respond to the needs with reasonable costs and environmental impact. Among the options for the expansion will be the least-cost solution for this expansion and the net change in CO2 emissions? The answer

US Army Corps of Engineers

264

WAYNE STATE UNIVERSITY Department of Industrial and Manufacturing Engineering  

E-Print Network (OSTI)

's product requirements are met by blending feedstocks on hand at midnight. The volumes vary daily, depending, an NLP, an ILP, or a MILP, and is it single or multi-objective? Explain. Question 2 ­ LP Case Analysis ­ will be shipped that day. Both products are blended from 90-octane unleaded gasoline. Ethyl alcohol, the only

Chinnam, Ratna Babu

265

Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991  

DOE Green Energy (OSTI)

The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.

Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

1993-03-01T23:59:59.000Z

266

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

267

Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate  

E-Print Network (OSTI)

Bourne, MA, USA). Carbon dioxide concentration was measuredOrangeburg, NY, USA). Carbon dioxide and ?ow data wereReddy et al. 2009). Carbon dioxide evolution rates (CER)

Singer, S.W.

2012-01-01T23:59:59.000Z

268

A theoretical analysis of the reaction between ethyl and molecular oxygen  

SciTech Connect

Using a combination of electronic-structure theory, variational transition-state theory, and solutions to the time-dependent master equation, the authors have studied the kinetics of the title reaction theoretically over wide ranges of temperature and pressure. The agreement between theory and experiment is quite good. By comparing the theoretical and experimental results describing the kinetic behavior, they have been able to deduce a value for the C{sub 2}H{sub 5}-O{sub 2} bond energy of {approximately}34 kcal/mole and a value for the exit-channel transition-state energy of {minus}4.3 kcal/mole (measured from reactants). These numbers compare favorably with the electronic-structure theory predictions of 33.9 kcal/mole and {minus}3.0 kcal/mole, respectively. The master-equation solutions show three distinct temperature regimes for the reaction, discussed extensively in the paper. Above T {approx} 700 K, the reaction can be written as an elementary step, C{sub 2}H{sub 5} + O{sub 2} {leftrightarrow} C{sub 2}H{sub 4} + HO{sub 2}, with the rate coefficient, k(T) = 3.19 x 10{sup {minus}17} T{sup 1.02} exp(2035/RT) cm{sup 3}/molec.-sec., independent of pressure even though the intermediate collision complex may suffer a large number of collisions.

James A. Miller; Stephen J. Klippenstein; Stuart H. Robertson

2000-12-13T23:59:59.000Z

269

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

270

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Production Oxygenate Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Captive Refinery Oxygenate Plants Oxygenate production facilities located within or adjacent to a refinery complex. Fuel Ethanol An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in Oxygenates definition. Gasohol A blend of finished motor gasoline containing alcohol (generally ethanol but sometimes methanol) at a concentration of 10 percent or less by volume. Data on gasohol that has at least 2.7 percent oxygen, by weight, and is intended for sale inside carbon monoxide nonattainment areas are included in data on oxygenated gasoline. Merchant Oxygenate Plants Oxygenate production facilities that are not associated with a petroleum refinery. Production from these facilities is sold under contract or on the spot market to refiners or other gasoline blenders.

271

APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil and Regulated Domestic Soil Arrival of New Samples: Unpack shipping containers. Treat any ice/melted water immediately. Decontaminate any "blue ice" packets with 70% ethyl alcohol. Collect any loose soil from container and heat-treat immediately. Immediately decontaminate shipping containers. Heat-treat wooden, metal, or cardboard shipping containers (using lowest heat). Treat plastic containers and coolers with 70% ethyl alcohol. Storage of Samples: Store dry samples in the locked storage cabinet in Room 431Z021 until they can be delivered to the appropriate beamline for analysis. Label containers with origin and arrival date. Log samples into the APS Soil Inventory book maintained in 431Z021.

272

Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B  

DOE Green Energy (OSTI)

Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from laboratory bioreactors treating MTBE contaminated water and applied to environmental samples collected throughout the East Bay area of California. Results from the SPME-HS/GC/MS method were directly comparable to the EPA Method 5030/8260B. This method provides an simple, inexpensive, accurate, and sensitive alternative to EPA Method 5030/8260B for the analysis of MTBE and TBA in water samples.

Oh, Keun-Chan; Stringfellow, William T.

2003-10-02T23:59:59.000Z

273

Alcohol fuels bibliography, 1901-March 1980  

DOE Green Energy (OSTI)

This annotated bibliography is subdivided by subjects, as follows: general; feedstocks-general; feedstocks-sugar; feedstocks-starch; feedstocks-cellulose crops and residues; production; coproducts; economics; use as vehicle fuel; government policies; and environmental effects and safety. (MHR)

Not Available

1981-04-01T23:59:59.000Z

274

Catalysts for Syngas-Derived Alcohol Synthesis  

  This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain ...

275

The Effect of Polyvinyl Alcohol (PVA)  

Science Conference Proceedings (OSTI)

Biomechanics Studies at the Advanced Photon Source Using High-Energy X- ... Reducing Bacteria Biofilm Corrosion Behavior of High Strength Steel (API-5L X80) ... LASER Powder Deposition of Titanium - Tantalum Alloys Surfaces for Use in ...

276

Limonene and tetrahydrofurfurly alcohol cleaning agent ...  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; ... NJ) Application Number: 08/ 577,723: Filed: ...

277

Sweet sorghum processing for alcohol production  

Science Conference Proceedings (OSTI)

Several processing techniques for producing ethanol from sweet sorghum were investigated. Fermentating chopped stalks yielded more ethanol than shredded sorghum or juice. Leaf removal prior to fermentation resulted in higher yields per unit feedstock. Removal of solids after fermentation yielded slightly more ethanol than solids removal before fermentation.

Schmulevich, I.; Coble, C.G.; Egg, R.P.

1983-12-01T23:59:59.000Z

278

Faculty & Staff Alcohol and Other Drugs Handbook  

E-Print Network (OSTI)

.2 None None Marijuana 25.0 6.7 3.1 PCP None None None Rohypnol None None None Tobacco 24.0 5.4 2.1 #12 ·Tranquilizers: Barbiturates ·GHB: Gammahydroxybutyrate ·Ruffies: Rohypnol Look for: Poor concentration, fatigue buying liquor? 12. Do you feel a sense of power when you drink? 13. Have you lost friends since you

Sze, Lawrence

279

DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME  

DOE Patents (OSTI)

A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)

Gilbert, F.C.

1962-03-13T23:59:59.000Z

280

Simplified distillation column controls  

SciTech Connect

A simple, energy efficient method of controlling single or double distillation columns for the production of ethyl alcohol is described. The control system is based on a material balance scheme centered around a thermostat actuated control valve to regulate reflux rate and product purity. Column bottom's levels are automatically regulated by vented suction lines on the pump inlets. Methods of minimizing control input variations are used including column insulation, stillage-to-beer heat exchanger, and a steam pressure regulator.

Badger, P.; Pile, R.; Lightsey, G.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analysis of Moisture and CO(2) Uptake in Anhydrous CdCl(2) Powders Used for Vapor CdCl(2) Treatment of CdS/CdTe PV Devices  

DOE Green Energy (OSTI)

Water and CO(2) uptake in CdCl(2) powder precursors was investigated using thermogravimetric analysis/Fourier transform infrared spectroscopy (TGA/FTIR). Exposure of powders under ambient conditions shows that a steady-state hydration level near 9% (by weight) is achieved after brief exposure to room air.

Mazur, T.; Gessert, T.; Martins, G.; Curtis, C.

2000-01-01T23:59:59.000Z

282

Peripheral benzodiazepine receptor protein expression in cells treated with alcohol and cytokines; a study on alcoholism  

E-Print Network (OSTI)

then removed from the cooling tower and T-spacers from thethe gel sandwich and the cooling tower were then filled withwas placed over the cooling tower and reservoir, the wires

Niu, Mingmei; Syapin, Peter

2012-01-01T23:59:59.000Z

283

AOCS Official Method Da 8-48  

Science Conference Proceedings (OSTI)

Total Anhydrous Soap and Combined Alkali AOCS Official Method Da 8-48 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the total anhydrous

284

Method to Produce Highly Digestible, Pretreated ...  

Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, ...

285

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

81 Contribution to variance for corn ethanol, including80 Contribution to variance for corn ethanol . . . . . . .anhydrous corn ethanol . . . . . . . . . . . . . . 63 Range

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

286

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... The samples included anhydrous and hydrated bioethanol and two biodiesels from different feedstocks, soy and animal fat. ...

2012-02-10T23:59:59.000Z

287

Publications Portal  

Science Conference Proceedings (OSTI)

... temperature at ambient pressure. The samples included anhydrous and hydrated bioethanol and two biodiese ... http://www.nist ...

2012-09-17T23:59:59.000Z

288

Gas chromatographic determination of microamounts of glycols and their esters in aqueous medium using adsorption on activated charcoal  

SciTech Connect

Rapid growth of production of glycols and their derivatives, especially methyl and ethyl esters, and wide use of these substances in various branches of the national economy (1) inevitably necessitate analytical monitoring of their content in waste waters and various water bodies. The authors studied the scope of gas-chromatographic determination of microamounts of glycols and their esters in aqueous media at the sanitary standards level (10/sup -5/%) using activated charcoal for their adsorption concentration from aqueous solutions, desorption from the charcoal by ethanol, and evaporationconcentration of the alcoholic solutions. The quantitative concentration characteristics were studied with reference to ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethyleneglycol, tripropylene glycol, tetraethylene glycol, ethylcellosolve, ethyl carbitol, and monoethyl ester of triethylene glycol.

