Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Preventing Theft of Anhydrous Ammonia  

E-Print Network (OSTI)

Anhydrous ammonia is widely used as a fertilizer. The theft of anhydrous ammonia for use in producing illegal drugs is a growing problem. This publication describes how thieves operate and how farmers and agricultural dealers can protect themselves from thieves.

Smith, David

2004-09-16T23:59:59.000Z

2

Ab initio simulation of ammonia monohydrate ,,NH3"H2O... and ammonium hydroxide ,,NH4OH...  

E-Print Network (OSTI)

the whole ammonia-water system. As part of a broader ongoing study into solids in the ammonia-water system,9 pseudopotential plane-wave simulations of the static properties of ammonia monohydrate phase I AMH I and ammonium of the hydrogen bonds in AMH may exhibit properties which are transferable to much more complex molecular solids

Vocadlo, Lidunka

3

Ammonia as a hydrogen energy-storage medium. [LH/sub 2/, MeOH, and NH/sub 3/  

DOE Green Energy (OSTI)

Liquid Hydrogen (LH/sub 2/), Methanol (MeOH), and Ammonia (NH/sub 3/) are compared as hydrogen energy-storage media on the basis of reforming the MeOH to produce H/sub 2/ and dissociating (cracking) the NH/sub 3/ to release H/sub 2/. The factors important in this storage concept are briefly discussed. Results of the comparison show that, in terms of energy input for media manufacture from natural gas, hydrogen energy content of the medium, and energy cost ($/10/sup 6/ Btu), NH/sub 3/ has a wide advantage and comes the closest to matching gasoline. The tasks required in developing a safe and practicial hydrogen energy-storage system based on the storage and cracking of NH/sub 3/ are listed. Results of the technical and economic evaluation of this concept will provide the basis for continued development.

Strickland, G

1980-08-01T23:59:59.000Z

4

FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH{sub 2}) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)  

SciTech Connect

Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 {mu}m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 {mu}m wavelength region. On the other hand, the amidogen radical (NH{sub 2}-a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 {mu}m wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH{sub 3} lines, the mixing ratio of NH{sub 3}/H{sub 2}O is 0.46% {+-} 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH{sub 2} observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH{sub 3} could be the sole parent of NH{sub 2} in this comet.

Kawakita, Hideyo [Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Mumma, Michael J., E-mail: kawakthd@cc.kyoto-su.ac.jp [Solar System Exploration Division, Mailstop 690.3, NASA Godard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-02-01T23:59:59.000Z

5

Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane  

Science Conference Proceedings (OSTI)

Neutrons scattering techniques are ideally suited to directly probe H in materials due to the large incoherent scattering cross-section of hydrogen atom, and have been invaluable in providing direct insight into the local fluctuations and large amplitude motions in AB. Dihydrogen bonding may have a significant affect on materials to be used to store hydrogen for fuel-cell powered applications. We have noticed a trend of low temperature release of H2 in materials composed of hydridic and protonic hydrogen. This phenomenon has caught our attention and motivated our interest to gain more insight into dihydrogen bonding interactions in AB. We present results from a thorough Quasielastic Neutron Scattering (QENS) investigation of diffusive hydrogen motion in NH311BH3 and ND311BH3 to obtain (1) a direct measure of the rotational energy barriers the protonated species and (2) a confirmation of the 3-site jump model for rotational motion. The amplitude of the energy barrier of rotation of BH3 and NH3 determined by QENS are compared to those determined for BD3 and ND3 determined by 2H NMR studies.

Hess, Nancy J.; Hartman, Michael R.; Brown, Craig; Mamontov, Eugene; Karkamkar, Abhijeet J.; Heldebrant, David J.; Daemen, Luke L.; Autrey, Thomas

2008-06-27T23:59:59.000Z

6

Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect of various parameters including pretreatment of the catalyst sample with H2, NH3-to-NO ratio, inlet oxygen concentration, and space velocity. The concentrations of the species (e.g. NO, NH3, and others) were determined using a Fourier Transform Infrared (FTIR) spectrometer. The temperature was varied from ambient (25 C) to 500 C. The investigation showed that all of the above parameters (except pre-treatment with H2) significantly affected the peak NO reduction, the temperature at which peak NO reduction occurred, and residual ammonia left at higher temperatures (also known as 'NH3 slip'). Depending upon the particular values of the parameters, a peak NO reduction of around 90% was obtained for both the catalysts. However, an accompanied generation of N2O and NO2 species was observed as well, being much higher for the vanadium-based catalyst than for the Cu-ZSM-5 catalyst. For both catalysts, the peak NO reduction decreased with an increase in space velocity, and did not change significantly with an increase in oxygen concentration. The temperatures at which peak NO reduction and complete NH3 removal occurred increased with an increase in space velocity but decreased with an increase in oxygen concentration. The presence of more ammonia at the inlet (i.e. higher NH3-to-NO ratio) improved the peak NO reduction but simultaneously resulted in an increase in residual ammonia. Pretreatment of the catalyst sample with H2 (performed only for the Cu-ZSM-5 catalyst) did not produce any perceivable difference in any of the results for the conditions of these experiments.

Gupta, Saurabh

2003-08-01T23:59:59.000Z

7

Biophysical studies of anhydrous peptide structure  

E-Print Network (OSTI)

Defining the intrinsic properties of amino acids which dictate the formation of helices, the most common protein secondary structure element, is an essential part of understanding protein folding. Pauling and co-workers initially predicted helical peptide folding motifs in the absence of solvent, suggesting that in vacuo studies may potentially discern the role of solvation in protein structure. Ion mobility-mass spectrometry (IMMS) combines a gas-phase ion separation based on collision cross-section (apparent surface area) with time-of-flight MS. The result is a correlation of collision cross-section with mass-to-charge, allowing detection of multiple conformations of the same ion. Most gas-phase peptide ions assume a compact, globular state that minimizes exposure to the low dielectric environment and maximizes intramolecular charge solvation. Conversely, a small number of peptides adopt a more extended (?-sheet or ?-helix) conformation and exhibit a larger than predicted collision cross-section. Collision cross-sections measured using IM-MS are correlated with theoretical models generated using simulated annealing and allow for assignment of the overall ion structural motif (e.g. helix vs. chargesolvated globule). Here, two series of model peptides having known solution-phase helical propensities, namely Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), are investigated using IM-MS. Both protonated ([M + H]+) and metalcoordinated ([M + X]+ where X = Li, Na, K, Rb or Cs) species were analyzed to better understand the interplay of forces involved in gas-phase helical structure and stability. The data are analyzed using computational methods to examine the influence of peptide length, primary sequence, and number of basic (Lys, K) and acidic (Glu, E) residues on anhydrous ion structure.

McLean, Janel Renee

2007-08-01T23:59:59.000Z

8

Anhydrous hydrogen fluoride electrolyte battery. [Patent application  

DOE Patents (OSTI)

It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

Not Available

1972-06-26T23:59:59.000Z

9

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...  

Open Energy Info (EERE)

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

10

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

This report provides results from performance tests of a Laser Tech Group (LTG) Lightwise tunable diode laser (TDL) monitor at the University of California–Riverside's laboratory test facility. More stringent nitrogen oxide(s) (NOx)-control mandates for coal-fired boilers have engendered broad-based deployment of post-combustion NOx control systems. It is possible to increase NOx reductions early in the catalyst life cycle through increased reagent injection, with a concomitant increase in ammonia (NH3) ...

2009-07-13T23:59:59.000Z

11

Assessment of Multi-Point Ammonia Measurement Systems  

Science Conference Proceedings (OSTI)

This report summarizes development and testing of in-duct gas sampling probes and a tunable diode laser (TDL) spectroscopic measurement system to determine the concentration of gaseous ammonia (NH3) in coal-fired power plant flue gases. Unlike the much slower conventional wet chemical measurement method, the duct probe and TDL NH3 measurement systems developed in this project enable plant operators to know ammonia slip concentrations in near real-time, allowing them to make appropriate adjustments.

2004-12-08T23:59:59.000Z

12

How the Membrane Protein AmtB Transports Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

How the Membrane Protein AmtB Transports Ammonia Print How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a bacterial ammonia transporter (AmtB), determined by a team in the Stroud group from the University of California, San Francisco, it is now known that this family of transporters conducts ammonia by stripping off the proton from the ammonium (NH4+) cation and conducting the uncharged NH3 "gas."

13

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

Hydrogen Using NH3-Fueled SOFC Systems,” Ammonia - The Keysolid oxide fuel cell (SOFC) systems as these are relativelyper kW in an ammonia-based SOFC system compared with about $

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

14

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

and Maloney, K.L. , "NOx Reduction with Ammonia: Laboratoryand Hashizawa, K. , "Reduction of NOx in Combustion ExhaustSelective Noncatalytic Reduction of NOx with NH3," EPRI NOx

Brown, N.J.

2013-01-01T23:59:59.000Z

15

CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS  

SciTech Connect

Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

Bordalo, V.; Da Silveira, E. F. [Departamento de Fisica/Laboratorio do Acelerador Van de Graaff, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de S. Vicente 225, 22451-900 Rio de Janeiro, RJ (Brazil); Lv, X. Y.; Domaracka, A.; Rothard, H.; Boduch, P. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie), CIMAP-CIRIL-GANIL, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05 (France); Seperuelo Duarte, E., E-mail: vbordalo@fis.puc-rio.br [Grupo de Fisica e Astronomia, Instituto Federal do Rio de Janeiro, Rua Lucio Tavares 1045, 26530-060 Nilopolis, RJ (Brazil)

2013-09-10T23:59:59.000Z

16

Ammonia chemistry in a flameless jet  

Science Conference Proceedings (OSTI)

In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

2009-10-15T23:59:59.000Z

17

Compact anhydrous HCl to aqueous HCl conversion system  

DOE Patents (OSTI)

The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

Grossman, Mark W. (Belmont, MA); Speer, Richard (S. Hamilton, MA)

1993-01-01T23:59:59.000Z

18

Compact anhydrous HCl to aqueous HCl conversion system  

DOE Patents (OSTI)

The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

Grossman, M.W.; Speer, R.

1993-06-01T23:59:59.000Z

19

Characterization of the selective reduction of NO by NH/sub 3/  

Science Conference Proceedings (OSTI)

The selective reduction of NO by NH/sub 3/ addition has been studied in a lean-burning oil-fired laboratory combustion tunnel as a function of equivalence ratio, NH/sub 3/ injection temperature, concentration of NH/sub 3/ added, and the source of NO. Ammonia breakthrough was found to depend strongly on the NH/sub 3/ addition temperature. The total concentration of nitrogen containing species other N/sub 2/, NO, and NH/sub 3/ was measured with a variety of techniques and was found to be less than 5 ppM over the range of conditions studied.

Lucas, D.; Brown, N.J.

1981-04-01T23:59:59.000Z

20

The Ammonia?Hydrogen System under Pressure  

Science Conference Proceedings (OSTI)

Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at {approx}3.8 GPa and hydrogen solidified at {approx}5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH{sub 3}-H{sub 2} system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.

Chidester, Bethany A.; Strobel, Timothy A. (CIW)

2012-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of synthesis of anhydrous thorium(IV) complexes  

SciTech Connect

Method of producing anhydrous thorium(IV) tetrahalide complexes, utilizing Th(NO.sub.3).sub.4(H.sub.2O).sub.x, where x is at least 4, as a reagent; method of producing thorium-containing complexes utilizing ThCl.sub.4(DME).sub.2 as a precursor; method of producing purified ThCl.sub.4(ligand).sub.x compounds, where x is from 2 to 9; and novel compounds having the structures: ##STR00001##

Kiplinger, Jaqueline L; Cantat, Thibault

2013-04-30T23:59:59.000Z

22

Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation  

SciTech Connect

This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

1995-05-01T23:59:59.000Z

23

Rheological Study of Mutarotation of Fructose in Anhydrous State  

Science Conference Proceedings (OSTI)

Rheological measurement was employed to study the mutarotation of D-fructose in anhydrous state. By monitoring the evolution of shear viscosity with time, rate constants for mutarotation were estimated, and two different stages of this reaction were identified. One of the mutarotation stages is rapid and has a low activation energy, whereas the other is much slower and has a much higher activation energy. Possible conversions corresponding to these two phases are discussed. This work demonstrates that, in addition to the routine techniques such polarimetry and gas liquid chromatography, rheological measurement can be used as an alternative method to continuously monitor the mutarotation of sugars.

Wang, Yangyang [ORNL; Wlodarczyk, Patryk [Institute ofNon-Ferrous Metals, Sowinskiego Gliwice, POLAND; Sokolov, Alexei P [ORNL; Paluch, Marian W [ORNL

2013-01-01T23:59:59.000Z

24

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The  

Open Energy Info (EERE)

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Details Activities (0) Areas (0) Regions (0) Abstract: Olivine, pyroxene and garnet are nominally anhydrous but can accommodate tens to hundreds of parts per million (ppm) H2O or "water" in the form of protons incorporated in defects in their mineral structure. This review concerns the amount of water in nominally anhydrous minerals from mantle and mantle-derived rocks: peridotites, eclogites, megacrysts, basalts and kimberlites. Trends between internal and external parameters

25

Emission factors for ammonia and particulate matter from broiler Houses  

E-Print Network (OSTI)

Total suspended particulate (TSP) concentrations, ammonia (NH?) concentrations, and ventilation rates were measured in four commercial, tunnel ventilated broiler houses in June through December of 2000 in Brazos County, Texas. Particle size distributions were developed from TSP samplers collected and used to determine the mass fraction of PM?? in the TSP samples collected. Concentrations of TSP and ammonia measured were multiplied by the ventilation rates measured to obtain emission factors for PM?? and ammonia from tunnel ventilated commercial broiler houses. TSP and NH? concentrations ranged from 7,387 to 11,387 []g/m³ and 2.02 to 45 ppm, respectively. Ammonia concentration exhibited a correlation with the age of the birds. Mass median diameters (MMD) found using particle size analysis with a Coulter Counter Multisizer were between 24.0 and 26.7 mm aerodynamic equivalent diameter. MMD increased with bird age. The mass fraction of PM?? in the TSP samples was between 2.72% and 8.40% with a mean of 5.94%. Ventilation rates were measured between 0.58 and 89 m³/s. Ammonia emission rates varied from 38 to 2105 g/hr. TSP emission rates and PM?? emission rates ranged from 7.0 to 1673 g/hr 0.58 to 99 g/hr respectively. Emission rates for ammonia and particulate matter increased with the age of the birds. Error and sensitivity analysis was conducted using Monte Carlo simulation for the calculation of emission rates. Error for ammonia emission rates was 99 g/hr during tunnel ventilation and 6 g/hr during sidewall ventilation. Error for TSP emission rates was 79 g/hr and 11 g/hr for tunnel and sidewall ventilation respectively. Sensitivity analysis showed that ventilation rate measurements and measurement of ammonia concentration had the most effect on the emission rates. Emission factors of NH? and PM?? estimated for these buildings were 1.32 ± 0.472 g/bird and 22.8 ± 9.28 g/bird, respectively. These emission factors take into account the variation of PM?? and NH? concentrations and ventilation rates with the age of the birds.

Redwine, Jarah Suzanne

2001-01-01T23:59:59.000Z

26

Photolysis of solid NH{sub 3} and NH{sub 3}-H{sub 2}O mixtures at 193 nm  

SciTech Connect

We have studied UV photolysis of solid ammonia and ammonia-dihydrate samples at 40 K, using infrared spectroscopy, mass spectrometry, and microgravimetry. We have shown that in the pure NH{sub 3} sample, the main species ejected are NH{sub 3}, H{sub 2}, and N{sub 2}, where the hydrogen and nitrogen increase with laser fluence. This increase in N{sub 2} ejection with laser fluence explains the increase in mass loss rate detected by a microbalance. In contrast, for the ammonia-water mixture, we see very weak signals of H{sub 2} and N{sub 2} in the mass spectrometer, consistent with the very small mass loss during the experiment and with a <5% decrease in the NH{sub 3} infrared absorption bands spectroscopy after a fluence of {approx}3 x 10{sup 19} photons/cm{sup 2}. The results imply that ammonia-ice mixtures in the outer solar system are relatively stable under solar irradiation.

Loeffler, M. J. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Code 691, Greenbelt, Maryland 20771 (United States); Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Baragiola, R. A. [Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2010-12-07T23:59:59.000Z

27

Decomposition of Ammonia in IGCC Fuel Gas Streams  

SciTech Connect

The main objective of the research work is to develop technically feasible and potentially low cost processes to decompose NH{sub 3} present in coal gases at high temperatures upstream of the gas turbine. Specific objectives of the work include development of NH3 decomposition processes applicable to both air-blown and oxygen-blown coal gasification-based combined cycle power plants, Ammonia decomposition tests were carried out in a bench-scale tubular flow reactor. The flow system includes feed gas supply with flow control and pressure regulation, preheater and reactor, heaters, monitoring and control of system temperature and pressure, and feed and product analysis instrumentation. Non-catalytic NH{sub 3} decomposition tests were carried out in both Alloy RA-330 and quartz reactors. Catalytic tests were conducted only in the quartz reactor.

Qader, S.A.; Qader, Q.A. [Energy and Environmental Technology Corp., Rancho Cucamonga, CA (United States); Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States)

1996-12-31T23:59:59.000Z

28

Radiation Damage in Polarized Ammonia Solids  

E-Print Network (OSTI)

Solid NH3 and ND3 provide a highly polarizable, radiation resistant source of polarized protons and deuterons and have been used extensively in high luminosity experiments investigating the spin structure of the nucleon. Over the past twenty years, the UVA polarized target group has been instrumental in producing and polarizing much of the material used in these studies, and many practical considerations have been learned in this time. In this discussion, we analyze the polarization performance of the solid ammonia targets used during the recent JLab Eg4 run. Topics include the rate of polarization decay with accumulated charge, the annealing procedure for radiation damaged targets to recover polarization, and the radiation induced change in optimum microwave frequency used to polarize the sample. We also discuss the success we have had in implementing frequency modulation of the polarizing microwave frequency.

K. Slifer

2007-11-28T23:59:59.000Z

29

Commissioning an animal preference chamber for behavioral studies with laying hens exposed to atmospheric ammonia  

Science Conference Proceedings (OSTI)

An environmental preference chamber (EPC) with four double-tiered compartments (C1-C4), each capable of being controlled to distinct ammonia (NH"3) concentrations and temperature, was designed, fabricated and commissioned. Preference chambers are commonly ... Keywords: Ambient conditions, Animal welfare, Automatic control, Cross-contamination

G. T. Sales, A. R. Green, R. S. Gates

2013-07-01T23:59:59.000Z

30

Category:Concord, NH | Open Energy Information  

Open Energy Info (EERE)

Go Back to PV Economics By Location Go Back to PV Economics By Location Media in category "Concord, NH" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Concord NH Public Service Co of NH.png SVFullServiceRestauran... 74 KB SVHospital Concord NH Public Service Co of NH.png SVHospital Concord NH ... 75 KB SVLargeHotel Concord NH Public Service Co of NH.png SVLargeHotel Concord N... 74 KB SVLargeOffice Concord NH Public Service Co of NH.png SVLargeOffice Concord ... 76 KB SVMediumOffice Concord NH Public Service Co of NH.png SVMediumOffice Concord... 74 KB SVMidriseApartment Concord NH Public Service Co of NH.png SVMidriseApartment Con... 71 KB SVOutPatient Concord NH Public Service Co of NH.png SVOutPatient Concord N... 72 KB SVPrimarySchool Concord NH Public Service Co of NH.png

31

NH NH NH NH  

NLE Websites -- All DOE Office Websites (Extended Search)

- Grand Station Foyer Continental Breakfast - Grand Station iii PoSt-CoMbuStion MeMbrane-baS Moderator - Jos Figueroa, U.S. Department of Energy, National Energy Techno tueSday,...

32

Updated 6/10 Volunteer NH!  

E-Print Network (OSTI)

Plant a garden 5 Hitchcock Hall Durham, NH 03824 Marianne Fortescue, Coordinator 603-862-2197 marianne.fortescue

Pohl, Karsten

33

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of postcombustion nitrogen oxide (NOx) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have yi...

2006-12-21T23:59:59.000Z

34

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The increasing use of post combustion NOx control systems such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) has heightened the need for reliable continuous monitoring of ammonia slip. This report describes laboratory tests conducted to assess the ability of the Norsk Elektro Optik's (NEO) LaserGas II tunable diode laser monitor to measure ammonia under highly controlled conditions over a typical range of process conditions.

2007-08-14T23:59:59.000Z

35

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of post-combustion nitrogen oxide (NOX) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOX control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have y...

2007-02-19T23:59:59.000Z

36

On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds  

SciTech Connect

Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

2009-10-15T23:59:59.000Z

37

MEASUREMENT OF AMMONIA RELEASE FROM SALTSTONE  

SciTech Connect

SRNL was requested by WSRC Waste Solidification Engineering to characterize the release of ammonia from saltstone curing at 95 C by performing experimental testing. These tests were performed with an MCU-type Tank 50H salt simulant containing 0, 50, and 200 mg/L ammonia. The testing program showed that above saltstone made from the 200 mg/L ammonia simulant, the vapor space ammonia concentration was about 2.7 mg/L vapor at 95 C. An upper 95% confidence value for this concentration was found to be 3.9 mg/L. Testing also showed that ammonia was chemically generated from curing saltstone at 95 C; the amount of ammonia generated was estimated to be equivalent to 121 mg/L additional ammonia in the salt solution feed. Even with chemical generation, the ammonia release from saltstone was found to be lower than its release from salt solution only with 200 mg/L ammonia.

Zamecnik, J; Alex Cozzi, A

2009-01-15T23:59:59.000Z

38

AMMONIA DISTILLATION FOR DEUTERIUM SEPARATION  

SciTech Connect

The relative volatility or separation factor for deuterium enrichment in ammonia distillation was measured at several pressures and deuterium concentrations. The knowledge of this ingormation is very helpful in predicting costs of heawy water production by the ammonia distillation process. It hss been stated by others, that the ammonia distillation process of heawy water production would be competitive with other developed methods only if the actusl separation factor was at least 1.062 at low deuterium concentration. Ungortunately, the measurements do not indicate that the separation factor at low deuterium composition differs greatly from the vapor pressure pre diction ( alpha = 1.042). Deutero-ammonia was synthesized by isotopic exchange between natural ammonia and heavy water. Equilibrium determinations were made using an Othmer still, modified for low temperature operation, and a concentric tube fractionating column. The arnmonia samples were analyzed for deuterium content by converting them to water by flow torough hot copper oxide, followed by a differential density determination using the falling drop method. ( auth)

Petersen, G.T.; Benedict, M.

1960-05-16T23:59:59.000Z

39

Program on Technology Innovation: Bench-Scale Evaluation of an Ammonia Slip Destruction Catalyst at Intermediate and Post SCR Reacto r Conditions  

Science Conference Proceedings (OSTI)

Reducing ammonia slip from selective catalytic reduction (SCR) systems may allow unit operators to maintain or increase NOx removal efficiencies by increasing reagent flow rates without affecting downstream equipment or ash contamination. This research project is studying the performance of a near-commercial ammonia destruction catalyst using a gas-fired bench-scale reactor. A test program was designed to evaluate the catalyst at different NH3 to NOx ratios, flue gas temperatures, and catalyst volumes. C...

2011-06-21T23:59:59.000Z

40

Application Guideline for Monitoring Ammonia with Tunable Diode Lasers on Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

Continuous ammonia monitors for coal-fired applications have been under development dating back to the 1990s. One potential use for NH3 process monitors is in support of selective catalytic (SCR) and selective non-catalytic (SNCR) NOx reduction systems that have been employed for NOx control. The primary analyzers being used in the utility industry are in situ tunable diode laser-based systems (TDL). Monitor applications can cover a range of potential needs ...

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Excimer laser photochemistry of silane-ammonia mixtures at 193 nm  

SciTech Connect

The ArF excimer laser induced photochemistry of silane-ammonia mixtures has been studied with molecular beam sampling mass spectrometry. The observed products include disilane, trisilane, and all possible aminosilanes, SiH{sub x}(NH{sub 2}){sub 4-x}, x = 0-3. These products are formed under steady-state photolysis conditions and under single-laser-pulse conditions. A mechanism for the formation of these species is proposed and quantitatively evaluated.

Beach, D.B.; Jasinski, J.M. (Thomas J. Watson Research Center, Yorktown Heights, NY (USA))

1990-04-05T23:59:59.000Z

42

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The broad-based deployment of post-combustion NOx control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. The Electric Power Research Institute (EPRI) has been investigating the potential that tunable diode laser spectroscopy (TDLS) can have ...

2012-08-29T23:59:59.000Z

43

Hydrogen production using ammonia borane  

SciTech Connect

Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

2013-12-24T23:59:59.000Z

44

Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments  

SciTech Connect

This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

2010-12-01T23:59:59.000Z

45

An investigation of the effectiveness of anhydrous mud acid to remove damage in sandstone formations  

E-Print Network (OSTI)

The goal of this experimental research was to determine the reactivity of anhydrous mud acid with clay minerals present in sandstone formations and its ability to remove damage in sandstone acidizing. Berea core flood experiments were conducted with a mixture of carbon dioxide, hydrogen chloride and hydrogen fluoride. These tests were carried out with oven dried cores and cores at irreducible water saturation. Anhydrous mud acid appears to be reactive with all the cores tested. However, it does not have the ability to reduce damage as hoped. The aqueous phase is required to transport the products of the reaction. To confirm this, other tests with a mixture of 75% C02 and 25% aqueous acid by volume were done and again found to be reactive with the cores tested but were unable to remove the products of the reactions. Salt water afterflushes were done on these cores and the dissolved material was able to be transported out of the core. Therefore, it appears aqueous acid is required in an amount greater than 25% by volume to remove damage effectively in sandstone mud acidizing treatments utilizing C02 as a conjugate fluid.

Haase, Dalan David

1998-01-01T23:59:59.000Z

46

Theoretical Investigations on the Formation and Dehydrogenation Reaction Pathways of H(NH2BH2)nH (n=1-4) Oligomers: Importance of Dihydrogen Interactions (DHI)  

DOE Green Energy (OSTI)

The H(NH2BH2)nH oligomers are possible products from dehydrogenation of ammonia borane (NH3BH3) and ammonium borohydride (NH4BH4), which belong to a class of boron-nitrogen-hydrogen (BNHx) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these oligomers and their further dehydrogenation is essential for developing BNHx-based hydrogen storage materials. We have performed computational modeling using density functional theory (DFT), ab initio wavefunction theory, and Car-Parrinello molecular dynamics (CPMD) simulations on the energetics and formation pathways for the H(NH2BH2)nH (n=1-4) oligomers, polyaminoborane (PAB), from NH3BH3 monomers and the subsequent dehydrogenation steps to form polyiminoborane (PIB). Through transition state searches and evaluation of the intrinsic reaction coordinates, we have investigated the B-N bond cleavage, the reactions of NH3BH3 molecule with intermediates, dihydrogen release through intra- and intermolecular hydrogen transfer, dehydrocoupling/cyclization of the oligomers, and the dimerization of NH3BH3 molecules. We discovered the formation mechanism of H(NH2BH2)n+1H oligomers through reactions of the H(NH2BH2)nH oligomers first with BH3 followed by reactions with NH3 and the release of H2, where the BH3 and NH3 intermediates are formed through dissociation of NH3BH3. We also found that the dimerization of the NH3BH3 molecules to form c-(NH2BH2)2 is slightly exothermic, with an unexpected transition state that leads to the simultaneous release of two H2 molecules. The dehydrogenations of the oligomers are also exothermic, typically by less than 10 kcal/(mol of H2), with the largest exothermicity for n=3. The transition state search shows that the one-step direct dehydrocoupling cyclization of the oligomers is not a favored pathway because of high activation barriers. The dihydrogen bonding, in which protic (HN) hydrogens interact with hydridic (HB) hydrogens, plays a vital role in stabilizing different structures of the reactants, transition states, and products. The dihydrogen interaction (DHI) within the -BH2(?2-H2) moiety accounts for both the formation mechanisms of the oligomers and for the dehydrogenation of ammonia borane. Support was provided from the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Chemical Hydrogen Storage Center of Excellence. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Li, Jun; Kathmann, Shawn M.; Hu, Han-Shi; Schenter, Gregory K.; Autrey, Thomas; Gutowski, Maciej S.

2010-09-06T23:59:59.000Z

47

Infrared Hole Burning and Conformational Change in a Borane-Ammonia Complex Christopher A. Endicott, Herbert L. Strauss,* Chambers C. Hughes, and Dirk Trauner  

E-Print Network (OSTI)

Infrared Hole Burning and Conformational Change in a Borane-Ammonia Complex Christopher A. Endicott)-borane containing one D atom has been examined. The N-D bands have been hole burned, and the resulting spectra hole burning on the N-D bands of a MOM complex in which the NH3 had been monosubstituted

Trauner, Dirk

48

A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE  

SciTech Connect

The Clean Air Act Amendments of 1990 require large reductions in emissions of NO{sub x} from coal-fired electric utility boilers. This will necessitate the use of ammonia injection, such as in selective catalytic reduction (SCR), in many power plants, resulting in the deposition of ammonia on the fly ash. The presence of ammonia could create a major barrier to fly ash utilization in concrete because of odor concerns. Although there have been limited studies of ammonia emission from concrete, little is known about the quantity of ammonia emitted during mixing and curing, and the kinetics of ammonia release. This is manifested as widely varying opinions within the concrete and ash marketing industry regarding the maximum acceptable levels of ammonia in fly ash. Therefore, practical guidelines for using ammoniated fly ash are needed in advance of the installation of many more SCR systems. The goal of this project was to develop practical guidelines for the handling and utilization of ammoniated fly ash in concrete, in order to prevent a decrease in the use of fly ash for this application. The objective was to determine the amount of ammonia that is released, over the short- and long-term, from concrete that contains ammoniated fly ash. The technical approach in this project was to measure the release of ammonia from mortar and concrete during mixing, placement, and curing. Work initially focused on laboratory mortar experiments to develop fundamental data on ammonia diffusion characteristics. Larger-scale laboratory experiments were then conducted to study the emission of ammonia from concrete containing ammoniated fly ash. The final phase comprised monitoring ammonia emissions from large concrete slabs. The data indicated that, on average, 15% of the initial ammonia was lost from concrete during 40 minutes of mixing, depending on the mix proportions and batch size. Long-term experiments indicated that ammonia diffusion from concrete was relatively slow, with greater than 50% of the initial ammonia content remaining in an 11cm thick concrete slab after 1 month. When placing concrete in an enclosed space, with negligible ventilation, it is recommended that the ammonia concentration in the concrete mix water should not exceed 110 mg NH{sub 3}/L, if the NIOSH exposure limit of 25 ppm in the air is not to be exceeded. If even a modicum of ventilation is present, then the ammonia concentration in the concrete water should be less than 170 mg/L. The maximum level of ammonia in the fly ash can then be calculated using these limits if the concrete mix proportions are known. In general, during the mixing and placement of ammonia-laden concrete, no safety concerns were encountered. The only location where the ammonia concentration attained high levels (i.e. > 25 ppm in the air) was within the concrete mixing drum.

Robert F. Rathbone; Thomas L. Robl

2002-10-30T23:59:59.000Z

49

Ammonia Process by Pressure Swing Adsorption  

SciTech Connect

The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

Dr Felix Jegede

2010-12-27T23:59:59.000Z

50

DOE - Office of Legacy Management -- R Brew Co - NH 01  

NLE Websites -- All DOE Office Websites (Extended Search)

R Brew Co - NH 01 R Brew Co - NH 01 FUSRAP Considered Sites Site: R. BREW CO. (NH.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Concord , New Hampshire NH.01-1 Evaluation Year: 1994 NH.01-2 Site Operations: Conducted vacuum furnace tests using uranium and copper billets. NH.01-1 NH.01-3 Site Disposition: Eliminated - Potential for contamination remote NH.01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NH.01-1 NH.01-3 Radiological Survey(s): Yes - radiological monitoring during operations NH.01-3 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to R. BREW CO. NH.01-1 - Memorandum/Checklist; Landis to File; Subject: R. Brew

51

Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames  

Science Conference Proceedings (OSTI)

This paper reports on a combined experimental and modeling investigation of NOx formation in nitrogen-diluted laminar methane diffusion flames seeded with ammonia. The methane-ammonia mixture is a surrogate for biomass fuels which contain significant fuel-bound nitrogen. The experiments use flue-gas sampling to measure the concentration of stable species in the exhaust gas, including NO, O2, CO, and CO2. The computations evolve a two-dimensional low Mach number model using a solution-adaptive projection algorithm to capture fine-scale features of the flame. The model includes detailed thermodynamics and chemical kinetics, differential diffusion, buoyancy, and radiative losses. The model shows good agreement with the measurements over the full range of experimental NH3 seeding amounts. As more NH3 is added, a greater percentage is converted to N2 rather than to NO. The simulation results are further analyzed to trace the changes in NO formation mechanisms with increasing amounts of ammonia in the fuel.

