Powered by Deep Web Technologies
Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Small Angle X-Ray Scattering Detector  

DOE Patents [OSTI]

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

2

Small Angle X-Ray Scattering Detector  

DOE Patents [OSTI]

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

Hessler, Jan P. (Downers Grove, IL)

2004-06-15T23:59:59.000Z

3

SMB, Small Angle X-Ray Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Small Angle X-Ray Scattering

4

Micellar structure from comparison of X-ray and neutron small-angle scattering  

E-Print Network [OSTI]

249 Micellar structure from comparison of X-ray and neutron small-angle scattering T. Zemb and P according to the method developed by Hayter and Penfold. Both X-ray and neutron scattering signals, or by a combination of both. It has been shown recent- ly [1, 2] that it is possible in neutron scattering studies

Boyer, Edmond

5

X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers  

SciTech Connect (OSTI)

Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V. [Department of Surface and Plasma Science, Faculty of Mathematics and Physics Charles University, V Holesovickach 2, 180 00, Prague 8 (Czech Republic); Vales, V.; Endres, J.; Holy, V. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Buljan, M. [Institute Ruder Boskovic, Bijenicka 54, 10000 Zagreb (Croatia); Bernstorff, S. [Sincrotrone ELETTRA, 34149 Basovizza, Trieste (Italy)

2013-01-14T23:59:59.000Z

6

Characterization of irradiation-induced precipitates by small angle x-ray and neutron scattering experiments  

SciTech Connect (OSTI)

The nature of the irradiation-induced precipitates in the VVER-440-type steel 15Kh2MFA has been investigated by the combination of small angle neutron scattering and anomalous small angle X-ray scattering. Information about the chemical composition of the irradiation-induced precipitates was obtained by the method of contrast variation. ASAXS experiments with variation of the X-ray energy near the energy of the vanadium K-absorption edge prove the content of vanadium within the irradiation-induced precipitates. The scattering density of the precipitates is lower than the scattering density of the iron matrix. The chemical shift of the vanadium-K{sub {alpha}}-absorption-edge and the results of the variation of the contribution of the magnetic scattering in the SANS experiment show, that vanadium does not precipitate in an elementary state. These results can be explained by assuming the precipitates are vanadium carbide.

Grosse, M.; Eichhorn, F.; Boehmert, J.; Brauer, G. [Research Center Rossendorf Inc., Dresden (Germany)

1996-12-31T23:59:59.000Z

7

Small angle X-ray scattering study of coal soot formation  

SciTech Connect (OSTI)

The objective of this study is to examine, by small angle X-ray scattering (SAXS), the formation of soot from individual coal particle combustion in a methane flat flame burner. The SAXS instrument at the Basic Energy Sciences Synchrotron Radiation Center (BESSRC) at the Advanced Photon Source (APS) can be used to observe both the formation of spherules and clusters since it can access length scales of 6--6000 {angstrom}. The high X-ray flux enables rapid acquisition of scattering data of various regions of the flame. SAXS data reveal particle size, shape, surface areas, and surface roughness.

Winans, R. E.; Parker, J. T.; Seifert, S.; Fletcher, T. H.

2000-02-14T23:59:59.000Z

8

BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

Tainer, John (Scripps Research Institute); Hura, Greg (LBNL); Rambo, Robert P. (LBNL)

9

Wide angle x-ray scattering of proteins : effect of beam exposure on protein integrity.  

SciTech Connect (OSTI)

Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 {angstrom} (q = 2.8 {angstrom}-1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

Fischetti, R. F.; Rodi, D. J.; Mirza, A.; Makowski, L.; Illinois Inst. of Tech.

2003-01-01T23:59:59.000Z

10

Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques  

SciTech Connect (OSTI)

A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

2014-09-24T23:59:59.000Z

11

Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering  

SciTech Connect (OSTI)

High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

2001-05-21T23:59:59.000Z

12

Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies  

E-Print Network [OSTI]

Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies of the Complex-ray and neutron scattering techniques. In this work, we concentrated mainly on radius of gyration analyses and a neutron scattering experiment is performed in 21-Iz0 solvent. This decrease simply reflects the fact

13

Small angle neutron and X-ray scattering studies of carbons prepared using inorganic templates  

SciTech Connect (OSTI)

Small angle neutron (SANS) and X-ray (SAXS) scattering analyses of carbons derived from organic-loaded inorganic template materials, used as anodes in lithium ion cells, have been performed. Two clays were used as templates to load the organic precursors, pillared montmorrillonite (PILC), a layered silicate clay whose sheets have been permanently propped open by sets of thermally stable molecular props, and sepiolite, a natural channeled clay. Five different organic precursors were used to load the PILC: pyrene, styrene, pyrene/trioxane copolymer, ethylene and propylene, whereas only propylene and ethylene were used to load sepiolite. Pyrolysis took place at 700{degrees}C under nitrogen. Values such as hole radius, fractal dimension, cutoff length and density of the final carbons will be compared as a function of the clay and carbon precursors.

Sandi, G.; Thiyagarajan, P.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

14

Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering  

SciTech Connect (OSTI)

Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

Chen, Lingling

1996-04-01T23:59:59.000Z

15

Combining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute the Persistence Length of a Protein  

E-Print Network [OSTI]

and purification For small-angle x-ray scattering and circular dichroism ER/K a-helix sequences from the myosin VICombining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute. In this study, we quantify this flexibility in terms of persistence length, namely the length scale over which

Spudich, James A.

16

X-ray Dust Scattering at Small Angles: The Complete Halo around GX13+1  

E-Print Network [OSTI]

The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50'' of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000''. After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. (2005). Finally, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and nearly all of the composite grain models from Zubko, Dwek & Arendt (2004) give poor fits.

Randall K. Smith

2008-05-04T23:59:59.000Z

17

Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys  

SciTech Connect (OSTI)

This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

Rice, M.

1993-12-01T23:59:59.000Z

18

Small angle x-ray scattering study of fluctuations in 1-propanol-water and 2-propanol-water systems  

SciTech Connect (OSTI)

Small-angle x-ray scattering (SAXS) measurements have been carried out on the 1-propanol (NPA)-water system and on the 2-propanol (IPA)-water system at 20{degree}C. In the NPA-water system, the zero angle intensity, the concentration fluctuation, the Kirkwood-Buff parameters, and Debye's correlation lengths have been determined at various concentrations. In the IPA-water system, the zero angle intensity and Debye's correlation lengths have also been determined. In both the NPA-water and IPA-water systems, all obtained parameters have maxima at about 0.2 of the mole fraction of alcohol. In terms of these parameters, the mixing state of the NPA-water and IPA-water systems is discussed and compared with that of the TBA-water system.

Hayashi, Hisashi; Nishikawa, Keiko; Iijima, Takao (Gakushuin Univ., Tokyo (Japan))

1990-10-18T23:59:59.000Z

19

Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids  

SciTech Connect (OSTI)

A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

2014-12-14T23:59:59.000Z

20

Small-angle x-ray scattering measurements of the microstructure of liquid helium mixtures adsorbed in aerogel  

SciTech Connect (OSTI)

Small-angle x-ray scattering (SAXS) was used to measure the microstructure of isotopic mixtures of {sup 3}He and {sup 4}He adsorbed into silica aerogels as a function of temperature and {sup 3}He concentration. The SAXS measurements could be well described by the formation of a nearly pure film of {sup 4}He which separates from the bulk mixture onto the aerogel strands and which thickens with decreasing temperature. Previous observations of a superfluid {sup 3}He-rich phase are consistent with superfluidity existing within this film phase. Observed differences between different density aerogels are explained in terms of the depletion of {sup 4}He from the bulk mixture due to film formation.

Lurio, L. B.; Mulders, N.; Paetkau, M.; Chan, M. H. W.; Mochrie, S. G. J. [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Department of Physics, University of Delaware, Newark, Delaware 19716 (United States); Department of Physics and Astronomy, Okanagan College, British Columbia V1Y4X8 (Canada); Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Yale University, New Haven, Connecticut 06511 (United States)

2007-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering  

SciTech Connect (OSTI)

Ultra-small-angle x-ray scattering can provide information about primary particles and aggregates from a single scattering experiment. This technique is applied in situ to flame aerosol reactors for monitoring simultaneously the primary particle and aggregate growth dynamics of oxide nanoparticles in a flame. This was enabled through the use of a third generation synchrotron source (Advanced Photon Source, Argonne IL, USA) using specialized scattering instrumentation at the UNICAT facility which is capable of simultaneously measuring nanoscales to microscales (1 nm to 1 {mu}m). More specifically, the evolution of primary-particle diameter, mass-fractal dimension, geometric standard deviation, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary particles per aggregate are measured along the flame axis for two different premixed flames. All these particle characteristics were derived from a single and nonintrusive measurement technique. Flame temperature profiles were measured in the presence of particles by in situ Fourier transform infrared spectroscopy and thermophoretic sampling was used to visualize particle growth with height above the burner as well as in the radial direction.

Kammler, Hendrik K.; Beaucage, Gregory; Kohls, Douglas J.; Agashe, Nikhil; Ilavsky, Jan [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, ML F23, CH-8092 Zurich (Switzerland); Department of Chemical and Materials Engineering, University of Cincinnati, 540 Engineering Research Center, Cincinnati, Ohio 45221-0012 (United States); UNICAT, Advanced Photon Source, Building 438D, 9700 South Cass Avenue, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2005-03-01T23:59:59.000Z

22

Structure of Flame-Made Silica Nanoparticles by Ultra-Small-Angle X-ray Scattering  

E-Print Network [OSTI]

by thermophoretic sampling and microscopy that provided consistent results with light scattering with respect thermophoretically collected samples and image analysis of t

Beaucage, Gregory

23

AN EFFICIENT PARALLEL GPU EVALUATION OF SMALL ANGLE X-RAY SCATTERING PROFILES  

E-Print Network [OSTI]

the scat- tering curve from a condensation of a gas of "dummy beads" to an experi-ray Scattering (SAXS) provides information on the excess electron density of the sample versus the surrounding of the experiment. For this procedure to be successful, an efficient procedure for both sampling protein structures

Hamelryck, Thomas

24

Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering  

E-Print Network [OSTI]

neutron and X-ray scattering Jianjun Pan a, , Frederick A. Heberle a , Stephanie Tristram-Nagle b Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 378316100 Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 378316453, USA e Canadian

Nagle, John F.

25

Sub-second Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-Ray Scattering  

SciTech Connect (OSTI)

The ability of Nafion® membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In-situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four-orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Also, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical-like domains is suggested. These differences in water-uptake kinetics and morphology provide a new perspective into Schroeder’s Paradox, which dictates different water contents for vaporand liquid-equilibrated ionomers at unit activity. The findings of this work provide critical insights into the fast kinetics of water absorption of Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions.

Kusoglu, Ahmet; Modestino, Miguel A.; Hexemer, Alexander; Segalman, Rachel A.; Weber, Adam Z.

2011-09-30T23:59:59.000Z

26

Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique  

SciTech Connect (OSTI)

The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

2007-03-30T23:59:59.000Z

27

Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry  

SciTech Connect (OSTI)

Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

2006-07-01T23:59:59.000Z

28

Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption  

SciTech Connect (OSTI)

A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

2005-01-01T23:59:59.000Z

29

A promising concept for using near-surface measuring angles in angle-resolved x-ray photoelectron spectroscopy considering elastic scattering effects  

SciTech Connect (OSTI)

The increasing number of applications of very thin films requires both reliable thin-layer and interface characterization. A powerful method for characterization in the nanometer thickness range is the angle-resolved x-ray photoelectron spectroscopy (ARXPS). This is a nondestructive depth-profiling method, which can provide elemental content as well as chemical information. Two of the drawbacks of ARXPS are, that it requires dedicated mathematical modeling and that, at least up until now, its use has been restricted away from near-surface angles. In this paper we present a method for the mathematical description of a few, hitherto unaccounted, measurement effects in order to improve the simulations of ARXPS data for complex surface structures. As an immediate application, we propose a simple algorithm to consider the effects of elastic scattering in the standard ARXPS data interpretation, which in principle would allow the use of the whole angular range for the analysis; thus leading to a significant increase in the usable information content from the measurements. The potential of this approach is demonstrated with model calculations for a few thin film examples.