Begunov, G.A.; Titovskaya, V.N.; Galenko, A.V.

1987-11-10T23:59:59.000Z

289

xml version="1.0" encoding="UTF-8"?>

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a
real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

gas, coal, or biomass • Enhances the potential use of oxygenates as neat fuels or fuel additives • Develops a catalyst with high selectivity for ...

302

Electrocatalysts for Alcohol Oxidation in Fuel Cells - Energy ...  

Platinum is an excellent catalyst and electrocatalyst. It is also expensive and vulnerable to poisoning by carbon monoxide in the reaction ...

303

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

DOE Green Energy (OSTI)

Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector.

Ms. Xiaolei Sun; Professor George W. Roberts

2000-06-21T23:59:59.000Z

304

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

SciTech Connect

During this reporting period, a ''zinc chromite'' catalyst promoted with 6 wt.% cesium (Cs) was evaluated at the following conditions: Temperature--375 C; Total Pressure--6.8 MPa (1000 psig); Gas Hourly Space Velocity (GHSV) - 5000 standard liters/kg(cat)-hr, and; H{sub 2}/CO feed ratio--1.0 mole/mole. Decahydronaphthalene (DHN) was used as the slurry liquid. The experiment lasted for eight days of continuous operation. Although the experimental data once again did not exhibit the desired degree of consistency, the data did show that methanol was the primary reaction product. The slurry liquid did not decompose or alkylate to a measurable extent during the continuous 8-day experiment. There was a relatively significant loss of catalyst surface area during the experiment. Gas chromatography/mass spectrometry (GC/MS) analysis of various fractions of ''spent'' THQ was carried out. The fractions were prepared by silica gel liquid chromatography (LC). Chemical formuli and probable structures for each major compound were obtained. However, a higher degree of purification will be necessary to allow nuclear magnetic resonance (NMR) analysis to be used for definitive compound identification. A new Maxpro gas booster (DLE 15-75) was purchased because the existing Haskel gas booster once again developed a severe leak of carbon monoxide and hydrogen, and was judged to be unworthy of repair.

Ms. Xiaolei Sun; Professor George W. Roberts

2000-08-29T23:59:59.000Z

305

Stocks of Motor Gasoline RBOB with Alcohol Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

306

Organization of Participation in the Meetings of Alcoholics Anonymous  

E-Print Network (OSTI)

of meetings. Pragmatics, I, Makela, Klaus et al. (1996).about two million in in 1990 (Makela is The meetings are therelated international study (Makela et al. , 1996, pp. 261-

Arminen, Ilkka

1998-01-01T23:59:59.000Z

307

Cattail-to-alcohol project. Final technical report  

DOE Green Energy (OSTI)

Harvesting, grinding, and fermentation of cattails and/or their rhizomes are described. The use of antibiotics to prevent massive contamination of microorganisms and cessation of fermentation is discussed.

None

1982-01-01T23:59:59.000Z

308

UN Alcohol Energy Data: Consumption by Other Consumers The Energy  

Open Energy Info (EERE)

Other Consumers The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

309

UN Alcohol Energy Data: Consumption by other industries and constructi...  

Open Energy Info (EERE)

other industries and construction The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

310

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

311

Alcohol as a fuel for farm and construction equipment  

DOE Green Energy (OSTI)

Work in three areas dealing with the utilization of ethanol as fuel for farm and construction diesels is summarized. The first part is a review of what is known about the retrofitting of diesels for use of ethanol and the combustion problems involved. The second part is a discussion of the work that has been done under the contract on the performance of a single-cylinder, open-chamber diesel using solutions and emulsions of diesel fuel with ethanol. Data taken include performance, emissions and cylinder pressure-time for diesel fuel with zero to forty percent ethanol by volume. Analysis of the data includes calculation of heat release rates using a single zone model. The third part is a discussion of work done retrofitting a multicylinder turbocharged farm tractor diesel to use ethanol by fumigation. Three methods of ethanol introduction are discussed; spraying ethanol upstream and downstream of the compressor and prevaporization of the ethanol. Data on performance and emissions are given for the last two methods. A three zone heat release model is described and results from the model are given. A correlation of the ignition delay using prevaporized ethanol fumigation data is also given. Comparisons are made between fumigation in DI and IDI engines.

Borman, G L; Foster, D E; Meyers, P S; Uyehara, O A

1982-06-01T23:59:59.000Z

312

State of California BOARD OF EQUALIZATION ALCOHOLIC BEVERAGE TAX REGULATIONS  

E-Print Network (OSTI)

All beer consumed on a brewery’s premises shall be accounted for. (a) Except as provided in Subdivision (b), tax shall be paid on all beer consumed by brewery employees, visitors and others in a brewery tavern. Beer manufactured by the brewery for consumption in a brewery tavern, and which is placed in a storage tank designed for this purpose, shall be subject to tax at the time it is place in the storage tank. For purposes of this Regulation, a “tavern ” means a federally approved portion of the brewery premises where beer is sold to consumers. (b) Beer consumed by brewery employees, visitors and others is not subject to tax if consumed without charge

Consumption Of; Beer On; Brewery Premises

1998-01-01T23:59:59.000Z

313

from Tucum Oil via an Alkaline Route  

E-Print Network (OSTI)

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40 ? Cfor 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100 ? C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit. 1.

Characterization Of Methylic; Ethylic Biodiesels; Marcelo Firmino De Oliveira; Andressa Tironi Vieira; Antônio Carlos Ferreira Batista; Hugo De Souza Rodrigues; Nelson Ramos Stradiotto

2011-01-01T23:59:59.000Z

314

Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide Ron-Hsin Chang, Chi-Min Shu and Po-Yin Yeh  

E-Print Network (OSTI)

. Additional requirements for the Qualified Person are set forth in NFPA 70E Article 110.6 (D)(1). A person can and according to the applicable codes (OSHA, NFPA 70E, etc.). DEFINITIONS A Competent Person is an individual and NFPA, has received safety training on the hazards involved with electricity, and by virtue of training

Chen, Shu-Ching

315

PROCESS FOR MAKING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

Rosen, R.

1959-07-14T23:59:59.000Z

316

Handbook 44-11 Specifications, Tolerances, and Other ...  

Science Conference Proceedings (OSTI)

... DOC | PDF; 3.32 Liquefied Petroleum Gas and Anhydrous Ammonia Liquid-Measuring Devices DOC | PDF; 3.33 Hydrocarbon ...

2013-11-06T23:59:59.000Z

317

Handbook 44-14 Specifications, Tolerances, and Other ...  

Science Conference Proceedings (OSTI)

... DOC | PDF; 3.32 Liquefied Petroleum Gas and Anhydrous Ammonia Liquid-Measuring Devices DOC | PDF; 3.33 Hydrocarbon ...

2013-11-06T23:59:59.000Z

318

Journal of Research Volume 70A  

Science Conference Proceedings (OSTI)

... disk ampoule for anhydrous addition of hydrogen fluoride, p. 143 ... Thermodynamics of the ternary system: Water-calcium chloride-magnesium ...

2012-11-06T23:59:59.000Z

319

High-Value Fluorine Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Compounds Baseline plans call for production of anhydrous or aqueous Hydrogen Fluoride (HF) from the DU hexafluoride conversion plant and subsequent recycle of these...

320

Effect of Cooling Rate on Gleeble Hot Ductility of UDIMET Alloy 720 ...  

Science Conference Proceedings (OSTI)

hydrofluoric acid, 30 ml sulfuric acid, 30 grams anhydrous iron chloride, 60 ml acetic acid, 300 ml water) was employed to reveal the ?' precipitates. In order to ...

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

March 2005 Series 1 – Small Volume Provers: Identification ...  

Science Conference Proceedings (OSTI)

... of neoprene rubber, which is used for low pressure crude oil and anhydrous ammonia; nitrile, which is used for refined petroleum products such as ...

2010-12-16T23:59:59.000Z

322

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Input Input Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Fuel Ethanol An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in Oxygenates definition. Gasoline Treated as Blendstock (GTAB) Non-certified Foreign Refinery gasoline classified by an importer as blendstock to be either blended or reclassified with respect to reformulated or conventional gasoline. GTAB was classified on EIA surveys as either reformulated or conventional based on emissions performance and the intended end use in data through the end of December 2009. Designation of GTAB as reformulated or conventional was discontinued beginning with data for January 2010. GTAB was reported as a single product beginning with data for January 2010. GTAB data for January 2010 and later months is presented as conventional motor gasoline blending components whenreported as a subset of motor gasoline blending components.

323

PRODUCTION OF THORIUM FLUORIDE  

DOE Patents (OSTI)

A process is presented for producing anhydrous thorium fluoride comprising the step of contacting a saturated aqueous solution of thorium nitrate with an aqueous solution of hydrofluoric acid having a concentration of about 45 to 50% by weight at a temperature above 70 deg C whereby anhydrous thorium fluoride precipitates.

Zachariasen, W.H.

1959-08-11T23:59:59.000Z

324

Chemical Label Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Label Information Chemical Label Information Chemical Name CAS No. NFPA 704 Label Data Hazard Information Health Fire Reactivity Other acetone 67641 1 3 0 Eye, skin and mucous membrane irritatiion. Central nervous system depression. chloroform 67663 2 0 0 CAR [1] and TERAT [2] Liver and kidney disorders. Eye and skin irritation. Central nervous system depression. Cardiac arrythmia. ethanol 64175 0 3 0 Skin and eye irritation. ethyl alcohol 64175 0 3 0 Skin and eye irritation. hydrofluoric acid 7664393 4 0 0 Acute [3] - Skin contact can lead to bone damage. Skin, eye and mucous membrane irritation. hydrogen peroxide (35 to 52%) 7722841 2 0 1 OX Very irritating to the skin, eye and respiratory tract. hydrogen peroxide (> 52%) 7722841 2 0 3 OX Extremely irritating to the skin, eye and respiratory tract.