Sullivan, Neal; Jensen, Anker; Glarborg, Peter; Day, Marcus S.; Grcar, Joseph F.; Bell, John B.; Pope, Christopher J.; Kee, Robert J.

2002-01-07T23:59:59.000Z

52

Method for Forming Ammonia - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Then, the reaction with the metal nitride particles reacts with water to generate ammonia and an oxide/hydro-oxide byproduct.

53

Co NMR Study of the Co States in Superconducting and Anhydrous Cobaltates I. R. Mukhamedshin,1,* H. Alloul,1,  

E-Print Network (OSTI)

59 Co NMR Study of the Co States in Superconducting and Anhydrous Cobaltates I. R. Mukhamedshin,1-sur-Yvette, France (Received 11 February 2005; published 20 June 2005) 59Co NMR spectra in oriented powders of Na0 state with identical T independent NMR shift tensor. These phases differ markedly from Na0:7CoO2

Paris-Sud 11, Université de

54

Regeneration of ammonia borane from polyborazylene  

SciTech Connect

Method of producing ammonia borane, comprising providing a reagent comprising a dehydrogenated material in a suitable solvent; and combining the reagent with a reducing agent comprising hydrazine, a hydrazine derivative, or combinations thereof, in a reaction which produces a mixture comprising ammonia borane.

Sutton, Andrew; Gordon, John C; Ott, Kevin C; Burrell, Anthony K

2013-02-05T23:59:59.000Z

55

Computational fluid dynamics study on the decomposition of ammonia in a selective porous membrane - article no. 42  

SciTech Connect

The development of alternative technologies for the removal of gas pollutants is an important aspect for the environmental friendliness of energy production. During coal gasification, N{sub 2} contained in coal is converted to NH{sub 3} and, as much as 50% of the ammonia in the fuel gas can be converted to nitrogen oxides (NOx). At these conditions, decomposition seems to be the only applicable solution for the removal of NH{sub 3}. The application of a high temperature catalytic membrane reactor process appears to offer an efficient and cost effective method of removing the NH{sub 3} from coal gasification gas streams. The present work examines the operation of such a selective membrane, used for the decomposition of NH{sub 3}, under a 2-D axissymetric CFD approach where the flow field, the chemical reactions and the selective porous membrane behavior are being modeled and computed. The main target of this effort was to obtain a more detailed view of the flow field and to investigate the decomposition of ammonia in comparison with a simpler 1-D modeling approach and, thus, to evaluate the advantages and disadvantages of each method.

Athanasios Sideridis; Dimitrios Koutsonikolas; Dimitrios Missirlis [Aristotle University of Thessaloniki (Greece)

2008-07-01T23:59:59.000Z

56

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties Chapter 4 Effects of Tempering on Physical Properties of Shortenings Based on BinaryBlends of Palm Oil & Anhydrous Milk Fat During Storage Health Nutrition Biochemistry eChapters Health - Nu

57

Growth of Crystalline Polyaminoborane through Catalytic Dehydrogenation of Ammonia Borane on FeB Nanoalloy  

DOE Green Energy (OSTI)

Tremendous effort has been devoted to the study of complex and chemical hydrides for hydrogen storage in the past decade[1, 2]. Ammonia Borane (NH3BH3, AB) with a hydrogen content of 19.6 wt % has received significant attention[3-5]. Methods to improve the kinetics of the step-wise dehydrogenation of AB are diverse including the uses of mesoporous frameworks[6], catalysts[7-16], and additives[17]. It was reported that when dissolving in organic solvents AB released hydrogen readily in the presence of transition metal catalysts through the formation of M???HBH2NH3 complex (where M is Ir, Ru, or Ni etc.)[8-10]; Lewis or Brønsted acids, on the other hand, react with AB in solution to form the initiating species (BH2NH3)+[11], which may have the similar function as the [BH2(NH3)2]+BH4- (DADB) in the dehydrogenation of solid AB[17, 18]. However, comparatively little study has been reported on the catalytic dehydrogenation of AB in solid form. Other important but less investigated aspects in the solid-state reaction are the characterizations of functional catalytic species and products from the step-wise dehydrogenation.

He, Teng; Wang, Junhu; Wu, Guotao; Kim, Hyun Jeong; Proffen, Thomas E.; Wu, Anan; Li, Wen; Liu, Tao; Xiong, Zhitao; Wu, Chengzhang; Chu, Hailiang; Guo, Jianping; Autrey, Thomas; Zhang, Tao; Chen, Ping

2010-11-15T23:59:59.000Z

58

Process for reducing aqueous nitrate to ammonia  

DOE Patents (OSTI)

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

Mattus, Alfred J. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

59

Process for reducing aqueous nitrate to ammonia  

DOE Patents (OSTI)

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

Mattus, A.J.

1993-11-30T23:59:59.000Z

60

Estimating Ammonia Emissions from Stationary Power Plants  

Science Conference Proceedings (OSTI)

This report provides a methodology that can be used to estimate ammonia releases from fossil fuel-fired, electrical power generation facilities for the purpose of reporting under the U.S. Environmental Protection Agencys Toxic Release Inventory (TRI) program.

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based and pillared interlayer clay-based catalysts  

E-Print Network (OSTI)

The selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based (V2O5-WO3/TiO2) and pillared interlayer clay-based (V2O5/Ti-PILC) monolithic honeycomb catalysts using a laboratory laminar-flow reactor was investigated. The experiments used a number of gas compositions to simulate different combustion gases. A Fourier transform infrared (FTIR) spectrometer was used to determine the concentrations of the product species. The major products were nitric oxide (NO), ammonia (NH3), nitrous oxide (N2O), and nitrogen dioxide (NO2). The aim was to delineate the effect of various parameters including reaction temperature, oxygen concentration, NH3-to-NO ratio, space velocity, heating area, catalyst arrangement, and vanadium coating on the removal of nitric oxide. The investigation showed that the change of the parameters significantly affected the removals of NO and NH3 species, the residual NH3 concentration (or NH3 slip), the temperature of the maximum NO reduction, and the temperature of complete NH3 conversion. The reaction temperature was increased from the ambient temperature (25°C) to 450 °C. For both catalysts, high NO and NH3 removals were obtained in the presence of a small amount of oxygen, but no significant influence was observed from 0.1 to 3.0% O2. An increase in NH3-to-NO ratio increased NO reduction but decreased NH3 conversions. For V2O5-WO3/TiO2, the decrease of space velocity increased NO and NH3 removals and broadened the active temperature window (based on NO > 88% and NH3 > 87%) about 50°C. An increase in heating area decreased the reaction temperature of the maximum NO reduction from 350 to 300°C, and caused the active reaction temperature window (between 250 and 400°C) to shift toward 50°C lower reaction temperatures (between 200 and 350°C). The change of catalyst arrangements resulted slight improvement for NO and NH3 removals, therefore, the change might contribute to more gas removals. The catalyst with extra vanadium coating showed higher NO reductions and NH3 conversions than the catalyst without the extra vanadium coating.

Oh, Hyuk Jin

2006-05-01T23:59:59.000Z

62

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents (OSTI)

A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

Phillips, Benjamin A. (Benton Harbor, MI); Whitlow, Eugene P. (St. Joseph, MI)

1998-09-22T23:59:59.000Z

63

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents (OSTI)

A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

Phillips, B.A.; Whitlow, E.P.

1998-09-22T23:59:59.000Z

64

NH House Committee_April27 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Mercury Control Technology R&D Program for Coal-Fired Boilers Working Session of the New Hampshire House Science, Technology, & Energy Committee April 26, 2005 Concord, New Hampshire Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory NH House Committee_April 2005 Mercury Control Technology Field Testing Program Performance/Cost Objectives * Have technologies ready for commercial demonstration by 2007 for all coals * Reduce "uncontrolled" Hg emissions by 50-70% * Reduce cost by 25-50% compared to baseline cost estimates Baseline Costs: $50,000 - $70,000 / lb Hg Removed 2000 Year Cost NH House Committee_April 2005 Stages of Mercury Control Technology Development DOE RD&D Model Lab/Bench/Pilot-Scale Testing Field Testing

65

Ground-state ammonia and water in absorption towards Sgr B2  

E-Print Network (OSTI)

We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water...

Wirström, E S; Black, J H; Hjalmarson, Å; Larsson, B; Olofsson, A O H; Encrenaz, P J; Falgarone, E; Frisk, U; Olberg, M; Sandqvist, Aa

2010-01-01T23:59:59.000Z

66

Energy Efficient Operation of Ammonia Refrigeration Systems  

SciTech Connect

Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

Mohammed, Abdul Qayyum [University of Dayton, Ohio; Wenning, Thomas J [ORNL; Sever, Franc [University of Dayton, Ohio; Kissock, Professor Kelly [University of Dayton, Ohio

2013-01-01T23:59:59.000Z

67

Materials for Hydrogen Storage: Structure and Dynamics of Borane Ammonia Complex  

DOE Green Energy (OSTI)

The activation energies for rotations in low temperature orthorhombic ammonia borane were analyzed and characterized in terms of electronic structure theory. The perdeuterated, 11B- enriched ammonia borane 11BD3ND3 sample was synthesized and the structure was refined from neutron powder diffraction data at 175 K. This temperature has been chosen as median of the range of previously reported NMR measurements of these rotations. A representative molecular cluster model was assembled from the refined geometry and the activation energies were calculated and characterized by analysis of the environmental factors that control the rotational dynamics. The barrier for independent NH3 rotation, Ea = 12.7 kJ/mol, largely depends on the molecular conformational torsion in the solid state geometry. The barrier for independent BH3 rotation, Ea = 38.3 kJ/mol, results from the summation of the effect of molecular torsion and large repulsive intermolecular hydrogen-hydrogen interactions. However, a barrier of Ea = 31.1 kJ/mol was calculated for rotation with preserved molecular conformation. Analysis of the barrier heights and the corresponding rotational pathways shows that rotation of the BH3 group involves strongly correlated rotation of the NH3 end of the molecule. This observation suggests that the barrier from previously reported measurement of BH3 rotation, corresponds to H3B—NH3 correlated rotation. Support for this work by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences Division is gratefully acknowledged. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Parvanov, Venci M.; Schenter, Gregory K.; Hess, Nancy J.; Daemen, Luke L.; Hartl, Monika A.; Stowe, Ashley C.; Camaioni, Donald M.; Autrey, Thomas

2008-08-04T23:59:59.000Z

68

Ammonia Results Review for Retained Gas Sampling  

SciTech Connect

This report was prepared as part of a task supporting the deployment of the retained gas sampler (RGS) system in Flammable Gas Watch List Tanks. The emphasis of this report is on presenting supplemental information about the ammonia measurements resulting from retained gas sampling of Tanks 241-AW-101, A-101, AN-105, AN-104, AN-103, U-103, S-106, BY-101, BY-109, SX-106, AX-101, S-102, S-111, U-109, and SY-101. This information provides a better understanding of the accuracy of past RGS ammonia measurements, which will assist in determining flammable and toxicological hazards.

Mahoney, Lenna A.

2000-09-20T23:59:59.000Z

69

Very Large Array Observations of Ammonia in Infrared-Dark Clouds II: Internal Kinematics  

E-Print Network (OSTI)

Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope (GBT) and Very Large Array (VLA) maps of ammonia (NH3) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH3 emission are not high velocity outflows but rather moderate (few km/s) increases in the line width that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These line width enhancements could be the result of infall or (hidden in NH3 emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We co...

Ragan, Sarah E; Bergin, Edwin A; Wilner, David

2012-01-01T23:59:59.000Z

70

Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst  

SciTech Connect

Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

Auvray, Xavier P [Chalmers University of Technology, Sweden; Partridge Jr, William P [ORNL; Choi, Jae-Soon [ORNL; Pihl, Josh A [ORNL; Yezerets, Alex [Cummins, Inc; Kamasamudram, Krishna [Cummins, Inc; Currier, Neal [Cummins, Inc; Olsson, Louise [Chalmers University of Technology, Sweden

2012-01-01T23:59:59.000Z

71

Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters  

Science Conference Proceedings (OSTI)

The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH{sub 2}, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH{sub 2} signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H{sub 2}O and D{sub 2}O, the only spectral feature was in the range of the free OH or free OD. From the absence of SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H{sub 2} van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

Ferguson, Michael James

2005-12-15T23:59:59.000Z

72

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

73

Removal of ammonia from tarry water using a tubular furnace  

SciTech Connect

An ammonia-processing system without the use of live steam from OAO Alchevskkoks plant's supply network is considered. Steam obtained from the wastewater that leaves the ammonia column is used to process the excess tarry water, with the release of volatile ammonia.

V.V. Grabko; V.A. Kofanova; V.M. Li; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

74

PREPARATION OF ANHYDROUS F-18 FLUORIDE, T. Tewson. Journal of Labelled Compounds and Radiopharmaceuticals S165; 52, Supplement 1 2009  

SciTech Connect

The original specific aims of the grant where cut back considerably as the study section reduced both the time and the budget for the project. The objective of the grant was to show that fluorine-18 fluoride could be prepared completely anhydrous and thus substantially more reactive than conventionally dried fluoride using the method of Sun and DiMagno. This method involved using conventionally dried fluoride to prepare an aromatic fluoride in which the aromatic ring is substituted with electron withdrawing groups. The aryl fluoride is then dried and purified and the fluoride is displaced with an anhydrous nucleophile. Using fluorine-19 and macroscopic scale reactions the reactions work well and give anhydrous fluoride salts that are both more reactive and more selective in their reactions than conventionally dried fluoride. The original substrate chosen for the reaction was bromopentacyanobenzene (1). This compound proved to be easy to make but very hard to purify. As an alternative hexabromobenzene, which is commercially available in high purity, was tried. This reacted cleanly with conventionally dried F-18 fluoride in acetonitrile to give [{sup 18}F]-fluoropentabromobenzene (2), which could be dried by passage of the solution over alumina, which also removed any unreacted fluoride. The fluorine-18 fluoride could be liberated from (2) by displacement with an anhydrous nucleophilic tetra-alkylammonium salt but the anion had to be chosen with considerable care. The reaction is potentially reversible especially as, on the no carrier added scale, there is inevitably an excess of hexabromobenzene and so the displacing nucleophile is chosen to deactivate the aromatic compound to further nucleophilic displacement reactions. To this end tetrabutylammonium azide and tetrabutylammonium phenolate have been tried. Both work but the phenolate is probably the better choice. The F-18 fluoride produced by this process is substantially more reactive than conventionally dried fluoride. A solution of the 3'-anhydrothymidine-5-benzoate (3) was added to the fluoride solution and 30% of the fluoride was incorporated in less than 3 minutes at room temperature were as conventionally dried fluoride requires 10 minutes at 160 C and gives {approx}10% incorporation. These results are encouraging in that they show that the objective of truly anhydrous fluoride is worth pursuing but the problem is that you end up with too much 'stuff' in the solution. Four to five milligrams of hexabromobenzene are used for the initial fluorination reaction and enough of the tetra-alkylammonium salt has to be added to react with a substantial number of those bromides. No attempt has been made to optimize these amounts but there is clearly a lot of material in the solution before the final substrate is added. To avoid these difficulties experiments involving a different, low boiling carrier of the fluoride which can be distilled from the initial fluorination mixture have been tried. Phenyltrifluoromethane sulfonate reacts with fluoride to give trifluoromethane sulfonyl fluoride which boils at -20 C as shown. This reaction works with conventionally dried fluorine-18 fluoride and the no carrier added trifluoromethane sulphonyl fluoride distills out of the reaction as it forms. The choice of nucleophile to react it with to liberate the fluoride is limited and the obvious choice is tetrabutylammonium azide as the resulting trifluoromethane sulfonyl azide is unreactive. We have shown that this works in principle but the experimental details have not been explored.

Tewson, T.

2009-07-01T23:59:59.000Z

75

Ammonia release method for depositing metal oxides  

DOE Patents (OSTI)

A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

Silver, G.L.; Martin, F.S.

1993-12-31T23:59:59.000Z

76

Radiation chemistry in ammonia-water ices  

SciTech Connect

We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H{sub 2}, N{sub 2}, NO, and N{sub 2}O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete ({approx}97% destroyed) after a fluence of 10{sup 16} ions/cm{sup 2}. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N{sub 2} and H{sub 2}, which are seen to be ejected from the ice at all temperatures.

Loeffler, M. J. [Astrochemistry Laboratory, NASA GSFC, Code 691, Greenbelt, Maryland 20775 (United States); Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Raut, U.; Baragiola, R. A. [Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2010-02-07T23:59:59.000Z

77

AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT  

SciTech Connect

The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar{reg_sign} L into Tank 50. Waste Solidification-Engineering requested that the Savannah River National Laboratory (SRNL) perform testing to characterize the release of ammonia in curing saltstone at 95 C. The test temperature represents the maximum allowable temperature in the Saltstone Disposal Facility (SDF). Ammonia may be present in the salt solution and premix materials, or may be produced by chemical reactions when the premix and salt solution are combined. A final report (SRNS-STI-2008-00120, Rev. 0) will be issued that will cover in more depth the information presented in this report.

Zamecnik, J; Alex Cozzi, A

2008-09-26T23:59:59.000Z

78

Cerebral extraction of N-13 ammonia: its dependence on cerebral blood flow and capillary permeability, surface area product. [Dogs; monkeys  

SciTech Connect

/sup 13/N-labeled ammonia was used to investigate: (1) the cerebral extraction and clearance of ammonia; (2) the mechanicsm by which capillaries accommodate changes in cerebral blood flow (CBF); and (3) its use for the measure of CBF. This was investigated by measuring the single pass extraction of /sup 13/NH/sub 3/ in rhesus monkeys during P/sub a/CO/sub 2/ induced changes in CBF, and with dog studies using in vitro tissue counting techniques to examine /sup 13/NH/sub 3/ extraction in gray and white matter, mixed tissue, and cerebellum during variations in CBF produced by combinations of embolization, local brain compression, and changes in P/sub a/CO/sub 2/. The single pass extraction fraction of /sup 13/NH/sub 3/ varied from about 70 to 20% over a CBF range of 12 to 140cc/min/100gms. Capillary permeability-surface area product (PS) estimates from this data and the dog experiments show PS increasing with CBF. The magnitude and rate of increase in PS with CBF was highest in gray matter > mixed tissue > white matter. Tissue extraction of /sup 13/NH/sub 3/ vs CBF relationship was best described by a unidirectional transport model in which CBF increases by both recruitment of capillaries and by increases of blood velocity in open capillaries. Glutamine synthetase, which incorporates /sup 13/NH/sub 3/ into glutamine, appears to be anatomically located in astrocytes in general and specifically in the astrocytic pericapillary end-feet that are in direct contact with gray and white matter capillaries. The net /sup 13/NH/sub 3/ extraction subsequent to an i.v. injection increases nonlinearly with CBF. Doubling or halving basal CBF produced from 40 to 50% changes in the /sup 13/N tissue concentrations with further increases in CBF associated with progressively smaller changes in /sup 13/N concentrations. /sup 13/NH/sub 3/ appears to be a good tracer for the detection of cerebral ischemia with positron tomography but exhibits a poor response at high values of CBF.

Phelps, M.E.; Huang, S.C.; Kuhl, D.E.; Hoffman, E.J.; Slin, C.

1979-01-01T23:59:59.000Z

79

,"Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

80

In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide  

SciTech Connect

Reactions involving scCO2 and a calcium saturated dioctahedral smectite (Ca-STX-1) were examined by in situ high-pressure x-ray diffraction over a range of temperatures (50° to 100°C) and pressures (90, 125, and 180 bar) relevant to long term geologic storage of CO2. Exposure of Ca-STX-1 containing one water of hydration (1W) to anhydrous scCO2 at 50°C and 90 bar produced an immediate increase of ~0.8 Å in the d001 basal reflection that was sustained for the length of the experiment (~44 hours). Higher ordered basal reflections displayed similar shifts. Following depressurization, positions of basal reflections and FWHM values (d001) returned to initial values, with no measurable modification to the clay structure or water content. Similar results were obtained for tests conducted at 50°C and higher pressures (125 and 180 bar). Exposure of Ca-STX-1 containing two waters of hydration (2W) to scCO2 resulted in a decrease in the d001 reflection from 14.48 Å to 12.52 Å, after pressurization, indicating a partial loss of interlayer water. In addition, the hydration state of the clay became more homogeneous during contact with anhydrous scCO2 and after depressurization. In the presence of scCO2 and water, the clay achieved a 3W hydration state, based on a d001 spacing of 18.8 Å. In contrast to scCO2, comparable testing with N2 gas indicated trivial changes in the d001 series regardless of hydration state (1W or 2W). In the presence of free water and N2, the basal spacing for the Ca-STX-1 expanded slightly, but remained in the 2W hydration state. These experiments indicate that scCO2 can intercalate hydrated clays, where the 1W hydrate state is stable when exposed to anhydrous scCO2 under conditions proposed for geologic storage of CO2. Consequently, clays can act as secondary CO2 traps where potential collapse or expansion of the interlayer spacing depends on the initial hydration state of the clay and scCO2.

Schaef, Herbert T.; Ilton, Eugene S.; Qafoku, Odeta; Martin, Paul F.; Felmy, Andrew R.; Rosso, Kevin M.

2012-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Small-scale costs of hydrogen derived from ammonia. [As ammonia  

SciTech Connect

A systems study was made to assess the economic prospects for using purchased industrial ammonia as a hydrogen distribution and storage medium for users requiring 33 to 330 million std ft/sup 3/ per year (MSCFY) of hydrogen (or 0.1 to 1.0 MSCFD) at a plant capacity factor of 0.9. Projected costs to the end user were determined for the dissociated ammonia product (75 vol % hydrogen, 25 vol % nitrogen), and for ultra-high-purity hydrogen (99.999%) obtained by separation of the nitrogen. Costs were also projected for hydrogen produced by steam-reforming of natural gas, for electrolytic hydrogen, and for purchased (merchant) liquid hydrogen. The costs of ammonia and its hydrogen, and liquid hydrogen made by ocean thermal energy conversion (OTEC), are also listed for comparison. The latter costs from a recent study were updated to include more realistic (higher) hydrogen purification costs. All of the costs, expressed as 1980 $/MBTU in 1990, were obtained for two sets of forecast energy prices on the basis that advanced technology electrolyzers and OTEC products would be available in 1990. Results of the analysis showed that merchant liquid hydrogen was substantially higher in cost than all of the other options. Although hydrogen derived from industrial ammonia was significantly higher in cost than electrolytic hydrogen or hydrogen derived from OTEC ammonia, it can be produced using state-of-the-art technology. Possible reductions in the total cost of obtaining hydrogen via ammonia could make it lower in cost than electrolytic hydrogen. Hydrogen produced from natural gas was lowest in cost, among the land-based sources, for plant sizes exceeding 100 MSCFY. Other comparisons are provided, including the cost of ammonia made from coal. The criteria and methodology applied in the study are described. Uses of the product hydrogen are suggested along with recommendations for future work.

Strickland, G.

1981-10-01T23:59:59.000Z

82

Efficient regeneration of partially spent ammonia borane fuel  

DOE Green Energy (OSTI)

A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H{sub 3}B-NH{sub 3}, AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH{sub 4} as a H{sub 2} storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps.

Davis, Benjamin Lee [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Stephens, Frances [Los Alamos National Laboratory; Dixon, David A [UNIV OF ALABAMA; Matus, Myrna H [UNIV OF ALABAMA

2008-01-01T23:59:59.000Z

83

L1157-B1: Water and ammonia as diagnostics of shock temperature  

E-Print Network (OSTI)

We investigate the origin and nature of the profiles of water and ammonia observ ed toward the L1157-B1 clump as part of the HIFI CHESS survey (Ceccarelli et al. 2010) using a new code coupling a gas-grain chemical model with a parametric shock model. Fir st results from the unbiased survey (Lefloch et al. 2010, Codella et al. 2010) reveal different molecular components at different excitation conditions coexisting in the B1 bow shock structure, with NH$_3$, H$_2$CO and CH$_3$OH emitting only at relatively low outflow velocities whereas H$_2$O shows bright emission at high velocities. Our model suggests that these differences are purely chemical and can be explained by the presence of a C-type shock whose maximum temperature must be close to 4000 K along the B1 clump.

Viti, S; Yates, J A; Codella, C; Vasta, M; Caselli, P; Lefloch, B; Ceccarelli, C

2011-01-01T23:59:59.000Z

84

L1157-B1: WATER AND AMMONIA AS DIAGNOSTICS OF SHOCK TEMPERATURE  

Science Conference Proceedings (OSTI)

We investigate the origin and nature of the profiles of water and ammonia observed toward the L1157-B1 clump as part of the HIFI CHESS survey using a new code coupling a gas-grain chemical model with a parametric shock model. First results from the unbiased survey reveal different molecular components at different excitation conditions coexisting in the B1 bow shock structure, with NH{sub 3}, H{sub 2}CO, and CH{sub 3}OH emitting only at relatively low outflow velocities whereas H{sub 2}O shows bright emission at high velocities. Our model suggests that these differences are purely chemical and can be explained by the presence of a C-type shock whose maximum temperature must be close to 4000 K along the B1 clump.

Viti, S.; Yates, J. A. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Jimenez-Serra, I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Codella, C.; Vasta, M.; Caselli, P. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze (Italy); Lefloch, B.; Ceccarelli, C., E-mail: sv@star.ucl.ac.uk [Laboratoire d'astrophysique de Grenoble, UMR 5571-CNRS, Universite Joseph Fourier, Grenoble (France)

2011-10-10T23:59:59.000Z

85

COMPACT QEPAS SENSOR FOR TRACE METHANE AND AMMONIA DETECTION IN IMPURE HYDROGEN  

DOE Green Energy (OSTI)

A compact two-gas sensor based on quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for trace methane and ammonia quantification in impure hydrogen. The sensor is equipped with a micro-resonator to confine the sound wave and enhance QEPAS signal. The normalized noise-equivalent absorption coefficients (1{sigma}) of 2.45 x 10{sup -8} cm{sup -1}W/{radical}Hz and 9.1 x 10{sup -9} cm{sup -1}W/{radical}Hz for CH{sub 4} detection at 200 Torr and NH{sub 3} detection at 50 Torr were demonstrated with the QEPAS sensor configuration, respectively. The influence of water vapor on the CH{sub 4} channel was also investigated.

Wright, J; Ferguson, B; Peters, B; Mcwhorter, S

2011-11-02T23:59:59.000Z

86

Thermodynamic representations of ammonia and isobutane  

DOE Green Energy (OSTI)

Tables of the thermodynamic properties of ammonia and isobutane are presented for the superheated vapor and the saturated liquid and vapor states. The properties were calculated using appropriate analytical pressure-volume-temperature (P-V-T) representations for the fluids in the regions described. The tables cover the approximate range of values of reduced temperatures up to 1.5 and reduced pressure up to 5.

Milora, S. L.; Combs, S. K.

1977-05-01T23:59:59.000Z

87

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

88

Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based honeycomb monolith catalysts (V-Ti-W) was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3 in presence of oxygen. The objective is to obtain the expression that would predict the conversion performance of the catalysts for different values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described. Heat transfer based and chemical kinetics based SCR process models are discussed and widely used rate order based model are reviewed. Based on the experimental data, regression analysis was performed that gives an expression for predicting the SCR rate for the complete temperature range and the rate order with respect to inlet oxygen and ammonia concentration. The average activation energy for the SCR process was calculated and optimum operating conditions were determined for each of the catalyst. The applicable operating range for the catalyst depends on the NO conversion as well as on the ammonia slip and the N2O and NO2 emission. The regression analysis was repeated for the applicable range and an expression was obtained that can be used to estimate the catalyst performance. For the Cu-ZSM-5, the best performance was observed for 400oC, 660 ppm inlet ammonia concentration and 0.1% inlet oxygen concentration. For the V based honeycomb monolith catalyst, the best performance was observed for 300oC, 264 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti based PLIC catalyst, the best performance was observed for 350oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti-W based honeycomb monolith catalyst, the best performance was observed for 300oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. The conversion performance of all of these catalysts is satisfactory for the industrial application. At the operating conditions listed above, the N2O emission is less than 20 ppm and the NO2 emission is less than 10 ppm. The results were validated by comparing the findings with the similar work by other research groups. The mechanism of SCR process is discussed for each of the catalyst. The probable reactions are listed and adsorption and desorption process are studied. The various mechanisms proposed by the researchers are discussed briefly. It is concluded that V-Ti-W and Cu-ZSM-5 catalyst are very promising for SCR of NOx. The expressions can be used to estimate the conversion performance and can be utilized for optimal design and operation. The expressions relate the SCR rate to the input parameters such as temperature and inlet oxygen and ammonia concentration hence by controlling these parameters desired NOx reduction can be achieved with minimal cost and emission.

Sharma, Giriraj

2004-08-01T23:59:59.000Z

89

Decomposition of NH3BH3 at sub-ambient pressures: A combined thermogravimetry-differential thermal analysis-mass spectrometry study  

DOE Green Energy (OSTI)

We report a systematic study of the isothermal decomposition of ammonia borane, NH3BH3, at 363 K as a function of argon pressure ranging between 50 and 1040 mbar using thermogravimetry and differential thermal analysis coupled with mass analysis of the volatile species. During thermal aging at 363 K, evolution of hydrogen, aminoborane and borazine is monitored, with the relative mass loss strongly depending on the pressure in the reaction chamber. Furthermore, the induction period required for hydrogen release at 363 K decreases with decreasing pressure.

Palumbo, Oriele; Paolone, Annalisa; Rispoli, Pasquale; Cantelli, Rosario; Autrey, Thomas

2010-03-15T23:59:59.000Z

90

NH Clean Power Act (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Hampshire Program Type Environmental Regulations Provider NH Department of Environmental Services The Act calls for annual reductions of multiple pollutants, including SO2, Nox, CO2, and mercury. The Act calls for an 87% reduction in SO2 emissions and a 70% reduction in Nox emissions from 1999 levels. CO2 emissions are to be reduced to 1990 levels by the end of 2006. Act is implemented under NH Rules Env-A 2900. This act applies specifically to three existing fossil

91

New Lignin Separation Method from Ammonia Solutions - Energy ...  

Bio-ethanol plants typically use ammonia to separate lignin from the cellulosic fibers for a more efficient operation. Lignin itself is a byproduct with a variety ...

92

Potential of High-Throughput Experimentation with Ammonia Borane...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials Jonathan L. Male Pacific Northwest National Laboratory June 26, 2006 US Department of Energy...

93

Trends in on-road vehicle emissions of ammonia  

SciTech Connect

Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

2008-07-15T23:59:59.000Z

94

AMMONIA-FREE NOx CONTROL SYSTEM  

DOE Green Energy (OSTI)

This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

2006-06-01T23:59:59.000Z

95

Characterization of Ammonia Leaching from Coal Fly Ash  

Science Conference Proceedings (OSTI)

This interim report presents the results of a preliminary laboratory assessment of the leaching of ammonia from coal ashes that have been ammoniated by pollution control devices installed on power plants to reduce nitrogen oxide (NOx) emissions. This laboratory assessment project was designed to measure the leaching rates of ammonia from ashes in a disposal environment.

2001-11-30T23:59:59.000Z

96

Effects of gaseous NH{sub 3} and SO{sub 2} on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Influence of NH{sub 3} and SO{sub 2} on 2378-PCDD/F in flyash and flue gases was investigated. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 34-75% in the flyash. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 21-40% from the flue gases. Black-Right-Pointing-Pointer SO{sub 2} led to 99% PCDD and 93% PCDF reductions in the flyash. Black-Right-Pointing-Pointer SO{sub 2} led to 89% PCDD and 76% PCDF reductions in the flue gases. - Abstract: The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 Degree-Sign C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH{sub 3} or SO{sub 2} gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34-75% from the solid phase and by 21-40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42-75% and 24-57% respectively. The application of SO{sub 2} led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO{sub 2} reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60-86% and 72-82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated.