Oswald, S.; Oswald, F. [IFW Dresden, Postfach 270116, D-01171 Dresden (Germany)

2011-02-01T23:59:59.000Z

30

Fluctuation X-Ray Scattering  

SciTech Connect (OSTI)

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

31

Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility  

SciTech Connect (OSTI)

The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

Salah, Wa'el [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan); Department of Physics, The Hashemite University, Zarqa 13115 (Jordan); Sanchez del Rio, M. [European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France); Hoorani, H. [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan)

2009-09-15T23:59:59.000Z

32

Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus  

SciTech Connect (OSTI)

UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (Missouri); (LBNL); (VPI-SU)

2012-05-14T23:59:59.000Z

33

Nonlinear X-ray Compton Scattering  

E-Print Network [OSTI]

X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

2015-01-01T23:59:59.000Z

34

Probing the MgATP-Bound Conformation of the Nitrogenase Fe Protein By Solution Small-Angle X-Ray Scattering  

SciTech Connect (OSTI)

The MgATP-bound conformation of the Fe protein of nitrogenase from Azotobacter vinelandii has been examined in solution by small-angle X-ray scattering (SAXS) and compared to existing crystallographically characterized Fe protein conformations. The results of the analysis of the crystal structure of an Fe protein variant with a Switch II single-amino acid deletion recently suggested that the MgATP-bound state of the Fe protein may exist in a conformation that involves a large-scale reorientation of the dimer subunits, resulting in an overall elongated structure relative to the more compact structure of the MgADP-bound state. It was hypothesized that the Fe protein variant may be a conformational mimic of the MgATP-bound state of the native Fe protein largely on the basis of the observation that the spectroscopic properties of the [4Fe-4S] cluster of the variant mimicked in part the spectroscopic signatures of the native nitrogenase Fe protein in the MgATP-bound state. In this work, SAXS studies reveal that the large-scale conformational differences between the native Fe protein and the variant observed by X-ray crystallography are also observed in solution. In addition, comparison of the SAXS curves of the Fe protein nucleotide-bound states to the nucleotide-free states indicates that the conformation of the MgATP-bound state in solution does not resemble the structure of the variant as initially proposed, but rather, at the resolution of this experiment, it resembles the structure of the nucleotide-free state. These results provide insights into the Fe protein conformations that define the role of MgATP in nitrogenase catalysis.

Sarma, R.; Mulder, D.W.; Brecht, E.; Szilagyi, R.K.; Seefeldt, L.C.; Tsuruta, H.; Peters, J.W.; /Montana State U. /SLAC, SSRL /Utah State U.

2009-04-30T23:59:59.000Z

35

Simulation of the shape of chaperonins using the small-angle x-ray scattering curves and torus form factor  

SciTech Connect (OSTI)

The inverse scattering problem has been solved for protein complexes whose surfaces can be described by a set of the simplest doubly connected surfaces in the uniform approximation (a scattering potential inside the molecule is a constant). Solutions of two proteins-well-known GroEL bacterial chaperonin and poor-studied bacteriophage chaperonin, which is a product of 146 gene (gp146)-were taken for the experiment. The shapes of protein complexes have been efficiently reconstructed from the experimental scattering curves. The shell method, the method of the rotation of amino acid sequences with the use of the form factor of an amino acid, and the method of seeking the model parameters of a protein complex with the preliminarily obtained form factor of the model have been used to reconstruct the shape of these particles.

Amarantov, S. V., E-mail: amarantov_s@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Naletova, I. N. [Moscow State University, Belozerskii Institute of Molecular Biology and Bioorganic Chemistry (Russian Federation); Kurochkina, L. P. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)

2011-08-15T23:59:59.000Z

36

Surface Area and Microporosity of Carbon Aerogels from Gas Adsorption and Small- and Wide-Angle X-ray Scattering Measurements  

E-Print Network [OSTI]

A carbon aerogel was obtained by carbonization of an organic aerogel prepared by sol-gel polymerization of resorcinol and formaldehyde in water. The carbon aerogel was then CO2 activated at 800 °C to increase its surface area and widen its microporosity. Evolution of these parameters was followed by gas adsorption and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) with contrast variation by using dry and wet (immersion in benzene and m-xylene) samples. For the original carbon aerogel, the surface area, SSAXS, obtained by SAXS, is larger than that obtained by gas adsorption (Sads). The values become nearly the same as the degree of activation of the carbon aerogel increases. This feature is due to the widening of the narrow microporosity in the carbon aerogel as the degree of activation is increased. In addition, WAXS results show that the short-range spatial correlations into the assemblies of hydrocarbon molecules confined inside the micropores are different from those existing in the liquid phase. 1.

David Fairén-jiménez; Francisco Carrasco-marín; David Djurado; Françoise Bley; Françoise Ehrburger-dolle; Carlos Moreno-castilla

2005-01-01T23:59:59.000Z

37

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray...

38

Neutron and X-ray Scattering Study of Magnetic Manganites  

E-Print Network [OSTI]

Neutron and X-ray Scattering Study of Magnetic Manganites Graeme Eoin Johnstone A Thesis submitted are performed using a variety of neutron scattering and x-ray scattering techniques. The electronic ground for analysing the results of the polarised neutron scattering experiment. There are a large number of people who

Boothroyd, Andrew

39

Thirteenth National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

40

Tenth National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Tenth National School on Neutron and X-ray Scattering September 24 - October 11, 2008 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sixteenth National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Sixteenth National School on Neutron and X-ray Scattering June 14-28, 2014 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major's Neutron Scattering Science Division. Scientific Directors: Suzanne G.E. te Velthuis, Esen Ercan Alp

Pennycook, Steve

42

Fourteenth National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Fourteenth National School on Neutron and X-ray Scattering August 12 - 25, 2012 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

Pennycook, Steve

43

National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

15th National School on Neutron and X-ray Scattering August 10 - 24, 2013 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

44

National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering May 30 ­ June 13, 2009 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

45

Twelfth National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Twelfth National School on Neutron and X-ray Scattering June 12 ­ June 26, 2010 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

46

Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering  

SciTech Connect (OSTI)

We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

2006-06-05T23:59:59.000Z

47

HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations  

E-Print Network [OSTI]

HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899, United States d CHESS, Cornell

Nagle, John F.

48

Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light  

E-Print Network [OSTI]

The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

Seipt, D; Fritzsche, S

2014-01-01T23:59:59.000Z

49

Magnetism studies using resonant, coherent, x-ray scattering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron...

50

X-ray Raman scattering study of aligned polyfluorene  

E-Print Network [OSTI]

We present a non-resonant inelastic x-ray scattering study at the carbon K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that the x-ray Raman scattering technique can be used as a practical alternative to x-ray absorption measurements. We demonstrate that this novel method can be applied to studies on aligned $\\pi$-conjugated polymers complementing diffraction and optical studies. Combining the experimental data and a very recently proposed theoretical scheme we demonstrate a unique property of x-ray Raman scattering by performing the symmetry decomposition on the density of unoccupied electronic states into $s$- and $p$-type symmetry contributions.

S. Galambosi; M. Knaapila; J. A. Soininen; K. Nyg\\aard; S. Huotari; F. Galbrecht; U. Scherf; A. P. Monkman; K. Hämäläinen

2006-08-29T23:59:59.000Z

51

An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis  

SciTech Connect (OSTI)

The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO{sub 2} and SrTiO{sub 3} (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

Geyer, Scott M.; Methaapanon, Rungthiwa; Kim, Woo-Hee; Bent, Stacey F., E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Johnson, Richard W. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Van Campen, Douglas G.; Metha, Apurva [SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States)

2014-05-15T23:59:59.000Z

52

High performance x-ray anti-scatter grid  

DOE Patents [OSTI]

Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

Logan, C.M.

1995-05-23T23:59:59.000Z

53

High performance x-ray anti-scatter grid  

DOE Patents [OSTI]

An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

Logan, Clinton M. (Pleasanton, CA)

1995-01-01T23:59:59.000Z

54

E-Print Network 3.0 - angle-resolved x-ray photoelectron Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

x-ray photoelectron Search Powered by Explorit Topic List Advanced Search Sample search results for: angle-resolved x-ray photoelectron Page: << < 1 2 3 4 5 > >> 1 Norman Mannella...

55

Structural characterization of Green River oil-shale at high-pressure using pair distribution function analysis and small angle x-ray scattering.  

SciTech Connect (OSTI)

The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R 30.7%). Indeed the features in the PDF beyond 6 {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component.

Locke, D. R.; Chupas, P. J.; Chapman, K. W.; Pugmire, R. J.; Winans, R. E.; Univ. of Utah

2008-01-01T23:59:59.000Z

56

Self-similarity during growth of the Au/TiO{sub 2}(110) model catalyst as seen by the scattering of x-rays at grazing-angle incidence  

SciTech Connect (OSTI)

The growth of gold nanoparticles on TiO{sub 2}(110) was investigated in situ by grazing incidence x-ray scattering techniques. The in-plane diffraction showed complex epitaxial relationships with a preferential alignment of dense gold direction along the bridging oxygen rows of TiO{sub 2}(110) ([110]{sub Au} parallel [001]{sub TiO{sub 2}}) with a low lattice mismatch. Whatever the growth temperature (T=300,600 K), two nearly equiproportional epitaxial planes, i.e., (111){sub Au} parallel (110){sub TiO{sub 2}} and (112){sub Au} parallel (110){sub TiO{sub 2}}, were observed. The small angle scattering from the nanoparticles was analyzed using a truncated sphere shape with models [R. Lazzari, F. Leroy, and G. Renaud, Phys. Rev. B 76, 125411 (2007)] that account for (i) multiple scattering effects due to the graded profile of refraction index in the normal direction and (ii) the correlation between the particle spacing and sizes. At the beginning of the growth, gold particles are pinned on defects and grow through a diffusion-limited mechanism. However, coalescence does not occur via a static mechanism. It rather involves surface diffusion of clusters. It proceeds through a self-similar mechanism, not only on the size distribution but also on the spatial ordering. Particle locations, which are no longer controlled by the randomness of nucleation centers, become dominated by the correlation between the particle size and its influence area. A strong link between island height and radius indicates that particles are close to equilibrium. Indeed, the value derived for contact angle (adhesion energy) compares well with tabulated data. In addition, the cluster size before the onset of coalescence compares with that of the gold particles at the maximum of catalytic activity for the oxidation of CO.