325

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

326

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

327

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

328

Material Safety Data Sheet MSDS ID NO.: 0137SPE012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Material Safety Data Sheet Material Safety Data Sheet MSDS ID NO.: 0137SPE012 Revision date: 05/25/2011 1. CHEMICAL PRODUCT AND COMPANY INFORMATION Product name: Speedway E85 Synonym: Speedway ED75/ED85; E-75; E75; E-85; E85; Ethanol/Gasoline Fuel Blend; Fuel Ethanol ED75/ED85 Chemical Family: Gasoline/Ethanol Formula: Mixture Manufacturer: Speedway LLC P.O. Box 1500 Enon, OH 45501 Other information: 419-421-3070 Emergency telephone number: 877-627-5463 2. COMPOSITION/INFORMATION ON INGREDIENTS E85 is a mixture of ethyl alcohol and gasoline that is approved for use in an automobile spark ignition engine. Can contain small amounts of dye and other additives (>0.02%) which are not considered hazardous at the concentrations used. Product information: Name CAS Number

329

Biological production of liquid fuels from biomass  

DOE Green Energy (OSTI)

A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

Not Available

330

Biological production of liquid fuels from biomass. Annual report, September 1, 1978-August 31, 1979  

DOE Green Energy (OSTI)

The production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper were studied. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The process is aimed at achieving total raw material utilization and maximization of high value by-product recovery. Specific goals of the investigation are the demonstration of the process technical feasibility and economic practicality and its optimization for maximum economic yield and efficiency. The construction of a pilot apparatus for solvent delignifying 150g samples of lignocellulosic feeds has been completed. Also, an analysis method for characterizing the delignified product has been selected and tested. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis.

Pye, E.K.; Humphrey, A.E.

1979-01-01T23:59:59.000Z

331

141 PATTERNS OF ALKALINE PHOSPHATASE ACTIVI IN THE NUCLEI OF NORMAL AND MALIGNANT CELLS DURING THE PHASES OF GROWTH AND DIFFERENTIATION  

E-Print Network (OSTI)

LoCALIZATION of alkaline phosphatase in the nuclei of normal and malignant stratified epithelia of mammalian cervix is still an open question (Alamanni, 1956; Foraker and Denham, 1957; Gross and Danziger, 1957). It was decided that problems should be attacked with a quantitative technique where risk of error is negligibly small. In the present investigation, alkaline phosphatase activity associated with nuclear heterochromatin of normal and malignant stratified epithelia of human cervix was quantitatively assessed during the phases of growth and differentiation. MATERIALS AND METHODS Normal tissues were collected from the cervices of 5 non-pregnant women who had no positive evidence of any infection, neoplasia and detectable hormonal disturbances. Cancerous tissues were obtained from the epidermoid carcinoma cervix of 6 women. Tissues were fixed in ice-cold 80 per cent ethyl alcohol up to 24 hours in a frigidaire as described before from this laboratory (De, et al., 1961). They were

P. De; R. Chatterjee

1962-01-01T23:59:59.000Z

332

Alternative Fuels Data Center: Ethanol Sales Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Sales Tax Ethanol Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and

333

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

334

Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp  

SciTech Connect

In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

Nancharaiah, Y.V.; Francis, A.

2011-06-01T23:59:59.000Z

335

Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis  

SciTech Connect

The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

T.A. Semelsberger

2004-10-01T23:59:59.000Z

336

JOURNAL OF BACTERIOLOGY, 0021-9193/01/$04.00 0 DOI: 10.1128/JB.183.16.47184726.2001  

E-Print Network (OSTI)

, catechol, ,2,5,6- dibenz(a)anthracene, ethyl benzene, furan, furfural, hydrogen peroxide, hydroquinone

Sheridan, Jennifer

338

Direct observation of surface ethyl to ethane interconversion upon C2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IR spectroscopy  

E-Print Network (OSTI)

In-Situ Spectroscopy of Catalysts; Weckhuysen, B.M. , Ed. ;Hydrogenation over Pt/Al 2 O 3 Catalyst by Time-Resolved FT-over alumina-supported Pt catalyst were recorded at 25 ms

Wasylenko, Walter; Frei, Heinz

2004-01-01T23:59:59.000Z

339

Nickel-Catalyzed Enantioselective Negishi Cross-Couplings of Racemic Secondary alpha-Bromo Amides with Alkylzinc Reagents: (S)-N-Benzyl-7-cyano-2-ethyl-N-phenylheptanamide  

E-Print Network (OSTI)

Procedure: A. (5-Cyanopentyl)zinc(II) bromide (1). An oven-dried, 200-mL pear-shaped Schlenk flask equipped with a magnetic stirbar (egg shaped, 25.4 × 12.7 mm) and an argon line connected to the standard taper outer joint ...

Lou, Sha

340

Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6-(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6- .sup.18 F!fluoro-1-dopa  

DOE Patents (OSTI)

A process for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb.sub.3 ; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to .ltoreq.7.

Satyamurthy, Nagichettiar (Los Angeles, CA); Barrio, Jorge R. (Agoura Hills, CA); Bishop, Allyson J. (Wahnemuhle, DE); Namavari, Mohammad (Los Angeles, CA); Bida, Gerald T. (Shreveport, LA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6-[{sup 18}F]fluoro-1-dopa  

DOE Patents (OSTI)

A process is revealed for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb{sub 3}; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to {<=}7. 1 fig.

Satyamurthy, N.; Barrio, J.R.; Bishop, A.J.; Namavari, M.; Bida, G.T.

1996-04-23T23:59:59.000Z

342

NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANOPARTICLE MIXED ALCOHOL CATALYSTS  

DOE Green Energy (OSTI)

We have developed and streamlined the experimental systems: (a) Laser-induced solution deposition (LISD) photosynthesis, ball-milling, and chemical synthesis of Fe, Co, and Cu nanoparticle catalysts; (b) Sol-gel method for mesoporous {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, hybrid alumina/silica granular supports; (c) Three sol-gel/oil-drop catalyst preparation methods to incorporate metal nanoparticles into mesoporous 1 mm granular supports; (d) Low-cost GC-TCD system with hydrogen as carrier gas for the determination of wide spectrum of alkanes produced during the F-T reactions; and (e) Gas-flow reactor and microchannel reactor for fast screening of catalysts. The LISD method could produce Co, Cu, and Fe (5 nm) nanoparticles, but in milligram quantities. We could produce nanoparticles in gram quantities using high-energy ball milling and chemical synthesis methods. Ball milling gave wide particle size distribution compared to the chemical synthesis method that gave almost uniform size ({approx}5 nm) particles. Metal nanoparticles Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe were loaded (2-12 wt%) uniformly into {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, or alumina/silica hybrid supports by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, prior to syngas FT reaction studies. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). The effect of solgel supports alumina, silica, and alumina/silica hybrid were examined on catalytic properties. Metal loading efficiencies for pure metal catalysts increased in the order Co, Cu and Fe in agreement with solubility of metal hydroxides. In case of mixed metals, Co and Cu seams to interfere and reduce Fe metal loading when metal nitrate solutions are used. The solubility differences of metal hydroxides would not allow precise control of metal loading. We have overcome this problem by introducing a novel method of nanoparticle metal oxide co-entrapped sol-gel that gave the highest metal loading with precise control and reproducibility, and greater mechanical strength of granules than the metal nitrate solution co-entrapping and wet impregnation methods. Both, slurry-phase-batch and gas-phase-continuous-flow, reactors were used for syngas conversion reactions. Our investigations of Co and Fe thin film deposited micro-reactors showed higher CO/H{sub 2} conversion for Fe compared to Co. The catalytic activity for CO/H{sub 2} conversion was observed in the increasing order for the nanocatalysts Cu, Co, Fe, Co/Fe, Cu/Co and Cu/Fe in alumina sol-gel support, and Co/Fe showed the highest yield for methane. The optimization of CO/H{sub 2} ratio indicated that 1:1 ratio gave more alkanes distribution in F-T process with Co/Fe (6% each) impregnated on alumina. We could estimate the activity of catalysts (involving Co, Fe) during hydrogenation and after catalytic reaction using magnetization studies. In summary our accomplishments are: (1) Novel chemical methods for the synthesis of (5 nm) Fe, Co, Cu nanoparticles with narrow size distribution. (2) Developing a method of metal oxide nanoparticles addition to alumina/silica sol-gel to control metal loading of pure and mixed metal catalysts compositions in high yields. (3) A low-cost GC-TCD system to analyze wide spectrum of alkanes (F-T reaction products). (4) Fe/Co mixed metal alumina/silica mesoporous catalysts with higher FT activity. (5) Characterizing nanoparticle catalysts and supports for detail understanding of FT-process.

Seetala V. Naidu; Upali Siriwardane

2005-05-24T23:59:59.000Z

343

Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling  

DOE Green Energy (OSTI)

This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

Kerr, Kent

2004-12-17T23:59:59.000Z

344

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS  

DOE Green Energy (OSTI)

Langmuir-Hinshelwood-type kinetic schemes were derived for the formation of methanol through butanol and total hydrocarbons over a Co-K-MoS{sub 2}/C catalyst. Reduced Mo-Ni-K/C materials continue to be considered as promising catalysts for HAS. A kinetic study of this catalyst has been started. TPR results on alkali-substituted Mo/C are beginning to be amenable to a systematic quantitative analysis. The characterization studies of transition-metal-oxide catalysts has ended. Consideration of various models for the performance of a packed-bed membrane reactor in the synthesis of methanol indicates that a model involving large (but finite) permeances of CO and MeOH may be optimal. Comparison of the membrane reactor with a packed-bed tubular reactor indicates that the former may be advantageous at low total flow rates.