Hajizadeh, Yaghoub; Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

2012-07-15T23:59:59.000Z

97

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

S. Wu; Z. Fan; R. Herman

2004-03-31T23:59:59.000Z

98

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

Zhen Fan; Song Wu; Richard G. Herman

2004-06-30T23:59:59.000Z

99

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

NH NH (Redirected from PSNH) Jump to: navigation, search Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections

100

Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation  

SciTech Connect

A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y. [South China University of Technology, Ghangzhou (China). School of Chemical Engineering

2009-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst  

DOE Patents (OSTI)

A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

Matthews, Charles W. (Denver, CO)

1977-01-01T23:59:59.000Z

102

Influence of technological factors on statics of hydrogen sulfide absorption from coke-oven gas by the ammonia process  

SciTech Connect

The basic technological factors that determine the effectiveness of hydrogen sulfide absorption from coke-oven gas by the cyclic ammonia process are the initial H/sub 2/S content of the gas, the degree of purification, the absorption temperature and the NH/sub 3/ and CO/sub 2/ contents of the absorbent solution. The effects of these factors on the statics of hydrogen sulfide absorption are studied. The investigation is based on the phase-equilibrium distributions of components in the absorption-desorption gas-cleaning cycle. The mathematical model is presented which includes the solution of a system of chemical equilibrium equations for reactions in the solution, material balances, and electrical neutrality. 4 references, 5 figures, 1 table.

Nazarov, V.G.; Kamennykh, B.M.; Rus'yanov, N.D.

1983-01-01T23:59:59.000Z

103

Multi-component Removal in Flue Gas by Aqua Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

component Removal in Flue Gas by Aqua Ammonia component Removal in Flue Gas by Aqua Ammonia Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,255,842 entitled "Multi-component Removal in Flue Gas by Aqua Ammonia." This patent discloses a method for the removal of potential environmental-impacting compounds from flue gas streams. The method oxidizes some or all of the acid precursors such as sulfur dioxide (SO 2 ) and nitric oxides (NO x ) into sulfur trioxide and nitrogen dioxide, respectively. Following this step, the gas stream is then treated with aqua ammonia or ammonium hydroxide to capture the compounds via chemical absorption through acid-base or neutralization reactions where a fertilizer is formed.

104

Ammonia Emissions from Anaerobic Swine Lagoons: Model Development  

Science Conference Proceedings (OSTI)

Concentrated animal production may represent a significant source for ammonia emissions to the environment. Most concentrated animal production systems use anaerobic or liquid/slurry systems for wasteholding; thus, it is desirable to be able to ...

A. De Visscher; L. A. Harper; P. W. Westerman; Z. Liang; J. Arogo; R. R. Sharpe; O. Van Cleemput

2002-04-01T23:59:59.000Z

105

Atmospheric ammonia and particulate inorganic nitrogen over the United States  

E-Print Network (OSTI)

We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding ...

Heald, Colette L.

106

Reduction of Ammonia and Tar in Pressurized Biomass Gasification  

DOE Green Energy (OSTI)

The present paper intended to present the results of parametric study of the formation of ammonia and tar under pressurized gasification conditions. By the use of multivariate data analysis, the effects of operating parameters were determined and their influences could be quantified. In order to deal with cases in which high levels of ammonia and tar were produced, study of catalytic hot gas cleaning was performed, aiming to discuss the removal efficiency and test catalysts.

Wang, W.; Olofsson, G.

2002-09-19T23:59:59.000Z

107

Ammonia concentration modeling based on retained gas sampler data  

Science Conference Proceedings (OSTI)

The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

Terrones, G.; Palmer, B.J.; Cuta, J.M.

1997-09-01T23:59:59.000Z

108

Exhaust purification with on-board ammonia production  

DOE Patents (OSTI)

A method of ammonia production for a selective catalytic reduction system is provided. The method includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream my be converted into ammonia.

Robel, Wade J. (Peoria, IL); Driscoll, James Joshua (Dunlap, IL); Coleman, Gerald N. (Helpston, GB)

2010-10-12T23:59:59.000Z

109

Exhaust purification with on-board ammonia production  

DOE Patents (OSTI)

A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

Robel, Wade J. (Peoria, IL); Driscoll, James Joshua (Dunlap, IL); Coleman, Gerald N. (Peterborough, GB)

2008-05-13T23:59:59.000Z

110

Storage of molecular hydrogen in an ammonia borane compound at high pressure  

DOE Green Energy (OSTI)

We studied ammonia borane (AB), NH{sub 3}BH{sub 3}, in the presence of excess hydrogen (H{sub 2}) pressure and discovered a solid phase, AB(H{sub 2})x, where x {approx} 1.3-2. The new AB-H{sub 2} compound can store an estimated 8-12 wt % molecular H{sub 2} in addition to the chemically bonded H{sub 2} in AB. This phase formed slowly at 6.2 GPa, but the reaction rate could be enhanced by crushing the AB sample to increase its contact area with H{sub 2}. The compound has 2 Raman H{sub 2} vibron peaks from the absorbed H{sub 2} in this phase: one ({nu}{sub 1}) at frequency 70 cm{sup -1} below the free H{sub 2} vibron, and the other ({nu}{sub 2}) at higher frequency overlapping with the free H{sub 2} vibron at 6 GPa. The peaks shift linearly over the pressure interval of 6-16 GPa with average pressure coefficients of d{nu}{sub 1}/dP = 4 cm{sup -1}/GPa and d{nu}{sub 2}/dP = 6 cm{sup -1}/GPa. The formation of the compound is accompanied by changes in the N-H and B-H stretching Raman peaks resulting from the AB interactions with H{sub 2} which indicate the structural complexity and low symmetry of this phase. Storage of significant amounts of additional molecular H{sub 2} in AB increases the already high hydrogen content of AB, and may provide guidance for developing improved hydrogen storage materials.

Lin, Y.

2010-02-24T23:59:59.000Z

111

From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia  

E-Print Network (OSTI)

The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...

Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik

2003-01-01T23:59:59.000Z

112

Dynamic Modeling and Simulation Based Analysis of an Ammonia Borane (AB) Reactor System for Hydrogen Storage  

DOE Green Energy (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOE’s Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system which includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H2 burner and a radiator was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics. A new controller was developed and validated in simulation for a couple of H2 demand cases.

Devarakonda, Maruthi N.; Holladay, Jamelyn D.; Brooks, Kriston P.; Rassat, Scot D.; Herling, Darrell R.

2010-10-02T23:59:59.000Z

113

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

114

High-Resolution Observations in B1-IRS: ammonia, CCS and water masers  

E-Print Network (OSTI)

We present a study of the structure and dynamics of the star forming region B1-IRS (IRAS 03301+3057) using the properties of different molecules at high angular resolution (~4''). We have used VLA observations of NH3, CCS, and H2O masers at 1 cm. CCS emission shows three clumps around the central source, with a velocity gradient from red to blueshifted velocities towards the protostar, probably due to the interaction with outflowing material. Water maser emission is elongated in the same direction as a reflection nebula detected at 2micron by 2MASS, with the maser spots located in a structure of some hundreds of AU from the central source, possibly tracing a jet. We propose a new outflow model to explain all our observations, consisting of a molecular outflow near the plane of the sky. Ammonia emission is extended and anticorrelated with CCS. We have detected for the first time this anticorrelation at small scales (1400 AU) in a star forming region.

De Gregorio-Monsalvo, I; Gómez, J F; Kuiper, T B H; Torrelles, J M; Anglada, G

2004-01-01T23:59:59.000Z

115

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

Name Public Service Co of NH Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

116

Design and performance of an ammonia measurement system  

E-Print Network (OSTI)

Ammonia emissions from animal feeding operations (AFOs) have recently come under increased scrutiny. The US Environmental Protection Agency (EPA) has come under increased pressure from special interest groups to regulate ammonia. Regulation of ammonia is very difficult because every facility has different manure management practices. Different management practices lead to different emissions for every facility. Researchers have been tasked by industry to find best management practices to reduce emissions. The task cannot be completed without equipment that can efficiently and accurately compare emissions. To complete this task, a measurement system was developed and performance tested to measure ammonia. Performance tests included uncertainty analysis, system response, and adsorption kinetics. A measurement system was designed for measurement of gaseous emissions from ground level area sources (GLAS) in order to sample multiple receptors with a single sensor. This multiplexer may be used in both local and remote measurement systems to increase the sampling rate of gaseous emissions. The increased data collection capacity with the multiplexer allows for nearly three times as many samples to be taken in the same amount of time while using the same protocol for sampling. System response analysis was performed on an ammonia analyzer, a hydrogen sulfide analyzer, and tubing used with flux chamber measurement. System responses were measured and evaluated using transfer functions. The system responses for the analyzers were found to be first order with delay in auto mode. The tubing response was found to be a first order response with delay. Uncertainty analysis was performed on an ammonia sampling and analyzing system. The system included an analyzer, mass flow controllers, calibration gases, and analog outputs. The standard uncertainty was found to be 443 ppb when measuring a 16 ppm ammonia stream with a 20 ppm span. A laboratory study dealing with the adsorption kinetics of ammonia on a flux chamber was performed to determine if adsorption onto the chamber walls was significant. The study found that the adsorption would not significantly change the concentration of the output flow 30 minutes after a clean chamber was exposed to ammonia concentrations for concentrations above 2.5 ppm.

Boriack, Cale Nolan

2005-12-01T23:59:59.000Z

117

A mass transfer model of ammonia volatilisation from anaerobic digestate  

SciTech Connect

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

Whelan, M.J., E-mail: m.j.whelan@cranfield.ac.u [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Everitt, T.; Villa, R. [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

2010-10-15T23:59:59.000Z

118

Chemical pathways for the formation of ammonia in Hanford wastes  

SciTech Connect

This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

Stock, L.M.; Pederson, L.R.

1997-09-01T23:59:59.000Z

119

Ammonia-treated phosphate glasses useful for sealing to metals  

DOE Patents (OSTI)

A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

Brow, R.K.; Day, D.E.

1990-12-31T23:59:59.000Z

120

Chemical pathways for the formation of ammonia in Hanford wastes  

SciTech Connect

This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

Stock, L.M.; Pederson, L.R.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Frozen ammonia micropellet generator for Baseball II-T  

SciTech Connect

A ''startup'' plasma at the center of the Baseball II-T magnet was studied. This startup plasma will be used as a target for high energy neutral beams to achieve the required build-up. The target plasma will be created by irradiating a solid pellet with a laser beam. Although a deuterium pellet would be superior because of purity, the development of an ammonia pellet was undertaken because it requires a simpler technology. The ammonia target plasma is physically acceptable for the initial experiment. A frozen ammonia pellet, about 100 $mu$m in diameter, will be irradiated with 300-J CO$sub 2$ laser, to produce a density of about 10$sup 13$ cm$sup -3$ and about 1 kV temperature. (auth)

Denhoy, B.S.

1975-10-28T23:59:59.000Z

122

Thermodynamic properties of ammonia-water mixtures for power cycles  

SciTech Connect

Power cycles with ammonia-water mixtures as working fluids have been shown to reach higher thermal efficiencies than the traditional steam turbine (Rankine) cycle with water as the working fluid. Different correlations for the thermodynamic properties of ammonia-water mixtures have been used in studies of ammonia-water mixture cycles described in the literature. Four of these correlations are compared in this paper. The differences in thermal efficiencies for a bottoming Kalina cycle when these four property correlations are used are in the range 0.5 to 3.3%. The properties for saturated liquid and vapor according to three of the correlations and available experimental data are also compared at high pressures and temperatures [up to 20 MPa and 337 C (610 K)]. The difference in saturation temperature for the different correlations is up to 20%, and the difference in saturation enthalpy is as high as 100% when the pressure is 20 MPa.

Thorin, E. [Royal Inst. of Technology, Stockholm (Sweden)]|[Maelardalen Univ., Vaesteraas (Sweden). Dept. of Energy; Dejfors, C.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden)

1998-03-01T23:59:59.000Z

123

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

Science Conference Proceedings (OSTI)

In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded with ammonia in the fuel stream. We have performed numerical simulations with detailed chemistry as well as laser-induced fluorescence imaging measurements for a range of ammonia injection rates. For comparison with the experimental data, synthetic LIF images are calculated based on the numerical data accounting for temperature and fluorescence quenching effects. We demonstrate good agreement between measurements and computations. The LIF corrections inferred from the simulation are then used to calculate absolute NO mole fractions from the measured signal.The NO formation in both doped and undoped flames occurs in the flame sheet. In the undoped flame, four different mechanisms including thermal and prompt NO appear to contribute to NO formation. As the NH3 seeding level increases, fuel-NO becomes the dominant mechanism and N2 shifts from being a net reactant to being a net product. Nitric oxide in the undoped flame as well as in the core region of the doped flames are underpredicted by the model; we attribute this mainly to inaccuracies in the NO recycling chemistry on the fuel-rich side of the flame sheet.

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Bessler, Wolfgang G.; Schulz, Christof; Glarborg, Peter; Jensen, Anker D.

2001-12-14T23:59:59.000Z

124

Interaction of Lithium Hydride and Ammonia Borane in THF  

DOE Green Energy (OSTI)

The two-step reaction between LiH and NH3BH3 in THF leads to the production of more than 14 wt% of hydrogen at 40 °C.In the present study we investigate the reactivity of AB dissolved in tetrahydrofuran (THF) with a suspension of LiH and observe the formation of LiNH2BH3 and enhanced reaction kinetics with an interesting dependence on AB concentration.

Xiong, Zhitao; Chua, Yong Shen; Wu, Guotao; Xu, W. L.; Chen, Ping; Shaw, Wendy J.; Karkamkar, Abhijeet J.; Linehan, John C.; Smurthwaite, Tricia D.; Autrey, Thomas

2008-12-01T23:59:59.000Z

125

Using Zeolites Synthesized from Fly Ash to Reduce Ammonia Loss to the Environment  

Science Conference Proceedings (OSTI)

This interim report describes studies using zeolites synthesized from fly ash to reduce ammonia loss to the environment.

2002-02-19T23:59:59.000Z

126

I. Interaction of ammonia with single crystal rhodium catalysts. II. Hydrogen and nitrogen adsorption on a W(111) surface: a theoretical molecular orbital approach  

DOE Green Energy (OSTI)

Rates of ammonia decomposition on (110), (100), and (111) single crystal faces of rhodium were measured at 580 to 725/sup 0/K and 10/sup -3/ to 500 x 10/sup -3/ torr. The decomposition rates were proportional to P/sub NH/sub 3//sup/1/2/ and P/sub NH/sub 3// at low and high hydrogen pressures, respectively. The H/sub 2/ kinetic order varied from 0 (low P/sub H/sub 2//) to -1.0 (high P/sub H/). The rate was independent of N/sub 2/ pressure. NH/sub 3/ decomposes about 1.5 times faster than ND/sub 3/ on the (110) and (111) faces. Rates on the (110) surface are over 10 times as rapid as on the (111). LEED, Auger, and flash desorption experiments indicated that boron was a significant surface poison and that the Rh(110) surface was essentially nitrogen-free. A rate expression is derived from a model involving surface species Rh/sub 2/NH, RhH, and RhN on a nearly bare RH surface. The rate limiting process involves the concurrent dehydrogenation of Rh/sub 2/NH and desorption of N/sub 2/. A decreasing NH/sub 3/ order (< 1/2) at high P/sub NH/sub 3// and low T is due to buildup of surface intermediates. The relative bonding energies of hydrogen and nitrogen chemisorbed at three sites on a W(111) surface were obtained via the extended Hueckel molecular orbital theory. The preferred site for both H and N chemisorption was determined as the TOP position, i.e., a single coordination site on top of a protruding W atom. The W(111) surface was simulated by truncated arrays of seven tungsten atoms. The basis set for the calculations included the tungsten valence orbitals plus the filled 5p orbitals needed for repulsion at small internuclear distances. N adsorption in the three-fold holes available on the W(111) lattices used disrupted the W--W bonds sufficiently to cause the overall bond energy to be less than for the single coordination site. The dissymmetry between the three-fold lattices and the four-fold W d orbitals may also be a contributing factor.

Vavere, A.

1979-01-01T23:59:59.000Z

127

Evaluation of the potential for significant ammonia releases from Hanford waste tanks  

DOE Green Energy (OSTI)

Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release.

Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

1996-07-01T23:59:59.000Z

128

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

129

Novel Ash Beneficiation Processes for Managing Unburned Carbon and Ammonia  

Science Conference Proceedings (OSTI)

This report describes new fly ash beneficiation concepts for managing deleterious effects of unburned carbon and ammonia contamination associated with low nitrogen oxides (low-NOx) combustion systems. The report contains technical data, scientific discussion, and a description of ongoing development and scale-up activities.

2002-12-10T23:59:59.000Z

130

Developing ammonia based thermochemical energy storage for dish power plants  

E-Print Network (OSTI)

. There are three main solar thermal concentrator technologies; central receivers, parabolic troughs temperature in standard reactors. The possibility of operating the ammonia based system using trough- bolic troughs contribute the greatest share of installed capacity, with 354 MWe of natural gas assisted

131

EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER  

SciTech Connect

Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research Center (EERC) was contracted by MET and the U.S. Department of Energy (DOE) to evaluate the potential of a wet ESP for reducing SO{sub 3} emissions. The work consisted of pilot-scale tests using the EERC's slagging furnace system (SFS) to determine the effectiveness of a wet ESP to control SO{sub 3}/H{sub 2}SO{sub 4} aerosol emissions in conjunction with a dry ESP and MET's NH{sub 3}-based FGD. Because these compounds are in the form of fine particles, it is speculated that a relatively small, highly efficient wet ESP following the MET scrubber would remove these fine aerosol particles. The performance target for the wet ESP was a particulate mass collection efficiency of >90%; this level of performance would likely ensure a stack opacity of <10%.

Dennis L. Laudal

2002-04-01T23:59:59.000Z

132

Regeneration of ammonia borane spent fuel  

DOE Green Energy (OSTI)

A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one appealing material, ammonia borane (H{sub 3}N-BH{sub 3}, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H{sub 2} can be readily released in contrast to the loss of H{sub 2} from C{sub 2}H{sub 6} which is substantially endothermic. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H{sub 2} storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H{sub 2} released from AB and up to 2.5 equiv. of H{sub 2} can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene (PB) which can be obtained readily from the decomposition of borazine or from nickel carbene catalyst dehydrogenation. In this cycle, the PB is digested with benzenedithiol to yield two products which can both be converted to AB using Bu{sub 3}SnH and BU{sub 2}SnH{sub 2} as reductants. However, in a real world situation the process becomes more complicated for several reasons. Bu{sub 2}SnH{sub 2} is thermally unstable and therefore not viable in a process scale operation. This has led to the development of Bu{sub 3}SnH as the sole reductant although this requires an additional amine exchange step in order to facilitate the reduction to an amine-borane which can then be converted to AB. The tin by-products also need to be recycled in order to maximize the overall energy efficiency and therefore minimize the overall cost of the process. In addition, on an industrial scale, the mass of the tin reductant generates significant cost due to the manipulation of the relatively large quantities involved so reducing the mass at this stage would be of vast significance. We will discuss further developments made to the tin recycle component of the cycle (including methods to minimize tin usage) and investigate new methods of reduction of the digested products, primarily focusing on lighter reductants, including lighter analogs of Bu{sub 2}SnH{sub 2} and Bu{sub 3}SnH. These advances will have a significant impact on the cost of production and therefore the viability of AB as a fuel. Minimization of tin reagents and their recycle will contribute to reduction of the overall cost of AB regeneration and all stages of AB regeneration have been demonstrated.

Sutton, Andrew David [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

133

Method to Produce Highly Digestible, Pretreated ...  

Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, ...

134

Simulation of an ammonia plant accident using rigorous heterogeneous models: Effect of shift converters disturbances on the methanator  

Science Conference Proceedings (OSTI)

Disturbance introduced into the shift converters section of the ammonia production line may lead to problems in the ammonia production line which manifest themselves in other units of the production line. A real accident that took place in an ammonia ... Keywords: Accident, Ammonia, Catalytic reactors, Heterogeneous models, Modelling, Simulation

F. M. Alhabdan; S. S. E. H. Elnashaie

1995-02-01T23:59:59.000Z

135

Page 1 of 7 2013 NH 4-H HORSE QUIZ BOWL  

E-Print Network (OSTI)

at http://extension.unh.edu/4H/NH4-HHorseProject.htm or by sending an Excel document to Rhiannon.Beauregard

New Hampshire, University of

136

The Effect of Ammonia on Mercury Partitioning in Fly Ash  

Science Conference Proceedings (OSTI)

Management options and environmental assessments for fly ash are driven primarily by their physical and chemical characteristics. This report describes the results of a laboratory study on the leaching of mercury from several paired fly ash samples from facilities employing powdered activated carbon (PAC) injection for mercury control. While previous EPRI research has shown that mercury leaching from ash with PAC is negligible, it has also been found that ammonia complexes can increase the mobility of so...

2008-03-25T23:59:59.000Z

137

Adsorption analysis of ammonia in an aqueous solution  

SciTech Connect

An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

Arman, B.; Panchal, C.B.

1993-08-01T23:59:59.000Z

138

BLISTERING AND EXPLOSIVE DESORPTION OF IRRADIATED AMMONIA-WATER MIXTURES  

SciTech Connect

We present laboratory studies on the thermal evolution of a solid ammonia-water mixture after it has been irradiated at 20, 70, and 120 K. In samples irradiated at {<=}70 K, we observed fast outbursts that appear to indicate grain ejection and correlate well with the formation of micron-sized scattering centers. The occurrence of this phenomenon at the lower irradiation temperatures indicates that our results may be most relevant for understanding the release of gas and grains by comets and the surfaces of some of the colder icy satellites. We observe outgassing at temperatures below those where ice sublimates, which suggests that comets containing radiolyzed material may have outbursts farther from the Sun that those that are passive. In addition, the estimated size of the grains ejected from our sample is on the order of the size of E-ring particles, suggesting that our results give a plausible mechanism for how micron-sized grains could be formed from an icy surface. Finally, we propose that the presence of the {approx}4.5 {mu}m N{sub 2}O absorption band on an icy surface in outer space will serve to provide indirect evidence for radiation-processed ices that originally contained ammonia or nitrogen, which could be particularly useful since nitrogen is such a weak absorber in the infrared and ammonia is rapidly decomposed by radiolysis.

Loeffler, M. J.; Baragiola, R. A., E-mail: mark.loeffler@nasa.gov, E-mail: raul@virginia.edu [Laboratory for Atomic and Surface Physics, University of Virginia, Charlottesville, VA 29904 (United States)

2012-01-10T23:59:59.000Z

139

Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy  

SciTech Connect

The effects of NH{sub 3} flow, group III flux, and substrate growth temperature on indium incorporation and surface morphology have been investigated for bulk InGaN films grown by ammonia molecular beam epitaxy. The incorporation of unintentional impurity elements (H, C, O) in InGaN films was studied as a function of growth temperature for growth on polar (0001) GaN on sapphire templates, nonpolar (1010) bulk GaN, and semipolar (1122), (2021) bulk GaN substrates. Enhanced indium incorporation was observed on both (1010) and (2021) surfaces relative to c-plane, while reduced indium incorporation was observed on (1122) for co-loaded conditions. Indium incorporation was observed to increase with decreasing growth temperature for all planes, while being relatively unaffected by the group III flux rates for a 1:1 Ga:In ratio. Indium incorporation was found to increase at the expense of a decreased growth rate for higher ammonia flows; however, smooth surface morphology was consistently observed for growth on semipolar orientations. Increased concentrations of oxygen and hydrogen were observed on semipolar and nonpolar orientations with a clear trend of increased hydrogen incorporation with indium content.

Browne, David A.; Young, Erin C.; Lang, Jordan R.; Hurni, Christophe A.; Speck, James S. [Materials Department, University of California Santa Barbara, Santa Barbara, California 93106 (United States)

2012-07-15T23:59:59.000Z

140

Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus  

E-Print Network (OSTI)

Orcus is an intermediate-size 1000km-scale Kuiper Belt Object in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10m-telescope and the Gemini 8m-telescope . We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2\\mu m region. Both in the visible and near-infrared Orcus' spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH+4) and traces of ethane (C2 H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2\\mu m band(s) should ...

Delsanti, Audrey; Guilbert, Aurélie; Bauer, James; Yang, Bin; Meech, Karen J

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes  

E-Print Network (OSTI)

A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

Hanna, Brian S. (Brian Stewart)

2011-01-01T23:59:59.000Z

142

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed reactor system at Building 9212. Draft environmental assessment  

SciTech Connect

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is Iocated within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The current AHF supply and fluidized-bed reactor systems were designed and constructed more than 40 years ago. Because of their deteriorating condition, the corrosive nature of the materials processed, and the antiquated design philosophy upon which they are based, their long-term reliability cannot be assured. The current AHF supply system cannot mitigate an accidental release of AHF and vents fugitive AHF directly to the atmosphere during operations. the proposed action would reduce the risk of exposing the Y-12 Plant work force, the public, and the environment to an accidental release of AHF and would ensure the continuing ability of the Y-12 Plant to manufacture highly enriched uranium metal and process uranium from retired weapons for storage.

1995-03-01T23:59:59.000Z

143

Investigation of Ammonia Adsorption on Fly Ash and Potential Impacts of Ammoniated Ash  

Science Conference Proceedings (OSTI)

Problems associated with ammoniated fly ash have become a major concern for coal-fired facilities in recent years due to the increased use of ammonia-based environmental control technologies. Of particular note is more frequent use of ammonia-based NOx control systems and electrostatic precipitator (ESP) conditioning with ammonia. To help power producers evaluate and mitigate the impacts of ammoniated ash, this project provides crucial information in the areas of fly ash characterization, adsorption test...

1999-12-10T23:59:59.000Z

144

P2.7 Effect of Moisture in Ammonia on LED Device Performance and ...  

Science Conference Proceedings (OSTI)

Incorporation of oxygen into nitride layers from water vapor (moisture) in the ammonia not ... Characterization of the Absorbance Bleaching in Alinas/Algainas

145

Energy Savings for CO2 Removal in Ammonia Plants  

E-Print Network (OSTI)

An exergy analysis of carbonate solution C02 removal systems which use solution flashing shows that there is no energy saving by using a mechanical thermocompressor instead of a steam-jet ejector. In a 1000 ShT/D ammonia plant an energy saving of approx. 27 GJ/h (GHV) of natural gas is possible by using exhaust steam from a back pressure turbine instead of L.T. shift gas as the heat supply source for a Carsol C02 removal system.

Pouilliart, R.; Van Hecke, F. C.

1981-01-01T23:59:59.000Z

146

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

147

SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process  

Science Conference Proceedings (OSTI)

SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.

Liao Yuchao [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wu Xiaofeng [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang Zhen [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Yunfa, E-mail: yfchen@home.ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

2011-07-15T23:59:59.000Z

148

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-Print Network (OSTI)

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

149

Removal of Ammonia and Production of Biodiesel by Chlorella sp. USTB-01  

Science Conference Proceedings (OSTI)

The release of ammonia from the industry of rare earth leads to harmful cyan bacterial bloom and consumption of non-renewable oil resources cause the energy crisis. Using an isolated strain of Chlorella sp. USTB-01, which can grow both autotrophically ... Keywords: Chlorella sp. USTB-01 01, rare-earth wastewater, ammonia nitrogen, combined photobioreactor, biodiesel

Yan Hai; Jia Xuan; He Huanju; Zhou Feng; Li Huimei; Xu Qianqian; Wang Haiou; Zhang Xinxin

2011-02-01T23:59:59.000Z

150

Removal of ammonia from contaminated air in a biotrickling filter Denitrifying bioreactor combination system  

E-Print Network (OSTI)

rights reserved. 1. Introduction Ammonia emissions are very common in operations such as composting of the difficulty of closing the nitrogen balance in systems such as compost beds which already contain signifi., Smet, E., 2002. Regeneration of a compost biofilter degrading high loads of ammonia by addition

151

Assessment of research and development (R and D) needs in ammonia safety and environmental control  

DOE Green Energy (OSTI)

This report characterizes the ammonia industry operations, reviews current knowledge of ammonia release and subsequent impacts, summarizes the status of release prevention and control methods and identify research and development needs for safety and environmental control. Appendices include: accidental spills and human exposure; adiabatic mixing of liquid nitrogen and air; fire and explosion hazards; and environmental impact rating tables. (PSB)

Brenchley, D.L.; Athey, G.F.; Bomelburg, H.J.

1981-09-01T23:59:59.000Z

152

Analysis of a commercial absorption-refrigeration water-ammonia (ARWA) cycle using Aspen Plus simulator  

Science Conference Proceedings (OSTI)

The Robur absorption-refrigeration-water-ammonia (ARWA) cycle is analyzed using Aspen Plus flowsheet simulator. The results are compared with experimental and some manufacturer data reported in the open literature. Among performance parameters analyzed ... Keywords: Aspen, COP, absorption, ammonia, refrigeration, simulation, water

N. A. Darwish; S. H. Al-Hashimi; A. S. Al-Mansoori

2008-08-01T23:59:59.000Z

153

Original paper: Validation of CFD simulation for ammonia emissions from an aqueous solution  

Science Conference Proceedings (OSTI)

In order to model and predict ammonia emissions from animal houses, it is important to determine the concentration on the emission surface correctly. In the current literature, Henry's law is usually used to model the mass transfer through the gas-liquid ... Keywords: Ammonia emission, CFD, Concentration boundary condition, Henry's law constant, Vapor-liquid equilibrium

Li Rong; Basman Elhadidi; H. Ezzat Khalifa; Peter V. Nielsen; Guoqiang Zhang

2011-02-01T23:59:59.000Z

154

Theoretical and Experimental Analysis of a Single Stage Ammonia-Water Absorption Chiller Performance  

Science Conference Proceedings (OSTI)

The ammonia-water absorption chillers are thermally driven devices producing a cooling effect. It can be operated without any use of electrical or mechanical energy. The advantage of absorption chillers is precisely that they can utilize low grade energy. ... Keywords: absorption system, performance, ammonia-water, thermodynamic model

Kong Dingfeng; Liu Jianhua; Zhang Liang; Zheng Guangping; Fang Zhiyun

2009-10-01T23:59:59.000Z

155

ECUT energy data reference series: ammonia synthesis energy-use and capital stock information  

SciTech Connect

Energy requirements for ammonia synthesis totaled 0.55 quadrillion Btu of natural gas in 1980 and 28,500 MMBtu (8.3 x 10/sup 6/ kWh) of electricity. Efficiencies ranged from 0.72 to 0.8 for natural gas and 0.65 for electricity. Ammonia production in 1980 is estimated at 21 million tones. In the year 2000, U.S. ammonia production is estimated to be between 27 to 34 million tones with 19 to 31 million tons being produced using natural gas. A most likely value of 25 million tons of ammonia from natural gas feedstock is projected. As much as 20% of the energy from natural gas fuel could be saved if a more active catalyst could be developed that would reduce the operating pressure of ammonia synthesis to 1 atm.

Young, J.K.; Johnson, D.R.