Lazzari, Remi; Jupille, Jacques [Institut des NanoSciences de Paris, Universites Pierre et Marie Curie (Paris 6) et Denis Diderot (Paris 7), CNRS UMR 7588 Campus Boucicaut, 140 Rue de Lourmel, 75015 Paris (France); Renaud, Gilles [Nanostructures et Rayonnement Synchrotron, Service de Physique des Materiaux et Microstructures, Departement de Recherche Fondamentale sur la Matiere Condensee, Commissariat a l'Energie Atomique, 17 Avenue des Martyrs, F-38054 Grenoble, Cedex 9 (France); Leroy, Frederic [Centre de Recherche en Matiere Condensee et NanoSciences, CNRS-UPR 7281, Campus de Luminy Case 913, 13288 Marseille Cedex 09 (France)

2007-09-15T23:59:59.000Z

57

Dense Plasma X-ray Scattering: Methods and Applications  

SciTech Connect (OSTI)

We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

2009-08-19T23:59:59.000Z

58

Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration  

SciTech Connect (OSTI)

In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

59

Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering  

SciTech Connect (OSTI)

The solution structures of free Enzyme I (EI, {approx}128 kDa, 575 x 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr ({approx}146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS data that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C{sub 2} symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large ({approx}70-90{sup o}) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.

Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander; Ghirlando, Rodolfo; Takayama, Yuki; Clore, G. Marius (NIH)

2010-09-17T23:59:59.000Z

60

Ab initio studies of ultrafast x-ray scattering of the photodissociation of iodine  

SciTech Connect (OSTI)

We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems, which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.

Debnarova, Andrea; Techert, Simone [Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Am Fassberg 11 (Germany); Schmatz, Stefan [Institut fuer Physikalische Chemie, Universitaet Goettingen, 37077 Goettingen, Tammannstr. 6 (Germany)

2010-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering  

SciTech Connect (OSTI)

Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

2010-03-11T23:59:59.000Z

62

Crystal defect studies using x-ray diffuse scattering  

SciTech Connect (OSTI)

Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

Larson, B.C.

1980-01-01T23:59:59.000Z

63

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

64

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

65

X-ray and neutron scattering studies of magnetic critical fluctuations in holmium  

SciTech Connect (OSTI)

We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample.

Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States); Hill, J.P. [Brookhaven National Lab., Upton, NY (United States)]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Gaulin, B.D. [Brookhaven National Lab., Upton, NY (United States)]|[McMaster Univ., Hamilton, ON (Canada). Dept. of Physics

1993-04-01T23:59:59.000Z

66

X-ray and neutron scattering studies of magnetic critical fluctuations in holmium  

SciTech Connect (OSTI)

We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample.

Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G. (Brookhaven National Lab., Upton, NY (United States)); Hill, J.P. (Brookhaven National Lab., Upton, NY (United States) Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics); Gaulin, B.D. (Brookhaven National Lab., Upton, NY (United States) McMaster Univ., Hamilton, ON (Canada). Dept. of Physics)

1993-01-01T23:59:59.000Z

67

National School on Neutron and X-ray Scattering August 10-24, 2013  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering August 10-24, 2013 Argonne National Laboratory National Laboratory 3:15 ­ 3:30 Break #12;National School on Neutron and X-ray Scattering August 10 Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering August 10-24, 2012 Oak

Kemner, Ken

68

2011 U.S. National School on Neutron and X-ray Scattering  

SciTech Connect (OSTI)

The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

2012-01-01T23:59:59.000Z

69

National School on Neutron and X-ray Scattering June 14-28, 2014  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering June 14-28, 2014 Argonne National Laboratory:00 Dinner Dinner Dinner Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering Restaurant 9:45 - 10:45 Lecture Interaction of X-rays and Neutrons with Matter Roger Pynn University

Kemner, Ken

70

IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION  

SciTech Connect (OSTI)

A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

1998-07-01T23:59:59.000Z

71

Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters  

SciTech Connect (OSTI)

X-ray scattering is a valuable tool for measuring the structural properties of materialsused in the design and fabrication of energy-relevant nanodevices (e.g., photovoltaic, energy storage, battery, fuel, and carbon capture andsequestration devices) that are key to the reduction of carbon emissions. Although today's ultra-fast X-ray scattering detectors can provide tremendousinformation on the structural properties of materials, a primary challenge remains in the analyses of the resulting data. We are developing novelhigh-performance computing algorithms, codes, and software tools for the analyses of X-ray scattering data. In this paper we describe two such HPCalgorithm advances. Firstly, we have implemented a flexible and highly efficient Grazing Incidence Small Angle Scattering (GISAXS) simulation code based on theDistorted Wave Born Approximation (DWBA) theory with C++/CUDA/MPI on a cluster of GPUs. Our code can compute the scattered light intensity from any givensample in all directions of space; thus allowing full construction of the GISAXS pattern. Preliminary tests on a single GPU show speedups over 125x compared tothe sequential code, and almost linear speedup when executing across a GPU cluster with 42 nodes, resulting in an additional 40x speedup compared to usingone GPU node. Secondly, for the structural fitting problems in inverse modeling, we have implemented a Reverse Monte Carlo simulation algorithm with C++/CUDAusing one GPU. Since there are large numbers of parameters for fitting in the in X-ray scattering simulation model, the earlier single CPU code required weeks ofruntime. Deploying the AccelerEyes Jacket/Matlab wrapper to use GPU gave around 100x speedup over the pure CPU code. Our further C++/CUDA optimization deliveredan additional 9x speedup.

Sarje, Abhinav; Pien, Jack; Li, Xiaoye; Chan, Elaine; Chourou, Slim; Hexemer, Alexander; Scholz, Arthur; Kramer, Edward

2012-01-15T23:59:59.000Z

72

Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems  

E-Print Network [OSTI]

Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell A. Ewings 2008 #12;Abstract Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell-ray scattering and neutron scattering experiments on several strongly correlated transition metal oxides

Boothroyd, Andrew

73

Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering  

SciTech Connect (OSTI)

We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.; ,

2011-03-03T23:59:59.000Z

74

Air-core grid for scattered x-ray rejection  

DOE Patents [OSTI]

The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

Logan, Clinton M. (Pleasanton, CA); Lane, Stephen M. (Oakland, CA)

1995-01-01T23:59:59.000Z

75

Air-core grid for scattered x-ray rejection  

DOE Patents [OSTI]

The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

Logan, C.M.; Lane, S.M.

1995-10-03T23:59:59.000Z

76

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data  

E-Print Network [OSTI]

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data electron and neutron scattering density profiles. A key result of the analysis is the molecular surface

Nagle, John F.

77

Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters  

E-Print Network [OSTI]

X-ray Scattering Data On Graphics Processor Clusters Abhinavaccelerators. General purpose graphics processors o?er ?nethe form factors on graphics processors. Form Factor Kernel

Sarje, Abhinav

2012-01-01T23:59:59.000Z

78

Resonant soft x-ray scattering: elemental/chemical specific probe...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resonant soft x-ray scattering: elementalchemical specific probe of reciprocal space and ordered structure Wednesday, October 15, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room...

79

X-ray and neutron scattering studies on some nanoscale structures in molecular biology.  

E-Print Network [OSTI]

??Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and… (more)

Ikonen, Teemu

2007-01-01T23:59:59.000Z

80

Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL  

SciTech Connect (OSTI)

At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

Patterson, Bruce

2010-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

accurate x-ray scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is ove... Corrales, Lia 2012-01-01 20 Dust scattering X-ray expanding rings around gamma-ray bursts Astrophysics (arXiv) Summary: Scattering by dust grains in our Galaxy can...

82

Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions  

E-Print Network [OSTI]

Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions Q. R-angle neutron scattering was used to characterize the solution behavior of charged carboxylic acid terminated- copy,16 small-angle X-ray scattering,17 and small-angle neutron scattering (SANS),18-25 have been used

Dubin, Paul D.

83

Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering  

SciTech Connect (OSTI)

Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

Eliezer, D.

1994-06-01T23:59:59.000Z

84

Acquisition of an In-House X-ray Scattering Facility for Nanostructure Characterization and Student Training  

SciTech Connect (OSTI)

This equipment grant was specifically dedicated to the development of a "state of the art" x-ray scattering facility...

Schuller, Ivan K [UC San Diego

2013-08-02T23:59:59.000Z

85

16th National School on Neutron and X-ray Scattering  

ScienceCinema (OSTI)

Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

2014-07-23T23:59:59.000Z

86

16th National School on Neutron and X-ray Scattering  

SciTech Connect (OSTI)

Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

2014-07-02T23:59:59.000Z

87

Search for Photon-Photon Elastic Scattering in the X-ray Region  

E-Print Network [OSTI]

We report the first results of a search for real photon-photon scattering using X rays. A novel system is developed to split and collide X-ray pulses by applying interferometric techniques. A total of $6.5\\times10^{5}$ pulses (each containing about $10^{11}$ photons) from an X-ray Free-Electron Laser are injected into the system. No scattered events are observed, and an upper limit of $1.7\\times 10^{-24}$ ${\\rm m^{2}}$ (95% C.L.) is obtained on the photon-photon elastic scattering cross section at 6.5 keV.

T. Inada; T. Yamaji; S. Adachi; T. Namba; S. Asai; T. Kobayashi; K. Tamasaku; Y. Tanaka; Y. Inubushi; K. Sawada; M. Yabashi; T. Ishikawa

2014-04-18T23:59:59.000Z

88

Safety & Security Guidelines Annual U.S. National School on Neutron and X-ray Scattering  

E-Print Network [OSTI]

Safety & Security Guidelines 15th Annual U.S. National School on Neutron and X-ray Scattering-574-4600. Neutron Sciences User Programs and Outreach Office Oak Ridge National Laboratory #12;

89

X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems. I. Specular reflectivity  

E-Print Network [OSTI]

X-ray resonant magnetic scattering from structurally and magnetically rough interfaces formulation of x-ray resonant magnetic scattering from rough surfaces and interfaces is given for specular/Fe multilayer. DOI: 10.1103/PhysRevB.68.224409 PACS number s : 75.70.Cn, 61.10.Kw I. INTRODUCTION X-ray

Haskel, Daniel

90

X-ray dark-field imaging modeling * F. Pfeiffer,2  

E-Print Network [OSTI]

X-ray dark-field imaging modeling W. Cong,1, * F. Pfeiffer,2 M. Bech,2 and G. Wang1 1 Biomedical-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals to describe the relationship between x-ray small-angle scattering coefficients of an object and dark

Wang, Ge

91

Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering  

SciTech Connect (OSTI)

We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

2012-09-06T23:59:59.000Z

92

Fabrication of high-throughput critical-angle X-ray transmission gratings for wavelength-dispersive spectroscopy  

E-Print Network [OSTI]

The development of the critical-angle transmission (CAT) grating seeks both an order of magnitude improvement in the effective area, and a factor of three increase in the resolving power of future space-based, soft x-ray ...

Bruccoleri, Alexander Robert

2013-01-01T23:59:59.000Z

93

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect (OSTI)

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

94

X-ray Crystallographic Center (XCC) User Registration Form Peter Y. Zavalij X-ray Crystallographi Center 091 Chemistry Bldg. / College Park, MD 20742  

E-Print Network [OSTI]

X-ray Crystallographic Center (XCC) User Registration Form Peter Y. Zavalij X-ray Crystallographi. or advisor confirmation e-mail X-ray Diffractometer that will be used: User Level and Status Smart Apex2X'Pert Pro MRD (Reflectivity & low angles) Xeuss (Small/Wide Angle X-ray Scattering) Submitting user ­ only

Thirumalai, Devarajan

95

Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter  

SciTech Connect (OSTI)

We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

2008-05-05T23:59:59.000Z

96

E-Print Network 3.0 - angle x-ray studies Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND Summary: and solar wind, and how planetary and cometary X-rays can be used to study...

97

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma  

E-Print Network [OSTI]

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked by the ultraintense laser fields. The results show the existence of several physical mecha- nisms for the x-ray

Umstadter, Donald

98

Exact limiting relation between the structure factors in neutron and x-ray scattering  

E-Print Network [OSTI]

The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.