NONE

1997-01-01T23:59:59.000Z

345

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS  

DOE Green Energy (OSTI)

The kinetic data for a Mo-Ni-K/C catalyst were completed. Kinetic schemes were derived for the formation of methanol and ethanol over this catalyst. TPR results on alkali-substituted Mo/C are beginning to be amenable to a systematic quantitative analysis.

NONE

1997-04-01T23:59:59.000Z

346

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS  

DOE Green Energy (OSTI)

During this time period, we finished the kinetic study on the reduced Mo-Ni-K/C catalyst. Experimental work on this project is essentially over. We are continuing the development of kinetic models for this catalyst. We are also continuing with the quantitative analyses of TPR spectra from K-Mo/C catalysts. We request a meeting with USDOE to consider plans to follow up the current work.

NONE

1997-06-01T23:59:59.000Z

347

Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass  

SciTech Connect

This report evaluates process design and technoeconomic criteria for a direct gasification process for conversion of biomass to ethanol. Follow-up to NREL/TP-510-41168.

Dutta, A.; Phillips, S. D.

2009-07-01T23:59:59.000Z

348

Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass  

Science Conference Proceedings (OSTI)

This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

2007-04-01T23:59:59.000Z

349

Web-based intervention for alcohol use in women of childbearing potential  

E-Print Network (OSTI)

Cashell-Smith, et al. (2004). Web-based screening and brief2007). A controlled trial of web-based feedback for heavyhigh-risk drinking prevention web site for college students.

Howlett, Katia Delrahim

2010-01-01T23:59:59.000Z

350

Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers  

E-Print Network (OSTI)

Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery ...

Wang, Jane

351

Prenatal alcohol exposure pattern and timing and minor structural malformations and growth deficiencies  

E-Print Network (OSTI)

using guided interview techniques to help aid recall. Rulesusing guided interview techniques to help aid recall. Rules

Sawada, Glenda Haruna

2011-01-01T23:59:59.000Z

352

Prenatal alcohol exposure pattern and timing and minor structural malformations and growth deficiencies  

E-Print Network (OSTI)

et al. , 1991) trimester Detroit (Jacobson et al. , 0.4 tobeen examined. A study of Detroit infants (n=480) followedof Tactile Information: Detroit and Cape Town Findings.

Sawada, Glenda Haruna

2011-01-01T23:59:59.000Z

353

Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems  

E-Print Network (OSTI)

B. S. , et al. (2007). Catechol-o- methyltransferase enzymethe dopamine degrading enzyme catechol-O-methyltransferase (

Bava, Sunita; Tapert, Susan F.

2010-01-01T23:59:59.000Z

354

Electrophysiological evidence of enhanced performance monitoring in recently abstinent alcoholic men  

E-Print Network (OSTI)

The neural basis of human error processing: reinforcementNeurophysiological indices of errors in human: is the error

2011-01-01T23:59:59.000Z

355

Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols  

E-Print Network (OSTI)

H. ; Kishimoto, T. ; Fukushima, K. Biomacromolecules 2005, (Kato, T. ; Tsuji, Y. ; Fukushima, K. Biomacromolecules 2005,

Takahashi, Lynelle K.

2011-01-01T23:59:59.000Z

356

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts  

DOE Green Energy (OSTI)

We have investigated a series of Cu/Co catalysts supported on Titanium Dioxide. This study has sought to examine and compare the nature and effect of the supports Chromia and Titania (Cr[sub 2]O[sub 3], and TiO[sub 2]) on the magnetic character of the Cu-Co-Cr and Cu-Co-TiO[sub 2] catalysts. The magnetization results for Cu/Co, Cu/Co/Cr, Cu/Co/TiO[sub 2] system are presented along with the magnetization data for the unsupported Cu/Co catalysts and data for supported catalysts. Pure cobalt metal has a magnetic moment of 161 emu/g. The measured emu values and the corresponding reduction percentages are given for the various catalysts investigated. The vibration sample magnetometer determines S[sub s], the saturation magnetization, emu per gram of the composite sample. The magnetization values reported are emu per gram of cobalt in the composite. As such the data normally reflects the proportion of cobalt metal that is reduced to metallic form. However, if electronic exchanges occur between cobalt and other elements in the system, the magnetic moment itself differs from the assumed value of 161 emu/g Co then the emu value observed will be the resultant due to the electronic charge density modifications in Co as well as reduction to metallic state. Our earlier NMR studies reveal such electronic structural modifications occur for Cobalt in Cu-Co and Co-TiO[sub 2] systems. The magnetization data in column 3 for Cu-Co-TiO[sub 2] systems unambiguously shows such electron exchanges do occur between cobalt and titania.

Murty, A.N.

1992-01-01T23:59:59.000Z

357

INDIVIDUAL DIFFERENCES IN ESCALATION OF TOBACCO USE: IMPULSIVITY AND ALCOHOL USE.  

E-Print Network (OSTI)

??Like adolescents, young adults are at risk of initiating tobacco use and escalating to daily use and tobacco dependence. However, not every young adult who… (more)

Lee, Dustin C

2013-01-01T23:59:59.000Z

358

NON-MEDICAL ADHD PRESCRIPTION STIMULANT USE AND SIMULTANEOUS ALCOHOL CONSUMPTION AMONG UNDERGRADUATE STUDENTS .  

E-Print Network (OSTI)

??The non-medical use of prescription stimulants (NMPS) used to treat Attention Deficit/ Hyperactivity Disorder (ADHD) is common among college students. Research shows that NMPS users… (more)

Egan, Kathleen L.

2011-01-01T23:59:59.000Z

359

Brazilian experience with self-adjusting fuel system for variable alcohol-gasoline blends  

DOE Green Energy (OSTI)

A fuel control system has been developed which allows fuels of various stoichiometries to be used interchangeably without suffering a fuel consumption penalty, allowing a more efficient use of the combustion energy. This Adaptive Lean Limit Control system uses a single, digital sensor and an electronic circuit to detect lean limit engine operation, and feeds back information to the fuel system to maintain the best economy mixture, regardless of the fuel blend being used. The hardware is described, and the results of extensive vehicle testing, using 20% and 50% ethanol-gasoline blends, are included.

Leshner, M.D.; Luengo, C.A.; Calandra, F.

1980-01-01T23:59:59.000Z

360

Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report  

DOE Green Energy (OSTI)

The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

Dombek, B.D.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Prenatal alcohol exposure pattern and timing and minor structural malformations and growth deficiencies  

E-Print Network (OSTI)

al. , 1998). The best-fitting hockey stick functions for theother features, such as “hockey stick” palmar crease, haveexcavatum, camptodactyly, “hockey stick” palmar creases,

Sawada, Glenda Haruna

2011-01-01T23:59:59.000Z

362

Alcohol production with solar distillation. Final report, March 31, 1982-June 30, 1982  

SciTech Connect

The purpose of this project was to determine it an absorber in a solar distillation unit that would provide a more efficient and effective way to produce fuel grade ethanol. Four tests of distilling ethanol were made. Numerous other tests were conducted distiling water, drying an assortment at materials, cooking food, and heating various liquids. The absorber in the solar distillation unit creates much heat on the glazing. The mixture in the solar distillation unit, does not have to reach temperatures that boil water to produce distillate.

Wuestenberg, D.

1982-06-01T23:59:59.000Z

363

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

Science Conference Proceedings (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

364

Controlling inventory by improving demand forecasting within the alcoholic beverage industry : a case study.  

E-Print Network (OSTI)

??This thesis explores how combing statistical demand forecasting methods and causal forecasting methods with judgmental forecasts via a Sales and Operation Planning process can improve… (more)

Deng, Xiaomu

2011-01-01T23:59:59.000Z

365

Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes  

E-Print Network (OSTI)

(HY-2006-I). REFERENCES 1. Surampudi S, Narayanan SR, Vamos E, Frank H, Halpert G, LaConti A, Kosek J

Mather, Patrick T.

366

Enigmatic Gratuitous Induction of the Covalent Flavoprotein Vanillyl-Alcohol Oxidase in Penicillium simplicissimum  

E-Print Network (OSTI)

These include: Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Downloaded from

Flavoprotein Vanillyl-alcohol Oxidase In; Penicillium Simplicissimum; M W Fraaije; M Pikkemaat; W Van Berkel; Marco W. Fraaije; Mariël Pikkemaat

1996-01-01T23:59:59.000Z

367

Syngas, mixed alcohol and diesel synthesis from forest residues via gasification - an economic analysis.  