1984-07-01T23:59:59.000Z

156

Development of an ammonia emission protocol and preliminary emission factor for a central Texas dairy  

E-Print Network (OSTI)

A protocol was developed to measure ammonia emission concentrations from dairies using an isolation flux chamber. A hybrid dairy in Comanche county, Texas, was measured for one week each during August 2002 and January 2003. Sixty total ammonia samples were taken from the free stall barn, open lot, mixing tank, separated solids, compost, and two lagoons using the developed protocol. The ammonia concentration measurements were made using a chemiluminescence analyzer located inside a mobile laboratory. From the emission concentrations recorded, it was estimated that 9.68 metric tons of ammonia were produced from this dairy per year. An emission factor of 13.34 ± 28.80 kilograms per day per thousand head of cattle (kg/day/1000 head) was estimated for this dairy (±95% confidence intervals) during summer conditions. For winter conditions the emission factor was 12.05 ± 12.89 kg/day/1000 head. The 11% difference of the emission factors from summer to winter conditions was predominantly from the change in ambient and control volume temperatures (a mean difference of approximately 25 degrees Celsius), differences in source temperatures, and seasonal variability in husbandry. The adsorption of ammonia onto different polymer tubing used in pollutant stream conveyance was researched for possible systematic losses. Teflon and low density polyethylene (LDPE) were tested for ammonia losses with treatments of: temperature, length, and inlet concentration. Inlet concentration and temperature were significant factors used to describe ammonia adsorption for Teflon, whereas LDPE was also affected by tubing length. These factors were used to create a model to correct the summer dairy measurements for ammonia losses, resulting in an emission factor increase of 8.3% over the original value obtained from the flux chamber. A nitrogen mass balance was performed to estimate the amount of nitrogen available for ammonia formation as excreted - 177.5 kilograms per year per animal (wet basis). The amount of ammonia excreted per year was also estimated to be 26.63 kilograms per year. The measured ammonia emitted from the dairy was five times less than the ammonia excreted and thirty-six times less than the total nitrogen excreted.

Rose, Adam Joseph

2003-05-01T23:59:59.000Z

157

Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash  

E-Print Network (OSTI)

Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash Jianmin Wang a coal-fired power plants are implementing ammonia-based technologies to reduce NOx emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy

Ragsdell, Kenneth M.

158

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction  

SciTech Connect

Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

2012-04-30T23:59:59.000Z

159

Ris-R-1504(EN) Safety assessment of ammonia as a  

E-Print Network (OSTI)

as part of the EU supported project "Ammonia Cracking for Clean Electric Power Technology" The study scenarios 17 2.4 Comparison with LPG driven vehicles 17 2.5 Comparison with gasoline-driven cars 18 2

160

Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process  

Science Conference Proceedings (OSTI)

Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lidar Measurement of Ammonia Concentrations and Fluxes in a Plume from a Point Source  

Science Conference Proceedings (OSTI)

A field experiment was performed that demonstrated the ability of a scanning carbon dioxide (CO2) coherent lidar system to measure the concentration distribution of ammonia in a plume from a point source. This application of the differential ...

Yanzeng Zhao; W. Alan Brewer; Wynn L. Eberhard; Raul J. Alvarez

2002-12-01T23:59:59.000Z

162

Regional Modeling of Ammonia Emissions from Native Soil Sources in California  

Science Conference Proceedings (OSTI)

The development of a new emissions inventory of ammonia volatilization from native soil sources (excluding direct emissions from fertilizer application sources) for the state of California is discussed. Because a comprehensive measurement dataset ...

Christopher Potter; Steven Klooster; Charles Krauter

2003-11-01T23:59:59.000Z

163

Heat and mass transfer in a falling film absorber of ammonia-water absorption systems  

SciTech Connect

For ammonia-water generator-absorber heat exchanger (GAX) systems to work at high coefficient of performance, the heat and mass transfer components have to operate at optimum performance within a narrow range of conditions for the recovery of internal energy. In the present work, an analysis is performed to study the absorption process of an ammonia-water vapor mixture by an aqueous solution of ammonia in a falling film absorber. The combined heat and mass transfer processes involved are analyzed through an integral formulation of the continuity, momentum, energy, and diffusion equations. The effects of vapor flow direction relative to the solution, cooling ability, ammonia concentration of solution and vapor, and interfacial momentum and heat transfer rate on absorption processes are investigated. The characteristics of the absorption process are found to be governed by the relative significance of the mass transfer resistance and the driving forces between the solution film and the vapor mixture.

Kim, B. [Hongik Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering

1998-07-01T23:59:59.000Z

164

Mitigation of SCR-Ammonia Related Aqueous Effects in a Fly Ash Pond  

Science Conference Proceedings (OSTI)

Contaminated fly ash resulting from secondary injection of ammonia to mitigate SO3 produced by a selective catalytic reduction (SCR) system altered the water quality of a fly ash pond at a coal-fired power generation station. This project attempted to improve water quality by encouraging the growth of algae in the pond to remove ammonia, while keeping other important parameters (pH, total suspended solids, Biological Oxygen Demand, and metals) within allowable limits.

2006-02-07T23:59:59.000Z

165

Chilled Ammonia Process Development Unit at We Energies Pleasant Prairie Power Plant  

Science Conference Proceedings (OSTI)

Alstom Power, Inc. (Alstom) has developed a patented process technology referred to as the chilled ammonia process (CAP) for the capture and concentration of carbon dioxide from combustion flue gas. The technology involves the use of a chilled, concentrated ammonia solution to chemically bind the carbon dioxide, followed by a thermal decomposition step to liberate the carbon dioxide for collection and further use. This report documents results from the process development unit (PDU) testing of the CAP at...

2011-01-24T23:59:59.000Z

166

Performance of an air-cooled ammonia-water absorption air conditioner at low generator temperatures  

DOE Green Energy (OSTI)

An ammonia--water absorption air conditioning system has been tested to investigate the stability of operation near the cut-off conditions. Circulation ratios were from 8 to 30. Relations for the estimation of the coefficient of performance and for the prediction of operating temperatures were derived and verified experimentally. Possible operating conditions for an air-cooled ammonia--water air conditioning system were concluded.

Dao, K.; Simmons, M.; Wolgast, R.; Wahlig, M.

1976-08-01T23:59:59.000Z

167

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

168

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

169

Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia/water and ammonia/water/LiBr absorption fluids  

Science Conference Proceedings (OSTI)

The generator-absorber heat exchange (GAX) and branched GAX cycles are generally considered with NH{sub 3}/H{sub 2}O as their working fluid. The potential consequences of using a ternary mixture of NH{sub 3}/H{sub 2}O/LiBr (advanced fluids) in the GAX and Branched GAX (advanced cycles) are discussed in this study. A modular steady state absorption simulation model(ABSIM) was used to investigate the potential of combining the above advanced cycles with the advanced fluids. ABSIM is capable of modeling varying cycle configurations with different working fluids. Performance parameters of the cycles, including coefficient of performance (COP) and heat duties, were investigated as functions of different operating parameters in the cooling mode for both the NH {sub 3}/H{sub 2}O binary and the NH{sub 3}/H{sub 2}O/LiBr ternary mixtures. High performance potential of GAX and branched GAX cycles using the NH{sub 3}/H{sub 2}O/LiBr ternary fluid mixture was achieved especially at the high range of firing temperatures exceeding 400{degrees}F. The cooling COP`s have been improved by approximately 21% over the COP achieved with the NH{sub 3}/H{sub 2}O binary mixtures. These results show the potential of using advanced cycles with advanced fluid mixtures (ternary or quaternary fluid mixtures).

Zaltash, A.; Grossman, G.

1996-03-01T23:59:59.000Z

170

Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States  

SciTech Connect

The impending phaseout of CFCs and HCFCs has led to a worldwide search for refrigerants that can provide equivalent performance while not damaging the environment. Long used as a working fluid in industrial and large-scale refrigeration, ammonia provides high efficiency, low initial cost, and no detrimental impact to the environment. However, its toxicity and flammability, along with technical considerations and increased operating costs, deter its use in many refrigeration and cooling applications. Utilization of ammonia in applications where its safety considerations and technical concerns can be addressed provides the best growth opportunity for adoption as a replacement refrigerant. Applications such as district or large-scale cooling, thermal storage, packaged systems, and combined systems hold promise for increased usage of ammonia. Ongoing research and development are providing solutions to technical considerations, and innovations in safety and containment of ammonia are addressing those particular concerns, but code restrictions and regulations present the greatest barrier to wider adoption of ammonia as an alternate refrigerant in the US To encourage wider use, future efforts will need to continue on improved safety and more efficient design, along with an increased emphasis on educating and informing industry and the public about the advantages ammonia and the factors restricting its use.

Fairchild, P.D.; Baxter, V.D.

1995-12-31T23:59:59.000Z

171

Influence of V/III growth flux ratio on trap states in m-plane GaN grown by ammonia-based molecular beam epitaxy  

Science Conference Proceedings (OSTI)

Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) were utilized to investigate the behavior of deep states in m-plane, n-type GaN grown by ammonia-based molecular beam epitaxy (NH{sub 3}-MBE) as a function of systematically varied V/III growth flux ratios. Levels were detected at E{sub C} - 0.14 eV, E{sub C} - 0.21 eV, E{sub C} - 0.26 eV, E{sub C} - 0.62 eV, E{sub C} - 0.67 eV, E{sub C} - 2.65 eV, and E{sub C} - 3.31 eV, with the concentrations of several traps exhibiting systematic dependencies on V/III ratio. The DLTS spectra are dominated by traps at E{sub C} - 0.14 eV and E{sub C} - 0.67 eV, whose concentrations decreased monotonically with increasing V/III ratio and decreasing oxygen impurity concentration, and by a trap at E{sub C} - 0.21 eV that revealed no dependence of its concentration on growth conditions, suggestive of different physical origins. Higher concentrations of deeper trap states detected by DLOS with activation energies of E{sub C} - 2.65 eV and E{sub C} - 3.31 eV in each sample did not display measureable sensitivity to the intentionally varied V/III ratio, necessitating further study on reducing these deep traps through growth optimization for maximizing material quality of NH{sub 3}-MBE grown m-plane GaN.

Zhang, Z.; Arehart, A. R. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Hurni, C. A.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106-5050 (United States); Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Institute for Materials Research, Ohio State University, Columbus, Ohio 43210 (United States)

2012-10-08T23:59:59.000Z

172

Multi-component removal in flue gas by aqua ammonia  

DOE Patents (OSTI)

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

173

Synthesis and Characterization of Th2N2(NH) Isomorphous to Th2N3  

SciTech Connect

Using a new, low-temperature, fluoride-based process, thorium nitride imide of the chemical formula Th{sub 2}N{sub 2}(NH) was synthesized from thorium dioxide via an ammonium thorium fluoride intermediate. The resulting product phase was characterized by powder X-ray diffraction (XRD) analysis and was found to be crystallographically similar to Th{sub 2}N{sub 3}. Its unit cell was hexagonal with a space group of P3m{bar 1} and lattice parameters of a = b = 3.886(1) and c = 6.185(2) {angstrom}. The presence of -NH in the nitride phase was verified by Fourier transform infrared spectroscopy (FTIR). Total energy calculations performed using all-electron scalar relativistic density functional theory (DFT) showed that the hydrogen atom in the Th{sub 2}N{sub 2}(NH) prefers to bond with nitrogen atoms occupying 1a Wyckoff positions of the unit cell. Lattice fringe disruptions observed in nanoparticle areas of the nitride species by high-resolution transmission electron microscopic (HRTEM) images also displayed some evidence for the presence of -NH group. As ThO{sub 2} was identified as an impurity, possible reaction mechanisms involving its formation are discussed.

Silva, G W Chinthaka M [ORNL; Yeamans, Charles B. [University of California, Berkeley; Hunn, John D [ORNL; Sattelberger, Alfred P [Argonne National Laboratory (ANL); Czerwinski, Ken R. [University of Nevada, Las Vegas; Weck, Dr. Phil F [University of Nevada, Las Vegas

2012-01-01T23:59:59.000Z

174

Page 1 of 16 2013 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

: 9:00 AM to 5:00 PM Location: Belmont Middle School, 38 School Street, Belmont NH 03220 Deadline Quiz Bowl is an event where youth demonstrate their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hit their buzzers and answer equine-related questions

New Hampshire, University of

175

Bioethanol production from lignocellulosic feedstock using aqueous ammonia pretreatment and simultaneous saccharification and fermentation (SSF): process development and optimization.  

E-Print Network (OSTI)

??An integrated bioconversion process, which incorporated soaking in aqueous ammonia (SAA) pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF), was investigated. The TPSSF process consists… (more)

Li, Xuan

2010-01-01T23:59:59.000Z

176

Simultaneous removal of COD and ammonia from high-strength wastewater in a three-phase fluidized bed reactor.  

E-Print Network (OSTI)

??A major challenge of environmental engineering is the efficient treatment of wastewater containing high concentrations of chemical oxygen demand (COD) and ammonia. This work addresses… (more)

Wan, Li

2006-01-01T23:59:59.000Z

177

Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes  

DOE Patents (OSTI)

Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

Zaczepinski, Sioma (Houston, TX); Billimoria, Rustom M. (Houston, TX); Tao, Frank (Baytown, TX); Lington, Christopher G. (Houston, TX); Plumlee, Karl W. (Baytown, TX)

1984-01-01T23:59:59.000Z

178

Evaluation of ammonia as a working fluid for a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

The concepts considered in this study involve various arrangments of the binary geothermal power cycle with advanced dry cooling schemes. Brief descriptions of the binary cycle and advanced cooling schemes are included. Also included are descriptions of the base case concept and the ammonia working fluid concept. Performance and cost estimates were developed for a wet-cooled isobutane cycle plant, wet/dry cooled isobutane cycle plant, wet-cooled ammonia cycle plant, and a wet/dry cooled ammonia cycle plant. The performance and cost estimates were calculated using the GEOCOST computer code developed at PNL. Inputs for GEOCOST were calculated based on the Heber sites. The characteristics of the wet/dry cooling system were determined using the BNWGEO computer code developed at PNL. Results of the cooling system analysis are presented, followed by results of the geothermal plant analysis. Conclusions and comments also are included.

Drost, M.K.; Huber, H.D.

1982-10-01T23:59:59.000Z

179

Page 1 of 16 2014 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hitPage 1 of 16 2014 NH 4-H Horse Quiz Bowl Date: Saturday January 25, 2014 Time: 9:00 AM to 5:00 PM the day of the contest. The New Hampshire 4-H Quiz Bowl is an event where youth demonstrate

New Hampshire, University of

180

Behavior of Ammoniated Fly Ash: Effects of Ammonia on Fly Ash Handling, Disposal, and End-Use  

Science Conference Proceedings (OSTI)

The implementation of ammonia-based nitrogen oxides (NOx) control technologies has had the undesired side effect of creating potential problems for operating units due to ammonia-contaminated fly ash. The work described in this report is a continuation of long-term EPRI efforts to address various industry concerns associated with ammoniated fly ash.

2002-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Performance Analysis of Existing 600MW Coal-Fired Power Plant with Ammonia-Based CO2 Capture  

Science Conference Proceedings (OSTI)

This paper analyzes the techno-economic performance of 600 MW coal-fired power plant with and without ammonia-based CO2 capture process, based on the operating data of an existing power plant. The simulation and analysis, with fully consideration of ... Keywords: CO2 capture, aqueous ammonia, existing power plant, techno-economic performance

Gang Xu; Liqiang Duan; Mingde Zhao; Yongping Yang; Ji Li; Le Li; Haizhan Chen

2010-06-01T23:59:59.000Z

182

An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions  

Science Conference Proceedings (OSTI)

Ammonia emitted into the atmosphere from agricultural sources can have an impact on nearby sensitive ecosystems, either through elevated ambient concentrations or dry/wet deposition to vegetation and soil surfaces. Short-range atmospheric dispersion ... Keywords: Agriculture, Ammonia, Atmospheric dispersion model, Evaluation, Validation

Mark R. Theobald; Per LøFstrøM; John Walker; Helle V. Andersen; Poul Pedersen; Antonio Vallejo; Mark A. Sutton

2012-11-01T23:59:59.000Z

183

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

Sources 154: 343–350, IFDC, Fertilizer Statistics Report,tonnes in 2004–2005 (IFDC, FSR, 2005). Ammonia production

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

184

A WATER MASER AND NH{sub 3} SURVEY OF GLIMPSE EXTENDED GREEN OBJECTS  

SciTech Connect

We present the results of a Nobeyama 45 m H{sub 2}O maser and NH{sub 3} survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 {mu}m emission. We observed the NH{sub 3}(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms {approx} 50 mK). The H{sub 2}O maser detection rate is 68% (median rms {approx} 0.11 Jy). The derived H{sub 2}O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H{sub 2}O masers and warm dense gas, as indicated by emission in the higher-excitation NH{sub 3} transitions, are most frequently detected toward EGOs also associated with both Class I and II CH{sub 3}OH masers. Ninety-five percent (81%) of such EGOs are detected in H{sub 2}O (NH{sub 3}(3,3)), compared to only 33% (7%) of EGOs without either CH{sub 3}OH maser type. As populations, EGOs associated with Class I and/or II CH{sub 3}OH masers have significantly higher NH{sub 3} line widths, column densities, and kinetic temperatures than EGOs undetected in CH{sub 3}OH maser surveys. However, we find no evidence for statistically significant differences in H{sub 2}O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H{sub 2}O maser luminosity and clump number density. H{sub 2}O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

Cyganowski, C. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Koda, J.; Towers, S.; Meyer, J. Donovan [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)] [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Rosolowsky, E. [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada)] [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada); Egusa, F. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Momose, R. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)] [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Robitaille, T. P., E-mail: ccyganowski@cfa.harvard.edu [Max Planck Institute for Astronomy, Heidelberg (Germany)

2013-02-10T23:59:59.000Z

185

Handbook 44-11 Specifications, Tolerances, and Other ...  

Science Conference Proceedings (OSTI)

... DOC | PDF; 3.32 Liquefied Petroleum Gas and Anhydrous Ammonia Liquid-Measuring Devices DOC | PDF; 3.33 Hydrocarbon ...

2013-11-06T23:59:59.000Z

186

Handbook 44-14 Specifications, Tolerances, and Other ...  

Science Conference Proceedings (OSTI)

... DOC | PDF; 3.32 Liquefied Petroleum Gas and Anhydrous Ammonia Liquid-Measuring Devices DOC | PDF; 3.33 Hydrocarbon ...

2013-11-06T23:59:59.000Z

187

March 2005 Series 1 – Small Volume Provers: Identification ...  

Science Conference Proceedings (OSTI)

... of neoprene rubber, which is used for low pressure crude oil and anhydrous ammonia; nitrile, which is used for refined petroleum products such as ...

2010-12-16T23:59:59.000Z

188

[(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate  

E-Print Network (OSTI)

-Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

Wang, Xiqu

189

Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions  

E-Print Network (OSTI)

, the aerosolassociated water depends on the composition of the #12;3 particles, which is determined by gas in a three dimensional chemical transport model to understand the roles of ammonia chemistry and natural precursors among modeled aerosol species selfconsistently with ambient relative humidity and natural

Zender, Charles

190

Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light  

E-Print Network (OSTI)

Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light Duty Vehicles D A N I E L A . B U R by dynamometer (16), remote sensing (17), and recently by a chase vehicle (18). Results from these studies vary

Denver, University of

191

Solar absorption aqua-ammonia absorption system simulation base on climate of Malaysia  

Science Conference Proceedings (OSTI)

Solar energy is one of the most well known green sources of energy. This research presents a feasibility study of evacuated solar thermal collector by aqua-ammonia ejector absorption systems as a small scale air conditioning unit. The modeling has been ... Keywords: ejector, evacuated tubes, solar assisted absorption system

Poorya Ooshaksaraei; Sohif Mat; M. Yahya; Ahmad Mahir Razali; Azami Zaharim; K. Sopian

2010-01-01T23:59:59.000Z

192

Nano Magnetite Particles Prepared Under the Combined Addition of Urea and Ammonia  

E-Print Network (OSTI)

Nano Magnetite Particles Prepared Under the Combined Addition of Urea and Ammonia Young-Keun Jeong 1 Nano-Materials Team, Korea Institute of Ceramic Engineering and Technology, 233-5, Gasan-precipitation, magnetite, nano particle, urea Abstract. Magnetite (Fe3O4) particles were prepared for biomedical

Lee, Jong-Heun

193

Chilled Ammonia Process Product Validation Facility at American Electric Power Mountaineer Station  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Power’s (AEP’s) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Power’s Chilled Ammonia Process (CAP). The CAP Product Validation Facility (PVF) treated a slipstream of flue gas from ...

2012-09-30T23:59:59.000Z

194

Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension  

Science Conference Proceedings (OSTI)

Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (``double-shell slurry``) containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however.

Norton, J.D.; Pederson, L.R.

1994-09-01T23:59:59.000Z

195

Experimental and analytical study of condensation of ammonia-water mixtures  

SciTech Connect

The need for more energy efficient power generation and recent environmental issues of CFCs prompted the development of combined steam and Kalina cycle power systems, and advanced ammonia/water absorption heat pumps. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, a theoretical analysis was carried for the condensation of ammonia/water mixtures on a vertical tube. A set of equations was formulated and a calculation algorithm was developed to predict the local rate of heat and mass fluxes for binary ammonia-water systems. The predicted rate of condensation was compared with the experimental data obtained at Oak Ridge National Laboratory (ORNL) for a mixture of 90% ammonia and 10% water. The role of diffusion in simultaneous heat and mass transfer associated with condensation was analyzed by comparing the results from three limiting cases, which include equilibrium conditions, and liquid-phase diffusion of finite and infinite values. The results showed that the vapor-phase diffusion is a controlling mechanism.

Panchal, C.B.; Kuru, W.C. [Argonne National Lab., IL (United States); Chen, F.C.; Domingo, N. [Oak Ridge National Lab., TN (United States); HuangFu, E.P.

1997-06-01T23:59:59.000Z

196

A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)  

E-Print Network (OSTI)

We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol m...

Cyganowski, C J; Rosolowsky, E; Towers, S; Meyer, J Donovan; Egusa, F; Momose, R; Robitaille, T P

2012-01-01T23:59:59.000Z

197

AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE  

E-Print Network (OSTI)

. Merrick, Member ASHRAE ABSTRACT The scate-of-art in ammonia-water absorption cooling has been applied. Reversible absorption cycles for heating and cooling are possible but with additional cost and complexity concentration change making possible the use of a solution-cooled absorber wherin some heat of absorption can

Oak Ridge National Laboratory

198

Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

Liu Zhanguang; Zhou Xuefei [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhang Yalei, E-mail: zhangyalei2003@163.com [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu Hongguang [Institute of Modern Agricultural Science and Engineering, National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092 (China)

2012-01-15T23:59:59.000Z

199

A method to remove Ammonia using a Proton-Conducting Ceramic Membrane  

DOE Green Energy (OSTI)

An apparatus and method for decomposing NH{sub 3}. A fluid containing NH{sub 3} is passed in contact with a tubular membrane that is a homogeneous mixture of a ceramic and a first metal, with the ceramic being selected from one or more of a cerate having the formula of M' Ce{sub 1-x} M''O{sub 3-{delta}}, zirconates having the formula M'Zr{sub 1-x} M''3-{delta}, stannates having the formula M'Sn{sub 1-x}M''O{sub 3}-{delta}, where M' is a group IIA metal, M'' is a dopant metal of one or more of Ca, Y, Yb, In, Nd, Gd or mixtures thereof and {delta} is a variable depending on the concentration of dopant and is in the range of from 0.001 to 0.5, the first metal is a group VIII or group IB element selected from the group consisting of Pt, Ag, Pd, Fe, Co, Cr, Mn, V, Ni, Au, Cu, Rh, Ru and mixtures thereof. The tubular membrane has a catalytic metal on the side thereof in contact with the fluid containing NH{sub 3} which is effective to cause NH{sub 3} to decompose to N{sub 2} and H{sub 2}. When the H{sub 2} contacts the membrane, H{sup +} ions are formed which pass through the membrane driving the NH{sub 3} decomposition toward completion.

Balachandran, Uthamalingam; Bose, Arun C.

1999-09-22T23:59:59.000Z

200

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Metallicity of InN and GaN surfaces exposed to NH{sub 3}.  

Science Conference Proceedings (OSTI)

A systematic study of energies and structures of InN and GaN (0001) surfaces exposed to NH{sub 3} and its decomposition products was performed with first-principles methods. A phenomenological model including electron counting contributions is developed based on calculated DFT energies and is used to identify low-energy structures. These predictions are checked with additional DFT calculations. The equilibrium phase diagrams are found to contain structures that violate the electron counting rule. Densities of states for these structures indicate n-type conductivity, consistent with available experimental results.

Walkosz, W.; Zapol, P.; Stephenson, G. B. (Materials Science Division)

2012-01-01T23:59:59.000Z

202

Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy  

Science Conference Proceedings (OSTI)

Nitrogen 1s (N ls) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, ''cluster'' specific excitation spectra could be recorded. Comparison of the ''cluster'' band with ''monomer'' band revealed that the first resonance bands of clusters corresponding to N 1s{yields} 3sa{sub 1}/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions {Delta}FWHM (N 1s{yields} 3sa{sub 1}/3pe) ={approx}0.20/{approx}0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H{sub 3}N{center_dot}{center_dot}{center_dot}H-NH{sub 2}) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-{sigma}* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding {sigma}* (N-H) character. Contributions of other cyclic H-bonded clusters (AM){sub n} with n{>=} 3 to the spectral changes of the N 1s{yields} 3sa{sub 1}/3pe bands are also examined.

Yamanaka, Takeshi; Takahashi, Osamu [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Tabayashi, Kiyohiko; Namatame, Hirofumi; Taniguchi, Masaki [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Tanaka, Kenichiro [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); XFEL Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Hyogo 679-5198 (Japan)

2012-01-07T23:59:59.000Z

203

Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations  

Science Conference Proceedings (OSTI)

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

2013-01-01T23:59:59.000Z

204

Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report  

DOE Green Energy (OSTI)

As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

Not Available

1986-06-01T23:59:59.000Z

205

Ocean thermal plantships for production of ammonia as the hydrogen carrier.  

Science Conference Proceedings (OSTI)

Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

2009-12-02T23:59:59.000Z

206

Control of catalytic hydrotreating selectivity with ammonia. [Quarterly] report, April 1, 1993--June 30, 1993  

SciTech Connect

We have chosen as our standard reaction conditions: T = 3600, total pressure about 6.9 MPa, partial pressure of PBz = 24.4 kPa, partial pressure of H{sub 2}S = 13.3 kPa, partial pressure of NH{sub 3} = 13.3 kPa, space-time = 200 h. g. cat/mol PBz. The carrier liquid is hexadecane (C{sub 16}H{sub 34}). As before, the H{sub 2}S and NH{sub 3} are generated in situ by hydrogenation of 1-dodecane thiol and n-propyl amine, respectively, added to the C{sub 16} feed. The activity of the fresh catalyst dropped to a steady state level after about 120 hours on stream following which four runs were carried out at p.p. NH{sub 3} values of 0, 13.3, 24.4 and 48.8 kPa, respectively. For each NH{sub 3} p.p., space-times were varied at the following levels: 50, 100, 200, 400 and 600. Analyses were made for propylcyclohexene (C{sub A}), propylcydohexane (C{sub B}) and benzene (C{sub D}). No other products were found in any significant amounts. The ratio C{sub B}/C{sub D} is a measure of the activity for ring hydrogenation relative to hydrocracking. The data are shown in four tables that follow. The results will be analyzed kinetically in the next quarter. However, the following generalizations are evident: NH{sub 3} significantly reduces the activity of the catalyst for both types of reaction. The activity for hydrocracking is reduced more than that for ring hydrogenation, a favorable result, but the effect is not large at the conditions studied thus far. The effect is most evident at low NH{sub 3} concentrations.

Satterfield, C.N.; Gultekin, S.

1993-09-01T23:59:59.000Z

207

Herschel / HIFI observations of CO, H2O and NH3 in Mon R2  

E-Print Network (OSTI)

Context. Mon R2 is the only ultracompact HII region (UCHII) where the associated photon-dominated region (PDR) can be resolved with Herschel. Due to its brightness and proximity, it is the best source to investigate the chemistry and physics of highly UV-irradiated PDRs. Aims. Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods. We present new observations obtained with HIFI and the IRAM-30m telescope. Using a large velocity gradient approach, we model the line intensities and derive an average abundance of H2O and NH3 across the region. Finally, we model the line profiles with a non-local radiative transfer model and compare these results with the abundance predicted by the Meudon PDR code. Results. The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. The H2O lines present a strong absorption at the ambient velocity and emission in high velocity wings towards the HII region. The spatial distribution of...

Pilleri, P; Cernicharo, J; Ossenkopf, V; Berné, O; Gerin, M; Pety, J; Goicoechea, J R; Rizzo, J R; Montillaud, J; González-García, M; Joblin, C; Bourlot, J Le; Petit, F Le; Kramer, C

2012-01-01T23:59:59.000Z

208

Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation  

SciTech Connect

NH3 gas treatment of low water content sediments resulted in a significant decrease in aqueous and adsorbed uranium, which is attributed to incorporation into precipitates. Uranium associated with carbonates showed little change. Uranium associated with hydrous silicates such as Na-boltwoodite showed a significant decrease in mobility but no change in Na-boltwoodite concentration (by EXAFS/XANES), so is most likely caused by non-U precipitate coatings. Complex resistivity changes occurred in the sediment during NH3 and subsequent N2 gas injection, indicating ERT/IP could be used at field scale for injection monitoring.

Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Johnson, Timothy C.; Qafoku, Nikolla; Williams, Mark D.; Greenwood, William J.; Wallin, Erin L.; Bargar, John R.; Faurie, Danielle K.

2012-10-30T23:59:59.000Z

209

Growth kinetics and micromorphology of NH{sub 4}Cl:Mn{sup 2+} crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system  

Science Conference Proceedings (OSTI)

The growth kinetics and elementary growth processes on the surface of NH{sub 4}Cl:Mn{sup 2+} heterogeneous crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system are experimentally studied. It is found that a change in the composition of complexes in an NH{sub 4}Cl crystal from Mn(NH{sub 4}){sub 2}Cl{sub 4} {center_dot} 2H{sub 2}O to MnCl{sub 2} {center_dot} 2CONH{sub 3} leads to the occurrence of a local maximum in the kinetic curve and a change in the shape of dislocation growth centers from flat to conical. The growth kinetics of {l_brace}100{r_brace} faces of heterogeneous NH{sub 4}Cl:Mn{sup 2+} crystals is described within the Bliznakov model using the Fowler-Guggenheim adsorption isotherm, which takes into account the lateral interaction of adsorbed particles.

Pyankova, L. A., E-mail: lyuba_pyan@mail.ru; Punin, Yu. O.; Bocharov, S. N.; Shtukenberg, A. G. [Petersburg State University (Russian Federation)

2012-03-15T23:59:59.000Z

210

Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis  

DOE Patents (OSTI)

In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

Stetka, Steven S. (Fleetwood, PA); Nazario, Francisco N. (Parsippany, NJ)

1982-01-01T23:59:59.000Z

211

Electrochemical Promotion of the Ammonia Synthesis with Electrically Promoted Catalyst Pellets  

Science Conference Proceedings (OSTI)

During the last decade, a new application of solid-electrolyte electrochemistry called non-Faradaic electrochemical modification of catalytic activity (NEMCA), or electrochemical promotion of catalysis, has emerged. The catalytic activity of the gas-exposed electrode surface of metal electrodes in solid electrolyte cells is altered dramatically and reversibly upon polarizing the metal-solid electrolyte interface. Electrochemical promotion of ammonia decomposition was studied in an attempt to identify con...

2001-09-10T23:59:59.000Z

212

Effects of Ammonia and Flue Gas Desulfurization (FGD) Wastewater on Power Plant Effluent Toxicity  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments and subsequently the Clean Air Interstate Rule and other state-level actions have resulted in implementation of a variety of technologies to reduce emissions of nitrogen oxides (NOx), and to further reduce emissions of sulfur oxides (SOx). Selective Catalytic Reduction (SCR) and SNCR (non-catalytic) are two of the primary NOx emission reduction technologies. Often, ammonia is injected into flue gas as the reductant for the chemical reaction that converts NOx to nitrogen gas. ...

2007-12-18T23:59:59.000Z

213

American Electric Power/Alstom Chilled Ammonia Process Validation Facility -- Material Inspection Report  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Power’s (AEP’s) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Power’s Chilled Ammonia Process (CAP). This CAP Process Validation Facility (PVF) was operated for 7900 hours between September 2009 and May 2011, when the demonstration ended. One of the objectives of the program was a determination of the adequacy of the materials that had been selected for the ...