V. B. Bobrov; S. A. Trigger; S. N. Skovorod'ko

2010-07-11T23:59:59.000Z

99

E-Print Network 3.0 - angle scattering restraints Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Assemblies from Summary: , San Francisco 2001), small-angle X-ray and neutron scattering (KochQB3 et al., 2003), site... subcomplex) are first purified by...

100

Kevin Yager on the Nanoscience of Studying Scattered X-Rays  

SciTech Connect (OSTI)

Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

Yager; Kevin

2014-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kevin Yager on the Nanoscience of Studying Scattered X-Rays  

ScienceCinema (OSTI)

Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

Yager; Kevin

2014-06-04T23:59:59.000Z

102

X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules  

SciTech Connect (OSTI)

Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 ?m thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-? x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ? > 6 g cm{sup ?3}. In addition, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

Fletcher, L. B. [Department of Physics, University of California, Berkeley, California 94720 (United States)] [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A.; Pak, A.; Ma, T.; Döppner, T.; Divol, L.; Landen, O. L.; Glenzer, S. H. [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States) [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, California 94550 (United States); University of California, Los Angeles, California 90095 (United States); Vorberger, J.; Gericke, D. O. [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, D. A. [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom) [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston (United Kingdom); Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2013-05-15T23:59:59.000Z

103

Staff at sector 30, inelastic x-ray scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I.| EMSL ZnMnO3Center AlumniStaff

104

The diagnostic capability of x-ray scattering parameters for the characterization of breast cancer  

SciTech Connect (OSTI)

Purpose: The evaluation of the diagnostic capability of easy to measure x-ray scattering profile characterization parameters for the detection of breast cancer in excised samples. The selected parameters are the full width at half maximum (FWHM) and area under the x-ray scattering profile of breast tissue in addition to the ratio of scattering intensities (I{sub 2}/I{sub 1}%) at 1.6 nm{sup -1} to that at 1.1 nm{sup -1} (corresponding to scattering from soft and adipose tissues, respectively). Methods: A histopathologist is asked to classify 36 excised breast tissue samples into healthy or malignant. A conventional x-ray diffractometer is used to acquire the scattering profiles of the investigated samples. The values of three profile characterization parameters are calculated and the diagnostic capability of each is evaluated by determining the optimal cutoffs of scatter diagrams, calculating the diagnostic indices, and plotting the receiver operating characteristic (ROC) curves. Results: At the calculated optimal cutoff for each of the examined parameters, the sensitivity ranged from 78% (for area under curve) up to 94% (for FWHM), the specificity ranged from 94%[for I{sub 2}/I{sub 1}% and area under curve] up to 100% (for FWHM), and the diagnostic accuracy ranged from 86% (for area under curve) up to 97% (for FWHM). The area under the ROC curves is greater than 0.95 for all of the investigated parameters, reflecting a highly accurate diagnostic performance. Conclusions: The discussed tests offered a means to quantitatively evaluate the performance of the suggested breast tissue x-ray scattering characterization parameters. The performance results are promising, indicating that the evaluated parameters would be considered a tool for fast, on spot probing of breast cancer in excised tissue samples.

Elshemey, Wael M.; Desouky, Omar S.; Fekry, Mostafa M.; Talaat, Sahar M.; Elsayed, Anwar A. [Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Radiation Physics, National Centre for Radiation Research and Technology, Madinet Nasr 13759 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Pathology, Faculty of Medicine, Cairo University, Cairo 11559 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

2010-08-15T23:59:59.000Z

105

Pixel array detector for time-resolved x-ray scattering  

SciTech Connect (OSTI)

This paper describes the development of a large-area hybrid pixel detector designed for time-resolved synchrotron x-ray scattering experiments where limited frames, with a high framing rate, is required. The final design parameters call for a 1024{times}1O24 pixel array device with 150-micron pixels that is 100% quantum efficient for x-rays with energy up to 20 keV, with a framing rate in the microsecond range. The device will consist of a fully depleted diode array bump bonded to a CMOS electronic storage capacitor array with eight frames per pixel. The two devices may be separated by a x-ray blocking layer that protects the radiation-sensitive electronics layer from damage. The signal is integrated in the electronics layer and stored in one of eight CMOS capacitors. After eight frames are taken, the data are then read out, using clocking electronics external to the detector, and stored in a RAM disk. Results will be presented on the development of a prototype 4{times}4 pixel electronics layer that is capable of storing at least 10,000 12-keV x-ray photons for a capacity of over 50 million electrons with a noise corresponding to 2 x-ray photons per pixel. The diode detective layer, electronics storage layer along with the radiation damage and blocking layers will be discussed.

Rodricks, B.G. [Argonne National Lab., IL (United States); Barna, S.L.; Gruner, S.M.; Shepherd, J.A.; Tate, M.W.; Wixted, R.L. [Princeton Univ., NJ (United States). Dept. of Physics

1996-01-01T23:59:59.000Z

106

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University  

E-Print Network [OSTI]

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University Doc. No: SOPSAXSLA Rev No: Issue date: 1.001 12/26/2008Standard Operating Procedure Title: Small Angle X-ray Scattering approved: December 26 2009 Small Angle X-ray Scattering, Rotating Anode PURPOSE: This Standard Operating

Meagher, Mary

107

Field control of single x-ray photons in nuclear forward scattering  

E-Print Network [OSTI]

Means to coherently control single x-ray photons in resonant scattering of light off nuclei by electric or magnetic fields are investigated theoretically. In order to derive the time response in nuclear forward scattering, we adapt the Maxwell-Bloch equations known from quantum optics to describe the resonant light pulse propagation through a nuclear medium. Two types of time-dependent perturbations of nuclear forward scattering are considered for coherent control of the resonantly scattered x-ray quanta. First, the simultaneous coherent propagation of two pulses through the nuclear sample is addressed. We find that the signal of a weak pulse can be enhanced or suppressed by a stronger pulse simultaneously propagating through the sample in counter-propagating geometry. Second, the effect of a time-dependent hyperfine splitting is investigated and we put forward a scheme that allows parts of the spectrum to be shifted forward in time. This is the inverse effect of coherent photon storage and may become a valuable technique if single x-ray photon wavepackets are to become the information carriers in future photonic circuits.

Xiangjin Kong; Wen-Te Liao; Adriana Pálffy

2014-04-09T23:59:59.000Z

108

An In-vacuum Diffractometer for Resonant elastic Soft X-ray Scattering  

SciTech Connect (OSTI)

We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by in-vacuum stepper motors and operates in ultra-high vacuum at base pressure of 2 x 10{sup -10} Torr. Cooling to a base temperature of 18 K is provided with a closed-cycle cryostat. The diffractometer includes a choice of 3 photon detectors: a photodiode, a channeltron, and a 2D sensitive channelplate detector. Along with variable slit and filter options, these detectors are suitable for studying a wide range of phenomena having both weak and strong diffraction signals. Example measurements of diffraction and reflectivity in Nd-doped (La,Sr){sub 2}CuO{sub 4} and thin film (Ga,Mn)As are shown.

D Hawthorn; F He; L Venema; H Davis; A Achkar; J Zhang; R Sutarto; H Wadati; A Radi; et al.

2011-12-31T23:59:59.000Z

109

E-Print Network 3.0 - angle x-ray sky Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulsars... you'd . . . Active Galactic . . . X-ray binaries Pulsars and relatives Gamma-ray bursts Gravitational Source: Phinney, E. Sterl - Division of Physics, Mathematics and...

110

Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering  

SciTech Connect (OSTI)

We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-09-08T23:59:59.000Z

111

Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering  

SciTech Connect (OSTI)

We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

2014-01-01T23:59:59.000Z

112

Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra  

E-Print Network [OSTI]

Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.

J. Laverock; A. R. H. Preston; D. Newby Jr; K. E. Smith; S. B. Dugdale

2012-02-10T23:59:59.000Z

113

Effective Long-Range Attraction between Protein Molecules in Solutions Studied by Small Angle Neutron Scattering  

E-Print Network [OSTI]

Neutron Scattering Yun Liu,1 Emiliano Fratini,2 Piero Baglioni,1,2 Wei-Ren Chen,1 and Sow-Hsin Chen1,* 1, Italy (Received 8 February 2005; published 8 September 2005) Small angle neutron scattering intensity neutron and x-ray scattering investigations of proteins suggest the presence of a short-range attractive

Chen, Sow-Hsin

114

Resonant scattering of an X-ray photon by a heavy atom  

SciTech Connect (OSTI)

The influence of many-body and relativistic effects on the absolute values and shape of the double differential cross section for the resonant scattering of a linearly polarized X-ray photon by a free xenon atom near the K-shell ionization threshold has been theoretically analyzed. The evolution of the spatially extended structure of the scattering cross section to the K{sub {alpha}}{sub ,{beta}} structure of the X-ray spectrum of the xenon atom emission has been demonstrated. The calculations have been performed in the dipole approximation for the anomalous dispersion component of the total inelastic scattering amplitude and in the impulse approximation for the contact component of this amplitude. The contribution of the Rayleigh (elastic) scattering component is taken into account using the methods developed in Hopersky et al., J. Phys. B 30, 5131 (1997). The effects of the radial relaxation of the electron shells, spin-orbit splitting, double excitation/ionization of the atomic ground state, as well as the Auger and radiative decays of the produced main vacancies, are considered. Using the results obtained by Tulkki, Phys. Rev. A 32, 3153 (1985) and Biggs et al., At. Data Nucl. Data Tables 16, 201 (1975), the nonrelativistic Hartree-Fock wavefunctions are changed to the relativistic Dirac-Hartree-Fock wavefunctions of the single-particle scattering states when constructing the process probability amplitude. The calculations are predicting and are in good agreement with the synchrotron experiment on the measurement of the absolute values and shape of the double differential cross section for the resonant scattering of an X-ray photon by a free xenon atom reported by Czerwinski et al., Z. Phys. A 322, 183 (1985)

Hopersky, A. N., E-mail: hopersky_vm_1@rgups.ru; Nadolinsky, A. M. [Rostov State University of Transport Communication (Russian Federation)

2007-10-15T23:59:59.000Z

115

Scattering Theory When an x-ray beam (or neutron or light) passes through a material with  

E-Print Network [OSTI]

Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x of scattered radiation resulting from this process bears a direct relationship to the structure (the pattern

Beaucage, Gregory

116

USING THE X-RAY DUST SCATTERING HALO OF CYGNUS X-1 TO DETERMINE DISTANCE AND DUST DISTRIBUTIONS  

E-Print Network [OSTI]

We present a detailed study of the X-ray dust scattering halo of the black hole candidate Cygnus X-1 based on two Chandra High Energy Transmission Gratings Spectrometer observations. Using 18 different dust models, including ...

Xiang, Jingen

117

Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz  

E-Print Network [OSTI]

A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness ...

Bessuille, J.

118

The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN  

E-Print Network [OSTI]

We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey. The objects cover 2-10 keV luminosities from ~10^{42}-10^{45} erg s^{-1} and are detected up to redshift ~4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift and we discuss the implications for models of AGN emission. We constrained the mean spectral index of the broad band X-ray continuum to =1.96+-0.02 with intrinsic dispersion sigma=0.27_{-0.02}^{+0.01}. The continuum becomes harder at faint fluxes and at higher redshifts and luminosities. The dependence of Gamma with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape which can have a strong impact on the measured mean continuum shapes of sources at di...