E-Print Network (OSTI)

??Liquid transportation fuels can be produced by gasification of carbon containing biomass to syngas( a gaseous mixture of CO and H2) with subsequent conversion of… (more)

Koch, David

2008-01-01T23:59:59.000Z

368

UN Alcohol Energy Data: Consumption for Non-Energy Uses The Energy  

Open Energy Info (EERE)

for Non-Energy Uses The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

369

NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS  

DOE Green Energy (OSTI)

We have produced Co, Cu, and Fe nano-particles by Laser-induced solution deposition (LISD) as evidenced by TEM investigations. Sizes of the nano-particles created are in the order of 5 nm. The LISD system could generate nano-particles in quantities only in the order of a milligram. This may be mainly due to the limited photo induced reactions taking place on the surface of the solutions. We have designed experiments to use drop flow technique with LISD for nano-particle deposition on microreactors. Preliminary work has been done on Co and Fe thin film deposited microreactors. We are also investigating the catalytic properties of nano-particles of FeO and CoO prepared by ball milling and dispersed into sol-gel prepared alumina granules. We have continued our investigation of catalytic reactions of Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe on alumina support. The metal oxides were first reduced with hydrogen and used for the conversion of CO/H{sub 2}. The surface area of the catalysts has been determined by nitrogen disorption. They are in the range of 200-300 m{sup 2}/g. Cu, Co, Fe, Co/Fe, Cu/Co and Cu/Fe showed increasing order of catalytic activity for CO/H{sub 2} conversion. We are also studying catalytic conversion rates for CO{sub 2}/H{sub 2} and CO/CO{sub 2}/H{sub 2} mixtures using these catalysts. Our investigations of Co and Fe thin film deposited microreactors showed higher CO/H{sub 2} conversion for Fe compared to Co. We have used vibrating sample magnetometer (VSM) to study the magnetic characteristics of as prepared, reduced, post-reaction catalysts. Comparative study of the ferromagnetic component of these samples gives the reduction efficiency and the changes in metal centers during catalytic reactions. Magnetic studies of post-reaction Co and Fe micro-reactors show that more carbide formation occurs for iron compared to cobalt.

Setala V. Naidu

2003-01-01T23:59:59.000Z

370

NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS  

DOE Green Energy (OSTI)

We have developed effective nanoparticle incorporated heterogeneous F-T catalysts starting with the synthesis of Fe, Co, Cu nanoparticles using Fe(acac){sub 3}, Co(acac){sub 2}, and Cu(acac){sub 2} precursors and incorporating the nanoparticles into alumina sol-gel to yield higher alkanes production. SEM/EDX, XRD, BET, VSM and SQUID experimental techniques were used to characterize the catalysts, and GC/MS were used for catalytic product analysis. The nanoparticle oxide method gave the highest metal loading. In case of mixed metals it seems that Co or Cu interferes and reduces Fe metal loading. The XRD pattern for nanoparticle mixed metal oxides show alloy formation between cobalt and iron, and between copper and iron in sol-gel prepared alumina granules. The alloy formation is also supported by DTA and VMS data. The magnetization studies were used to estimate the catalyst activity in pre- and post-catalysts. A lower limit of {approx}40% for the reduction efficiency was obtained due to hydrogenation at 450 C for 4 hrs. About 85% of the catalyst has become inactive after 25 hrs of catalytic reaction, probably by forming carbides of Fe and Co. The low temperature (300 K to 4.2 K) SQUID magnetometer results indicate a superparamagnetic character of metal nanoparticles with a wide size distribution of < 20 nm nanoparticles. We have developed an efficient and economical procedure for analyzing the F-T products using low cost GC-TCD system with hydrogen as a carrier gas. Two GC columns DC 200/500 and Supelco Carboxen-1000 column were tested for the separation of higher alkanes and the non-condensable gases. The Co/Fe on alumina sol-gel catalyst showed the highest yield for methane among Fe, Co, Cu, Co/Fe, Cu/Co, Fe/Cu. The optimization of CO/H{sub 2} ratio indicated that 1:1 ratio gave more alkanes distribution in F-T process with Co/Fe (6% each) impregnated on alumina mesoporous catalyst.

Seetala V. Naidu; Upali Siriwardane

2005-01-14T23:59:59.000Z

371

A Publication of the U.S. Department of Education's Higher Education Center for Alcohol and  

E-Print Network (OSTI)

, and stereos. A deal too good to be true usually means the item is stolen. It is illegal to buy or sell stolen sexually assaulted. Drugs such as Rohypnol and GHB are used to spike drinks for the purpose of sedating

Devoto, Stephen H.

372

Noble Metal Based Nanomaterials in the Application of Direct Alcohol Fuel Cells.  

E-Print Network (OSTI)

?? Fuel cells are envisaged to be a new generation of power sources which convert chemical energy into electrical energy with, theoretically, both economical and… (more)

Su, Liang

2013-01-01T23:59:59.000Z

373

Maximizing the efficiency of a speed rail for the preparation of alcoholic beverages.  

E-Print Network (OSTI)

??M.S. Typically bartenders will arrange liquor bottles in a bar based on their own preferences. This research project describes an alternative way to arrange the… (more)

Riley, Ashley S.

2010-01-01T23:59:59.000Z

374

Experimental investigation of ice slurry flow pressure drop in horizontal tubes  

SciTech Connect

Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

2009-01-15T23:59:59.000Z

375

Bioechnology of indirect liquefaction. Final report  

DOE Green Energy (OSTI)

The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

1990-05-07T23:59:59.000Z

376

Bioechnology of indirect liquefaction  

DOE Green Energy (OSTI)

The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

1990-05-07T23:59:59.000Z

377

Characterization of Freckles in a High Strength Wrought Nickel ...  

Science Conference Proceedings (OSTI)

dissolved gases, the reduction of oxide inclusions, minimization of detrimental trace .... in alloys having high titanium/aluminum ratios, and it typically precipitates in a .... (anhydrous ferric chloride, nitric, and hydrochloric acids). Additionally ...

378

STATEMENT OF CONSIDERATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a uranium oxide form (U3O, and UC2) and simultaneously produce an anhydrous hydrogen fluoride (AHF) byproduct. The pilot plant system will be designed and operated to provide data...

379

Microsoft PowerPoint - IPRC 2012-Zr behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

99.99+%, anhydrous) - 3.5 wt% Li 2 O (Alfa Aesar, 99.5%) 5 Electrolytic Reduction - Molten Salt Furnace - II (650 C) - Same argon atmosphere glovebox - 10 cm dia. x 11 cm...

380

SEPARATION OF CURIUM AND AMERICIUM  

DOE Patents (OSTI)

Curium and americium are contained in an anhydrous molten salt medium having a low melting point. Curium is preferentially extracted from the molten salt by a hot organic solvent containing preferably less than 10% alkyl phosphate. (AEC)

Fields, P.R.; Isaac, N.M.

1962-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Conversion of Mixed Oxygenates Generated from Synthesis Gas to Fuel Range Hydrocarbon  

SciTech Connect

The growing dependence in the U.S. on foreign crude oil supplies and increased concerns regarding greenhouse gas emission has generated considerable interest in research to develop renewable and environmentally friendly liquid hydrocarbon transportation fuels. One of the strategies for achieving this is to produce intermediate compounds such as alcohols and other simple oxygenates from biomass generated synthesis gas (mixture of carbon monoxide and hydrogen) and further convert them into liquid hydrocarbons. The focus of this research is to investigate the effects of mixed oxygenates intermediate product compositions on the conversion step to produce hydrocarbon liquids. A typical mixed oxygenate stream is expected to contain water (around 50%), alcohols, such as methanol and ethanol (around 35%), and smaller quantities of oxygenates such as acetaldehyde, acetic acid and ethyl acetate. However the ratio and the composition of the mixed oxygenate stream generated from synthesis gas vary significantly depending on the catalyst used and the process conditions. Zeolite catalyzed deoxygenation of methanol accompanied by chain growth is well understood under Methanol-to-Gasoline (MTG) like reaction conditions using an H-ZSM-5 zeolite as the catalyst6-8. Research has also been conducted to a limited extent in the past with higher alcohols, but not with other oxygenates present9-11. Also there has been little experimental investigation into mixtures containing substantial amounts of water. The latter is of particular interest because water separation from the hydrocarbon product would be less energy intensive than first removing it from the oxygenate intermediate stream prior to hydrocarbon synthesis, potentially reducing overall processing costs.

Ramasamy, Karthikeyan K.; Gerber, Mark A.; Lilga, Michael A.; Flake, Matthew D.

2012-08-19T23:59:59.000Z

382

Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix  

Science Conference Proceedings (OSTI)

The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB2000 is a graphitized petroleum coke. The availability of KRB2000 is perhaps in question, so a replacement synthetic graphite may need to be identified. This report presents data on potential replacements for KRB2000.

Trammell, Michael P [ORNL; Pappano, Peter J [ORNL

2011-09-01T23:59:59.000Z

383

ReaxFF User Manual  

Science Conference Proceedings (OSTI)

... Ethyl_radical Iter. ... Example 3.4: fort.58-output file generated from the same MM-run as used for Example 3.3. Ethyl_radical Iter. ...

2009-08-21T23:59:59.000Z

384

Extended Two Dimensional Nanotube and Nanowire Surfaces as Fuel Cell Catalysts  

E-Print Network (OSTI)

nanowire DAFC: Direct alcohol fuel cell DDTC: Didecylamineoxide, alkaline, and direct alcohol fuel cells. Among theseconvenient use of alcohol fuels with a significant sacrifice

Alia, Shaun Michael

2011-01-01T23:59:59.000Z

385

“BEST VALUES” OF CUP-BURNER EXTINGUISHING ...  

Science Conference Proceedings (OSTI)

... diesel no. 2 diethyl ether ethanol ethyl acetate ethylene glycol Exxon Turbo Oil gasoline (unleaded) heptane (commercial ...