2012-12-13T23:59:59.000Z

214

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOE Patents (OSTI)

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01T23:59:59.000Z

215

Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase  

Science Conference Proceedings (OSTI)

Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

2012-08-31T23:59:59.000Z

216

Computer simulation and economic analysis for ammonia fiber explosion (AFEX) pretreatment process  

E-Print Network (OSTI)

The ammonia fiber explosion (AFFECT) process is a promising new pretreatment for enhancing the reactivity of lignocerulose materials with many advantages over existing processes. The material is soaked in high-pressure liquid ammonia for a few minutes then the pressure is explosively released. A combined chemical (cellulose decrystamution) and physical (increased surface area) effect increases the enzymatic digestibility of lignocelmose. The laboratory phase of AFEX development is nearing completion, and a brief preliminary economic analysis (without detailed sizing) was finished. However, a commercial size plant has not been developed. This study was undertaken in an effort to support and assist AFEX commercialization through process simulation and cost analysis. In this study, a steady state computer simulation package was developed for the AFEX process. Corn fiber was used as the representative biomass treated by AFEX. Different ammonia loadings, water loadings, temperatures and pressures were used as operational parameters. Mass balances and energy balances are the major determinants of the equipments selected and sized. 'nermodynamic models or kinetic models are also included. A preliminary cost estimate includes total purchased-equipment cost using the equipment cost ratio method. The process computer simulation model was programmed in FORTRAN. FORTRAN subroutine libraries from IMSL (International Mathematical and Statistics Library), Inc. were used as needed. To increase the portability of the program, the programming was done on an EBM compatible PC.

Wang, Lin

1996-01-01T23:59:59.000Z

217

INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS  

SciTech Connect

This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

2000-11-01T23:59:59.000Z

218

GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium  

DOE Green Energy (OSTI)

Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

Bartram, Michael E.; Creighton, J. Randall

1999-05-26T23:59:59.000Z

219

Ammonia Production and Utilization in a Hybrid LNT+SCR System  

DOE Green Energy (OSTI)

A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or over regeneration ) of the LNT, but the amount of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts. During lean-rich cycling, fuel penalties are similar for either LNT dominant or LNT with supplemental SCR NOx reduction. However, stored NH3 after multiple lean-rich cycles can enable continued NOx reduction by the SCR after lean-rich cycling stops; thus, requirements for active regeneration of the LNT+SCR system can be modified during transient operation.

Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL

2009-01-01T23:59:59.000Z

220

A method to remove Ammonia using a Proton-Conducting Ceramic Membrane  

DOE Patents (OSTI)

An apparatus and method for decomposing NH{sub 3}. A fluid containing NH{sub 3} is passed in contact with a tubular membrane that is a homogeneous mixture of a ceramic and a first metal, with the ceramic being selected from one or more of a cerate having the formula of M' Ce{sub 1-x} M''O{sub 3-{delta}}, zirconates having the formula M'Zr{sub 1-x} M''3-{delta}, stannates having the formula M'Sn{sub 1-x}M''O{sub 3}-{delta}, where M' is a group IIA metal, M'' is a dopant metal of one or more of Ca, Y, Yb, In, Nd, Gd or mixtures thereof and {delta} is a variable depending on the concentration of dopant and is in the range of from 0.001 to 0.5, the first metal is a group VIII or group IB element selected from the group consisting of Pt, Ag, Pd, Fe, Co, Cr, Mn, V, Ni, Au, Cu, Rh, Ru and mixtures thereof. The tubular membrane has a catalytic metal on the side thereof in contact with the fluid containing NH{sub 3} which is effective to cause NH{sub 3} to decompose to N{sub 2} and H{sub 2}. When the H{sub 2} contacts the membrane, H{sup +} ions are formed which pass through the membrane driving the NH{sub 3} decomposition toward completion.

Balachandran, Uthamalingam; Bose, Arun C.

1999-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

disadvantage of auto-thermal reforming of ammonia for usePOX), catalyzed POX, auto-thermal reforming (ATR), and steam

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

222

Continuous Ammonia Slip Measurements on a Lignite-Fired Unit with a Selective Catalytic Reduction System  

Science Conference Proceedings (OSTI)

Ammonia slip measurements that were made by a tunable diode laser (TDL) were conducted on a lignite-fired unit with a selective catalytic reduction (SCR) system using a newly developed adjustable flange assembly for dynamic alignment of cross-duct measurements. The single path optics were integrated with a fiber optic–coupled TDL system (Unisearch LasIR) and two shields to allow measurements over the 25-foot (7.62-meter) flue gas duct dimension. The nominal 4.5-foot (1.67-meter) shields were required to ...

2011-10-24T23:59:59.000Z

223

Field Trial of an In Situ Probe for Continuous Ammonia Slip Measurements  

Science Conference Proceedings (OSTI)

With the broad-based deployment of post-combustion nitrogen oxide (NOx) control technologies, continuous measurement of associated ammonia slip levels has gained increased importance with respect to potential balance-of-plant impacts and direct process control. Because many sites do not have optically aligned sets of ports or physical access to both sides of a duct, it is important that continuous measurements can also be achieved with single-port access through the use of an in situ measurement probe an...

2010-06-07T23:59:59.000Z

224

Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H  

Science Conference Proceedings (OSTI)

The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

2007-11-30T23:59:59.000Z

225

Effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen  

Science Conference Proceedings (OSTI)

The effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen was investigated to evaluate the potential of simultaneous SO{sub 2} and NO removal at the temperature range of 700-850{sup o}C. The physical and chemical properties of the CaO sulfation products were analyzed to investigate the NO reduction mechanism. Experimental results showed that sulfated CaO had a catalytic effect on NO reduction by NH{sub 3} in the presence of excess O{sub 2} after the sulfation reaction entered the transition control stage. With the increase of CaO sulfation extent in this stage, the activity for NO reduction first increased and then decreased, and the selectivity of NH{sub 3} for NO reduction to N{sub 2} increased. The byproduct (NO{sub 2} and N{sub 2}O) formation during NO reduction experiments was negligible. X-ray photoelectron spectroscopy (XPS) analysis showed that neither CaSO{sub 3} nor CaS was detected, indicating that the catalytic activity of NO reduction by NH{sub 3} in the presence of excess O{sub 2} over sulfated CaO was originated from the CaSO{sub 4} product. These results revealed that simultaneous SO{sub 2} and NOx control by injecting NH{sub 3} into the dry flue gas desulfurization process for NO reduction might be achieved. 38 refs., 6 figs., 1 tab.

Tianjin Li; Yuqun Zhuo; Yufeng Zhao; Changhe Chen; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-04-15T23:59:59.000Z

226

Plasma-sprayed semiconductor electrodes: Photoelectrochemical characterization and NH sub 3 photoproduction by substoichiometric tungsten oxides  

Science Conference Proceedings (OSTI)

Two substoichiometric tungsten oxide coatings have been obtained by plasma spray of WO{sub 3} powder on Ti substrates. The films are 40 {plus minus} 20 {mu}m thick and are yellow (WO{sub 2.99}) or dark blue (WO{sub 2.97}). WO{sub 2.99} coatings show a highly textured surface with a specific area 27.9 times the geometrical one. X-ray diffraction pattern reveals that their structure is a mixture of monoclinic and triclinic phases. The yellow films have been characterized photoelectrochemically in regenerative cells by using O{sub 2}/H{sub 2}O redox at pH 2.0. Under anodic polarization of 1.5 V (SCE) their quantum yield is between 10% and 20% in the wavelength range comprised between 270 and 430 nm with an indirect bandgap of 2.55 eV and a flatband potential of {minus}0.1 V. WO{sub 2.99} films have been tested for NH{sub 3} photoproduction.

Ladouceur, M.; Dodelet, J.P. (INRS-Energie, Varennes, Quebec (Canada)); Tourillon, G. (Universite Paris-Sud, Orsay (France)); Parent, L.; Dallaire, S. (IGM, Boucherville, Quebec (Canada))

1990-05-31T23:59:59.000Z

227

Capacitive deionization of NH{sub 4}CIO{sub 4} solutions with carbon aerogel electrodes. Revision 1  

Science Conference Proceedings (OSTI)

A process for capacitive deionization of water with a stack of carbon aerogel electrodes was developed. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system; electricity is used instead. An aqueous solution of NH{sub 4}ClO{sub 4} is pumped through the electrochemical cell. After polarization, NH{sub 4}{sup +} and ClO{sub 4}{sup -} ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. Thsi process produces one stream of purified water and a second stream of concentrate. Effects of cell voltage, salt concentration, and cycling on electrosorption capacity were studied and results reported.

Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

1996-01-01T23:59:59.000Z

228

A reaction mechanism for titanium nitride CVD from TiCl{sub 4} and NH{sub 3}  

Science Conference Proceedings (OSTI)

A gas-phase and surface reaction mechanism for the CVD of TiN from TiCl{sub 4} and NH{sub 3} is proposed. The only gas-phase process is complex formation, which can compete with deposition. The surface mechanism postulates the stepwise elimination of Cl and H atoms from TiCl{sub 4} and NH{sub 3}, respectively, to form solid TiN and gaseous HCl. The mechanism also accounts for the change in oxidation state of Ti by allowing for liberation of N{sub 2}. Provided that the surface composition is at steady state, the stoichiometry of the overall reaction is reproduced exactly. In addition, the global kinetic law predicted by the mechanism is successfully fit to new deposition data from a rotating disk reactor and is shown to be consistent with literature results.

Larson, R.S.; Allendorf, M.D.

1995-12-01T23:59:59.000Z

229

Process for separating, especially in multiple stages, acid components such as CO/sub 2/, HCN and specifically H/sub 2/S, from gases, especially from coke oven gases, by means of ammonia recirculation scrubbing  

SciTech Connect

A process of separating in multiple stages acid components in coke oven gas such as CO/sub 2/, HCN and particularly H/sub 2/S by ammonia scrubbing wherein the ammonia used in scrubbing is deacidified to remove the acid components and is recirculated to the scrubbing process at least in part as substantially pure liquid ammonia.

Bauer, H.K.; Otte, E.A.W.

1984-10-16T23:59:59.000Z

230

Effects of lysine nutrition on production characteristics and ammonia excretion of red drum Sciaenops ocellatus  

E-Print Network (OSTI)

The red drum (Sciaenops ocellatus) has traditionally been an important commercial and recreational fish species in the Gulf of Mexico; therefore, its aquacultural production for food and for stock enhancement continues to develop. The minimum dietary lysine requirement of juvenile red drum was previously quantified to be 1.55% of a 35% crude protein (CP) diet (4.4% of dietary protein). However, red drum are usually fed diets containing 40 to 50% CP under commercial production. Therefore, the purpose of this study was to reevaluate the dietary lysine requirement of red drum as a function of dietary CP, and determine the effects of dietary manipulations on ammonia excretion. Control diets at 35 and 45% CP contained only the intact protein provided by a 50/50 mixture of red drum muscle and wheat gluten. Four experimental diets at each CP level contained the mixture (64% of CP) and crystalline amino acids (34% of CP) to provide lysine levels above and below the previously determined requirement. Each diet was fed to triplicate groups of 20 juvenile red drum initially averaging 3.4 g/fish in 110-l aquaria containing brackish (7ppt) water at 27±1 °C and operated in a recirculating mode. Diets were fed at a fixed rate approaching apparent satiation twice daily for 6 weeks after which total ammonia nitrogen (TAN) excretion at 4-h postprandial was determined. Diets supplemented with crystalline amino acids supported similar weight gain (94 - 98%) as that obtained by fish fed control diets with intact protein. Based on weight gain, protein efficiency ratio (PER), and protein conversion efficiency (PCE) data, the minimum dietary lysine requirement was not influenced by dietary CP. Broken-line regression analysis of weight gain data of fish fed increments of lysine in both 35 and 45% CP diets yielded a lysine requirement estimate of 1.49±0.07% of diet, confirming the previously determined value. Weight gain and TAN excretion were significantly (P#0.05) higher in fish fed the 45% CP diets while PER and PCE values were significantly reduced. Lysine deficiency also resulted in elevated ammonia excretion, but significant reductions were not achieved when dietary lysine was at or above the established requirement.

Webb, Kenneth Ashley

2002-01-01T23:59:59.000Z

231

The role of ammonia on mercury leaching from coal fly ash Jianmin Wang a,*, Tian Wang a  

E-Print Network (OSTI)

analysis of fly ash disposal in mined areas. In: Proceedings of the 12th International Symposium on CoalThe role of ammonia on mercury leaching from coal fly ash Jianmin Wang a,*, Tian Wang a , Harmanjit, 2005). CAIR permanently caps emissions of NOx and SOx from large stationary sources including coal

Ragsdell, Kenneth M.

232

Solvated electron yields in liquid and supercritical ammonia-A statistical mechanical treatment  

Science Conference Proceedings (OSTI)

Earlier the geminate recombination of ions and solvated electrons, produced by ionizing radiation or laser light, was theoretically treated by a model which consisted of a Rydberg atom interacting with the thermodynamic fluctuations of the medium [R. Schiller, J. Chem. Phys. 92, 5527 (1990)]. The theory was applied to liquid-to-supercritical water [R. Schiller and A. Horvath, J. Chem. Phys. 135, 084510 (2011)]. Now it is compared with recent experiments performed on liquid-to-supercritical ammonia [J. Urbanek, A. Dahmen, J. Torres-Alacan, P. Koenigshoven, J. Lindner, and P. Voehringer, J. Phys. Chem. B 116, 2223 (2012)]. The agreement between theory and experiment seems to be reasonable. The treatment is critically assessed.

Schiller, Robert; Horvath, Akos [Centre for Energy Research, P.O.B. 49, Budapest H-1525 (Hungary)

2012-12-07T23:59:59.000Z

233

Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries  

DOE Green Energy (OSTI)

The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO{sub 2} and chlorofluorocarbons.

Erickson, D.C.

1990-02-06T23:59:59.000Z

234

[{sup 13}N] Ammonia Cardiac Program At West Virginia University Health Sciences  

SciTech Connect

Due to the shortage of the more traditional cardiac imagining isotopes, specifically, Technicium-99, the Cardiologists at WVU have had to look to alternative imagining techniques such as PET. This has led to a dramatic increase in the use of [{sup 13}N] Ammonia PET scans at the Health Sciences Center. The patient load has gone from one to two patients one day a week to typically two to three patients, two days a week, with occasional add-on in-house patients; each patient typically requiring two target irradiations. In this paper, we will discuss the process that is being used to meet this increased demand from the production of the isotope through the final result.

Armbruster, John M. [IBA Molecular, NA, 3601 Morgantown Industrial Park, Morgantown, WV 26501 (United States)

2011-06-01T23:59:59.000Z

235

Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate  

SciTech Connect

A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)

Rivera, W.; Moreno-Quintanar, G.; Best, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A.P. 34, 62580 Temixco, Mor. (Mexico); Rivera, C.O.; Martinez, F. [Facultad de Ingenieria Campus Coatzacoalcos, Universidad Veracruzana, Av. Universidad Km 7.5, 96530 Coatzacoalcos, Ver. (Mexico)

2011-01-15T23:59:59.000Z

236

Production economics for hydrogen, ammonia, and methanol during the 1980--2000 period  

SciTech Connect

Refinery hydrogen, ammonia, and methanol, the principal industrial hydrogen products, are now manufactured mainly by catalytic steam reforming of natural gas or some alternative light-hydrocarbon feed stock. Anticipated increases in the prices of hydrocarbons are expected to exceed those for coal, thus gradually increasing the incentive to use coal gasification as a source of industrial hydrogen during the 1980 to 2000 period. Although the investment in industrial hydrogen plants will exceed those for reforming by a factor of 2 or more, coal gasification will provide lower production costs (including 20%/y before tax return) for methanol manufacture in the early 1980's and for ammonia 5 years or so later. However, high costs for transporting coal to major refining centers will make it difficult to justify coal gasification for refinery hydrogen production during the 1980 to 2000 period. By the year 2000, 40 to 50% of the U.S. industrial hydrogen requirements will be provided by coal gasification thus conserving natural gas and light hydrocarbon feed stocks equivalent to about 600,000 B/D of crude oil. Electrolytic hydrogen production costs will be reduced by improved electrolysis technology such as the solid-polymer-electrolyte process. These improved processes will reduce electrolysis plant investments by a factor of 2 or more and reduce electricity requirements by about 20%. Although the production cost, including return for electrolytic hydrogen, will continue to exceed those for reforming and coal gasification, the use of electrolytic hydrogen will be attractive for many small users when the new technology is available in the early 1980's. Electrolytic hydrogen now about 0.7% of total U.S. industrial hydrogen requirements will probably increase to about 1.2% of the total by the year 2000.

Corneil, H G; Heinzelmann, F J; Nicholson, E W.S.

1977-04-01T23:59:59.000Z

237

THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES  

SciTech Connect

This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

Ashish Gupta

2003-01-15T23:59:59.000Z

238

UNH Cooperative Extension is an equal opportunity educator and employer, UNH, U.S. Dept. of Agriculture and NH counties cooperating.  

E-Print Network (OSTI)

-up of what you did to Rhiannon Beauregard, 4-H State Program Coordinator. Signature of Applicant Date: Rhiannon Beauregard, 4-H State Program Coordinator Moiles House, 180 Main Street, Durham, NH 03824 Rhiannon.beauregard

New Hampshire, University of

239

Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells  

SciTech Connect

Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammonia—an abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the system—creating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

2010-07-01T23:59:59.000Z

240

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

as a fuel in solid oxide fuel cells,” J. Power Sources 118:L. and Bloomfield, D.P. , “Ammonia Cracker for Fuel Cells”,1998 Fuel Cell Seminar Abstracts, November 16-19, Palm

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas  

DOE Green Energy (OSTI)

A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

2007-08-01T23:59:59.000Z

242

Back-calculating emission rates for ammonia and particulate matter from area sources using dispersion modeling  

E-Print Network (OSTI)

Engineering directly impacts current and future regulatory policy decisions. The foundation of air pollution control and air pollution dispersion modeling lies in the math, chemistry, and physics of the environment. Therefore, regulatory decision making must rely upon sound science and engineering as the core of appropriate policy making (objective analysis in lieu of subjective opinion). This research evaluated particulate matter and ammonia concentration data as well as two modeling methods, a backward Lagrangian stochastic model and a Gaussian plume dispersion model. This analysis assessed the uncertainty surrounding each sampling procedure in order to gain a better understanding of the uncertainty in the final emission rate calculation (a basis for federal regulation), and it assessed the differences between emission rates generated using two different dispersion models. First, this research evaluated the uncertainty encompassing the gravimetric sampling of particulate matter and the passive ammonia sampling technique at an animal feeding operation. Future research will be to further determine the wind velocity profile as well as determining the vertical temperature gradient during the modeling time period. This information will help quantify the uncertainty of the meteorological model inputs into the dispersion model, which will aid in understanding the propagated uncertainty in the dispersion modeling outputs. Next, an evaluation of the emission rates generated by both the Industrial Source Complex (Gaussian) model and the WindTrax (backward-Lagrangian stochastic) model revealed that the calculated emission concentrations from each model using the average emission rate generated by the model are extremely close in value. However, the average emission rates calculated by the models vary by a factor of 10. This is extremely troubling. In conclusion, current and future sources are regulated based on emission rate data from previous time periods. Emission factors are published for regulation of various sources, and these emission factors are derived based upon back-calculated model emission rates and site management practices. Thus, this factor of 10 ratio in the emission rates could prove troubling in terms of regulation if the model that the emission rate is back-calculated from is not used as the model to predict a future downwind pollutant concentration.

Price, Jacqueline Elaine

2004-08-01T23:59:59.000Z

243

Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes  

DOE Green Energy (OSTI)

Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum mediated hydrogenation process leading to reversibility. The Al-AB complexes have comparable hydrogen capacity with other M-AB and have potential to meet DOE’s 2010 and 2015 targets for system wt%.

Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

2010-10-01T23:59:59.000Z

244

Ammonia-Borane and Related N-B-H Compounds and Materials: Safety Aspects, Properties, and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Ammonia-Borane and Related N-B-H Compounds and Materials: Ammonia-Borane and Related N-B-H Compounds and Materials: Safety Aspects, Properties and Applications (A survey completed as part of a project for the DOE Chemical Hydrogen Storage Center of Excellence, Contract # DE-FC36-05GO15060) Clinton F. Lane Department of Chemistry and Biochemistry Northern Arizona University PO Box 5698 Flagstaff, AZ 86011-5698 Phone: 928-523-6296 e-mail: clint.lane@nau.edu Outline 1. Introduction 2. Safety Aspects 3. Synthesis 4. Physical Properties 5. Theoretical Studies 6. Chemical Properties 7. Synthetic Applications 8. Industrial Applications 9. Conclusions 10. References 1. Introduction Amine-borane complexes have great potential for use as a key component in hydrogen storage fuels due to their stability and the high gravimetric content of hydrogen in these

245

REPORT ON THE EFFECT OF TEMPERATURE AND AMMONIA CONCENTRATION ON A515 CARBON STEEL IN TANK 241 AY 101 SIMULANT  

Science Conference Proceedings (OSTI)

This report documents the results from RPP-PLAN-38676, Effect of Temperature and Ammonia Concentration on A515 Carbon Steel in Tank 241-AY-101 Simulant. The purpose of this test plan was to investigate the simulant formulated for the double-shell tank (DST) 241 AY 101 (AY 101) with the addition of ammonia. The simulant was formulated from the AY-101 condensate surface layer recipe used by CC Technologies{reg_sign} in the investigation of Hanford DST chemistry, under the Expert Panel on Corrosion. AY-101 is constructed from A515 grade 60 steel. The laboratory investigation used a cylindrical corrosion coupon from this steel formulation with a surface area of 5.64 square centimeters.

DUNCAN JB; FRYE DP; WYRWAS RB

2008-11-20T23:59:59.000Z

246

Investigation of the Utility of United States Environmental Protection Agency's Recalculation Procedure for Deriving Site-specific Criteria for Ammonia  

Science Conference Proceedings (OSTI)

This report explores the utility of the United States Environmental Protection Agency’s (USEPA’s) Recalculation Procedure for deriving site-specific criteria for ammonia in fresh water. It represents a comprehensive evaluation of the application of the deletion process for select sites geographically distributed across the conterminous United States (U.S.).BackgroundThe Agency is currently in the process of updating its National aquatic life ...

2012-12-01T23:59:59.000Z

247

Preliminary performance estimates and value analyses for binary geothermal power plants using ammonia-water mixtures as working fluids  

DOE Green Energy (OSTI)

The use of ammonia-water mixtures as working fluids in binary geothermal power generation systems is investigated. The available thermodynamic data is discussed and the methods of extrapolating this data to give the quantities needed to perform analyses of the system is given. Results indicated that for a system without a recuperator and with a working fluid which is 50 percent by mass of each constituent, the geofluid effectiveness (watt-hr/lbm geofluid) is 84 percent of that for the 50MW Heber Plant. The cost of generating electric power for this system was estimated to be 9 percent greater than for the Heber Plant. However, if a recuperator is incorporated in the system (using the turbine exhaust to preheat and partially boil the working fluid) the geofluid effectiveness becomes 102 percent of that for the Heber Plant, and the cost of electricity is 5-1/4 percent lower (relative to the Heber Plant) because of less expensive equipment resulting from lower pressure, better heat transfer, and less working fluid to handle for the ammonia-water plant. These results do not necessarily represent the optimum system. Because of uncertainty in thermodynamic properties, it was felt that detailed optimization was not practical at this point. It was concluded that use of nonazeotropic mixtures of fluorocarbons as working fluids should be studied before expending further effort in the investigation of the ammonia-water mixtures.

Bliem, C.J.

1983-12-01T23:59:59.000Z

248

DENSE GAS TRACERS IN PERSEUS: RELATING THE N{sub 2}H{sup +}, NH{sub 3}, AND DUST CONTINUUM PROPERTIES OF PRE- AND PROTOSTELLAR CORES  

SciTech Connect

We investigate 35 prestellar cores and 36 protostellar cores in the Perseus molecular cloud. We find a very tight correlation between the physical parameters describing the N{sub 2}H{sup +} and NH{sub 3} gas. Both the velocity centroids and the line widths of N{sub 2}H{sup +} and NH{sub 3} correlate much better than either species correlates with CO, as expected if the nitrogen-bearing species are probing primarily the dense core gas where the CO has been depleted. We also find a tight correlation in the inferred abundance ratio between N{sub 2}H{sup +} and para-NH{sub 3} across all cores, with N(p-NH{sub 3})/N(N{sub 2}H{sup +}) = 22 +- 10. We find a mild correlation between NH{sub 3} (and N{sub 2}H{sup +}) column density and the (sub)millimeter dust continuum derived H{sub 2} column density for prestellar cores, N(p-NH{sub 3})/N(H{sub 2}) {approx}10{sup -8}, but do not find a fixed ratio for protostellar cores. The observations suggest that in the Perseus molecular cloud the formation and destruction mechanisms for the two nitrogen-bearing species are similar, regardless of the physical conditions in the dense core gas. While the equivalence of N{sub 2}H{sup +} and NH{sub 3} as powerful tracers of dense gas is validated, the lack of correspondence between these species and the (sub)millimeter dust continuum observations for protostellar cores is disconcerting and presently unexplained.

Johnstone, Doug; Kirk, Helen [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Rosolowsky, Erik [University of British Columbia Okanagan, Kelowna, BC V1V 1V7 (Canada); Tafalla, Mario, E-mail: doug.johnstone@nrc-cnrc.gc.c [Observatorio Astronomico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain)

2010-03-10T23:59:59.000Z

249

A dsorption of H2 S or SO2 on an activated carbon cloth modified by ammonia treatment  

E-Print Network (OSTI)

relatively high flue gas desulfurization capacities at low temperature. ACF shows a great rate of transferSO4 at room temperature by the humidity within the reactant gas. They found that ACF is more suitable to a saturator taining an aqueous solution of 28% NH3. The carrier gas line and the saturator were kept

Paris-Sud XI, Université de

250

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

251

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH  

Gasoline and Diesel Fuel Update (EIA)

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH 0661 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone, or telecommunications device for the hearing impaired. Addresses, telephone numbers, and hours are as follows: National Energy Information Center Energy Information Administration Forrestal Building, Room 1F-048 Washington, DC 20585 (202) 586-8800 Telecommunications Device for the Hearing Impaired Only: (202) 586-1181 8 a.m. - 5 p.m., eastern time, M-F

252

A model of the gas-phase chemistry of boron nitride CVC from BCl{sub 3} and NH{sub 3}  

Science Conference Proceedings (OSTI)

The kinetics of gas-phase reactions occurring during the CVD of boron nitride (BN) from BCl{sub 3} and NH{sub 3} are investigated using an elementary reaction mechanism whose rate constants were obtained from theoretical predictions and literature sources. Plug-flow calculations using this mechanism predict that unimolecular decomposition of BCl{sub 3} is not significant under typical CVD conditions, but that some NH{sub 3} decomposition may occur, especially for deposition occurring at atmospheric pressure. Reaction of BCl{sub 3} with NH{sub 3} is rapid under CVD conditions and yields species containing both boron and nitrogen. One of these compounds, Cl{sub 2}BNH{sub 2}, is predicted to be a key gas-phase precursor to BN.

Allendorf, M.D.; Melius, C.F.; Osterheld, T.H.

1995-12-01T23:59:59.000Z

253

Short-term recovery of NH4-15N applied to a temperate forest inceptisol and ultisol in east Tennessee USA  

Science Conference Proceedings (OSTI)

The short-term fate and retention of ammonium (NH4)-{sup 15}nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH{sub 4}-{sup 15}N tracer were made to the forest floor at 2- to 4-week intervals over a 14-week period in 2004. Nitrogen-15 recovery in the forest floor, fine roots (100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.

Garten Jr, Charles T [ORNL; Brice, Deanne Jane [ORNL; Todd Jr, Donald E [ORNL

2007-11-01T23:59:59.000Z

254

ESTIMATED UPPER BOUNDS TO THE HALF-LIFE OF THERMAL DECOMPOSITION OF AMMONIA, HYDROGEN, METHANE, AND PROPANE  

DOE Green Energy (OSTI)

An estimate was made of the upper bound for the half-time of dissociation at 100 atm for ammonia, methane, and propane at 2500 deg K and hydrogen at 5000 deg K. In each case a unimolecular reactron in the homogeneous gas phase was chosen as most suitable for this purpose. Slater's theory has been used to estimate the necessary frequency factors. The upper bounds to the half- time for dissociation range from 3 x 10/sup -7/ to 6 x 10/sup -6/ sec. Extrapolation of decomposition rate data obtained at --1000 deg C and 1 atm pressure gives smaller values for the half-time of dissociation. (auth)

Herschbach, D.

1955-08-01T23:59:59.000Z

255

Ammonia-Borane under High Pressure - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jiuhua Chen (Primary Contact), Shah Najiba, Yongzhou Sun, Jennifer Girard, Vadym Drozd Center for the Study of Matters at Extreme Conditions Department of Mechanical and Materials Engineering Florida International University 11200 SW 8 th Street Miami, FL 33199 Phone: (305) 348-3140 Email: chenj@fiu.edu DOE Program Officer: Dr. Lane Wilson Phone: (301) 903-5877 Email: Lane.Wilson@science.doe.gov Subcontractor: Wendy Mao, Stanford University Objectives Understand pressure influence on the structure, phase * stability, dehydrogenation of ammonia borane and its

256

Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management  

SciTech Connect

Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and potentially cover a broader range of habitats.

Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

2010-05-01T23:59:59.000Z

257

Growth of InGaN HBTs by MOCVD THEODORE CHUNG,1,5  

E-Print Network (OSTI)

. Trimethylgallium (TMGa), trimethylindium (TMIn), and ammonia (NH3) are used as the sour- ces, while disilane (Si2H6

Asbeck, Peter M.

258

MASSIVE QUIESCENT CORES IN ORION: DYNAMICAL STATE REVEALED BY HIGH-RESOLUTION AMMONIA MAPS  

SciTech Connect

We present combined Very Large Array and Green Bank Telescope images of NH{sub 3} inversion transitions (1, 1) and (2, 2) toward OMC2 and OMC3. We focus on the relatively quiescent Orion cores, which are away from the Trapezium cluster and have no sign of massive protostars or evolved star formation. The 5'' angular resolution and 0.6 km s{sup -1} velocity resolution enable us to study the thermal and dynamic state of these cores at {approx}0.02 pc scales, comparable to or smaller than those of the current dust continuum surveys. We measure temperatures for a total of 30 cores, with average masses of 11 M{sub Sun }, radii of 0.039 pc, virial mass ratio R{sub vir}-bar = 3.9, and critical mass ratio R{sub C}-bar = 1.5. Twelve sources contain Spitzer protostars. The thus defined starless and protostellar subsamples have similar temperature, line width, but different masses, with an average of 7.3 M{sub Sun} for the former and 16 M{sub Sun} for the latter. Compared to other Gould Belt dense cores, more Orion cores have a high gravitational-to-kinetic energy ratio and more cores have a larger than unity critical mass ratio. Orion dense cores have velocity dispersions similar to those of cores in low-mass star-forming regions but larger masses for given size. Some cores appear to have truly supercritical gravitational-to-kinetic energy ratios, even when considering significant observational uncertainties: thermal and non-thermal gas motions alone cannot prevent collapse.

Li, D. [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China); Kauffmann, J. [Department of Astronomy, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Chen, W., E-mail: ithaca.li@gmail.com [Peking University, Beijing (China)

2013-05-01T23:59:59.000Z

259

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

260

Addendum to Guarantee Testing Results from the Greenidge Multi-Pollutant Control Project: Additiona NH3, NOx, and CO Testing Results  

SciTech Connect

On March 28-30 and May 1-4, 2007, CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-MW Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The testing in March and May demonstrated that the multi-pollutant control system attained its performance targets for NO{sub x} emissions, SO{sub 2} removal efficiency, acid gas (SO{sub 3}, HCl, and HF) removal efficiency, and mercury removal efficiency. However, the ammonia slip measured between the SCR outlet and air heater inlet was consistently greater than the guarantee of 2 ppmvd {at} 3% O{sub 2}. As a result, additional testing was performed on May 30-June 1 and on June 20-21, 2007, in conjunction with tuning of the hybrid NO{sub x} control system by BPEI, in an effort to achieve the performance target for ammonia slip. This additional testing occurred after the installation of a large particle ash (LPA) screen and removal system just above the SCR reactor and a fresh SCR catalyst layer in mid-May. This report describes the results of the additional tests. During the May 30-June 1 sampling period, CONSOL R&D and Clean Air Engineering (CAE) each measured flue gas ammonia concentrations at the air heater inlet, downstream of the in-duct SCR reactor. In addition, CONSOL R&D measured flue gas ammonia concentrations at the economizer outlet, upstream of the SCR reactor, and CAE measured flue gas NO{sub x} and CO concentrations at the sampling grids located at the inlet and outlet of the SCR reactor. During the June 20-21 sampling period, CONSOL R&D measured flue gas ammonia concentrations at the air heater inlet. All ammonia measurements were performed using a modified version of U.S. Environmental Protection Agency (EPA) Conditional Test Method (CTM) 027. The NO{sub x} and CO measurements were performed using U.S. EPA Methods 7E and 10, respectively.