Mateos, S; Page, M J; Watson, M G; Corral, A; Tedds, J A; Ebrero, J; Krumpe, M; Schwope, A; Ceballos, M T

2009-01-01T23:59:59.000Z

119

Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration  

SciTech Connect (OSTI)

The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ?200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ?160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ?5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

Luo, W. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China) [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Zhuo, H. B.; Yu, T. P. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China) [College of Science, National University of Defense Technology, Changsha 410073 (China); Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Song, Y. M.; Zhu, Z. C. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China)] [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, M. Y. [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

2013-10-21T23:59:59.000Z

120

E-Print Network 3.0 - angle x-ray absorption Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND Summary: in the atomic and molecular constituents of the atmosphere, and 2) the absorption of incident...

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - angle x-ray diffraction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 60 Page 12 CHESS News Magazine 2005 FacilityHighlight Impact of a Future Energy Recovery Linac Summary: -rolled Aluminum SR X-ray diffraction. Map grain...

122

anomalous small-angle x-ray: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the soft X-rays emitted by the neutron-star surface. The relation between these heating rates and measured near-infrared fluxes in the K and Ks bands places severe...

123

Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka* and John F. Nagle  

E-Print Network [OSTI]

Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka from small-angle neutron scattering of unilamellar vesicles. DOI: 10.1103/PhysRevE.69.051903 PACS discrete diffraction peaks that occur for multilamellar arrays, the scattering of x rays or neutrons from

Nagle, John F.

124

Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering for studying  

E-Print Network [OSTI]

Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering,U , Tonya L. Kuhlb , Joyce Y. Wongc , Gregory S. Smitha,1 a Manuel Lujan Jr. Neutron Scattering Center is defined as the Zratio of the number of particles neutrons or .photons elastically and specularly scattered

Kuhl, Tonya L.

125

New X-ray Scattering Facility at Ris National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, Martin Drews, Martin Meedom Nielsen  

E-Print Network [OSTI]

New X-ray Scattering Facility at Risø National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, DK-4000 Roskilde, Denmark The new X-ray facility at the Danish Polymer Centre, Risø National

126

Inelastic X-ray scattering experiments on B[subscript 4]C under high static pressures  

SciTech Connect (OSTI)

Boron K-edge inelastic X-ray scattering experiments were performed on clean B{sub 4}C and shock impact recovered boron carbide up to 30 GPa and at ambient temperature to understand the pressure induced bonding changes. The spectral features corresponding to the boron site in the interlinking chain remained unchanged up to 30 GPa. The results of our experiments indicate that pressure induces less distortion to the boron sites and the local amorphization observed in the previous reports are due to the rearrangement of carbon atoms under extreme conditions without affecting the boron environment.

Kumar, Ravhi S.; Dandekar, Dattatraya; Leithe-Jasper, Andres; Tanaka, Takaho; Xiao, Yuming; Chow, Paul; Nicol, Malcolm F.; Cornelius, Andrew L. (UNLV); (MXPL-M); (CIW); (USARL)

2010-05-04T23:59:59.000Z

127

E-Print Network 3.0 - aqueous solution x-ray Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

anhydride), abbreviated as PODMA in aqueous solutions neutralized by cesium hydro... polyelectrolytes by small angle x-ray scattering 4,5,6,7. ION DISTRIBUTION FOR...

128

Simultaneous measurements of several state variables in shocked carbon by imaging x-ray scattering  

SciTech Connect (OSTI)

We apply the novel experimental technique of imaging x-ray Thomson scattering to measure the spatial profiles of the temperature, ionization state, relative material density, and the shock speed in a high-energy density system. A blast wave driven in a low-density foam is probed with 90? scattering of 7.8?keV helium-like nickel x-rays, which are spectrally dispersed and resolved in one spatial dimension by a doubly curved crystal. The inferred properties of the shock are shown to be self-consistent with 1D analytical estimates. These high-resolution measurements enable a direct comparison of the observed temperature with the results from hydrodynamic simulations. We find good agreement with the simulations for the temperature at the shock front but discrepancies in the modeling of the spatial temperature profile and shock speed. These results indicate the challenges in modeling the shock dynamics of structured materials like foams, commonly used in many high-energy density and laboratory astrophysics experiments.

Gamboa, E. J., E-mail: eliseo@umich.edu; Drake, R. P.; Keiter, P. A.; Trantham, M. R. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Falk, K.; Montgomery, D. S.; Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

129

X-ray resonant exchange scattering of rare-earth nickel borocarbides  

SciTech Connect (OSTI)

The purpose of this thesis is to investigate the systematics of the microscopic magnetic order within a series of isostructural compounds and, at the same, to develop the relatively young experimental method of x-ray resonant exchange scattering (XRES). In this thesis, the author presents XRES studies of several rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C. He shows that XRES, similar to the neutron techniques, allows the determination of the orientation of the magnetic moment by measuring the Q-dependence of the scattered intensity of magnetic Bragg reflections. As samples in this study, he chose the recently discovered family of rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C, which display a wide variety of magnetic structures. Furthermore, in several of these materials, long range magnetic order coexists with superconductivity over some temperature range.

Detlefs, C.

1997-10-08T23:59:59.000Z

130

Resonant Soft X-ray Scattering Studies of Multiferroic YMn2O5  

SciTech Connect (OSTI)

We performed soft x-ray resonant scattering at the MnL{sub 2,3}- and OK edges of YMn{sub 2}O{sub 5}. While the resonant intensity at the MnL{sub 2,3} edges represent the magnetic order parameter, the resonant scattering at the OK edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn{sub 2}O{sub 5}. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the OK edge.

Partzsch, S.; Wilkins, S.B.; Schierle, E.; Soltwisch, V.; Hill, J.P.; Weschke, E.; Souptel, D.; Buchner, B.; Geck, J.

2011-06-17T23:59:59.000Z

131

Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering, CD, and MD simulations  

E-Print Network [OSTI]

1 Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering- spacing are linearly related. Figure S3. Neutron scattering from stacks of DOPC:DOPE (3:1)/Tat, x=0 of Physics, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, 3 NIST Center for Neutron

Nagle, John F.

132

Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range  

DOE Patents [OSTI]

An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

Smith, Peter D. (Santa Fe, NM); Claytor, Thomas N. (White Rock, NM); Berry, Phillip C. (Albuquerque, NM); Hills, Charles R. (Los Alamos, NM)

2010-10-12T23:59:59.000Z

133

Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering  

E-Print Network [OSTI]

16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

Voronov, Dmitry L.

2010-01-01T23:59:59.000Z

134

X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

135

National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 -October 11, 2008 Argonne National Laboratory  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 (HFIR) Neutron Scattering Science Division Oak Ridge Laboratory 10:15 - 10:30 Break 9:30 - 9:45 Break 10 School on Neutron and X-ray Scattering Building 8600, Main Lobby September 24 - October 11, 2008 Oak

Pennycook, Steve

136

In Situ Synchrotron Based X-ray Fluorescence and Scattering Measurements During Atomic Layer Deposition: Initial Growth of HfO2 on Si and Ge Substrates  

SciTech Connect (OSTI)

The initial growth of HfO{sub 2} was studied by means of synchrotron based in situ x-ray fluorescence (XRF) and grazing incidence small angle x-ray scattering (GISAXS). HfO{sub 2} was deposited by atomic layer deposition (ALD) using tetrakis(ethylmethylamino)hafnium and H{sub 2}O on both oxidized and H-terminated Si and Ge surfaces. XRF quantifies the amount of deposited material during each ALD cycle and shows an inhibition period on H-terminated substrates. No inhibition period is observed on oxidized substrates. The evolution of film roughness was monitored using GISAXS. A correlation is found between the inhibition period and the onset of surface roughness.

K Devloo-Casier; J Dendooven; K Ludwig; G Lekens; J DHaen; C Detavernier

2011-12-31T23:59:59.000Z

137

Ultra-fast x-ray Thomson scattering measurements of coalescing shock-heated matter  

SciTech Connect (OSTI)

The experiment in this work was preformed at the Titan laser facility (S1) where a short pulse beam at a wavelength of 1053nm delivered up to 350J in 0.5 to 20 ps and a long pulse beam at 527nm, 2{omega} frequency provided energies up to 450J in 1 to 6 ns. Long pulse shaping in this experiment, similar to future capabilities at NIF, was primarily a 4ns long foot with an intensity of 1 x 10{sup 13} W/cm{sup 2}, followed by a 2ns long peak with an intensity of 3 x 10{sup 13} W/cm{sup 2}. A {approx} 600 um phase plate was used on the long pulse beam to moderate non-uniformities in the intensity profile. An illustration of the Thomson scattering setup for this experiment is provided in Fig. 1 of the main text. A nearly mono-energetic scattering source of {Delta}E/E {approx} 0.3% in the 4.5 keV Ti K-alpha line was produced via intense short-pulse laser irradiation of 1.9 x 3 x 0.01 mm Ti foils, creating energetic keV electrons in the process (S2, S3). The nearly isotropic source emission (S4) is produced in the cold solid density bulk of the foil from electron K shell ionization of neutral or weakly ionized atoms, with an emission size on the order of the laser focal spot. By optimizing the laser intensity and pulse width to 4.4 x 10{sup 16} W cm{sup -2}, a total of 2.3 x 10{sup 13} x-ray photons have been produced into 4{pi}. This value corresponds to a conversion efficiency of laser energy into Ti K-alpha x-ray energy of 5 x 10{sup -5}, see Fig. S1. These sources provide {approx}10 ps x-ray pulses as measured experimentally (S5).

Kritcher, A; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

2008-05-29T23:59:59.000Z

138

Large angle solid state position sensitive x-ray detector system  

DOE Patents [OSTI]

A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

Kurtz, D.S.; Ruud, C.O.

1998-07-21T23:59:59.000Z

139

Large angle solid state position sensitive x-ray detector system  

DOE Patents [OSTI]

A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

Kurtz, David S. (State College, PA); Ruud, Clay O. (State College, PA)

1998-01-01T23:59:59.000Z

140

Large angle solid state position sensitive x-ray detector system  

DOE Patents [OSTI]

A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

Kurtz, D.S.; Ruud, C.O.

1998-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

X-Ray Diamond Anvil Cell Facility at NSLS: 2010 Progress Report  

E-Print Network [OSTI]

X-Ray Diamond Anvil Cell Facility at NSLS: 2010 Progress Report Zhiqiang ChenZhiqiang Chen Stony) Powder X-ray Diffraction, Total Scattering Pair-Distributiony , g Function (PDF) under high P and high, yield strength, amorphization, texturing, compressibility Hydrothermal DAC (Bassett) Angle Dispersive X-ray

Duffy, Thomas S.

142

National School on Neutron and X-ray Scattering Argonne National Laboratory and Oak Ridge National Laboratory  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering Argonne National Laboratory and Oak Ridge National Laboratory June 12-26, 2010 Schedule for Saturday, June 12, 2010 School participants arrive at Argonne and check in at the Argonne Guest House, Building 460. 3:00 PM until 8:00 PM - Registration and informal get

Pennycook, Steve

143

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory May 30-June 14, 2009 Air Travel Arrangements The Argonne Division of Educational Programs has made to Argonne - June 8 through and including June 13, 2009 Daily bus transportation will be provided for School

Pennycook, Steve

144

Narrowband inverse Compton scattering x-ray sources at high laser intensities  

E-Print Network [OSTI]

Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

Seipt, D; Surzhykov, A; Fritzsche, S

2014-01-01T23:59:59.000Z

145

Concept to diagnose mix with imaging x-ray Thomson scattering  

SciTech Connect (OSTI)

Turbulent mixing of two fluid species is a ubiquitous problem, prevalent in systems such as inertial confinement fusion (ICF) capsule implosions, supernova remnants, and other astrophysical systems. In complex, high Reynolds number compressible high energy density (HED) flows such as these, hydrodynamic instabilities initiate the turbulent mixing process, which can then feedback and alter the mean hydrodynamic motion through nonlinear processes. In order to predict how these systems evolve under turbulent conditions, models are used. However, these models require detailed quantitative data to validate and constrain their detailed physics models as well as improve them. Providing this much needed data is currently at the forefront of HED research but is proving elusive due to a lack of available diagnostics capable of directly measuring detailed flow variables. Thomson scattering is a promising technique in this regard as it provides fundamental conditions of the flow ({rho}, T, Zbar) due to its direct interaction with the small scales of the fluid or plasma and was recently considered as a possible mix diagnostic. With the development of imaging x-ray Thomson scattering (IXRTS) obtaining spatial profiles of these variables is within reach. We propose a novel use of the IXRTS technique that will provide more detailed quantitative data required for model validation in mix experiments.