2011-11-17T23:59:59.000Z

386

unknown title  

E-Print Network (OSTI)

Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements

Lucie Coniglio; Hayet Bennadji; Pierre Alex; Re Glaude; Olivier Herbinet; Francis Billaud

2013-01-01T23:59:59.000Z

387

7, 1164711683, 2007 VOC ratios as probes  

E-Print Network (OSTI)

chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-5 butane] are used to study the extent

Paris-Sud XI, Université de

388

Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1996  

DOE Green Energy (OSTI)

from earlier runs with ?zinc chromite? catalyst and three different slurry liquids: decahydronaphthalene (Decalin®, DHN), tetrahydronaphthalene (tetralin, THN) and tetrahydroquinoline (THQ); 2) analyzing newly-obtained data from earlier thermal stability tests on DHN and THN, and 3) carrying out a thermal stability test on THQ. Both the activity and selectivity of ?zinc chromite? catalyst depended on the slurry liquid that was used. The catalyst activity for methanol synthesis was in the order: THQ > DHN > THN. Despite the basic nature of THQ, it exhibited the highest dimethyl ether (DME) production rates of the three liquids. Gas chromatography/mass spectroscopy (GC/MS) analyses of samples of THN and DHN were taken at the end of standard thermal stability tests at 375°C. With both liquids, the only measurable compositional change was a minor amount of isomerization. Analysis of a sample of THN after a thermal stability test at 425°C showed a small reduction in molecular weight, and a significant amount of opening of the naphthenic ring. Preliminary data from the tehrmal stability test of THQ showed that this molecule is more stable than DHN, but less stable than THN.

George W. Roberts

1997-02-13T23:59:59.000Z

389

Project management for the reliability fleet testing of alcohol/gasoline blends. Monthly progress report, September 1979  

DOE Green Energy (OSTI)

The report (1) provides a brief review of the project background, objectives, and approach, (2) presents the status of progress through September 30, 1979, and (3) summarizes the expenditure status. A summary of contractual task assignments is provided in Appendix A, and a history of principal reporting activities is provided in Appendix B.

None

1979-10-15T23:59:59.000Z

390

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

391

Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis  

DOE Green Energy (OSTI)

This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

2011-05-01T23:59:59.000Z

392

Screening for adolescent alcohol and drug use in pediatric health-care settings: predictors and implications for practice and policy  

E-Print Network (OSTI)

a major organizational model for private and public healthorganizational policies and state laws about confidential adolescent healthhealth system. The intervention sought to address organizational

Sterling, Stacy; Kline-Simon, Andrea H; Wibbelsman, Charles; Wong, Anna; Weisner, Constance

2012-01-01T23:59:59.000Z

393

Design of a high activity and selectivity alcohol catalyst. Seventh quarterly report, February 7, 1992--May 7, 1992  

DOE Green Energy (OSTI)

In order to explore the secondary dehydration of methanol over {gamma}-Al{sub 2}O{sub 3} support and over bimetallic Rh-Mo/{gamma}- Al{sub 2}O{sub 3}, a new series of K-doped Rh-Mo/{gamma}-Al{sub 2}O{sub 3} catalysts was synthesized. Work on synthesis of bimetallic Rh-Mo clusters is reported.

Foley, H.C.; Mills, G.A.

1992-06-04T23:59:59.000Z

394

Heterogeneous catalytic process for alcohol fuels from syngas. Fifth quarterly technical progress report, January--March, 1993  

DOE Green Energy (OSTI)

Objective is to evaluate heterogeneous catalysts for converting syngas to oxygenates for use as fuel enhancers, and to develop the best total process for converting syngas to liquid fuels. Two tasks are being pursued: Catalyst R and D, and engineering studies. Initial work will be on the isobutanol catalyst system. A microreactor has been prepared for screening heterogeneous catalysts.

Not Available

1993-11-01T23:59:59.000Z

395

Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1997  

DOE Green Energy (OSTI)

A modified analytical system was assembled and calibrated, in preparation for a second run with cesium (Cs)-promoted ?zinc chromite? catalyst. A new column for the on-line gas chromatography (GC) was purchased for the analysis of various light olefin and paraffin isomers. A run was carried out in the continuous stirred autoclave using the Cs-promoted catalyst. Decahydronaphfialene was used as the slurry liquid. Reaction conditions were 375°C, 2000 psig total pressure, 0.5 H&sub2;/CO ratio, and 5000 sL/Kg (cat.)-hr. Analysis of the data from this run is in progress. A manuscript on the thermal stability of potential slurry liquids was submitted to 'Industrial and Engineering Chemistry Research,' and a paper was presented at the 1997 Spring National Meeting of the American Institute of Chemical Engineers, Houston, Texas.

George W. Roberts

1998-12-11T23:59:59.000Z

396

Engineering the Synthesis of Five-Carbon Alcohols from Isopentenyl Diphosphate and Increasing its Production Using an Adaptive Control System  

E-Print Network (OSTI)

normalized to the dry cell weight (dcw) calculated from theAbs 600 (0.41 g dcw/Abs 600 (92)). Assay for L-tyrosine

Chou, Howard

2012-01-01T23:59:59.000Z

397

Mechanical behavior of nanostructured hybrids based on poly(vinyl alcohol)/bioactive glass reinforced with functionalized carbon nanotubes  

Science Conference Proceedings (OSTI)

This study reports the synthesis and characterization of novel tridimensional porous hybrids based on PVA combined with bioactive glass and reinforced by chemically functionalized carbon nanotubes (CNT) for potential use in bone tissue engineering. The ...

H. S. Mansur, M. M. Pereira, H. S. Costa, A. A. P. Mansur

2012-01-01T23:59:59.000Z

398

Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1997  

SciTech Connect

A modified analytical system was assembled and calibrated, in preparation for a second run with cesium (Cs)-promoted ?zinc chromite? catalyst. A new column for the on-line gas chromatography (GC) was purchased for the analysis of various light olefin and paraffin isomers. A run was carried out in the continuous stirred autoclave using the Cs-promoted catalyst. Decahydronaphfialene was used as the slurry liquid. Reaction conditions were 375°C, 2000 psig total pressure, 0.5 H&sub2;/CO ratio, and 5000 sL/Kg (cat.)-hr. Analysis of the data from this run is in progress. A manuscript on the thermal stability of potential slurry liquids was submitted to 'Industrial and Engineering Chemistry Research,' and a paper was presented at the 1997 Spring National Meeting of the American Institute of Chemical Engineers, Houston, Texas.

George W. Roberts

1998-12-11T23:59:59.000Z

399

Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process  

DOE Green Energy (OSTI)

This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

Randy Cortright

2006-06-30T23:59:59.000Z

400

Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in  

E-Print Network (OSTI)

of sugar, starch, and cellulose, but are expected to perform poorly with respect to climate stabilization about crops yields [34] and conversion efficiencies [35], we estimate that these scenarios would potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26: 361­375. 36

Arnold, Frances H.

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Engineering the Synthesis of Five-Carbon Alcohols from Isopentenyl Diphosphate and Increasing its Production Using an Adaptive Control System  

E-Print Network (OSTI)

of microorganisms for biofuel production: from bugs tofor Direct Biofuel Production from Brown Microalgae. Science

Chou, Howard

2012-01-01T23:59:59.000Z

402

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network (OSTI)

Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

403

The influence of air and water when it is used as a fuel the mixtures of gasoline-alcohols  

Science Conference Proceedings (OSTI)

The possible increases of the price of crude oil, the abrupt oil market changes, the finite of reserves, as well as the environmental pollution led to the reevaluation of the importance of the rural and forestall factor as a renewable resources supplier.This ... Keywords: ethanol, gas emissions, methanol

Charalampos Arapatsakos; Marianthi Moschou

2010-02-01T23:59:59.000Z

404

Analysis of sib-pair IBD profiles and genomic context for identification of the relevant molecular signatures for alcoholism  

Science Conference Proceedings (OSTI)

Recent advances in SNPs that allow genome-wide profiling of complex biological phenotypes have offered the golden opportunities to unravel the high-order mechanisms and have also motivated development of the corresponding analysis strategies. Here, we ...

Chuanxing Li; Lei Du; Xia Li; Binsheng Gong; Jie Zhang; Shaoqi Rao

2005-08-01T23:59:59.000Z

405

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network (OSTI)

and the U.S. Department of Energy. Sandia is a multiprogramlaboratory operated by Sandia Corp. , a Lockheed Martinand Nanomaterials Department, Sandia National Laboratories,

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

406

Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: a population-based study  

E-Print Network (OSTI)

Ji BT, Chow WH, Dai Q, McLaughlin JK, Benichou J, Hatch MC6(12):1081–1086 Zheng W, McLaughlin JK, Gridley G, Bjelke E,Ekbom A, Josefsson S, McLaughlin JK, Fraumeni JF Jr, Nyren

Gupta, Samir; Wang, Furong; Holly, Elizabeth A.; Bracci, Paige M.

2010-01-01T23:59:59.000Z

407

Contact micromechanics in granular media with clay  

SciTech Connect

Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

Ita, S.L.

1994-08-01T23:59:59.000Z

408

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

E STIMATES OF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTIONOF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTION PLANTS A.

Delucchi, Mark

2003-01-01T23:59:59.000Z

409

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

conducted recently. Alcohol fuel, as well as the vegetableby Project: The use of alcohol fuel displaces some of the

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

410

Index to Volume 31 (2001) - Springer  

Science Conference Proceedings (OSTI)

Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC) 799. Composite electrocatalysts for anodic methanol and ...