Daniel P. Connell; James E. Locke

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia July 5, 2011 DOE/NETL- 2010/1402 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

262

Neutron Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K  

Science Conference Proceedings (OSTI)

The structural behavior of perdeuterated, 11B-enriched ammonia borane, ND311BD3, was investigated by neutron powder diffraction measurements collected over the temperature range from 15 to 340 K and by molecular dynamics simulation. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the rotation of the B-N bond parallel to the c-axis. The structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group that is problematic to extract from the metrics provided by Rietveld analysis of the NPD data alone but is evident in the molecular dynamics simulation and other spectroscopic evidence. This study highlights the valued added by complimentary experimental approaches and coupled computational studies.

Hess, Nancy J.; Schenter, Gregory K.; Hartman, Michael R.; Daemen, Luke L.; Proffen, Thomas E.; Kathmann, Shawn M.; Mundy, Christopher J.; Hartl, Monika A.; Heldebrant, David J.; Stowe, Ashley C.; Autrey, Thomas

2009-04-17T23:59:59.000Z

263

Cost analysis of an ammonia dry cooling system with a Chicago Bridge and Iron peak shaving system  

SciTech Connect

A study was performed to determine the potential for reducing the cost associated with dry cooling by using an ammonia dry cooling system augmented with the Chicago Bridge and Iron (CP and I) peak shaving system. The cost analysis of an all-dry ammonia cooling system operating in conjunction with a peak shaving system is documented. The peak shaving system utilizes the excess cooling capability available at night to cool water to be used for supplemental cooling during the following day. The analysis consisted of determining the incremental cost of cooling for the CB and I system and comparing this cost to the incremental cost of cooling for both dry and wet/dry systems for a consistent set of design conditions and assumptions. The wet/dry systems were analyzed over a range of water usages. The basis of the comparisons was a cooling system designed for installations with a 650 mWe (gross) coal-fired power plant. From results of the study it was concluded that: the CB and I system shows a substantial economic advantage when compared with an all-dry cooling system; the CB and I system appears to be competitive with wet/dry cooling systems using about 2 to 3% water; and the CB and I system demonstrates a clear economic advantage when compared to both dry and wet/dry concepts for a winter peaking utility where the excess generation is assumed to displace both base-loaded coal-fired power generation and oil-fired gas turbine peaking units.

Drost, M.K.; Johnson, B.M.

1980-12-01T23:59:59.000Z

264

TESTING THE SPECIFICITY OF PRIMERS TO ENVIRONMENTAL AMMONIA MONOOXYGENASE (AMOA) GENES IN GROUNDWATER TREATED WITH UREA TO PROMOTE CALCITE PRECIPITATION  

Science Conference Proceedings (OSTI)

The diversity of bacterial ammonia monooxygenase (amoA) genes in DNA isolated from microorganisms in groundwater was characterized by amplification of amoA DNA using polymerase chain reaction (PCR), Restriction Fragment Length Polymorphism (RFLP) analysis, and sequencing. The amoA gene is characteristic of ammonia oxidizing bacteria (AOB). The DNA extracts were acquired from an experiment where dilute molasses and urea were sequentially introduced into a well in the Eastern Snake River Plain Aquifer (ESRPA) in Idaho to examine whether such amendments could stimulate enhanced ureolytic activity. The hydrolysis of urea into ammonium and carbonate serves as the basis for a potential remediation technique for trace metals and radionuclide contaminants that co-precipitate in calcite. The ammonium ion resulting from ureolysis can promote the growth of AOB. The goal of this work was to investigate the effectiveness of primers designed for quantitative PCR of environmental amoA genes and to evaluate the effect of the molasses and urea amendments upon the population diversity of groundwater AOB. PCR primers designed to target a portion of the amoA gene were used to amplify amoA gene sequences in the groundwater DNA extracts. Following PCR, amplified gene products were cloned and the clones were characterized by RFLP, a DNA restriction technique that can distinguish different DNA sequences, to gauge the initial diversity. Clones exhibiting unique RFLP patterns were subjected to DNA sequencing. Initial sequencing results suggest that the primers were successful at specific detection of amoA sequences and the RFLP analyses indicated that the diversity of detected amoA sequences in the ESRPA decreased with the additions of molasses and urea.

Stephanie Freeman; David Reed; Yoshiko Fujita

2006-12-01T23:59:59.000Z

265

Heteroepitaxial growth of GaN/Si (111) junctions in ammonia-free atmosphere: Charge transport, optoelectronic, and photovoltaic properties  

Science Conference Proceedings (OSTI)

We report the catalyst-free growth of gallium nitride (GaN) nanostructures on n-Si (111) substrates using physical vapor deposition via thermal evaporation of GaN powder at 1150 Degree-Sign C in the absence of NH{sub 3} gas. Scanning electron microscopy and energy dispersive x-ray analysis indicate that the growth rate of GaN nanostructures varies with deposition time. Photoluminescence spectra showed the suppression of the UV emission and the enhancement of the visible band emission with increasing the deposition time. The fabricated GaN nanostructures exhibited p-type behavior at the GaN/Si interface, which can be related to the diffusion of Ga into the Si substrate. The obtained lowest reflection and highest transmittance over a wide wavelength range (450-750 nm) indicate the high quality of the fabricated GaN films. Hall-effect measurements showed that all fabricated films have p-type behavior with decreasing electron concentration from 10{sup 21} to 10{sup 12} cm{sup -3} and increasing the electron mobility from 50 to 225 cm{sup 2}/V s with increasing the growth time. The fabricated solar cell based on the 1 h-deposited GaN nanostructures on n-Si (111) substrate showed a well-defined rectifying behavior with a rectification ratio larger than 8.32 Multiplication-Sign 10{sup 3} in dark. Upon illumination (30 mW/cm{sup 2}), the 1 h-deposited heterojunction solar cell device showed a conversion efficiency of 5.78%. The growth of GaN in the absence of NH{sub 3} gas has strong effect on the morphological, optical, and electrical properties and consequently on the efficiency of the solar cell devices made of such layers.

Saron, K. M. A.; Hashim, M. R. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Allam, Nageh K. [Energy Materials Laboratory (EML), Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835 (Egypt)

2013-03-28T23:59:59.000Z

266

Submillimeter water and ammonia absorption by the peculiar z~0.89 interstellar medium in the gravitational lens of the PKS 1830-211 system  

E-Print Network (OSTI)

Using the Atacama Pathfinder Experiment (APEX) telescope we have detected the rotational ground-state transitions of ortho-ammonia and ortho-water toward the redshift ~0.89 absorbing galaxy in the PKS 1830-211 gravitational lens system. We discuss our observations in the context of recent space-borne data obtained for these lines with the SWAS and Odin satellites toward Galactic sources. We find commonalities, but also significant differences between the interstellar media in a galaxy at intermediate redshift and in the Milky Way. Future high-quality observations of the ground-state ammonia transition in PKS 1830-211, together with inversion line data, will lead to strong constraints on the variation of the proton to electron mass ratio over the past 7.2 Gyr.

Menten, K M; Leurini, S; Thorwirth, S; Henkel, C; Klein, B; Carilli, C L; Reid, M J

2008-01-01T23:59:59.000Z

267

Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV  

Science Conference Proceedings (OSTI)

The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

William J. O’Donnell; Donald S. Griffin

2007-05-07T23:59:59.000Z

268

Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

King, C.J.; Tung, L.A.

1992-07-21T23:59:59.000Z

269

The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell  

E-Print Network (OSTI)

Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around cool stars and sub-stellar objects. However, no technique currently exists that yields near-infrared radial velocity precision comparable to that which is routinely obtained in the visible. We describe a method for measuring high-precision relative radial velocities of cool stars from K-band spectra. The method makes use of a glass cell filled with ammonia gas to calibrate the spectrograph response similar to the iodine cell technique that has been used so successfully in the visible. Stellar spectra are obtained through the ammonia cell and modeled as the product of a Doppler-shifted template spectrum of the object and a spectrum of the cell, convolved with a variable instrumental profile model. A complicating factor is that a significant number of telluric absorption lines are present in the spectral regions containing useful stellar and ammonia lines. The telluric lines are modeled simultaneou...

Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Wiedemann, Guenter; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J

2009-01-01T23:59:59.000Z

270

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

271

Hanford Waste Vitrification Plant hydrogen generation study: Formation of ammonia from nitrate and nitrate in hydrogen generating systems  

DOE Green Energy (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed for the Departrnent of Energy (DOE) to immobilize pretreated highly radioactive wastes in glass for permanent disposal in the HWVP, formic acid is added to the waste before vitrification to adjust glass redox and melter feed rheology. The operation of the glass melter and durability of the glass are affected by the glass oxidation state. Formation of a conductive metallic sludge in an over-reduced melt can result in a shortened melter lifetime. An over-oxidized melt may lead to foaming and loss of ruthenium as volatile RuO{sub 4}. Historically, foaming in the joule heated ceramic melter has been attributed to gas generation in the melt which is controlled by instruction of a reductant such as formic acid into the melter feed. Formic acid is also found to decrease the melter feed viscosity thereby facilitating pumping. This technical report discusses the noble metal catalyzed formic acid reduction of nitrite and/or nitrate to ammonia, a problem of considerable concern because of the generation of a potential ammonium nitrate explosion hazard in the plant ventilation system.

King, R.B.; Bhattacharyya, N.K.

1996-02-01T23:59:59.000Z

272

Effects of growth temperature on Mg-doped GaN grown by ammonia molecular beam epitaxy  

SciTech Connect

The hole concentration p in Mg-doped GaN films grown by ammonia molecular beam epitaxy depends strongly on the growth temperature T{sub GR}. At T{sub GR}=760 Degree-Sign C, GaN:Mg films showed a hole concentration of p=1.2 Multiplication-Sign 10{sup 18} cm{sup -3} for [Mg]=4.5 Multiplication-Sign 10{sup 19} cm{sup -3}, while at T{sub GR}=840 Degree-Sign C, p=4.4 Multiplication-Sign 10{sup 16} cm{sup -3} for [Mg]=7 Multiplication-Sign 10{sup 19} cm{sup -3}. Post-growth annealing did not increase p. The sample grown at 760 Degree-Sign C exhibited a low resistivity of 0.7 {Omega}cm. The mobility for all the samples was around 3-7 cm{sup 2}/V s. Temperature-dependent Hall measurements and secondary ion mass spectroscopy suggest that the samples grown at T{sub GR}>760 Degree-Sign C are compensated by an intrinsic donor rather than hydrogen.

Hurni, Christophe A.; Lang, Jordan R.; Burke, Peter G.; Speck, James S. [Materials Department, University of California, Santa Barbara, 93106-5050 California (United States)

2012-09-03T23:59:59.000Z

273

Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments  

SciTech Connect

The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

Sbruev, I. S.; Sbruev, S. B., E-mail: science@yandex.ru [Moscow Aviation Institute (Russian Federation)

2010-10-15T23:59:59.000Z

274

HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition  

Science Conference Proceedings (OSTI)

The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopy cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.

Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.; /SLAC, SSRL; Kim, E.; McIntyre, P.C.; /Stanford U., Materials Sci. Dept.; Tsai, W.; Garner, M.; /Intel, Santa Clara; Pianetta, P.; /SLAC, SSRL; Nishi, Y.; /Stanford U., Elect. Eng. Dept.; Chui, C.O.; /UCLA

2007-09-28T23:59:59.000Z

275

AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE  

DOE Green Energy (OSTI)

The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

Erdy, C.; Anton, D.; Gray, J.

2010-12-08T23:59:59.000Z

276

High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O  

SciTech Connect

The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambient temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.

Schmidt, Corinna; Feyand, Mark [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany); Rothkirch, Andre [HASYLAB, DESY Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Stock, Norbert, E-mail: stock@ac.uni-kiel.de [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany)

2012-04-15T23:59:59.000Z

277

Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy  

Science Conference Proceedings (OSTI)

Deep level defects in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy were characterized using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) and compared with polar c-plane GaN that was grown simultaneously in the same growth run. Significant differences in both the levels present and their concentrations were observed upon comparison of both growth orientations. DLTS revealed electron traps with activation energies of 0.14 eV, 0.20 eV, and 0.66 eV in the m-plane material, with concentrations that were {approx}10-50 x higher than traps of similar activation energies in the c-plane material. Likewise, DLOS measurements showed {approx}20 x higher concentrations of both a C{sub N} acceptor-like state at E{sub C} - 3.26 eV, which correlates with a high background carbon concentration observed by secondary ion mass spectroscopy for the m-plane material [A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004)], and the V{sub Ga}-related state level at E{sub C} - 2.49 eV, which is consistent with an enhanced yellow luminescence observed by photoluminescence. The findings suggest a strong impact of growth dynamics on the incorporation of impurities and electrically active native point defects as a function of GaN growth plane polarity.

Zhang, Z.; Arehart, A. R. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Hurni, C. A.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106-5050 (United States); Yang, J. [Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Myers, R. C.; Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

2012-01-30T23:59:59.000Z

278

Evaluation of hydrogen and ammonia gas mixtures with the suspended- gate field-effect transistor sensor array  

DOE Green Energy (OSTI)

Generation of hydrogen represents a severe industrial hazard primarily because the mixture of hydrogen with air in the ratio 4.0--74.2 vol % is explosive. In some industrial applications, such as waste remediation, hydrogen, as a product of radiolysis and corrosion, occurs in the presence of ammonia, nitrous oxide, water vapor and other molecules. A low cost, reliable method for monitoring these gaseous mixtures is essential. Palladium-based layers have been used successfully as hydrogen sensitive layers in several potentiometric sensors for many years. Since the sensing mechanism is based on the catalytic decomposition of hydrogen molecules, other hydrogen-bearing gases can also produce a response. From this viewpoint, using an array of sensing elements with catalytic and noncatalytic chemically selective layers in these applications can be highly effective. Moreover, integration of this array on a single chip can be routinely achieved. The Suspended Gate Field-Effect Transistor (SGFET) is microfabricated in silicon. The metal gate of the transistor is separated from the substrate by an air gap. The chemically sensitive layer is electrodeposited on the bottom of the suspended gate. Chemical species can penetrate into the gate area and interact with the sensing layer. This interaction modulates the work function of the layer. The change in the work function results in the shift of the transistor threshold voltage. The measured threshold voltage shift is a function of the gas concentration in the sensor vicinity. By passing a small current through the suspended gate, it is possible to control the operating temperature of the sensing layer (up to 200{degrees}C) and, therefore, to modulate the sensor sensitivity, selectivity, response and recovery times. Due to the very low thermal mass, the heat is localized on the gate so that many devices can be operated on a single chip, each with the gate at different temperature.

Domansky, K.; Li, H.S.; Josowicz, M.; Janata, J.

1995-12-01T23:59:59.000Z

279

High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy  

SciTech Connect

High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

Lang, J. R.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Neufeld, C. J.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2011-03-28T23:59:59.000Z

280

QM/MM Lineshape Simulation of the Hydrogen-bonded Uracil NH Stretching Vibration of the Adenine:Uracil Base Pair in CDCl$_3$  

E-Print Network (OSTI)

A hybrid Car-Parrinello QM/MM molecular dynamics simulation has been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. The resulting trajectory is analyzed putting emphasis on the N-H$...$N Hydrogen bond geometry. Using an empirical correlation between the $\\NN$-distance and the fundamental NH-stretching frequency, the time-dependence of this energy gap along the trajectory is obtained. From the gap-correlation function we determine the infrared absorption spectrum using lineshape theory in combination with a multimode oscillator model. The obtained average transition frequency and the width of the spectrum is in reasonable agreement with recent experimental data.

Yan, Yun-an; Kühn, Oliver

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS  

SciTech Connect

Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include those previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.

Minh, Young Chol [Korea Astronomy and Space Science Institute, Daeduk-daero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Liu, Hauyu Baobab; Ho, Paul T. P.; Hsieh, Pei-Ying; Su, Yu-Nung [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Sungsoo S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Kyungki-do 446-701 (Korea, Republic of); Wright, Melvyn [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

2013-08-10T23:59:59.000Z

282

Assessment of the use of H{sub 2}, CH{sub 4}, NH{sub 3} and CO{sub 2} as NTP propellants. Revision  

DOE Green Energy (OSTI)

In this paper the effect of changing from the traditional NTP coolant, hydrogen, to several alternative coolant is studied. Hydrogen is generally chosen as an NTP coolant, since its use maximizes the specific impulse for a given operating temperature. However, there are situations in which it may not be available as optional. The alternative coolant which were considered are ammonia, urethane, carbon dioxide and carbon monoxide. A particle bed reactor (PBR) generating 200 MW and coolant by hydrogen was used as the baseline against which all the comparisons were made. Both 19 and 37 element cases were considered and the large number of elements was found to be necessary in the case of the carbon monoxide. The coolant reactivity worth was found to be directly proportional to the hydrogen coolant content. It was found that due to differences in the thermophysical proportions of the coolant that it would not be possible to use one reactor for all the coolants. The reactor would have to constructed specifically for a coolant type.

Selcow, E.C.; Davis, R.E.; Perkins, K.R.; Ludewig, H.; Cerbone, R.J.

1991-10-01T23:59:59.000Z

283

SRD 134 Ammonia  

Science Conference Proceedings (OSTI)

... and McLinden, MO, NIST Standard Reference Database 23: NIST Reference Fluid Thermodynamic and Transport Properties, Version 7.0, National ...

2013-05-06T23:59:59.000Z

284

Formation of {open_quotes}metal wool{close_quotes} structures and dynamics of catalytic etching of platinum surfaces during ammonia oxidation  

SciTech Connect

Reconstruction of a clean surface of a platinum catalyst and a platinum surface covered with gold during ammonia oxidation was studied by SEM observations. It was found that the process of catalytic etching had two sequential stages in which different crystal structures with different rates of growth formed on the surface. The first stage was the formation of parallel facets, and the second stage was the formation of individual microcrystals with perfect crystal faces. It was also found that the second state had a threshold character, beginning after some delay from the start of the reaction. A structure resembling metal wool and consisting of interlaced platinum filaments was found to form on the surface of gold-covered platinum catalysts. Characteristic features of this structure`s development are reported. The growth of filaments is attributed to the vapor-liquid-solid mechanism of whisker growth. On the basis of the observed platinum whisker formation and behavior during ammonia oxidation, a mechanism of catalyst surface reconstruction that explains observed characteristic features of the process of catalytic etching is proposed. 25 refs., 8 figs.

Lyubovsky, M.R.; Barelko, V.V. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)] [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

1994-09-01T23:59:59.000Z

285

LOW-TEMPERATURE ION TRAP STUDIES OF N{sup +}({sup 3} P{sub ja} ) + H{sub 2}(j) {yields} NH{sup +} + H  

SciTech Connect

Using a low-temperature 22-pole ion trap apparatus, detailed measurements for the title reaction have been performed between 10 K and 100 K in order to get some state specific information about this fundamental hydrogen abstraction process. The relative population of the two lowest H{sub 2} rotational states, j = 0 and 1, has been varied systematically. NH{sup +} formation is nearly thermo-neutral; however, to date, the energetics are not known with the accuracy required for low-temperature astrochemistry. Additional complications arise from the fact that, so far, there is no reliable theoretical or experimental information on how the reactivity of the N{sup +} ion depends on its fine-structure (FS) state {sup 3} P{sub ja} . Since in the present trapping experiment, thermalization of the initially hot FS population competes with hydrogen abstraction, the evaluation of the decay of N{sup +} ions over long storage times and at various He and H{sub 2} gas densities provides information on these processes. First assuming strict adiabatic behavior, a set of state specific rate coefficients is derived from the measured thermal rate coefficients. In addition, by recording the disappearance of the N{sup +} ions over several orders of magnitude, information on nonadiabatic transitions is extracted including FS-changing collisions.

Zymak, I.; Hejduk, M.; Mulin, D.; Plasil, R.; Glosik, J.; Gerlich, D. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

2013-05-01T23:59:59.000Z

286

Imaging ion-molecule reactions: Charge transfer and C-N bond formation in the C{sup +}+ NH{sub 3} system  

Science Conference Proceedings (OSTI)

The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C{sup +} and NH{sub 3}. The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH{sub 3}]{sup +} precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.

Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2012-05-28T23:59:59.000Z

287

Make Checks Payable to the 4-H Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4-H State Horse Show Website  

E-Print Network (OSTI)

Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4 Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon Exposition. Please notify Rhiannon Beauregard, NH 4-H Animal and Agricultural Science Education Coordinator

New Hampshire, University of

288

Zeolite?Based Algae Biofilm Rotating Photobioreactor for Algae and Biomass Production.  

E-Print Network (OSTI)

?? Alkaline conditions induced by algae growth in wastewater stabilization ponds create deprotonated ammonium ions that result in ammonia gas (NH3) volatilization. If algae are… (more)

Young, Ashton M.

2011-01-01T23:59:59.000Z

289

Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solventbased lignocellulose fractionation and soaking in aqueous ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Increasing Cellulose Accessibility Is More Important Than Removing Lignin: A Comparison of Cellulose Solvent-Based Lignocellulose Fractionation and Soaking in Aqueous Ammonia Joseph A. Rollin, 1 Zhiguang Zhu, 1 Noppadon Sathitsuksanoh, 1,2 Y.-H. Percival Zhang 1,2,3 1 Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061; telephone: 1-540-231-7414; fax: þ1- 540-231-3199; e-mail: ypzhang@vt.edu 2 Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 3 DOE BioEnergy Science Center (BESC), Oak Ridge, Tennessee Received 18 May 2010; revision received 11 August 2010; accepted 17 August 2010 Published online 1 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22919

290

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences. We will concentrate on the spectral region near 1530 nm, where other researchers have had some success in measuring ammonia.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2005-09-30T23:59:59.000Z

291

Molecular beam epitaxy of InAlN lattice-matched to GaN with homogeneous composition using ammonia as nitrogen source  

Science Conference Proceedings (OSTI)

InAlN lattice-matched to GaN was grown by molecular beam epitaxy (MBE) using ammonia as the nitrogen source. The alloy composition, growth conditions, and strain coherence of the InAlN were verified by high resolution x-ray diffraction {omega}-2{theta} scans and reciprocal space maps. Scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy of the InAlN revealed the absence of lateral composition modulation that was observed in the films grown by plasma-assisted MBE. InAlN/AlN/GaN high electron mobility transistors with smooth surfaces were fabricated with electron mobilities exceeding 1600 cm{sup 2}/Vs and sheet resistances below 244 {Omega}/sq.

Wong, Man Hoi; Wu Feng; Hurni, Christophe A.; Choi, Soojeong; Speck, James S.; Mishra, Umesh K. [Department of Electrical and Computer Engineering and Materials Department, University of California, Santa Barbara, California 93106 (United States)

2012-02-13T23:59:59.000Z

292

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

293

An Engineering and Economic Assessment of Alstom's Chilled Ammonia Process Development Unit (PDU) Design Applied at Full Scale to a n 1100 F Ultra-Supercritical Pulverized Coal Power Plant  

Science Conference Proceedings (OSTI)

EPRI’s CO2 capture program aims to assess promising CO2 capture processes for pulverized coal-fired boilers, assist in developing lower cost options than the best technologies/processes available to date, and accelerate promising capture technologies to full-scale commercialization. This report presents the findings and conclusions from EPRI’s Economic and Engineering Assessment of the initial Alstom chilled ammonia process (CAP) design, scaled up, and applied to ...

2012-10-30T23:59:59.000Z

294

Program on Technology Innovation: Summary of the Electricite de France (EDF) Water/Ammonia Binary-Cycle Research Program (CYBIAM) fo r Electricity Production: Summary of the Work Conducted at EDF Research and Development Between 1978 and 1992  

Science Conference Proceedings (OSTI)

This report describes a program, conducted by Electricit de France (EDF) Research and Development (R&D) between 1978 and 1992, aimed at gathering information about and demonstrating the advantages of using an ammonia cycle to replace the low-pressure steam pressure reduction process. It was motivated by the need to limit the size of production facilities along with a constant increase of power delivered per production unit.

2011-12-16T23:59:59.000Z

295

Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle  

Science Conference Proceedings (OSTI)

A computer simulation has been conducted to investigate the performance of an absorption heat pump, based on the Generator-Absorber Heat Exchange (GAX) cycle employing ammonia-water as the working fluid pair. The particular feature of this cycle is the ability to recover heat from the absorber and employ it to partially heat the generator, thus improving the COP. In the present study, a detailed simulation has been conducted of one of the preferred configurations for the cycle. A modular computer code for flexible simulation of absorption systems (ABSIM) was employed. Performance parameters, including COP and capacity, were investigated as functions of different operating parameters over a wide range of conditions in both the cooling and heating mode. The effect of the ambient temperature, the rectifier performance, the flowrate in the GAX heat transfer loop and the refrigerant flow control were investigated. COP`s on the order of 1.0 for cooling and 2.0 for heating have been calculated.

Grossman, G. [Israel Institute of Technology, Haifa (Israel); DeVault, R.C.; Creswick, F.A. [Oak Ridge National Lab., TN (United States)

1995-02-01T23:59:59.000Z

296

Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria  

Science Conference Proceedings (OSTI)

Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0-10 cm (Horizon O); 11-25 cm (Horizon A) and 26-40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.

Shah, V.; Green, T.; Shah, V.; Shah, S.; Kambhampati, M.; Ambrose, J.; Smith, N.; Dowd, S.; McDonnell, K.; Panigrahi, B.

2011-10-20T23:59:59.000Z

297

Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste  

DOE Green Energy (OSTI)

Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

Bryan, S.A.; Pederson, L.R.

1996-02-01T23:59:59.000Z

298

Process for the treatment of lignocellulosic biomass  

Science Conference Proceedings (OSTI)

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

2013-03-12T23:59:59.000Z

299

Background picture courtesy of EnBW AG The special properties of zeotropic mixtures and the complex =low geometry created by the corrugated plates make the  

E-Print Network (OSTI)

behavior of ammonia-water mixtures in corrugated plates heat exchangers NH3-H2O geothermal power plants running Kalina cycles based on ammonia-water mixtures of the Kalina cycle, the phase change behavior of ammonia-water mixtures must

Lausanne, Ecole Polytechnique Fédérale de

300

DEVELOPMENT OF ALL-SOLID-STATE SENSORS FOR MEASUREMENT OF NITRIC OXIDE AND AMMONIA CONCENTRATIONS BY OPTICAL ABSORPTION IN PARTICLE-LADEN COMBUSTION EXHAUST STREAMS  

SciTech Connect

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2 described in this progress report, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Safe Operating Procedure CHEMICALS OF CONCERN  

E-Print Network (OSTI)

of the mixture into a natural gas processing plant or a petroleum refining process unit. Naturally occurring a concentration of 1% or more). · Chlorine gas is subject to regulation if stored in cumulative quantities of 500-laboratory settings, chlorine gas and anhydrous ammonia are common. A complete list of COCs can be found in Appendix

Farritor, Shane

302

Flue Gas Conditioning Trial at Rochester Gas and Electric Russell Station  

Science Conference Proceedings (OSTI)

This report presents data and results of a full-scale evaluation of two flue gas conditioning agents considered as upgrades for the existing electrostatic precipitators (ESPs) at Rochester Gas and Electric's (RG&E) Russell Station. The flue gas additives evaluated were anhydrous ammonia and a proprietary chemical agent, ADA-23.

1999-04-06T23:59:59.000Z

303

Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint  

DOE Green Energy (OSTI)

Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

Bharathan, D.; Nix, G.

2001-08-06T23:59:59.000Z

304

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

SciTech Connect

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

305

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

DOE Patents (OSTI)

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

306

Mechanochemical transformation of mixtures of Ca(OH){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4} or P{sub 2}O{sub 5}  

Science Conference Proceedings (OSTI)

A detailed comparative study of the mechanochemical transformation of two mixtures: Ca(OH){sub 2}-(NH{sub 4}){sub 2}HPO{sub 4} and Ca(OH){sub 2}-P{sub 2}O{sub 5}, milled in a mortar dry grinder for different periods of time was carried out. The phase transformations obtained at each milling stage were studied by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The transformations taking place during the first periods of milling are very different for both mixtures. However, prolonged milling, over nearly the same period, causes amorphization of both mixtures. DSC analysis of the milled powders showed the temperature of crystallization of hydroxyapatite and tricalcium phosphate ({beta}-TCP). Calcinations of all the different milled powders at 800 deg. C for 2 h, results in the formation of hydroxyapatite and {beta}-TCP.

Gonzalez, G. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)]. E-mail: gemagonz@ivic.ve; Sagarzazu, A. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela); Villalba, R. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)

2006-10-12T23:59:59.000Z

307

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

1980-10-01T23:59:59.000Z

308

NH Acid Rain Control Act (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The Act is implemented under New Hampshire's acid deposition control program established under the Rules to Control Air Pollution in Chapter Env-A 400. The goal of the Act is to reduce emissions...

309

Export.gov - NH Our Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify potential partners. Market your firm directly to local companies. Partner Search Identify potential partners and get detailed company reports. Determine the...

310

Pittsburg, NH Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

56,879 39,438 26,767 18,297 19,826 47,451 1998-2012 Pipeline Prices 7.52 9.72 5.04 5.48 5.45 4.08 1998...

311

Pittsburg, NH Natural Gas Exports to Canada  

Gasoline and Diesel Fuel Update (EIA)

7 2008 2009 2010 2011 2012 View History Pipeline Volumes 0 64 0 0 336 199 2007-2012 Pipeline Prices -- 7.61 -- -- 7.54 2.62 2007-2012...

312

Inter-Layer Mixing in Selective Catalytic Reduction Systems  

Science Conference Proceedings (OSTI)

The primary parameter for achieving high NOx reduction and low ammonia (NH3) slip in Selective Catalytic Reduction (SCR) systems on large coal-fired boilers is a uniform NH3/NOx ratio distribution at the catalyst surface. Large non-uniformities yield local NH3/NOx ratios greater than one, leading directly to NH3 slip. Areas of low NH3/NOx ratios have low NOx reduction. Both of these conditions are undesirable. SCR system designers specify a maximum acceptable NH3/NOx non-uniformity at the catalyst inlet....

2005-12-20T23:59:59.000Z

313

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

condensate, on the other hand, exits from the retort as steam andSteam stripping of Geokinetics retort water (initial NH3 = 3,000 mg/1) removed 90 percent of the ammonia with recycle of condensate

Ossio, Edmundo

2012-01-01T23:59:59.000Z

314

Reactive formulations for a neutralization of toxic industrial chemicals  

DOE Patents (OSTI)

Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

2006-10-24T23:59:59.000Z

315

Concurrent studies of enhanced heat transfer and materials for ocean thermal exchangers. Progress report  

DOE Green Energy (OSTI)

Aluminum alloys 1100, 3003, 5052, and 6063 were examined for their compatibility with the proposed working fluids for Ocean Thermal Energy Conversion (OTEC), anhydrous ammonia, Freon 22 and propane, and mixtures of these with sea water. Such mixtures would occur if leaks develop in evaporator or condenser heat exchangers. These aluminum alloys are compatible with the anhydrous working fluids. In ammonia-sea water solutions only limited general corrosion is found in 0 to 30 percent ammonia, no corrosion in 30 to 90 percent ammonia, and ''self limiting'' pits in 90 to 100 percent ammonia so rapid deterioration of the exchangers would not occur. No corrosion was observed in sea water saturated with Freon 22 or propane. No differences in alloy performance were evident in any of these tests so selection can be made on the basis of compatibility with sea water. A review of the available literature indicates that 5052 shows the best performance in surface sea water followed by 1100, 3003 and then 6063 alloy. In deep sea water only 5052 and 1100 alloys appear suitable although more data is required. In both surface and deep sea waters, alcladding offers the best protection against tube perforation; few instances of penetration into the core alloy have been observed for the alclad alloys examined in this study.