Keiter, Paul A.; Gamboa, Eliseo J.; Huntington, Channing M.; Kuranz, Carolyn C. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48103 (United States)

2012-10-15T23:59:59.000Z

146

Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many  

E-Print Network [OSTI]

Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

Boyer, Edmond

147

Nucleation and Ordering of an Electrodeposited Two-Dimensional Crystal: Real-Time X-Ray Scattering and Electronic Measurements  

SciTech Connect (OSTI)

We have studied {ital in situ} the ordering of a two-dimensional Cu-Cl crystal electrodeposited on a Pt(111) surface. We simultaneously measured x-ray scattering and chronoamperometric transients during Cu desorption and subsequent ordering of the Cu-Cl crystal. In all cases, the current transient occurs on a shorter time scale than the development of crystalline order. The ordering time diverges with applied potential, consistent with the nucleation and growth of two-dimensional islands. We see a time-dependent narrowing of the x-ray peak, corresponding to the growing islands. {copyright} {ital 1998} {ital The American Physical Society}

Finnefrock, A.C.; Ringland, K.L.; Brock, J.D. [School of Applied Engineering Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)] [School of Applied Engineering Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States); Buller, L.J.; Abruna, H.D. [Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)] [Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)

1998-10-01T23:59:59.000Z

148

Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration  

SciTech Connect (OSTI)

We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu; Yu, Lu-Le [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2014-01-06T23:59:59.000Z

149

Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle  

SciTech Connect (OSTI)

Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

Huang, Xian-Rong, E-mail: xiahuang@aps.anl.gov; Gog, Thomas; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Siddons, D. P. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-11-03T23:59:59.000Z

150

Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle  

SciTech Connect (OSTI)

We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

Kruschwitz, Craig [NSTec; Wu, M. [SNL; Rochau, G. A. [SNL

2013-06-13T23:59:59.000Z

151

Profiling nitrogen in ultrathin silicon oxynitrides with angle-resolved x-ray photoelectron spectroscopy  

E-Print Network [OSTI]

medium energy ion scattering and secondary ion mass spectrometry analysis. Preferential nitrogen by low energy ion (15 N2) implantation. The nitrogen profile and nitrogen chemical bonding states only minor in- crease in the dielectric constant compared to SiO2 but is still favored over other high

Gustafsson, Torgny

152

anomalous x-ray scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the soft X-rays emitted by the neutron-star surface. The relation between these heating rates and measured near-infrared fluxes in the K and Ks bands places severe...

153

Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility  

SciTech Connect (OSTI)

We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10?keV is optimized for scattering experiments using a Zn He-? x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/?E = 220 at 9.8 keV.

Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

2014-11-15T23:59:59.000Z

154

Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies  

SciTech Connect (OSTI)

Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

Bu, Wei

2009-08-15T23:59:59.000Z

155

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

SciTech Connect (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

156

Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

2014-08-15T23:59:59.000Z

157

X-ray and neutron scattering studies of the complex compounds | Stanford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-RayX-ray Image

158

Phase-based x-ray scattering—A possible method to detect cancer cells in a very early stage  

SciTech Connect (OSTI)

Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with matter is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.

Feye-Treimer, U., E-mail: feye-treimer@helmholtz-berlin.de; Treimer, W. [Department of Mathematics, Physics and Chemistry, University of Applied Sciences, D-13353 Berlin, Germany and Joint Department G-GTOMO, Helmholtz Zentrum fuer Materialien und Energie Berlin, D-14109 Berlin (Germany)] [Department of Mathematics, Physics and Chemistry, University of Applied Sciences, D-13353 Berlin, Germany and Joint Department G-GTOMO, Helmholtz Zentrum fuer Materialien und Energie Berlin, D-14109 Berlin (Germany)

2014-05-15T23:59:59.000Z

159

Inelastic x-ray scattering study of supercooled liquid and solid silicon.  

SciTech Connect (OSTI)

Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

2006-01-01T23:59:59.000Z

160

Tunable X-ray source  

DOE Patents [OSTI]

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

INHOMOGENEITIES IN TYPE Ib/c SUPERNOVAE: AN INVERSE COMPTON SCATTERING ORIGIN OF THE X-RAY EMISSION  

SciTech Connect (OSTI)

Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observed characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some Type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some Type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a nonlinear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray, and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.

Bjoernsson, C.-I., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden)

2013-05-20T23:59:59.000Z

162

Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Laboratory [9/30/08  

E-Print Network [OSTI]

Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Ridge National Laboratory Dean Myles, Director ORNL Neutron Scattering Science Division 1 GROUPS [A,B,C,D,E,F,G,H,I] Iran Thomas Auditorium Lecture Inelastic Neutron Scattering R. Osborn, ANL ALL

Pennycook, Steve

163

Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser  

E-Print Network [OSTI]

We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

2014-01-01T23:59:59.000Z

164

Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser  

SciTech Connect (OSTI)

We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

2014-09-15T23:59:59.000Z

165

Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2  

SciTech Connect (OSTI)

The results of magnetic x-ray resonant exchange scattering (XRES) experiments are important to the development of an understanding of magnetic interactions in materials. The advantages of high Q resolution, polarization analysis, and the ability to study many different types of materials make it a vital tool in the field of condensed matter physics. Though the concept of XRES was put forth by Platzman and Tzoar in 1970, the technique did not gain much attention until the work of Gibbs and McWhan et al. in 1988. Since then, the technique of XRES has grown immensely in use and applicability. Researchers continue to improve upon the procedure and detection capabilities in order to study magnetic materials of all kinds. The XRES technique is particularly well suited to studying the rare earth metals because of the energy range involved. The resonant L edges of these elements fall between 5-10 KeV. Resonant and nonresonant x-ray scattering experiments were performed in order to develop an understanding of the magnetic ordering in GdCo{sub 2}Ge{sub 2} and NdCo{sub 2}Ge{sub 2}.

William Good

2002-08-27T23:59:59.000Z

166

X-ray Diffuse Scattering Measurements of Nucleation Dynamics at Femtosecond  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-ray Computed Tomography

167

X-ray and neutron scattering from nano-mgantic clusters | The Ames  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-rayNew Materials

168

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S.Resistive-idealResonant Soft X-Ray

169

X-ray scattering studies of structure and dynamics of surfaces and interfaces of polymeric liquids  

E-Print Network [OSTI]

and S. K. Sinha, “Structure and dynamics of thin polymer ?Scattering Studies of Structure and Dynamics of Surfaces andScattering Studies of Structure and Dynamics of Surfaces and

Jiang, Zhang

2007-01-01T23:59:59.000Z

170

Global molecular structure and interfaces : refining an RNA : RNA complex structure using solution x-ray scattering data.  

SciTech Connect (OSTI)

Determining the global architecture of multicomponent systems is a central problem in understanding biomacromolecular machines. Defining interfaces among components and the global structure of multicomponent systems is a central problem in understanding the biological interactions on a molecular level. We demonstrate that solution X-ray scattering data can be used to precisely determine intermolecular interfaces from just the subunit structures, in the complete absence of intermolecular NMR restraints using an example of a 30 kDa RNA-RNA complex. The backbone root-mean-square deviation (rmsd) between structures that are determined using the scattering data and using intermolecular distance restraints is about 0.4 {angstrom}. Further, we refined the global structure of the complex using scattering data as a global restraint. The rmsd in backbone structures that are determined with and without the scattering data refinement is about 3.2 {angstrom}, suggesting the impact of the refinement to the overall structure. Information about the 'global correctness' of solution RNA structures could not be practically obtained otherwise, due to the molecular nature of the RNA molecules, but could only be defined by the scattering data together by residual dipolar couplings. This method provides a powerful new approach for refining global structures of macromolecular complexes whose subunits are elongated.

Zuo, X.; Wang, J.; Foster, T. R.; Schwieters, C. D.; Tiede, D. M.; Butcher, S. E.; Wang, Y.-X.; Chemical Sciences and Engineering Division; NCI-Frederick; Univ. of Wisconin at Madison; NIH

2008-03-19T23:59:59.000Z

171

Transverse dynamics of water across the melting point: A parallel neutron and x-ray inelastic scattering study  

SciTech Connect (OSTI)

Joint inelastic neutron and x-ray scattering measurements have been performed on heavy water across the melting point. The spectra bear clear evidence of low- and high-frequency inelastic shoulders related to transverse and longitudinal modes, respectively. Upon increasing the momentum transfer, the spectral shape evolves from a viscoelastic regime, where the low-frequency mode is clearly over-damped, toward an elastic one where its propagation becomes instead allowed. The crossover between the two regimes occurs whenever both the characteristic frequency and the linewidth of the low-frequency mode match the inverse of the structural relaxation time. Furthermore, we observe that the frequency of the transverse mode undergoes a discontinuity across the melting, whose extent reduces upon increasing the exchanged momentum.

Cunsolo A.; Kodituwakku C.; Bencivenga, F.; Frontzek, M.; Leu, b.M.; Said, A.H.

2012-05-29T23:59:59.000Z

172

Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors  

SciTech Connect (OSTI)

By incorporating a long-range Coulomb interaction into the framework of the one-band Hubbard model, they delineate how the low-energy plasmon around 1 eV, which is a universal feature of the charge dynamics of the cuprates, manifests itself in the resonant inelastic x-ray scattering (RIXS) spectra. The long-range Coulomb interaction in the doped system control sthe form of the intraband RIXS dispersion near the Brillouin zone center around the {Gamma} point. The out-of-plane momentum transfer component q{sub z} is found to play a key role in determining whether or not the RIXS spectrum shows a plasmon-related gap at {Gamma}.

Markiewicz, R.S.; Hasan, M.Z.; Bansil, A.; (NEU); (Princeton)

2010-01-28T23:59:59.000Z

173

Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO??y  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO?.? and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations, which are a prerequisite to the occurrence of these excitations at the ? point, are still present in the superconducting state.

Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; Fukuda, T.; Yoshida, M.; Hill, J. P.; Liu, X.; Hiraoka, N.; Tsuei, K. D.; Shamoto, S.

2012-09-01T23:59:59.000Z

174

The phonon density of states of (alpha) and (delta)-Plutonium by inelastic x-ray scattering  

SciTech Connect (OSTI)

Inelastic x-ray scattering measurements of the phonon density of states (DOS) were performed on polycrystalline samples of pure {alpha}-Pu and {delta}-Pu{sub 0.98}Ga{sub 0.02} at room temperature. The heat capacity of {alpha}-Pu is well reproduced by contributions calculated from the measured phonon DOS plus conventional thermal expansion and electronic contributions, showing that {alpha}-Pu is a 'well-behaved' metal in this regard. A comparison of the phonon DOS of the two phases at room temperature surprised us in that the vibrational entropy difference between them is only a quarter of the total entropy difference expected from known thermodynamic measurements. The missing entropy is too large to be accounted for by conventional electronic entropy and evidence from the literature rules out a contribution from spin fluctuations. Possible alternative sources for the missing entropy are discussed.