411

The Politics of Carbon Dioxide Emissions Reduction: The Role of Pluralism in Shaping the Climate Change Technology Initiative  

E-Print Network (OSTI)

fuel production credit, alcohol fuel credit, exclu- sion ofto producers who make alcohol fuels-mainly ethanol-from

Golden, Dylan

1999-01-01T23:59:59.000Z

412

Digestion time  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion time Digestion time Name: Don Mancosh Location: N/A Country: N/A Date: N/A Question: I have always given the rule of thumb in class that material we eat is with us for about 24 hours before exiting the body. The question arises about the time value of liquids. Getting a big coke prior to a 3 hour drive generally means that there will be a stop along the way. Is there a generalization made about liquids in the body similar to the one for solid food? Replies: A physician would give a better answer, but I hazard this: the only liquids which people consume (deliberately) in significant quantities are water, ethyl alcohol and various oils. Water and alcohol are absorbed on a time scale of seconds to minutes through the mouth, stomach and digestive tract. The oils are huge molecules, so I'd guess like any other greasy food they get absorbed in the upper digestive tract. Some of them, perhaps the longest and most nonpolar, are not absorbed at all --- cf. the old-time remedy of mineral oil for constipation --- so there should be some average time-before-what's-left-is-excreted such as you're looking for, and my (wild) guess is that it would not differ substantially from that for food. You can define an average lifetime in the body for alcohol, since the natural level is zero. Rough guidelines are widespread in the context of drunk driving laws. But this is not really possible for water. One's body is normally full up to the brim with water, and there's no way for the body to distinguish between water molecules recently absorbed and molecules that've been moping around since the Beatles split up. Thus the water entering the toilet bowl after the pit stop is not in general the same water as was in the big coke. If you were to consider for water just the average time between drinking and peeing, it would seem to depend strongly on how well hydrated the body was before the drink, and how much was drunk. During sustained heavy exertion in the sun and dry air one can easily drink a pint of water an hour without peeing at all. On the other hand, if one is willing to drink enough water fast enough, so as to establish a high excess of body water one can pee 8 ounces 15 minutes or less after drinking 8 ounces.

413

Dehydration of plutonium or neptunium trichloride hydrate  

DOE Patents (OSTI)

A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1992-03-24T23:59:59.000Z

414

Dehydration of plutonium trichloride hydrate  

DOE Patents (OSTI)

A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1991-12-31T23:59:59.000Z

415

PROCESS FOR PRODUCTION OF URANIUM  

DOE Patents (OSTI)

A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

Crawford, J.W.C.

1959-09-29T23:59:59.000Z

416

Bernard J. Wood Jonathan D. Blundy A predictive model for rare earth element partitioning  

E-Print Network (OSTI)

of natural compositions. Propagating Dqf into the Brice model we obtain an expression for h3 o in terms and anhydrous silicate melt as a function of pressure , temperature and bulk composition . The model is based is the Young's Modulus of the site, is the gas constant and is in K. Values of iM2 obtained by ®tting

van Westrenen, Wim

417

The sacrificial oxide etching of poly-Si cantilevers having high aspect ratios using supercritical CO2  

Science Conference Proceedings (OSTI)

The aqueous etchants used in conventional wet etching for the micromachining of integrated circuits and MEMS devices often encumber the processes with a stiction problem. A dry etching method with anhydrous HF/pyridine in supercritical carbon dioxide ... Keywords: Cantilever, Etching, MEMS, Poly-Si, Sacrificial oxide, Supercritical carbon dioxide

Ha Soo Hwang; Jae Hyun Bae; Jae Mok Jung; Kwon Taek Lim

2010-11-01T23:59:59.000Z

418

PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

1959-08-01T23:59:59.000Z

419

DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS  

DOE Patents (OSTI)

Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

Horn, F.L.

1961-12-12T23:59:59.000Z

420

THE RECOVERY OF URANIUM FROM GAS MIXTURE  

DOE Patents (OSTI)

A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

Jury, S.H.

1964-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PRODUCTION OF URANIUM TETRACHLORIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

Calkins, V.P.

1958-12-16T23:59:59.000Z

422

Safe Operating Procedure CHEMICALS OF CONCERN  

E-Print Network (OSTI)

of the mixture into a natural gas processing plant or a petroleum refining process unit. Naturally occurring a concentration of 1% or more). · Chlorine gas is subject to regulation if stored in cumulative quantities of 500-laboratory settings, chlorine gas and anhydrous ammonia are common. A complete list of COCs can be found in Appendix

Farritor, Shane

423

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

424

Flue Gas Conditioning Trial at Rochester Gas and Electric Russell Station  

Science Conference Proceedings (OSTI)

This report presents data and results of a full-scale evaluation of two flue gas conditioning agents considered as upgrades for the existing electrostatic precipitators (ESPs) at Rochester Gas and Electric's (RG&E) Russell Station. The flue gas additives evaluated were anhydrous ammonia and a proprietary chemical agent, ADA-23.

1999-04-06T23:59:59.000Z

425

PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS  

DOE Patents (OSTI)

A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

1962-08-14T23:59:59.000Z

426

Corporate Productivity and I/S Investment  

E-Print Network (OSTI)

Ethyl Corp. EW Scripps Co. Exxon Corp. Farmland IndustriesRichfield Co. Chevron Corp. Exxon Corp. Kerr-McGee Corp.

Kraemer, Kenneth L.; Dunkle, Debbie

1997-01-01T23:59:59.000Z

427

ThermoML Data for TCA  

Science Conference Proceedings (OSTI)

... Title: Thermodynamic properties of ternary mixtures of 1-ethyl-3- methylimidazolium ... XML File: ThermoML Data (To download: right-click on ...

428

xml version="1.0" encoding="UTF-8"?>

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a
real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, September 15--December 15, 1992  

DOE Green Energy (OSTI)

We have investigated a series of Cu/Co catalysts supported on Titanium Dioxide. This study has sought to examine and compare the nature and effect of the supports Chromia and Titania (Cr{sub 2}O{sub 3}, and TiO{sub 2}) on the magnetic character of the Cu-Co-Cr and Cu-Co-TiO{sub 2} catalysts. The magnetization results for Cu/Co, Cu/Co/Cr, Cu/Co/TiO{sub 2} system are presented along with the magnetization data for the unsupported Cu/Co catalysts and data for supported catalysts. Pure cobalt metal has a magnetic moment of 161 emu/g. The measured emu values and the corresponding reduction percentages are given for the various catalysts investigated. The vibration sample magnetometer determines S{sub s}, the saturation magnetization, emu per gram of the composite sample. The magnetization values reported are emu per gram of cobalt in the composite. As such the data normally reflects the proportion of cobalt metal that is reduced to metallic form. However, if electronic exchanges occur between cobalt and other elements in the system, the magnetic moment itself differs from the assumed value of 161 emu/g Co then the emu value observed will be the resultant due to the electronic charge density modifications in Co as well as reduction to metallic state. Our earlier NMR studies reveal such electronic structural modifications occur for Cobalt in Cu-Co and Co-TiO{sub 2} systems. The magnetization data in column 3 for Cu-Co-TiO{sub 2} systems unambiguously shows such electron exchanges do occur between cobalt and titania.

Murty, A.N.

1992-12-31T23:59:59.000Z

442

Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly,,vinyl alcohol...  

E-Print Network (OSTI)

. Korean Phys. Soc. 44, 181 2004 . 8 R. Schroeder, L. A. Majewski, and M. Grell, Appl. Phys. Lett. 83, 3201 Raoul Schroeder, Leszek A. Majewski, Monika Voigt, and Martin Grell, IEEE Electron Device Lett. 26, 69 2005 . 14 Tingkai Li, Sheng Teng Hsu, Bruce Ulrich, Hong Ying, Lisa Stecker, Dave Evans, Yoshi Ono, Jer

Lee, Jong Duk

443

Laser-induced implantation of silver particles into poly(vinyl alcohol) films and its application to electronic-circuit fabrication on encapsulated organic electronics  

Science Conference Proceedings (OSTI)

In this study, we propose a new laser-induced implantation based approach for embedding electronic interconnects in this study. Direct implantations of silver particles, vaporized by a pulsed laser from a silver film initially pre-coated on a transparent ... Keywords: Embedded electronic circuits, Encapsulation, Laser-induced implantation, Organic thin-film transistors, Polymeric light-emitting diodes

Kun-Tso Chen; Yu-Hsuan Lin; Jeng-Rong Ho; J.-W. John Cheng; Sung-Ho Liu; Jin-Long Liao; Jing-Yi Yan

2010-04-01T23:59:59.000Z

444

Novel approaches to the production of higher alcohols from synthesis gas. Quarterly technical progress report No. 17, October 1, 1994-- December 31, 1994  

SciTech Connect

A series of experiments in which the stirrer speed was varied during a methanol synthesis run with BASF S3-86 catalyst showed that mass transfer limitations were present at 750 psig reactor pressure and at space velocities of 5000 and 10000 sl/kg(cat.)-hr.. There was no effect of stirrer speed on reaction rate at 2500 psig reactor pressure and 16500 sl/kg(cat.)-hr. space velocity. However, this was probably due to a close approach to equilibrium rather than to the lack of a mass transfer effect. The most plausible explanation for the presence of a mass transfer influence is the position of the gas feed dip tube relative to the agitator impeller. A second set of stirrer speed experiments using the same catalyst showed that feeding into the reactor headspace produced much lower reaction rates, compared with gas feed through a dip tube. The headspace feed also showed a strong dependence on stirrer speed, consistent with the dip tube feed results. In a ``blank` run at 375{degree}C with decahydronaphthalene, about 110 mL of the initial charge of 150 mL remained in the reactor after 73 hours of operation at 375{degree}C and 850 psig of hydrogen. The rate of hydrocarbon evolution was low throughout the run. Decalin is the most stable liquid identified to date. Three stirred autoclave runs with a commercial, high-pressure methanol synthesis catalyst (zinc chromite) slurried in decahydronaphthalene ended son after the initial catalyst reduction due to failures of the liquid return pump in the overhead system. However, the catalyst appeared to be reduced and the liquid appeared to be stable. 4 figs., 1 tab.