Bonewitz, R.A.

1976-10-29T23:59:59.000Z

316

Very high resolution etching of magnetic nanostructures in organic gases  

Science Conference Proceedings (OSTI)

Two methods for high resolution dry etching of permalloy (NiFe) and iron (Fe) nanostructures are presented and discussed. The first involves the use of carbon monoxide (CO) and ammonia (NH"3) as etching gases, the second uses methane (CH"4), hydrogen ... Keywords: CH4/H2/O2, CO/NH3, Dry etching, Fe, NiFe

X. Kong; D. Krása; H. P. Zhou; W. Williams; S. McVitie; J. M. R. Weaver; C. D. W. Wilkinson

2008-05-01T23:59:59.000Z

317

Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols  

Science Conference Proceedings (OSTI)

This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

Klobukowski, Erik

2011-12-29T23:59:59.000Z

318

FAQ 32-What are the potential health risks from conversion of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

319

Ammonia scrubbing technology for CO2 capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost CCS Technologies Low-Cost CCS Technologies at Coal-Fired Power Plant in China Dr. Zhao Bo Prof. Chen Changhe Assoc. Prof. WANG Shujuan The Research Group of Emission Control and New Energy Department of Thermal Engineering, Tsinghua University May 30, 2008 Group Members Academician, Prof. XU Xuchang Prof. CHEN Changhe Assoc. Prof. LI Yan Assoc. Prof. ZHUO Yuqun Assoc. Prof. TONG Huiling Assoc. Prof. WANG Shujuan Lecturer ZHAO Bo Research Interests * Emission Control - The formation mechanisms and removal technologies of all the major pollutants from coal combustion, including SO 2 , NOx, and trace elements (Hg, As, Se, etc.); - Sustainable utilization of emission control byproduct; * New Energy - Utilization of solar and geothermal energy; - Hydrogen energy infrastructure development;

320

Ammonia scrubbing technology for CO2 capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost CCS Technologies at Coal-Fired Power Plant in China Dr. Zhao Bo Prof. Chen Changhe Assoc. Prof. WANG Shujuan The Research Group of Emission Control and New Energy...

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ammonia at Blodgett Forest, Sierra Nevada, USA  

E-Print Network (OSTI)

and Physics 6: 5321-5338. NRC (1998). Research prioritiesDC, National Academy Press. NRC (2000). Research prioritiesto protect human health (NRC 1998; NRC 2000). Nationally,

Fischer, Marc L.; Littlejohn, David

2007-01-01T23:59:59.000Z

322

Simplified Synthesis of Bulk Ammonia Borane - Energy ...  

... simplifies process and is more economical than existing alternative processes which require additional transfer and handling ... Distributed and r ...

323

Simplified Synthesis of Bulk Ammonia Borane - Available ...  

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy. Search PNNL. PNNL Home; About; Research; Publications; Jobs; ...

324

Direct Aluminum Powder Nitridation under Flowing Ammonia  

Science Conference Proceedings (OSTI)

Design and Manufacture of Fluidized Bed Reactor in Pilot Scale for Multiple ..... The Effect of Circulating Coal Slurry Water Hardness on Coal Preparation.

325

ELECTRONIC SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATION STATES (III) TO (VI) IN ANHYDROUS HYDROGEN FLUORIDE  

E-Print Network (OSTI)

SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATIONSOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATIONfluoride (AHF) of uranium and neptunium in oxidation

Baluka, M.

2013-01-01T23:59:59.000Z

326

The University of Chicago, Chicago, I  

NLE Websites -- All DOE Office Websites (Extended Search)

.** .** # [Contribution from the George Herbert Jones Laboratory, The University of Chicago, Chicago, I l l i n o i s ] ffjl j t18 The Isotopic Discrimination of Some Solutes in Liquid Ammonia YQHJCLY ItHbEASABLS Arlen Viste and Henry Taube (1) ( a ) Department of Chemistry, Augustana College, Sioux F a l l s , South Dakota; (b) Department of Chemistry, Stanford University, Stanford, California. Abstract The nitrogen isotopic discrimination of some s a l t s and metals, studied in liquid ammonia solution at -50°C, decreases in magnitude in the order Pb , Ca , Li , Ag , Na , Li, K , Na, K. The i s o t o p i c discrimination appears t o provide q u a l i t a t i v e information about the strength of the cation-solvent i n t e r a c t i o n in liquid ammonia. Introduction Dissolving an anhydrous s

327

Synthesis and crystal structure of a new open-framework iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}]: Novel linear trimer of corner-sharing Fe(III) octahedra  

SciTech Connect

A new iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P2{sub 1}/n (No. 14), a=6.2614(13) A, b=9.844(2) A, c=14.271(3) A, {beta}=92.11(1){sup o}, V=879.0(3) A{sup 3}). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO{sub 4}) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2}], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below T{sub N}=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5{sup o}. -- Graphical abstract: The three-dimensional open-framework structure of (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] is built from a novel isolated, linear (FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2} trimer of corner-sharing Fe(III) octahedra linked by PO{sub 4} tetrahedra. Display Omitted

Mi, Jin-Xiao, E-mail: jxmi@xmu.edu.c [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Wang, Cheng-Xin [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Ning [Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada S7N 0X4 (Canada); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Li, Rong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Pan, Yuanming [Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada)

2010-12-15T23:59:59.000Z

328

Impacts of anisotropic lattice relaxation on crystal mosaicity and luminescence spectra of m-plane Al{sub x}Ga{sub 1-x}N films grown on m-plane freestanding GaN substrates by NH{sub 3} source molecular beam epitaxy  

SciTech Connect

In-plane anisotropic lattice relaxation was correlated with the crystal mosaicity and luminescence spectra for m-plane Al{sub x}Ga{sub 1-x}N films grown on a freestanding GaN substrate by NH{sub 3}-source molecular beam epitaxy. The homoepitaxial GaN film exhibited A- and B-excitonic emissions at 8 K, which obeyed the polarization selection rules. For Al{sub x}Ga{sub 1-x}N overlayers, the m-plane tilt mosaic along c-axis was the same as the substrate as far as coherent growth was maintained (x{<=}0.25). However, it became more severe than along the a-axis for lattice-relaxed films (x{>=}0.52). The results are explained in terms of anisotropic lattice and thermal mismatches between the film and the substrate. Nonetheless, all the Al{sub x}Ga{sub 1-x}N films exhibited a near-band-edge emission peak and considerably weak deep emission at room temperature.

Hoshi, T.; Hazu, K.; Ohshita, K.; Kagaya, M.; Onuma, T.; Chichibu, S. F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Fujito, K. [Optoelectronics Laboratory, Mitsubishi Chemical Corporation, 1000 Higashi-Mamiana, Ushiku 300-1295 (Japan); Namita, H. [Mitsubishi Chemical Group Science and Technology Research Center, Inc., 8-3-1 Chuo, Ami, Inashiki 300-0332 (Japan)

2009-02-16T23:59:59.000Z

329

NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour  

E-Print Network (OSTI)

et al., 1993], [Shackelford, 1994], [Studds et al., 1996], [Coméaga, 1997], [Lin, 1998], [Alawaji, 1999], [Mohan et al., 1999], [Shackelford et al., 2000], #12;[Egloffstein, 2001] and [Jullien et al

Paris-Sud XI, Université de

330

Hydrothermally Stable, Low-Temperature NOx Reduction NH3 ...  

aging. In contrast, the conventional, commercially available chabazite SCR catalyst, Cu-SSZ-13, exhibits high activity only in 200-550 °C range.

331

Poultry Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

Beauregard c. Clubs with Poultry Project Areas: i. Kim Steele (Hillsborough County): Hooves, Hens, Heifers

New Hampshire, University of

332

Page 1 of 4 2013 NH HORSE AD BOOKLET  

E-Print Network (OSTI)

or Rhiannon Beauregard, New Hampshire 4-H Animal and Agricultural Science Education Coordinator at (603) 862-2188 or Rhiannon.Beauregard@unh.edu. 1. Promote the ad campaign within your county - Work with your Extension. Send all materials to Rhiannon Beauregard (see below) by May 17, 2013. You will need to include a copy

New Hampshire, University of

333

Beef Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

) (Carroll); Jean Rudolph (Cheshire); and Rhiannon Beauregard (Rockingham) c. Names of Some Folks that should

New Hampshire, University of

334

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 64 0 2010's 0 336 199 - No Data Reported; -- Not Applicable; NA Not Available; W ...

335

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.61 -- 2010's -- 7.54 2.62 - No Data Reported; -- Not Applicable; NA Not Available; W...

336

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 22,820 2000's 38,289 45,808 29,014 34,983 17,257 28,041 31,853 56,879 39,438 26,767 2010's...

337

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 7.54 2012 2.20 2.65 2.46 3.48 2013 14.87 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

338

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,804 3,798 865 295 2,790 248 792 242 144 126 655 4,066 2012 6,044 5,109 1,927 2,629 2,692 3,438 3,976 3,786 4,614 3,630...

339

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 336 2012 0 138 55 5 2013 21 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid...

340

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.61 2000's 4.07 4.01 3.37 6.08 6.44 10.88 7.26 7.52 9.72 5.04 2010's 5.48 5.45 4.08...

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6.06 5.95 6.14 5.56 4.91 5.14 5.66 4.76 4.54 4.33 4.49 4.58 2012 4.22 3.79 3.14 2.55 2.72 3.49 3.75 3.52 3.30 3.80 5.65...

342

HIPAA 2013 - The National Health ISAC (NH-ISAC)  

Science Conference Proceedings (OSTI)

... Department of Homeland Security (DHS) Office of Infrastructure ... Dams Critical Manufacturing /Emergency Services Nuclear Reactors, Materials and ...

2013-05-22T23:59:59.000Z

343

Tetrahedral-Network Organo-Zincophosphates: Syntheses and Structures of (N(2)C(6)H(14)).Zn(HPO(4))(2).H(2)O, H(3)N(CH(2))(3)NH(3).Zn(2)(HPO(4))(3) and (N(2)C(6)H(14)).Zn(3)(HPO(4))(4)  

SciTech Connect

The solution-mediated syntheses and single crystal structures of (N2C6H14)·Zn(HPO4)2·H2O (I), H3N(CH2)3NH3·Zn2(HPO4)3 (II), and (N2C6H14)·Zn3(HPO4)4 (III) are described. These phases contain vertex-sharing Zn04 and HP04 tetrahedra, accompanied by doubly- protonated organic cations. Despite their formal chemical relationship, as members of the series of t·Znn(HP04)n+1 (t= template, n = 1-3), these phases adopt fimdamentally different crystal structures, as one-dimensional, two-dimensional, and three-dimensional Zn04/HP04 networks, for I, II, and III respectively. Similarities and differences to some other zinc phosphates are briefly discussed. Crystal data: (N2C6H14)·Zn(HP04)2·H20, Mr = 389.54, monoclinic, space group P21/n (No. 14), a = 9.864 (4) Å, b = 8.679 (4) Å, c = 15.780 (3) Å, ? = 106.86 (2)°, V= 1294.2 (8) Å3, Z = 4, R(F) = 4.58%, RW(F) = 5.28% [1055 reflections with I >3?(I)]. H3N(CH2)3NH3·Zn2(HP04)3, Mr = 494.84, monoclinic, space group P21/c (No. 14), a= 8.593 (2)Å, b= 9.602 (2)Å, c= 17.001 (3)Å, ?= 93.571 (8)°, V = 1400.0 (5) Å3, Z = 4, R(F) = 4.09%, RW(F) = 4.81% [2794 reflections with I > 3? (I)]. (N2C6H14)·Zn3(HP04)4, Mr= 694.25, monoclinic, space group P21/n (No. 14), a = 9.535 (2) Å, b = 23.246 (4)Å, c= 9.587 (2)Å, ?= 117.74 (2)°, V= 1880.8 (8) Å3, Z = 4, R(F) = 3.23%, RW(F) = 3.89% [4255 reflections with 1> 3?(I)].

Chavez, Alejandra V.; Hannooman, Lakshitha; Harrison, William T.A.; Nenoff, Tina M.

1999-05-07T23:59:59.000Z

344

Production of the ammonium salt of 3,5-dinitro-1,2,4-triazole by solvent extraction  

SciTech Connect

The ammonium salt of 3,5-dinitro-1,2,4-triazole has utility as a chemical explosive. In accordance with the present invention, it may readily be produced by solvent extraction using high-molecular weight, water-insoluble amines followed by amination with anhydrous ammonia gas. The aqueous reaction mixture produced in the synthesis of the parent compound, 3,5-dinitro-1,2,4-triazole, is quite suitable--and indeed is preferred--for use as the feed material in the process of the invention.

Lee, Kien Y. (Los Alamos, NM); Ott, Donald G. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

345

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

DOE Green Energy (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

346

New ambient pressure organic superconductors:. alpha. -(BEDT-TTF) sub 2 (NH sub 4 )Hg(SCN) sub 4 ,. beta. m-(BEDO-TTF) sub 3 Cu sub 2 (NCS) sub 3 , and. kappa. -(BEDT-TTF) sub 2 Cu(N(CN) sub 2 )Br  

Science Conference Proceedings (OSTI)

More than one hundred and twenty conducting salts based on the organic donor-molecule BEDT-TTF are known, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene (abbreviated herein as ET). Several of the early salts possessed tetrahedral and octahedral anions, such as (ET){sub 2}ClO{sub 4}(TCE), (ET){sub 2}PF{sub 6}, (ET){sub 2}ReO{sub 4}, and (ET){sub 2}BrO{sub 4}. The perchlorate salt is metallic to 1.4 K,{sup 1} and the perrenate derivative was the first ET based organic superconductor ({Tc} 2 K, 4.5 kbar). Since the discovery of ambient pressure superconductivity in {beta}-(ET){sub 2}I{sub 3} ({Tc} 1.4 K),{sup 5} other isostructural {beta}-(ET){sub 2}X salts have been prepared with higher {Tc}'s. A structure-property correlation for the {beta}-type salts has been reviewed in this volume; it predicts that {Tc}'s higher than 8K are possible if {beta}-salts with linear anions longer than I{sub 3}{sup {minus}} can be synthesized. During the search for new linear anions, a variety of compounds with discovered with polymeric anions. The report of superconductivity in {kappa}-(ET){sub 4}Hg{sub 3}X{sub 8} (X = Cl, {Tc} 5.4 K 29 kbar and X = Br, {Tc} 4.3 K ambient pressure and 6.7 K 3.5 kbar) and {kappa}-(ET){sub 2}Cu(NCS){sub 2} ({Tc} 10.4 K) further stimulated the search for novel polymeric anions. A general synthetic strategy for preparing new salts containing polymeric anions is to couple a coordinatively unsaturated neutral transition metal halide/pseudohalide with a simple halide or pseudohalide during an electrocrystallization synthesis. In this article, the authors discuss three new ambient pressure organic superconductors with novel polymeric anions, {alpha}-(ET){sub 2}(NH{sub 4})Hg(SCN){sub 4}, {beta}m-(BO){sub 3}Cu{sub 2}(NCS){sub 3} and {kappa}-(ET){sub 2}Cu(N(CN){sub 2})Br. 48 refs., 8 figs., 2 tabs.

Wang, H.H.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kini, A.M.; Montgomery, L.K.; Thompson, J.E.; Williams, J.M.

1990-01-01T23:59:59.000Z

347

Materials characterization of WNxCy, WNx and WCx films for advanced barriers  

Science Conference Proceedings (OSTI)

A ternary WN"xC"y system was deposited in a thermal ALD (atomic layer deposition) reactor from ASM at 300^oC in a process sequence using tungsten hexafluoride (WF"6), triethyl borane (TEB) and ammonia (NH"3) as precursors. The WC"x layers were deposited ... Keywords: ALD, Atomic layer deposition, Barrier, WCx, WNx, WNxCy

H. Volders; Z. Tökei; H. Bender; B. Brijs; R. Caluwaerts; L. Carbonell; T. Conard; C. Drijbooms; A. Franquet; S. Garaud; I. Hoflijk; A. Moussa; F. Sinapi; Y. Travaly; D. Vanhaeren; G. Vereecke; C. Zhao; W. -M. Li; H. Sprey; A. M. Jonas

2007-11-01T23:59:59.000Z

348

Effect of adding flash tank on the evaporator's thermal load of the combined ejector-absorption cooling system  

Science Conference Proceedings (OSTI)

A modified combined absorption-ejector cooling system using aqua-ammonia (NH3-H2O) refrigerant has been investigated. Removable flash tank was added between the condenser and the evaporator. The modified cycle brings the advantage of improving in the ... Keywords: absorption system, combined absorption cooling system, ejectors, evaporators

Ranj Sirwan; Yusoff Ali; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

349

Numerical Procedure to Extract Physical Properties from Raman Scattering Data in a Flow Reactor  

E-Print Network (OSTI)

dispersion experiments were carried out at three different gas velocities: 2.5, 3.5, and 4.5 cm/s, and. In the ammonia dispersion experiments, 4.0 and 8.0 mol % NH3 in N2 were used, and the gas velocities in nitrogen were determined from gas dispersion experi- ments at room temperature. Results of the dispersion

Anderson, Timothy J.

350

Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks  

Science Conference Proceedings (OSTI)

Effluent ammonia-nitrogen (NH3-N), chemical oxygen demand (COD) and total nitrogen (TN) removals are the most common environmental and process performance indicator for all types of wastewater treatment plants (WWTPs). In this paper, a soft computing ... Keywords: neural network, fuzzy rough sets, input variable selection, wastewater treatment, prediction, soft computing

Fei Luo; Ren-hui Yu; Yu-ge Xu; Yan Li

2009-08-01T23:59:59.000Z

351

Annual Report 2011 Annual Report 2011  

E-Print Network (OSTI)

flue gases. This is done by adding ammonia at conditions (~950°C) that favors the reaction of NH3.................................................................................. 75 Hansen, Brian Brun GYPSUM CRYSTALLISATION AND FOAMING IN WET FLUE GAS DESULPHURISATION (FGD .......................................................................................................................... 119 Mogensen, David MATHEMATICAL MODELING OF SOLID OXIDE FUEL CELLS ......................... 123

Mosegaard, Klaus

352

Molecular Components of Catalytic Selectivity  

E-Print Network (OSTI)

Hexagonal Square isobutane n-butane isobutane C 1 – C 3H 2 O H 3 C OH 1-Butanol H 3 C H 2 Butane H H 3 C + H 2 CH 3Pyrrolidine + H 2 +NH 3 Butane and ammonia Scheme 1. (a) (b)

Somorjai, Gabor A.

2009-01-01T23:59:59.000Z

353

Printed in the United States of America. Available from National Technical Information Service  

E-Print Network (OSTI)

and Predicted Vapor Composition of the NH3 + H20 Pair at 140°F 62 8 Comparison of Ammonia-Water Enthalpy Data METHOD AND SCOPE 2 Fluid Properties and Data 2 Coarse Screening of Literature Data 3 DETAILED PRESENTATIONS AND TABULATIONS 4 1. Refrigerants and Absorbents 4 2. Fluids, Properties, and Number of References

Oak Ridge National Laboratory

354

Friday Afternoon Sessions (June 28) - TMS  

Science Conference Proceedings (OSTI)

Trimethylgallium (TMGa) and ammonia (NH3) were used as material .... Conf. Ser . No. 141, 97 (1995). 2:30PM, CC4. "Lower Temperature Synthesis of ... shows that the films are stoichiometric AlN with some residual oxygen and hydrogen. ... film composition and the basic reaction mechanisms governing the film formation.

355

ORNL/TM-1999/124 Fossil Energy Program Annual Progress Report  

E-Print Network (OSTI)

Program includes fundamental research for coal applications, with emphasis on advanced reactor design of the Appalachian basin, the application of nuclear fuel reprocessing technology to the separation of petroleum), ammonia (NH3), and hydrogen (H2), a preform temperature of 1100°C, and a reactor pressure of 5 k

356

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS  

E-Print Network (OSTI)

reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions yields of the primary tar as a function of reactor temperature in coal [N]tar nitrogen content in tar or soot N nitrogen N2 molecular nitrogen NH3 ammonia NMR Nuclear

Fletcher, Thomas H.

357

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

358

AMMONIA THE OTHER HYDROGEN Rebecca Dunn, Keith Lovegrove  

E-Print Network (OSTI)

, Palladium or Nickel catalysts arranged in the form of a packed bed [3­6]. Recently, Wang et. al. [2 of Nickel catalyst are modeled as Neumann boundary con- ditions to the governing equations. Effects at the catalyst surface of species i, [kmoli/m2 -s] R Universal gas constant, [kJ/kmol -K] t Time, [s] 1 Copyright

359

Phase Transitions of Nano-scaffold Confined Ammonia Borane ...  

Science Conference Proceedings (OSTI)

Corrosion and Materials Degradation in Microturbines · Development of Cast Alumina-Forming Austenitic Stainless Steel Alloys · Effect of Al-Substitution and ...

360

Recent Developments on Hydrogen Release from Ammonia Borane  

Record crude oil prices combined with public interest in energy ... to the first exothermic peak in the DTA at 117 °C, which

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On-Engine Ammonia Detection Using Evanescent Fields  

the study of catalyst performance in internal combustion engines. Inventor CONNATSER, RAYNELLA M Energy & Transportation Science Division Licensing Contact

362

Phase Transitions of Ammonia Borane Investigated Using Raman ...  

Science Conference Proceedings (OSTI)

... Nanoparticle Catalysts for Hydrogen Production from Methanol and Methane ... of Long Term Aging on Creep Properties of HP Alloy Hydrogen Reformer Tubes ... of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines.

363

MINIATURIZATION OF AN AMMONIA-WATER ABSORPTION CYCLE HEAT PUMP ...  

solution, and the subsequent gas-liquid mixture was separated down stream in a gravity separator vessel. Initial open-loop testing of components and ...

364

Process for synthesis of ammonia borane for bulk hydrogen storage  

The AB product shows promise as a chemical hydrogen storage material for fuel cell powered ... Contract DE-AC0676RLO-1830 awarded by the U.S. Department of Energy.

365

Effects of Ammonia and Fluoride on Nickel Electroplating for Mg ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, The 7th Pacific Rim International Conference on Advanced Materials and Processing (PRICM 7). Symposium, Symposium G: Thin  ...

366

BIOGEOCHEMICAL REMEDIATION OF AMMONIA DISCHARGES FROM POWER PLANTS  

E-Print Network (OSTI)

. ACKNOWLEDGEMENTS We gratefully acknowledge support from the U.S. DOE Fossil Energy program trough the National Energy Technology Laboratory (NETL). This project was supported under the DOE-Fossil Energy Program. ORNL Ponds at Tennessee Valley Authority's Paradise Fossil Plant in Kentucky. This research is closely linked

367

Staging Rankine Cycles Using Ammonia for OTEC Power Production  

DOE Green Energy (OSTI)

Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

Bharathan, D.

2011-03-01T23:59:59.000Z

368

Use of Ammonia/Ammonium Carbonate Solutions for the Recovery ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... (Materials Recovery from Wastes, Batteries, ... Since then it has been further used for other nickel plants, including one in Greenvale, Australia. ... applied to the recovery of primary zinc, as well as secondary zinc and copper.

369

Effect of Copper and Ammonia on Consumption of Thiosulfate in ...  

Science Conference Proceedings (OSTI)

However, the undesirable reaction between thiosulfate and copper(?) gives rise to reagent consumption, which results in high cost and huge limit its ...

370

Staging Rankine Cycles Using Ammonia for OTEC Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

powers with the number of stages ... 9 Figure 7 Variation of heat exchanger (UA) product requirements with the number of stages ..... 10 List of Tables...

371

Potential Roles of Ammonia in a Hydrogen Economy  

E-Print Network (OSTI)

for On-Board Vehicular Hydrogen Storage U.S. Department of Energy #12;#12;Primary Authors: George Thomas1 Hydrogen Storage Technical Team and Department of Energy Hydrogen Storage Team #12;CONTENTS EXECUTIVE-board vehicular hydrogen storage. These issues have been investigated by the U.S. Department of Energy (DOE

372

NETL: Utilization Projects - Effects of Ammonia Injection on...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report PDF-4.4MB Contacts: For further information on this project, contact NETL Project Manager, Robert A. Patton or Thomas Robl, University of Kentucky Research Foundation...

373

NEWTON, Ask a Scientist at Argonne National Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Acid, Gasses and Enzymes Acid, Gasses and Enzymes Name: Anirudh Status: student Grade: 9-12 Location: NY Country: India Date: Winter 2011-2012 Question: We were synthesizing Ammonia gas using HCl acid, as a part of the class experiment, for studying its chemical properties and that's when it hit me! Our body produces gases and acids like these (eg: Urea) during various metabolic process, which seems impossible because these gases & acids require very high temperatures (~200'C) for their synthesis and the maximum our body can do is 37'C. So how a human body is able to produce gasses and acids like Ammonia, Hydrogen Sulfide, HCl and others at body temperature? Replies: It would help to know the reaction you are using to synthesize ammonia gas (NH3), a base, using HCl, an acid. But putting that aside, realize that there are many reactions that have ammonia as a product. Some of these reactions require high temperature, but many other reactions do not require elevated temperature. What I believe you are thinking about is the reaction of formation of a compound, that is, the formation of a compound, in this case NH3, from its constituent elements -- N2 and H2 -- 1/2 N2 + 3/2 H2 = NH3.

374

Program on Technology Innovation: Monitoring Carbon Monoxide and Nitric Oxide in Combustion Gases with Laser Absorption Sensors  

Science Conference Proceedings (OSTI)

Two important considerations for monitoring CO/O2 and NO/NH3 in the flue gas of coal-fired boilers include (1) optimization of the air/fuel distribution to individual burners, thereby enabling lower excess oxygen operation, reduced NOx emissions, and improved unit heat rate, and (2) optimization of NH3/NOx distribution at the inlet of a selective catalytic reduction (SCR) reactor, thereby enabling increased NOx reduction performance while maintaining ammonia slip targets. Lower NOx emissions can be achie...

2011-04-12T23:59:59.000Z

375

Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes  

SciTech Connect

Ammonia (NH{sub 3}) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH{sub 3} plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism.

Esconjauregui, S.; Fouquet, M.; Bayer, B. C.; Gamalski, A. D.; Chen Bingan; Xie Rongsi; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cepek, C.; Bhardwaj, S. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, I-34149 Trieste (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

2012-08-01T23:59:59.000Z

376

sample abstract for 2005 WOCA  

NLE Websites -- All DOE Office Websites (Extended Search)

Release of Ammonia from SCR / SNCR Fly Ashes Release of Ammonia from SCR / SNCR Fly Ashes Carol Cardone, Ann Kim and Karl Schroeder U.S. Dept. of Energy, NETL, PO Box 10940, Pittsburgh, PA 15236 KEYWORDS: fly ash, ammoniated fly ash, leaching Abstract One of the goals of the Department of Energy is to increase the utilization of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NO x control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip (un-reacted NH

377

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

SNG from Coal: Process & Commercialization SNG from Coal: Process & Commercialization The Great Plains Synfuels Plant in Beulah, North Dakota source: Dakota Gasification Great Plains Synfuels Plant The Great Plains Synfuels Plant (GPSP) in Beulah, North Dakota has been in operation producing synthetic natural gas (SNG) from lignite coal for 25 years and remains the only coal-to-SNG facility in the United States. In addition to the production of SNG, the plant also produces high purity carbon dioxide (CO2), which is distributed through a pipeline to end users in Canada for enhanced oil recovery (EOR) operations. The plant also produces and sells anhydrous ammonia, as well as the following byproducts: ammonium sulfate, krypton, xenon, dephenolized cresylic acid, liquid nitrogen, phenol, and naphtha, most of the last of which is burned as fuel

378

Chemistry of combined residual chlorination  

DOE Green Energy (OSTI)

The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

Leao, S.F.; Selleck, R.E.

1982-01-01T23:59:59.000Z

379

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1995 January ........................... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ......................... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4 March .............................. 86.6 87.3 87.0 76.3 82.5 77.7 87.0 85.6 87.6 103.3 April ................................ 85.4 85.8 85.2 76.7 81.9 76.6 86.5 84.8 87.0 100.0 May ................................. 86.4 86.9 86.5 78.7 84.7 75.8 86.1 84.5 85.2 93.2 June ................................ 84.6 85.2 84.2 78.1 82.5 74.5 83.2 83.9 83.0 NA July ................................. 82.0 82.4 79.4 76.9 80.6 72.9 81.7 81.7 80.0 85.1 August ............................ 80.7 81.1 77.4 76.7 80.9 73.0 85.3 81.7 82.1 W September ...................... 82.3 82.7 79.2 76.2 81.7 73.8 84.9 82.5 82.4 86.1 October ...........................

380

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1997 January ........................... 107.9 109.0 108.6 105.2 106.5 102.1 107.0 104.4 106.5 130.4 February ......................... 105.1 106.0 105.2 102.2 103.4 101.0 104.5 103.5 104.2 127.0 March .............................. 101.6 102.5 99.3 94.3 97.7 98.6 100.4 103.1 100.7 121.4 April ................................ 99.2 100.3 97.6 90.9 95.9 95.2 99.4 100.4 100.1 116.3 May ................................. 96.4 97.1 93.4 90.6 93.0 91.9 97.3 97.7 96.4 108.6 June ................................ 92.3 92.9 89.9 88.1 89.1 89.1 93.3 92.9 90.8 99.9 July ................................. 88.3 88.7 83.7 86.7 87.5 85.6 91.6 91.1 88.8 W August ............................ 86.9 86.8 84.2 85.8 84.7 85.3 91.0 92.7 89.2 W September ...................... 88.7 89.0 85.5 87.0 87.0 86.3 91.2 91.7 88.5 NA October ...........................

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1996 January ........................... 94.6 96.1 94.5 93.0 92.0 89.1 94.9 92.6 94.7 111.7 February ......................... 95.9 97.5 96.2 93.2 93.8 90.8 95.6 93.7 94.4 112.9 March .............................. 99.1 100.6 99.6 96.7 99.3 93.8 99.7 97.3 96.1 117.7 April ................................ 101.5 102.7 102.1 98.7 101.5 96.5 98.8 100.3 100.7 115.9 May ................................. 97.8 98.1 96.8 95.4 95.9 93.6 94.9 98.8 98.0 109.7 June ................................ 91.0 91.3 88.8 90.1 87.9 87.2 88.7 92.2 91.9 102.5 July ................................. 87.9 88.0 84.9 87.5 87.5 83.6 87.7 88.5 91.0 97.3 August ............................ 88.1 88.2 84.0 89.5 89.0 85.1 88.3 89.0 91.0 99.2 September ...................... 94.5 94.4 92.5 96.4 93.1 91.9 96.6 94.4 95.3 106.2 October ...........................

382

THE INFLUENCE OF FUEL SULFUR ON THE SELECTIVE REDUCTION OF NO BY NH3  

E-Print Network (OSTI)

No. KVB-15500-717B, 1978. Wendt, J.O. , Morcomb, J.T. andsulfur combustion chemistry. Wendt et al 9 and De Soete 10in agreement with the results of Wendt et al 9 Wendt et al

Lucas, Donald

2012-01-01T23:59:59.000Z

383

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1994 January ........................... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ......................... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5 March .............................. 91.4 92.5 92.1 85.9 88.3 83.6 89.4 91.0 91.2 102.0 April ................................ 88.2 89.0 89.4 80.8 86.0 78.2 85.1 88.3 89.2 93.7 May ................................. 86.1 86.6 85.4 76.8 85.1 75.4 83.3 86.7 84.4 83.1 June ................................ 85.2 85.6 86.1 75.6 83.7 73.1 82.3 84.6 82.0 W July ................................. 82.7 83.1 84.2 75.6 82.1 71.8 81.6 83.0 80.5 W August ............................ 82.1 82.4 79.7 78.0 78.7 72.8 84.0 83.8 82.3 81.9 September ...................... 83.2 83.7 80.5 78.5 81.1 72.9 84.7 83.3 83.1 86.2 October ........................... 84.7

384

Up-Hill ET in (NH3)5Ru(III)-Modified Ferrocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Ferrocytochrome c: Rates, Thermodynamics, and the Mediating Role of the Ruthenium Moiety Ji Sun, James F. Wishart, and Stephan S. Isied Inorg. Chem. 34, 3998-4000 (1995) Abstract: At moderate to high ionic strengths (>0.1 M), Co(oxalate)33- oxidizes native cytochrome c very slowly, however it undergoes a rapid reaction with pendant ruthenium complexes covalently attached to the surface of the protein. Under these conditions, the rate of the thermodynamically unfavorable (up-hill) FeII-to-RuIII electron transfer process in pentaammineruthenium-modified horse-heart cytochrome c can be revealed using sufficiently high Co(oxalate) 33- concentrations. Rate measurements performed over a wide range of CoIII concentrations confirm the proposed

385

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1993 January ........................... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ......................... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8 March .............................. 95.4 96.5 96.7 86.4 94.8 86.6 92.4 93.7 92.4 108.5 April ................................ 92.6 93.4 93.6 83.0 91.5 84.5 90.4 91.2 91.6 106.7 May ................................. 91.1 91.7 91.6 81.7 91.1 83.9 90.7 91.3 89.4 104.3 June ................................ 88.9 89.4 88.6 81.1 88.6 82.4 87.6 89.7 90.6 100.4 July ................................. 85.6 85.9 86.5 78.5 83.9 78.3 85.2 85.5 86.4 100.2 August ............................ 84.1 84.6 84.0 77.4 83.4 76.0 82.7 85.6 83.5 96.1 September ...................... 85.5 85.8 84.2 78.3 83.8 74.9 84.8 86.6 84.6 95.5 October ...........................