Manley, M E; Said, A; Fluss, M J; Wall, M; Lashley, J C; Alatas, A; Moore, K T

2008-10-08T23:59:59.000Z

175

angle light scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological tissues tend Kim, Arnold D. 11 Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution University...

176

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak Ridge, Tennessee  

E-Print Network [OSTI]

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak ------------------------------------------------------------------------------- SCHEDULE FOR SATURDAY, JUNE 19, 2010 School participants arrive in Oak Ridge, TN and check in at the Comfort Inn. Dinner hosted by Oak Ridge National Laboratory

Pennycook, Steve

177

Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source  

E-Print Network [OSTI]

The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

2014-01-01T23:59:59.000Z

178

E-Print Network 3.0 - angle neutron diffractometer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(300 - 2000 K) X-ray reflectometer (under installation) Small and Ultra Small Angle Neutron Scattering... (at)ipta.demokritos.gr 2106503712 2106533431 Large Scale...

179

X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND  

E-Print Network [OSTI]

with the occurrence of solar X-ray flare, when light travel time delay is accounted, suggesting that X-rays fromX-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND ANIL BHARDWAJ Flight center, Greenbelt, MD 20771, USA Scattering of solar X-ray radiation mainly produces the non

Ã?stgaard, Nikolai

180

angle x-ray scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources by Dust in Intervening Galaxies Astrophysics (arXiv) Summary: Gamma-ray bursts are now known to be a cosmological population of objects, which are often...

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Time-Resolved Small-Angle X-ray Scattering Studies Revealed Three Kinetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L LTime to

182

Influence of the multiple scattering of relativistic electrons on the line width of backward Parametric X-ray Radiation in the absence of photo absorption  

E-Print Network [OSTI]

The multiple scattering effect on the line width of backward Parametric X-ray Radiation (PXR) in the extremely Bragg geometry, produced by low energy relativistic electrons traversing a single crystal, is discussed. It is shown that there exist conditions, when the influence of photo absorption on the line width can be neglected, and the only multiple scattering process of relativistic electrons in crystal leads to the broadening of backward PXR lines. Based on the obtained theoretical results, the line width broadening of backward PXR, caused by the multiple scattering of 30 MeV and 50 MeV relativistic electrons in a Si crystal of varying thicknesses, is numerically obtained.

Tabrizi, Mehdi

2015-01-01T23:59:59.000Z

183

Investigating Silicon-Based Photoresists with Coherent Anti-Stokes Raman Scattering and X-ray Micro-spectroscopy  

E-Print Network [OSTI]

LIGHT (X- RAYS , EUV, ULTRAFAST PULSES ), OR HEAT . T HEthe “on” time of an ultrafast pulse is referred to as thepeak-power of the ultrafast pulses, purely electronic four-

Caster, Allison G.

2010-01-01T23:59:59.000Z

184

Compton backscattered and primary X-rays from solar flares: angle dependent Green's function correction for photospheric albedo  

E-Print Network [OSTI]

The observed hard X-ray (HXR) flux spectrum $I(\\epsilon)$ from solar flares is a combination of primary bremsstrahlung photons $I_P(\\epsilon)$ with a spectrally modified component from photospheric Compton backscatter of downward primary emission. The latter can be significant, distorting or hiding the true features of the primary spectrum which are key diagnostics for acceleration and propagation of high energy electrons and of their energy budget. For the first time in solar physics, we use a Green's function approach to the backscatter spectral deconvolution problem, constructing a Green's matrix including photoelectric absorption. This approach allows spectrum-independent extraction of the primary spectrum for several HXR flares observed by the {\\it Ramaty High Energy Solar Spectroscopic Imager} (RHESSI). We show that the observed and primary spectra differ very substantially for flares with hard spectra close to the disk centre. We show in particular that the energy dependent photon spectral index $\\gamma (\\epsilon)=-d \\log I/d \\log \\epsilon$ is very different for $I_P(\\epsilon)$ and for $I(\\epsilon)$ and that inferred mean source electron spectra ${\\bar F}(E)$ differ greatly. Even for a forward fitting of a parametric ${\\bar F}(E)$ to the data, a clear low-energy cutoff required to fit $I(\\epsilon)$ essentially disappears when the fit is to $I_P(\\epsilon)$ - i.e. when albedo correction is included. The self-consistent correction for backscattered photons is thus shown to be crucial in determining the energy spectra of flare accelerated electrons, and hence their total number and energy.

Eduard P. Kontar; Alec L. MacKinnon; Richard A. Schwartz; John C. Brown

2005-10-06T23:59:59.000Z

185

Hydrostatic low-range pressure applications of the Paris-Edinburgh cell utilising polymer gaskets for diffuse x-ray scattering measurements.  

SciTech Connect (OSTI)

The use of a polymeric Torlon (polyamide-imide) gasket material in a Paris-Edinburgh pressure cell for in situ high-pressure X-ray scattering measurements is demonstrated. The relatively low bulk modulus of the gasket allows for fine control of the sample pressure over the range 0.01-0.42 GPa. The quality of the data obtained in this way is suitable for Bragg and pair distribution function analysis.

Chapman, K. W.; Chupas, P. J.; Kurtz, C.; Locke, D.; Parise, J. B.; Hriljac, J. A.; Stony Brook Univ.; Univ. of Birmingham

2007-01-01T23:59:59.000Z

186

Fractal Analysis of Flame-Synthesized Nanostructured Silica and Titania Powders Using Small-Angle X-ray  

E-Print Network [OSTI]

Fractal Analysis of Flame-Synthesized Nanostructured Silica and Titania Powders Using Small-Angle X these powders display mass-fractal morphologies, which are composed of ramified aggregates of nanoscale primary particles. Primary particle size, aggregate size, fractal dimension, and specific surface area are obtained

Beaucage, Gregory

187

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering  

SciTech Connect (OSTI)

The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

Kim, Min Gyu [Ames Laboratory

2012-08-28T23:59:59.000Z

188

A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

Bryant, Rebecca [Bryant Research, LLC

2010-12-01T23:59:59.000Z

189

E-Print Network 3.0 - angle scattering studies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: angle scattering studies Page: << < 1 2 3 4 5 > >> 1 Neutron Scattering in Polymer Micelle Characterization Summary: scattering Small Angle...

190

Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution scattering  

E-Print Network [OSTI]

Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution-slicing Structural dynamics Myoglobin a b s t r a c t Here we report sub-100-ps structural dynamics of horse heart to the measurement and subsequent deconvolution, we investigate the protein structural dynamics that occur faster

Ihee, Hyotcherl

191

Reflection soft X-ray microscope and method  

DOE Patents [OSTI]

A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

Suckewer, Szymon (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ); Rosser, Roy (Princeton, NJ)

1993-01-01T23:59:59.000Z

192

X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction  

E-Print Network [OSTI]

X-ray Diffraction (XRD) · 1.0 What is X-ray Diffraction · 2.0 Basics of Crystallography · 3.0 Production of X-rays · 4.0 Applications of XRD · 5.0 Instrumental Sources of Error · 6.0 Conclusions #12 why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence (theta

Moeck, Peter

193

Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth  

SciTech Connect (OSTI)

We have investigated bismuth ferrite nanoparticles (?75?nm and ?155?nm) synthesized by a chemical method, using soft X-ray (1253.6?eV) and hard X-ray (3500, 5500, and 7500?eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg K? (1253.6?eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

2014-09-08T23:59:59.000Z

194

Toward a Taxonomy of the Denatured State: Small Angle Scattering Studies of Unfolded Proteins  

SciTech Connect (OSTI)

Despite the critical role the unfolded state plays in defining protein folding kinetics and thermodynamics (Berg et al., 2002; Dunker, 2002; Shortle, 2002; Wright and Dyson, 2002), our understanding of its detailed structure remains rather rudimentary; the heterogeneity of the unfolded ensemble renders difficult or impossible its study by traditional, atomic-level structural methods. Consequently, recent years have seen a significant expansion of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) techniques that provide direct, albeit rotationally and time-averaged, measures of the geometric properties of the unfolded ensemble. These studies have reached a critical mass, allowing us for the first time to define general observations regarding the nature of the geometry - and possibly the chemistry and physics - of unfolded proteins.

Millett, I.S.; Doniach, S.; Plaxco, K.W. (Stanford); (UCSB)

2005-02-15T23:59:59.000Z

195

X-ray microscopy using grazing-incidence reflections optics  

SciTech Connect (OSTI)

The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

Price, R.H.

1983-06-30T23:59:59.000Z

196

X-ray microscopy using grazing-incidence reflection optics  

SciTech Connect (OSTI)

The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

Price, R.H.

1981-08-06T23:59:59.000Z

197

Combined x-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-release  

SciTech Connect (OSTI)

This work focused on a new application of the shock-and-release technique for equation of state (EOS) measurements. Warm dense matter states at near normal solid density and at temperatures close to 10?eV in diamond and graphite samples were created using a deep release from a laser-driven shock at the OMEGA laser facility. Independent temperature, density, and pressure measurements that do not depend on any theoretical models or simulations were obtained using imaging x-ray Thomson scattering, radiography, velocity interferometry, and streaked optical pyrometry. The experimental results were reproduced by the 2-D FLASH radiation hydrodynamics simulations finding a good agreement. The final EOS measurement was then compared with widely used SESAME EOS models as well as quantum molecular dynamics simulation results for carbon, which were very consistent with the experimental data.

Falk, K.; Collins, L. A.; Kagan, G.; Kress, J. D.; Montgomery, D. S.; Srinivasan, B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gamboa, E. J. [University of Michigan, Ann Arbor, Michigan 48109 (United States) [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72, Menlo Park, California 94025 (United States); Tzeferacos, P. [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States)] [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States); Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2014-05-15T23:59:59.000Z

198

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate  

E-Print Network [OSTI]

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate an effect of a partially reversible x-ray-induced increase of diffuse x-ray scattering in both congruent been attributed to x-ray-induced decay of the ferroelectric phase at room temperature. The x-ray

Byer, Robert L.

199

High-resolution ab initio three-dimensional x-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

2006-01-01T23:59:59.000Z

200

X-Ray Data Booklet X-RAY DATA BOOKLET  

E-Print Network [OSTI]

X-Ray Data Booklet X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Levels of Few Electron Ions Now Available Order X-Ray Data Booklet http://xdb.lbl.gov/ (1 of 3) [2

Meagher, Mary

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Obliquity factors for {sup 60}Co and 4, 10, and 18 MV x rays for concrete, steel, and lead and angles of incidence between 0{degrees} and 70{degrees}  

SciTech Connect (OSTI)

The attenuation of {sup 60}Co gamma rays and photons of 4, 10, and 18 MV x-ray beams by concrete, steel, and lead has been studied using the Monte Carlo technique for angles of incidence 0{degrees}, 30{degrees}, 45{degrees}, 60{degrees}, and 70{degrees}. Transmission factors have been determined down to < 2 x 10{sup {minus}5} in all cases. The results show that deviation from the obliquity factor increases with angle but is not significant for angles {le} 45{degrees}. AT 70{degrees} angle of incidence and a transmission factor of 10{sup {minus}5}, the obliquity factor varies between 1.2 and 1.9 for concrete, between 1.4 and 1.7 for steel, and between 1.4 and 1.5 for lead for the range of energies investigated. This amounts to an additional 86 and 50 cm of concrete, 25 and 23 cm of steel, and 8 and 14 cm of lead for {sup 60}Co and 18 MV x rays, respectively. The results for {sup 60}Co is concrete and lead are in good agreement with previously published experimental work. Fits to the data using mathematical models allow reconstruction of all data curves to better than 1% on average and 7% in the worst single case. 9 refs., 14 figs., 6 tabs.