1996-07-05T23:59:59.000Z

445

Copper-catalyzed arylation of 1,2-amino alcohols. Synthesis of N-terminal, peptide helix initiators, and characterization of highly helical, capped polyalanine peptides  

E-Print Network (OSTI)

I. An improved Ullmann reaction for N- or O-arylation of 1,2-aminoalcohols with aryl iodides is described. The procedures enjoy several advantages over traditional methods: a substoichiometric amount of copper catalyst is ...

Job, Gabriel Ethan

2005-01-01T23:59:59.000Z

446

Catalytic decomposition of alcohols over size-selected Pt nanoparticles supported on ZrO2: A study of activity, selectivity, and stability  

E-Print Network (OSTI)

, but do not contribute to steady-state catalytic reforming rates. The high reactivity of Pd surfaces in C

Kik, Pieter

447

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

448

Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase  

SciTech Connect

Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds {var_epsilon}-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.

Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

2010-01-01T23:59:59.000Z

449

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Recent Developmentof Alcohol Fuels in of the United States,"and L. S. Sullivan, Proc. Int. Alcohol Fuel Syrup.on Alcohol Fuel Technol. , Ottawa, Canada, pp. 2-373 to 2-

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

450

Transportation Energy Futures  

E-Print Network (OSTI)

Ales- sio, G. J. 1983. Alcohol fuels from biomass. Environ.S. , Sullivan, L. S. 1984. Procs. , Int. Alcohol Fuel Symp.on Alcohol Fuel Tech. , Ottawa, Canada. pp. 2-373 to 93.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

451

Fleet purchase behavior: decision processes and implications for new vehicle technologies and fuels  

E-Print Network (OSTI)

run on gasoline and/or alcohol fuels. In some sense, thesehybrid, natural gas, or alcohol fuel vehicle may become, by

Nesbitt, Kevin; Sperling, Dan

2000-01-01T23:59:59.000Z

452

Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels  

E-Print Network (OSTI)

run on gasoline and/or alcohol fuels. In some sense, thesehybrid, natural gas, or alcohol fuel vehicle may become, by

Nesbitt, Kevin; Sperling, Daniel

2001-01-01T23:59:59.000Z

453

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network (OSTI)

are capable of using alcohol fuel alone instead of petroleumresults in the use of alcohol fuel is the reduction of air

Calvin, Melvin

2013-01-01T23:59:59.000Z

454

Mesoporous Titanium Oxide Based Anodes for Batteries  

aerosol pyrolysis technique to make high quality TiO 2-B powders with consistent, ... catalytic conversion of biomass-derived alcohols or mixtures of alcohols to olefins

455

Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice  

E-Print Network (OSTI)

and regulate ethanol consumption. Cell 109:733–743.Mice blockers on alcohol consumption in alcohol-drinkingRD (1998) Etha- nol consumption and resistance are inversely

Newton, P M; Orr, C J; Wallace, M J; Kim, C; Shin, H S; Messing, R O

2004-01-01T23:59:59.000Z

456

Microsoft Word - BSA_Construction_Rev13_Apr_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Badging Office. Article 40 CONTROLLED SUBSTANCES AND ALCOHOL (a) The consumption or unauthorized possession of alcoholic beverages, or the illegal use or possession...

457

Microsoft Word - BSA_Construction_Rev12_Jan_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Badging Office. Article 40 CONTROLLED SUBSTANCES AND ALCOHOL (a) The consumption or unauthorized possession of alcoholic beverages, or the illegal use or possession...

458

Microsoft Word - psh-12-0063.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the individual to discuss, among other things, the individual's excessive alcohol consumption, his alcohol-related treatment, his multiple arrests, and his finances. See...

459

1452 J. Am. Chem. SOC. np K R Z -2  

E-Print Network (OSTI)

values of AG*, AG1,and AG2,I4 there may be con- structed the averaged cartoon of Figure 2. Inspection, 79075-88-0; 0 2 , 7782-44-7. (19) Bunting, J. W. Adu. Heterocycl. Chem 1979, 25, 1. (20) (a) 5-Ethyl-l0

Boxer, Steven G.

460

Improvement of TEOS-chemical mechanical polishing performance by control of slurry temperature  

Science Conference Proceedings (OSTI)

Effects of slurry temperature on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries were investigated. The change of slurry properties as a function of different slurry temperatures ... Keywords: Chemical mechanical polishing, Planarity, Removal rate, Slurry temperature, Tetra-ethyl ortho-silicate

Nam-Hoon Kim; Pil-Ju Ko; Yong-Jin Seo; Woo-Sun Lee

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ethyl alcohol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Scenarios for a Clean Energy Future Longer Term and Global Context 8.1  

E-Print Network (OSTI)

; synthetic fuels; biofuels including biogas, biodiesels, and alcohols--even syngas derived from sources

462

Adherence to Scheduled Sessions in a Randomized Field Trial of Case Management: The Criminal Justice–Drug Abuse Treatment Studies Transitional Case Management Study  

E-Print Network (OSTI)

Alcohol Research, University of Kentucky, Lexington, KY, USAAlcohol Studies; University of Kentucky, Center on Drug and

2009-01-01T23:59:59.000Z

463

University Health Service Health Information for students UNSW Residential Accommodation  

E-Print Network (OSTI)

. Underage Drinking #12;The legal age to buy alcohol in Australia is 18 years old. It is illegal even may be asked for proof of age when buying alcohol or going to licensed premises. NHMRC Alcohol are most often spiked with alcohol, but Rohypnol and GHB "fantasy" are also used. Common motivations

Blennerhassett, Peter

464

LAW ENFORCEMENT INVESTIGATIONS  

E-Print Network (OSTI)

. Underage Drinking #12;The legal age to buy alcohol in Australia is 18 years old. It is illegal even may be asked for proof of age when buying alcohol or going to licensed premises. NHMRC Alcohol are most often spiked with alcohol, but Rohypnol and GHB "fantasy" are also used. Common motivations

US Army Corps of Engineers

465

Annual Security and Fire Report  

E-Print Network (OSTI)

. Underage Drinking #12;The legal age to buy alcohol in Australia is 18 years old. It is illegal even may be asked for proof of age when buying alcohol or going to licensed premises. NHMRC Alcohol are most often spiked with alcohol, but Rohypnol and GHB "fantasy" are also used. Common motivations

Kasman, Alex

466

Design and construction of a 7,500 liter immobilized cell reactor-separator for ethanol production from whey  

DOE Green Energy (OSTI)

A 7,500 liter reactor/separator has been constructed for the production of ethanol from concentrated whey permeate. This unit is sited in Hopkinton IA, across the street from a whey generating cheese plant A two phase construction project consisting of (1) building and testing a reactor/separator with a solvent absorber in a single unified housing, and (2) building and testing an extractive distillation/product stripper for the recovery of anhydrous ethanol is under way. The design capacity of this unit is 250,000 gal/yr of anhydrous product. Design and construction details of the reactor/absorber separator are given, and design parameters for the extractive distillation system are described.

Dale, M.C.

1992-12-31T23:59:59.000Z

467

A hybrid thermochemical-electrolytic process for hydrogen production based on the Reverse Deacon Reaction.  

SciTech Connect

Development has been initiated on a three-reaction, hybrid thermochemical-electrolytic process for splitting water into hydrogen and oxygen. This process can be run at 500 C, making it suitable for linking to nuclear reactors that run colder than the very highest temperature gas cooled reactors. This feature also makes the materials requirements less stringent than for high temperature cycles, many of which require temperatures in the range of 800-900 C. The process consists of three reactions - two thermochemical and one electrolytic. The thermochemical reactions sum to the reverse Deacon reaction. The electrolytic step involves the electrolysis of anhydrous HCl. The estimated energy savings for this process relative to electrolysis of water are in the vicinity of 15%, due to the low energy requirements of anhydrous HCl electrolysis. Preliminary experimental results indicate that a silicalite-supported catalyst for the reverse Deacon reaction has the potential of promoting fast reaction kinetics and long-term stability of the solids.

Simpson, M. F.; Herrmann, S. D.; Boyle, B. D.; Engineering Technology

2006-08-01T23:59:59.000Z

468

Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof  

DOE Green Energy (OSTI)

A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

Bartlett, Neil (Orinda, CA); Whalen, J. Marc (Corning, NY); Chacon, Lisa (Corning, NY)

2000-12-12T23:59:59.000Z

469

SEPARATION OF METAL VALUES FROM NUCLEAR REACTOR  

DOE Patents (OSTI)

A method is given for separating beryllium fluoride and an alkali metal fluoride from a mixture containing same and rare earth fluorides. The method comprises contacting said mixture with a liquid hydrogen fluoride solvent containing no more than about 30 per cent water by weight and saturated with a fluoride salt characterized by its solubility in anhydrous hydrogen fluoride for a period of time sufficient to dissolve said beryllium fluoride in said solvent. (AEC)

Campbell, D.O.; Cathers, G.I.

1962-06-19T23:59:59.000Z

470

Process for the treatment of lignocellulosic biomass  

Science Conference Proceedings (OSTI)

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

2013-03-12T23:59:59.000Z

471

FUSED SALT METHOD FOR COATING URANIUM WITH A METAL  

DOE Patents (OSTI)

A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

Eubank, L.D.

1959-02-01T23:59:59.000Z

472

Reactive formulations for a neutralization of toxic industrial chemicals  

DOE Patents (OSTI)

Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Ri