386

Structure of the Electron-Transfer Probe Analogue trans-(NH3...  

NLE Websites -- All DOE Office Websites (Extended Search)

electron transfer in cytochrome c, azurin, and myoglobin have exploited the modification of these metalloprotein surfaces with ruthenium ammine probes attached to surface...

387

Details in Semiconductors Gordon Conference, New London, NH, August 3-8, 2008  

SciTech Connect

Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in homogeneous and structured semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, with an increases emphasis on nanostructures as compared to previous conferences. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference deals with defects in a broad range of bulk and nanoscale electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, doped nanoparticles, and organic semiconductors. Presentations of state-of-the-art theoretical methods will contribute to a fundamental understanding of atomic-scale phenomena. The program consists of about twenty invited talks, with plenty of discussion time, and a number of contributed poster sessions. Because of the large amount of discussion time, the conference provides an ideal forum for dealing with topics that are new and/or controversial.

Shengbai Zhang and Nancy Ryan Gray

2009-09-16T23:59:59.000Z

388

Hydramotor (R) Actuator Application and Maintenance Guide: ASCO NH90 Series Hydramotors (R) for Nuclear Applications  

Science Conference Proceedings (OSTI)

Hydramotors(R), electro-hydraulic actuators manufactured by ASCO General Controls (formerly ITT Barton and ITT General Controls), are widely used in nuclear power plant systems. Many provide critical safety functions such as valve and damper operation. While Hydramotors(R) are generally very reliable, regular maintenance and overhaul is important. Improving the reliability of Hydramotor(R) actuators has become an industry focus because of the implementation of the Nuclear Regulatory Commission's Maintena...

2000-02-15T23:59:59.000Z

389

Multi-Objective Evolutionary Fuzzy Cognitive Maps for Decision N.H. Mateou  

E-Print Network (OSTI)

motorcade as it traveled to a meeting with an opposition figure in Damascus and then trying to break

Coello, Carlos A. Coello

390

Trapped Lee Waves Observed during PYREX by Constant Volume Balloons: Comparison with Meso-NH Simulations  

Science Conference Proceedings (OSTI)

The main objective of the present paper is the use of a constant volume balloon (CVB) as a tool to (i) study trapped lee waves and (ii) assess the forecasting capability of a nonhydrostatic numerical model. Then, CVB data obtained during the ...

Ernest N’Dri Koffi; Marc Georgelin; Bruno Benech; Evelyne Richard

2000-07-01T23:59:59.000Z

391

Update and Improve Subsection NH - Simplified Elastic and Inelastic Design Analysis Methods  

SciTech Connect

The objective of this subtask is to develop a template for the 'Ideal' high temperature design Code, in which individual topics can be identified and worked on separately in order to provide the detail necessary to comprise a comprehensive Code. Like all ideals, this one may not be attainable as a practical matter. The purpose is to set a goal for what is believed the 'Ideal' design Code should address, recognizing that some elements are not mutually exclusive and that the same objectives can be achieved in different way. Most, if not all existing Codes may therefore be found to be lacking in some respects, but this does not mean necessarily that they are not comprehensive. While this subtask does attempt to list the elements which individually or in combination are considered essential in such a Code, the authors do not presume to recommend how these elements should be implemented or even, that they should all be implemented at all. The scope of this subtask is limited to compiling the list of elements thought to be necessary or at minimum, useful in such an 'Ideal' Code; suggestions are provided as to their relationship to one another. Except for brief descriptions, where these are needed for clarification, neither this repot, nor Task 9 as a whole, attempts to address details of the contents of all these elements. Some, namely primary load limits (elastic, limit load, reference stress), and ratcheting (elastic, e-p, reference stress) are dealt with specifically in other subtasks of Task 9. All others are merely listed; the expectation is that they will either be the focus of attention of other active DOE-ASME GenIV Materials Tasks, e.g. creep-fatigue, or to be considered in future DOE-ASME GenIV Materials Tasks. Since the focus of this Task is specifically approximate methods, the authors have deemed it necessary to include some discussion on what is meant by 'approximate'. However, the topic will be addressed in one or more later subtasks. This report describes work conducted toward developing a template for what might be the 'Ideal' high temperature design Code. While attempting to be as comprehensive as possible as to subject matter, it does not presume to recommend what individual components of a Code should be implemented, some of which is the focus of other Tasks in the DOE-ASME Gen IV/NGNP Materials Projects. This report does serve as a basis for construction of an attribute chart which is being prepared as part of Task 9.2; the intention for which is to provide a uniform format and concise means for summarizing and comparing other high temperature Codes currently in use around the world.

Jeries J. Abou-Hanna; Douglas L. Marriott; Timothy E. McGreevy

2009-06-27T23:59:59.000Z

392

Hinsdale, NH Wal-Mart's impact on small businesses in Brattleboro, VT : a case study.  

E-Print Network (OSTI)

??The debate over the effects of big box retail on smaller communities is one of the most contentious topics of public planning discourse. Many feel… (more)

Sadlowski, Jin, 1970-

2010-01-01T23:59:59.000Z

393

Reconstructing the NH Mean Temperature: Can Underestimation of Trends and Variability Be Avoided?  

Science Conference Proceedings (OSTI)

There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the ...

Bo Christiansen

2011-02-01T23:59:59.000Z

394

Multipodal coordination of a tetracarboxylic crown ether with NH 4 + : A vibrational spectroscopy and computational study  

Science Conference Proceedings (OSTI)

The elucidation of the structural requirements for molecular recognition by the crown ether (18–crown–6)-2

Paola Hurtado; Francisco Gámez; Said Hamad; Bruno Martínez–Haya; Jeffrey D. Steill; Jos Oomens

2012-01-01T23:59:59.000Z

395

Electron Transfer in (NH3)5Ru-Cobaltocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Pentaammineruthenium(III)-Modified Cobaltocytochrome c Ji Sun, Chang Su, and James F. Wishart Inorg. Chem., 35, 5893-5901 (1996) Find paper at ACS Publications or use ACS...

396

NH3- H2O absorption systems used for research and student activities  

Science Conference Proceedings (OSTI)

In the context of the sustainable development and of the future environment and energy concerns, a new laboratory was developed based on absorption systems (a chiller-heater and a heat pump). The installation together with the proposed experimental activity ... Keywords: absorption systems, education and research activity, environment, heat pump

Ioan Boian; Alexandru Serban; Stan Fota; Florea Chiriac

2009-10-01T23:59:59.000Z

397

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

post combustion gases of propane/air in a laboratory scalepost combustion gases of propane/air in a laboratory scaleThe combustion products of propane and air are diluted by

Brown, N.J.

2013-01-01T23:59:59.000Z

398

Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials  

DOE Green Energy (OSTI)

The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products amenable for regeneration, and direct catalytic hydrogenation of the decomposition products. Two different approaches of heating ammonia-borane are being investigated: (a) 'heat to material approach' in which a fixed compartmentalized ammonia-borane is heated by a carefully controlled heating pattern, and (b) 'material to heat approach' in which a small amount of ammonia-borane is dispensed at a time in a fixed hot zone. All stages of AB decomposition are exothermic which should allow the small 'hot zone' used in the second approach for heating to be self-sustaining. During the past year hydrogen release efforts focused on the second approach determining the amount of hydrogen released, kinetics of hydrogen release, and the amounts of impurities released as a function of AB decomposition temperature in the 'hot zone.'

Damle, A.

2010-02-03T23:59:59.000Z

399

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

Coal 10. Neavel, R.C. , "Exxon Donor Solvent Liquefactionphosphonic acid in a Varsol (Exxon) diluent stability, their12 King Industries and Exxon Company, U.S.A. straight-chain

Poole, L.J.

2008-01-01T23:59:59.000Z

400

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

shale and The also involves large capital investments retorting IS operating costs. however, it production

Poole, L.J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

and other Gases for Coal-Gasification Processes", Chemicalof Liquid Effluents from Coal Gasification Plants", Economicand other Gases for Coal-Gasification Processes", Chemical

Poole, L.J.

2008-01-01T23:59:59.000Z

402

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

The coal is fed to a gasifier where air, oxygen, and/ortemperatures at which coal gasifiers operate range betweenamounts. Operation of a gasifier at the lower end coal the

Poole, L.J.

2008-01-01T23:59:59.000Z

403

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

present gases, the shale decompose and oil, residual areupgrade oil derived from oil-shale and tar sands are similarof Economic Materials from Oil Shale Retort Water by an

Poole, L.J.

2008-01-01T23:59:59.000Z

404

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

of Economic Materials from Oil Shale Retort Water by anDerived from In Situ Oil Shale Processing", Proceedings, 2ndWastewaters Sour Waters from Oil Shale Retorting Sour Waters

Poole, L.J.

2008-01-01T23:59:59.000Z

405

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

E-Print Network (OSTI)

III the Iron and Steel Industry, New York (1981). ECE/Operations in the Iron and Steel Industry 7.2 Treatment ofin the iron and steel industry. the Although composition of

Poole, L.J.

2008-01-01T23:59:59.000Z

406

Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet  

Science Conference Proceedings (OSTI)

The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2007-08-15T23:59:59.000Z

407

Analysis of Moisture and CO(2) Uptake in Anhydrous CdCl(2) Powders Used for Vapor CdCl(2) Treatment of CdS/CdTe PV Devices  

DOE Green Energy (OSTI)

Water and CO(2) uptake in CdCl(2) powder precursors was investigated using thermogravimetric analysis/Fourier transform infrared spectroscopy (TGA/FTIR). Exposure of powders under ambient conditions shows that a steady-state hydration level near 9% (by weight) is achieved after brief exposure to room air.

Mazur, T.; Gessert, T.; Martins, G.; Curtis, C.

2000-01-01T23:59:59.000Z

408

Breckinridge Project, initial effort  

DOE Green Energy (OSTI)

Report IV, Volume 5, provides descriptions, data, and drawings pertaining to Cryogenic Hydrogen Purification (Plant 8), Sour Water Treating (Plant 9), and the Sulfur Plant (Plant 10). Cryogenic Hydrogen Purification (Plant 8) purifies the purge gas stream from the Gas Plant (Plant 7, described in Report IV, Volume 4) to a 93% purity hydrogen product. Sour Water Treating (Plant 9) removes free ammonia and acid gases from sour water and separates them to recover a high quality anhydrous ammonia product. The Sulfur Plant (Plant 10) recovers, as a saleable liquid product, approximately 95% of the sulfur in feed streams from the Gas Plant (Plant 7, described in Report IV, Volume 4), Sour Water Treating (Plant 9), Gasification and Purification (Plant 12, described in Report IV, Volume 6), and Stack Gas Scrubbing (Plant 35, described in Report V, Volume 3). The following information is included for each of the three plants described in this volume: a description of the plant's process design, including the utility balance, catalysts and chemicals usage, and a process flow diagram; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for the piping and instrument diagrams included in this volume.

None

409

Passivation of fluorinated activated charcoal  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests, thermodynamic calculations, process description, and operational parameters, and addresses safety concerns.

Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

1997-10-01T23:59:59.000Z

410

Study of the thermochemistry for oxygen production for a solar sulfur-ammonia  

E-Print Network (OSTI)

project started in 2007 with Science Applications International Corporation (SAIC) to use concentrated solar thermal energy to power a cost

Wang, Mimi Kai Wai

2012-01-01T23:59:59.000Z

411

Catalysis Letters Vol. 77, No. 13, 2001 1 Ammonia decomposition on Ir(100)  

E-Print Network (OSTI)

hydrogen pro- duction technologies such as steam reforming, partial oxida- tion and autothermal reforming reforming of methane/hydrocarbons as a method for production of CO-free hydrogen [3,4]. An alternative for hydrogen production for applications in fuel cells [3­6]. Recently we have pro- posed stepwise steam

Goodman, Wayne

412

Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames  

E-Print Network (OSTI)

N. S. Harding, editors, Coal-Blending and Switching of Low-Foundation Conference on Coal-Blending and Switching of Low-

2002-01-01T23:59:59.000Z

413

Solid State Ammonia Synthesis (SSAS) for Sustainable Fuel and Energy Storage Applications  

E-Print Network (OSTI)

Allen Haynes Energy Storage Claus Daniel Fossil Energy Peter Tortorelli Nuclear-Radioisotope Power Systems Jim King Nuclear Fuels Gary Bell* Nuclear­Light Water Reactors Jeremy Busby Office of Science BES Nuclear Fuel Materials Gary Bell* Nuclear Materials Science and Technology Randy Nanstad Physical

414

Dynamic model for small-capacity ammonia-water absorption chiller .  

E-Print Network (OSTI)

??Optimization of the performance of absorption systems during transient operations such as start-up and shut-down is particularly important for small-capacity chillers and heat pumps to… (more)

Viswanathan, Vinodh Kumar

2013-01-01T23:59:59.000Z

415

Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames  

E-Print Network (OSTI)

formed from the combustion of biomass and other solid fuelsduring the combustion of vaporized biomass volatiles. The

2002-01-01T23:59:59.000Z

416

Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames  

E-Print Network (OSTI)

Technical Report SAND96-8216, Sandia National Laboratories,Technical Report SAND85-8240, Sandia National Laboratories,Technical Report SAND86-8246, Sandia National Laboratories,

2002-01-01T23:59:59.000Z

417

L3 Hydrogen Storage in Nitrides by the Use of Ammonia as a ...  

Science Conference Proceedings (OSTI)

A37 Unconventional Method of Nitriding of 316l Austenitic Steel · A38 Role of ..... I24 The Study of Cotton Finishing by Artemsia Argyi Oil Microcapsules.

418

Synthesis of DiamidoPyrrolyl Molybdenum Complexes Relevant to Reduction of Dinitrogen to Ammonia  

E-Print Network (OSTI)

A potentially useful trianionic ligand for the reduction of dinitrogen catalytically by molybdenum complexes is one in which one of the arms in a [(RNCH2CH2)3N]3? ligand is replaced by a 2-mesitylpyrrolyl-?-methyl arm, ...

Chin, J. M.

419

Chemical Engineering Journal 113 (2005) 205214 A detailed model of a biofilter for ammonia removal  

E-Print Network (OSTI)

significant changes while aging during storage for later field application or by composting for litter mass reached during com- posting. Poultry litter is usually composted to assimilate soluble forms of N, reduce compost is greatly reduced compared with the initial moisture con- tent, the compost is by no means oven

420

X-RAY ABSORPTION STUDIES OF GRAPHITE INTERCALATES AND METAL-AMMONIA SOLUTION  

E-Print Network (OSTI)

containing the data taken at SSRL were read on the CDC 6600Radiation Laboratory (SSRL) were used t o perform theseA 20 minute experiment at SSRL would require 10 The

Robertson, A.S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Study of the thermochemistry for oxygen production for a solar sulfur-ammonia  

E-Print Network (OSTI)

Energy Storage. II. Molten Salts: Data on Single and Multi-Energy Storage. II. Molten Salts: Data on Single and Multi-65-72 Atkinson, G.F. , “Molten Salt Techniques for Students:

Wang, Mimi Kai Wai

2012-01-01T23:59:59.000Z

422

Co-oxidation in supercritical water : methylphosphonic acid-ethanol and ammonia-ethanol model systems  

E-Print Network (OSTI)

Supercritical water (SCW) is an effective solvent for the destruction of organic compounds by oxidation. Because both organics and oxygen have high solubility in water above its critical point (To = 374 °C (647 K), Pc = ...

Ploeger, Jason M

2006-01-01T23:59:59.000Z

423

Hydroxyl, water, ammonia, carbon monoxide and neutral carbon towards the Sgr A complex  

E-Print Network (OSTI)

We observed OH, H$_2$O, HN$_3$, C$^{18}$O, and C$_I$ towards the +50 km/s cloud (M-0.02-0.07), the CND and the +20 km/s (M-0.13-0.08) cloud in the Sgr A complex with the VLA, Odin and SEST. Strong OH absorption, H$_2$O emission and absorption lines were seen at all three positions. Strong C$^{18}$O emissions were seen towards the +50 and +20 km/s clouds. The CND is rich in H$_2$O and OH, and these abundances are considerably higher than in the surrounding clouds, indicating that shocks, star formation and clump collisions prevail in those objects. A comparison with the literature reveals that it is likely that PDR chemistry including grain surface reactions, and perhaps also the influences of shocks has led to the observed abundances of the observed molecular species studied here. In the redward high-velocity line wings of both the +50 and +20 km/s clouds and the CND, the very high H$_2$O abundances are suggested to be caused by the combined action of shock desorption from icy grain mantles and high-temperatu...

Karlsson, Roland; Hjalmarson, Åke; Winnberg, Anders; Fathi, Kambiz; Frisk, Urban; Olberg, Michael

2013-01-01T23:59:59.000Z

424

Study of the thermochemistry for oxygen production for a solar sulfur-ammonia  

E-Print Network (OSTI)

Cycles,” Journal of Solar Energy Engineering, v.129, 2007,Cycles,” Journal of Solar Energy Engineering, v.129, 2007,

Wang, Mimi Kai Wai

2012-01-01T23:59:59.000Z

425

Evaluation of GaN substrates grown in supercritical basic ammonia  

SciTech Connect

GaN crystals grown by the basic ammonothermal method were investigated for their use as substrates for device regrowth. X-ray diffraction analysis indicated that the substrates contained multiple grains while secondary ion mass spectroscopy (SIMS) revealed a high concentration of hydrogen, oxygen, and sodium. Despite these drawbacks, the emission from the light emitting diode structures grown by metal organic chemical vapor deposition on both the c-plane and m-plane epitaxial wafers was demonstrated. The SIMS depth profiles showed that the diffusion of the alkali metal from the substrate into the epitaxial film was small, especially in the m-direction.

Saito, Makoto; Yamada, Hisashi; Iso, Kenji; Sato, Hitoshi; Hirasawa, Hirohiko; Kamber, Derrick S.; Hashimoto, Tadao; Baars, Steven P. den; Speck, James S.; Nakamura, Shuji [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2009-02-02T23:59:59.000Z

426

Willamette Oxygen Supplementation Studies: Ammonia Analysis and Adult Returns : Annual Report 1994.  

DOE Green Energy (OSTI)

The present report describes the results from analysis of ammonium and nitrogenous waste production in experimental raceways during the four years of experimental rearing of salmon.

Sheahan, J.E.; Ewing, R.D.; Ewing, S.K.

1995-09-01T23:59:59.000Z

427

Development of ceramic membrane reactors for high temperature gas cleanup. Final report  

SciTech Connect

The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

1993-06-01T23:59:59.000Z

428

A dynamically polarized hydrogen and deuterium target at Jefferson Lab  

DOE Green Energy (OSTI)

Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH{sub 3} and ND{sub 3}) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed.

Boyce, J.R.; Keith, C.; Mitchell, J.; Seely, M.

1998-07-01T23:59:59.000Z

429

AOCS Official Method Da 8-48  

Science Conference Proceedings (OSTI)

Total Anhydrous Soap and Combined Alkali AOCS Official Method Da 8-48 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the total anhydrous

430

Partitioning of solutes between liquid water and steam in the system {l_brace}Na-NH{sub 4}-NH{sub 3}-H-Cl{r_brace} to 350{degree}C  

DOE Green Energy (OSTI)

Measurements have been made of the partitioning of solutes between liquid and vapor phases for hydrochloric acid and chloride salts found in both power plant steam cycles and in natural geothermal systems. Static sampling of equilibrium liquid and vapor phases extended from 350 C to the lowest temperatures for which reliable analytical determinations of vapor-phase solute concentrations could be made. Equilibrium constants for the partitioning of the various solutes were calculated from the measured equilibrium compositions, and represented as functions of temperature and solvent density over the full temperature range investigated. These equilibrium constants can be used to calculate equilibrium compositions of coexisting liquid and vapor phases under conditions ranging from steam production from saline geothermal brines to early-condensate formation in all-volatile treatment steam cycles.

Simonson, J.M.; Palmer, D.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

1994-12-31T23:59:59.000Z

431

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

DOE Green Energy (OSTI)

To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

432

The consequences of high injected carrier densities on carrier localisation and efficiency droop in InGaN/GaN quantum well structures  

E-Print Network (OSTI)

in the concentration of the randomly distributed In atoms on the optical properties of InGaN/GaN quantum wells. On the basis of this comparison of theory with experiment we attribute the reduction in the S- shape temperature dependence to the saturation... , the buffer layer was grown in a Thomas Swan 6x2” metalorganic vapour-phase epitaxy reactor using trimethyl gallium (TMG), silane (SiH4) and ammonia (NH3) as precursors, with hydrogen as the carrier gas. The GaN buffer layer was deposited at 1020 ºC on a...

Hammersley, S; Watson-Parris, D; Dawson, P; Godfrey, M; Badcock, T; Kappers, M; McAleese, C; Oliver, R; Humphreys, C

2012-04-18T23:59:59.000Z

433

PROCESS FOR THE PURIFICATION OF URANIUM  

DOE Patents (OSTI)

A proccss is described for reclaiming uranium values from aqueous solutions containing U, Fe, Ni, Cu, and Cr comprising treating the solution with NH/sub 3/ to precipitate the: U, Fc, and Cr and leaving Cu and Ni in solution as ammonia complex ions. The precipitate is chlorinated with CCl/sub 4/ at an elevated temperature to convert the U, Tc, and Cr into their chlorides. The more volatile FeCl/sub 3/ and CrCl/sub 3/ are separated from the UCl/sub 4/. The process is used when U is treated in a calutron, and composite solutions are produccd which contain dissolved products of stainless steel.

Rosenfeld, S.

1959-01-20T23:59:59.000Z

434

Direct Determination of the Boltzmann Constant by an Optical Method  

SciTech Connect

We have recorded the Doppler profile of a well-isolated rovibrational line in the {nu}{sub 2} band of {sup 14}NH{sub 3}. Ammonia gas was placed in an absorption cell thermalized by a water-ice bath. By extrapolating to zero pressure, we have deduced the Doppler width which gives a first measurement of the Boltzmann constant k{sub B} by laser spectroscopy. A relative uncertainty of 2x10{sup -4} has been obtained. The present determination should be significantly improved in the near future and contribute to a new definition of the kelvin.

Daussy, C.; Guinet, M.; Amy-Klein, A.; Djerroud, K.; Hermier, Y.; Briaudeau, S.; Borde, Ch. J.; Chardonnet, C. [Laboratoire de Physique des Lasers, UMR CNRS 7538, Institut Galilee, Universite Paris 13, 99, avenue J.-B. Clement, 93430 Villetaneuse (France)

2007-06-22T23:59:59.000Z

435

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

81 Contribution to variance for corn ethanol, including80 Contribution to variance for corn ethanol . . . . . . .anhydrous corn ethanol . . . . . . . . . . . . . . 63 Range

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

436

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... The samples included anhydrous and hydrated bioethanol and two biodiesels from different feedstocks, soy and animal fat. ...

2012-02-10T23:59:59.000Z

437

Publications Portal  

Science Conference Proceedings (OSTI)

... temperature at ambient pressure. The samples included anhydrous and hydrated bioethanol and two biodiese ... http://www.nist ...

2012-09-17T23:59:59.000Z

438

Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method that Preserves Low-Frequency Variability  

Science Conference Proceedings (OSTI)

A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability ...

Bo Christiansen; Fredrik Charpentier Ljungqvist

2011-12-01T23:59:59.000Z

439

2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)  

SciTech Connect

The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the community are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.

Thomas Settersten

2011-08-19T23:59:59.000Z

440

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

?? Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of “acid rain”, smog, and depletion of… (more)

Li, Miao

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anhydrous ammonia nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

??Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of "acid rain", smog, and depletion of the… (more)

Li, Miao

2011-01-01T23:59:59.000Z

442

Destruction of acid gas emissions  

DOE Green Energy (OSTI)

A method of destroying NO{sub x} and SO{sub x} in a combustion gas is disclosed. The method includes generating active species by treating stable molecules in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combustion of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH{sub 2}, OH, CH and/or CH{sub 2}. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO{sub x} and SO{sub x}. Typically the injection is made into the immediate post-combustion gases at temperatures of 475--950{degrees}C. 1 fig.

Mathur, M.P.; Fu, Yuan C.; Ekmann, J.M.; Boyle, J.M.

1990-12-31T23:59:59.000Z

443

EA-0225: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0225: Final Environmental Assessment 0225: Final Environmental Assessment EA-0225: Final Environmental Assessment Spill Tests of NH3 and N2O4 at Frenchman Flat, Nevada Test Site Lawrence Livermore National Laboratory (LLNL) has assessed the environmental effects of a proposed series of liquified ammonia and nitrogen textroxide spill tests. This short-term program of field experiments is designed to simulate accidental releases of these materials from pressurized transport and storage vessels. The information gained from these studies is needed to determine the safety problems presented by accidental spills and to develop better models to predict the dispersion behavior of these heavy gases. Environmental Assessment for Spill Tests of NH3 and N2O4 at Frenchman Flat, Nevada Test Site, DOE/EA-0225, August 1983

444

Acronyms and Abbreviations; DOE Hydrogen Program FY 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2008 Annual Progress Report DOE Hydrogen Program °C Degrees Celsius °F Degrees Fahrenheit 1-D, 1D One-dimensional 1Q First quarter of the fiscal year 2-D, 2D Two-dimensional 2-FPTf 2, fluoropyridinium triflate 2DSM Dimensionally stable membrane with 2-dimensional laser-drilled hole support 2Q Second quarter of the fiscal year 3-D, 3D Three-dimensional 3DSM Dimensionally stable membrane with 3-dimensional porous support 3Q Third quarter of the fiscal year 4Q Fourth quarter of the fiscal year 8YSZ 8 mol% yttria-stabilized zirconia α-AlH 3 Alpha polymorph of aluminum hydride A Amps Å Angstrom AAO Anodic aluminum oxide AB Ammonia borane, NH 3 BH 3 ABI Automated ball indentation, Agent-based investment ABH 2 Ammonium borohydride, NH 4 BH 4 ABM Agent-based modeling ABMS Agent-based modeling and simulation

445

Solar liquid-desiccant air-conditioning system. Final report  

DOE Green Energy (OSTI)

A design for a closed, diurnal, intermittent absorption chiller for passive solar air-conditioning using liquid sorbents has been constructed and tested. LiBr-H/sub 2/O will not work with this design because of its low vapor pressure at the temperature available. The approach has possibilities using the 2 LiBr-ZrBr-CH/sub 3/OH or H/sub 2/O-NH/sub 3/ sorbent refrigerant pairs. The use of H/sub 2/O-NH/sub 3/ appears to be the better candidate because of the lower solution viscosity and less cycle weight, through tank volumes and collector requirements are similar. Further study of other refrigerant pairs such as S-Thiocyanate-ammonia is indicated, however, the difficulties encountered in construction and low potential coefficient of performance, and thus large collection area needed, makes commercialization of such a system doubtful in the foreseeable future.

Not Available

446

Apparatus and method for preparing oxygen-15 labeled water H.sub.2 [.sup.15 O] in an injectable form for use in positron emission tomography  

DOE Patents (OSTI)

A handling and processing apparatus for preparing Oxygen-15 labeled water (H.sub.2 [.sup.15 O]) in injectable form for use in Positron Emission Tomography from preferably H.sub.2 [.sup.15 O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H.sub.2 [.sup.15 O] gas and impurities, mainly ammonia (NH.sub.3) gas into sterile water to trap the H.sub.2 [.sup.15 O] and form ammonium (NH.sub.4.sup.+) in the sterile water. A device for displacing the sterile water containing H.sub.2 [.sup.15 O] and NH.sub.4.sup.+ through a cation resin removes NH.sub.4.sup.+ from the sterile water. A device for combining the sterile water containing H.sub.2 [.sup.15 O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H.sub.2 [.sup.15 O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature.

Ferrieri, Richard A. (Patchogue, NY); Schlyer, David J. (Bellport, NY); Alexoff, David (Westhampton, NY)

1996-01-09T23:59:59.000Z

447

From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures  

SciTech Connect

By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain)] [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)] [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain)] [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)] [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

2012-12-15T23:59:59.000Z

448

VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07  

SciTech Connect

We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

Devine, K. E.; Churchwell, E. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53703 (United States); Chandler, C. J.; Borg, K. J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Brogan, C.; Indebetouw, R. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Shirley, Y., E-mail: kdevine@collegeofidaho.edu [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

2011-05-20T23:59:59.000Z

449

 

NLE Websites -- All DOE Office Websites (Extended Search)

Ammonia (NH3) Ammonia (NH3) Quantity Value Units Value Units 0.59719 Specific gravity (20° C, 1 atm) 8.26E-04 g cm-3 Mean excitation energy 53.7 eV Minimum ionization 2.265 MeV g-1cm2 1.871E-03 MeV cm-1 Nuclear collision length 56.8 g cm-2 6.876E+04 cm Nuclear interaction length 79.5 g cm-2 9.620E+04 cm Pion collision length 84.5 g cm-2 1.023E+05 cm Pion interaction length 111.5 g cm-2 1.350E+05 cm Radiation length 40.87 g cm-2 4.948E+04 cm Critical energy 121.70 MeV (for e-) 119.12 MeV (for e+) Molière radius 7.12 g cm-2 8622. cm Plasma energy 0.64 eV Muon critical energy 1469. GeV Index of refraction (@ STP, Na D) 376. (n-1)x106 Composition: Elem Z Atomic frac* Mass frac* H 1

450

Properties of ion implanted Ti-6Al-4V processed using beamline and PSII techniques  

DOE Green Energy (OSTI)

The surface of Ti-6Al-4V (Ti64) alloy has been modified using beamline implantation of boron. In separate experiments, Ti64 has been implanted with nitrogen using a plasma source ion implantation (PSII) technique utilizing either ammonia (NH{sub 3}), nitrogen (N{sub 2}), or their combinations as the source of nitrogen ions. Beamline experiments have shown the hardness of the N-implanted surface saturates at a dose level of {approximately} 4 {times} 10{sup 17} at/cm{sup 2} at {approximately} 10 GPa. The present work makes comparisons of hardness and tribological tests of (1) B implantation using beamline techniques, and (2) N implanted samples using ammonia and/or nitrogen gas in a PSII process. The results show that PSII using N{sub 2} or NH{sub 3} gives similar hardness as N implantation using a beamline process. The presence of H in the Ti alloy surface does not affect the hardness of the implanted surface. Boron implantation increased the surface hardness by as much as 2.5x at the highest dose level. Wear testing by a pin-on-disk method indicated that nitrogen implantation reduced the wear rate by as much as 120x, and boron implantation reduced the wear rate by 6.5x. Increased wear resistance was accompanied by a decreased coefficient of friction.

Walter, K.C.; Woodring, J.S.; Nastasi, M.; Munson, C.M. [Los Alamos National Lab., NM (United States); Williams, J.M.; Poker, D.B. [Oak Ridge National Lab., TN (United States). Solid State Div.

1996-12-31T23:59:59.000Z