Biggs, P.J. [Harvard Medical School, Boston, MA (United States)

1996-04-01T23:59:59.000Z

202

Earth X-ray albedo for cosmic X-ray background radiation in the 1--1000 keV band  

E-Print Network [OSTI]

We present calculations of the reflection of the cosmic X-ray background (CXB) by the Earth's atmosphere in the 1--1000 keV energy range. The calculations include Compton scattering and X-ray fluorescent emission and are based on a realistic chemical composition of the atmosphere. Such calculations are relevant for CXB studies using the Earth as an obscuring screen (as was recently done by INTEGRAL). The Earth's reflectivity is further compared with that of the Sun and the Moon -- the two other objects in the Solar system subtending a large solid angle on the sky, as needed for CXB studies.

E. Churazov; S. Sazonov; R. Sunyaev; M. Revnivtsev

2008-02-11T23:59:59.000Z

203

SANS -Small Angle Neutron Scattering Tcnica de difrao  

E-Print Network [OSTI]

SANS - Small Angle Neutron Scattering Técnica de difração informações sobre tamanho e forma de- Neutrons are created in the centre of the target station when the beam of high energy protons collides by evaporating nuclear particles, mainly neutrons, in all directions. Each proton produces approximately 15

Loh, Watson

204

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

205

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect (OSTI)

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

206

Total reflection inelastic x-ray scattering from a 10 nm thick La{sub 0.6}Sr{sub 0.2}CoO{sub 3} thin film.  

SciTech Connect (OSTI)

To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La{sub 0.6}Sr{sub 0.4}CoO{sub 3} thin film from that of the underlying SrTiO{sub 3} substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N{sub 4,5} edge with momentum transfer as an example.

Fister, T. T.; Fong, D. D.; Eastman, J. A.; Iddir, H.; Zapol, P.; Fuoss, P. H.; Balasubramanian, M.; Gordon, R. A.; Balasubramaniam, K. R.; Salvador, P. A.; Simon Fraser Univ.; Carnegie Mellon Univ.

2011-01-18T23:59:59.000Z

207

hal-00154048,version1-12Jun2007 The new very small angle neutron scattering  

E-Print Network [OSTI]

hal-00154048,version1-12Jun2007 The new very small angle neutron scattering spectrometer The design and characteristics of the new very small angle neutron scattering spectrometer under construction in order to fill the gap between light scattering and classical small angle neutron scattering (SANS

Boyer, Edmond

208

Quasi-zero dimensional CuB2O4: a resonant inelastic X-ray scattering case study  

SciTech Connect (OSTI)

We explore the general phenomenology of resonant inelastic scattering (RIXS) using CuB{sub 2}O{sub 4}, a network of CuO{sub 4} plaquettes electronically isolated by B{sup +3} ions. Spectra show a small number of well-separated features, and we exploit the simple electronic structure to explore RIXS phenomenology by developing a calculation which allows for intermediate-state effects ignored in standard approaches. These effects are found to be non-negligible and good correspondence between our model and experiment leads to a simple picture of such phenomenology as the genesis of d {yields} d excitations at the K edge and intermediate-state interference effects.

Hancock, J.N.

2010-04-29T23:59:59.000Z

209

X-ray beamsplitter  

DOE Patents [OSTI]

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

1987-08-07T23:59:59.000Z

210

X-ray beamsplitter  

DOE Patents [OSTI]

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

211

Chest x-Rays  

Broader source: Energy.gov [DOE]

The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

212

X-ray binaries  

E-Print Network [OSTI]

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

213

Radiation damage studies using small-angle neutron scattering  

SciTech Connect (OSTI)

This contribution reviews a number of small-angle neutron scattering (SANS) studies of irradiated metals and steels of relevance to fission and fusion technology. Information obtainable by SANS measurements is recalled with special reference to the determination of the size distribution function of the microstructural inhomogeneities. The selected examples concern studies of the main kinds of radiation defects: voids, precipitates, He-bubbles. Some recent results obtained on structural materials for the first-wall of fusion reactors are also presented.

Albertini, G.; Rustichelli, F. [INFM, Ancona (Italy); Carsughi, F. [INFM, Ancona (Italy). Ist. di Scienze Fisiche; [KFA, Juelich (Germany). Inst. fuer Festkoerperforschung; Coppola, R. [ENEA-Casaccia, Roma (Italy); Stefanon, M. [ENEA, Bologna (Italy)

1996-12-31T23:59:59.000Z

214

Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering  

SciTech Connect (OSTI)

The XRMS experiment on the Gd{sub 5}Ge{sub 4} system has shown that, below the Neel temperature, T{sub N} = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd{sub 5}Ge{sub 4}. A spin-reorientation transition is a possibility in Gd{sub 5}Ge{sub 4}, which is similar to the Tb{sub 5}Ge{sub 4} case. Tb{sub 5}Ge{sub 4} possesses the same Sm{sub 5}Ge{sub 4}-type crystallographic structure and the same magnetic space group as Gd{sub 5}Ge{sub 4} does. The difference in magnetic structure is that Tb{sub 5}Ge{sub 4} has a canted one but Gd{sub 5}Ge{sub 4} has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb{sub 5}Ge{sub 4}. The spin-reorientation transition in both Gd{sub 5}Ge{sub 4} and Tb{sub 5}Ge{sub 4} may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy.

Lizhi Tan

2008-08-18T23:59:59.000Z

215

E-Print Network 3.0 - angle neutron scattering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutron scattering Search Powered by Explorit Topic List Advanced Search Sample search results for: angle neutron scattering Page: << < 1 2 3 4 5 > >> 1 Exceptional tools for...

216

Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering  

E-Print Network [OSTI]

, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary powders for a wide range of industrial and research uses. The particle size is controlled mainly through, a detailed quantitative comparison between the average primary-particle diameters obtained from nitrogen

Beaucage, Gregory

217

X-ray laser  

DOE Patents [OSTI]

An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

Nilsen, Joseph (Livermore, CA)

1991-01-01T23:59:59.000Z

218

E-Print Network 3.0 - angle scattering techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

angle ... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 2 Neutron Scattering in Polymer Micelle Characterization Summary: - Nondestructive technique...

219

X-ray absorption spectroscopy  

E-Print Network [OSTI]

009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano Æand application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

220

X-ray Absorption Spectroscopy  

E-Print Network [OSTI]

type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

Yano, Junko

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

X-ray grid-detector apparatus  

DOE Patents [OSTI]

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

222

X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu  

E-Print Network [OSTI]

X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu 1. X-ray production & basic properties ­ common sources for diffraction experiments ­ synchrotron radiation ­ response to x-rays by an electron ­ refraction index ­ total external reflection & evanescent wave, TXRF 2. X-ray scattering basics

Shen, Qun

223

Comparison of collimation systems for small-angle neutron scattering  

SciTech Connect (OSTI)

It is shown by simple first-order geometric arguments that for a given resolution, the flux on sample in a small-angle scattering instrument is independent of the form of the collimator or of the length of the instrument. Count rate may be increased by increasing the sample size, through the use of multi-aperture systems. In second order, it is shown to be advantageous to place the beam defining elements as close as possible to the source and the sample. The multiple-pinhole system gives maximum flux on small samples but has non-uniform illumination so that intensity increases only about half as fast as sample area. Soller slits and continuous tubes from source to sample were also considered, but neutron scattering and reflection from surfaces generate a large halo. Monte-Carlo simulations confirm these results, with the conclusion that the optimum collimator configuration is the multiple-pinhole system. 4 refs., 4 figs.

Seeger, P.A.

1985-01-01T23:59:59.000Z

224

Apparatus for generating x-ray holograms  

DOE Patents [OSTI]

Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

1990-01-01T23:59:59.000Z

225

Apparatus for generating x-ray holograms  

DOE Patents [OSTI]

Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

1990-09-11T23:59:59.000Z

226

X-ray imaging crystal spectrometer for extended X-ray sources  

DOE Patents [OSTI]

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

2001-01-01T23:59:59.000Z

227

X-ray Emission Processes in Radio Jets  

E-Print Network [OSTI]

The emission processes responsible for the observed X-rays from radio jets are commonly believed to be non-thermal, but in any particular case, it is unclear if synchrotron emission or one or more varieties of inverse Compton emission predominates. We present a formulation of inverse Compton emission from a relativistically moving jet (``IC/beaming'') which relies on radio emitting synchrotron sources for which the energy densities in particles and fields are comparable. We include the non-isotropic nature of inverse Compton scattering of the relativistic electrons on photons of the cosmic microwave background (CMB) and provide beaming parameters for a number of jets. A list of X-ray emitting jets is given and the jets are classified on the basis of their morphology and spectral energy distribution to determine their likely emission process. We conclude that these jets have significant bulk relativistic velocities on kpc scales; that higher redshift sources require less beaming because the energy density of the CMB is significantly greater than locally; and that for some nearby sources, synchrotron X-ray emission predominates because the jet makes a large angle to the line of sight.

D. E. Harris; H. Krawczynski

2001-09-27T23:59:59.000Z

228

X-ray beam finder  

DOE Patents [OSTI]

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, H.W.

1983-06-16T23:59:59.000Z

229

Electronic Structure of the Mn(4)Ca Cluster in the Oxygen-Evolving Complex of Photosystem Ii Studied By Resonant Inelastic X-Ray Scattering  

SciTech Connect (OSTI)

Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i=0--4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra simultaneously. The second energy dimension separates the pre-edge (1s to 3d) transitions from the main K-edge (1s to 4p), and thus more precise analysis is possible. The 1s2p RIXS final state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy and the RIXS spectra are therefore sensitive to the metal spin state. We have collected data from PS II samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states are small compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms. The RIXS spectra of S{sub 0} and S{sub 3} states also showed characteristic features which were not clear from the K-edge spectroscopy.

Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.

2009-06-04T23:59:59.000Z

230

Compton backscattered collimated x-ray source  

DOE Patents [OSTI]

A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

Ruth, R.D.; Huang, Z.

1998-10-20T23:59:59.000Z

231

Compton backscattered collmated X-ray source  

DOE Patents [OSTI]

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

232

Compton backscattered collimated x-ray source  

DOE Patents [OSTI]

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

233

Using multi-angle scattered sound to size fish swimbladders Jules S. Jaffe  

E-Print Network [OSTI]

Using multi-angle scattered sound to size fish swimbladders Jules S. Jaffe Jaffe, J. S. 2006. Using multi-angle scattered sound to size fish swimbladders. e ICES Journal of Marine Science, 63: 1397e1404 a simple one-dimensional model of scatter from a fish swimbladder, an expression is derived that predicts

Jaffe, Jules

234

Solvent Entrainment in and Flocculation of Asphaltenic Aggregates Probed by Small-Angle Neutron Scattering  

E-Print Network [OSTI]

-Angle Neutron Scattering Keith L. Gawrys, George A. Blankenship, and Peter K. Kilpatrick* Department of ChemicalVed September 14, 2005. In Final Form: January 30, 2006 While small-angle neutron scattering (SANS) has proven to the scattering intensity curves were performed using the Guinier approximation, the Ornstein- Zernike (or Zimm

Kilpatrick, Peter K.

235

Small angle neutron scattering on periodically deformed polymers A. R. Rennie  

E-Print Network [OSTI]

765 Small angle neutron scattering on periodically deformed polymers A. R. Rennie Institut für Phys-768 SEPTEMBRE 1984, 1. Introduction. Neutron scattering has proved a useful tool for the investigation of a wide time for a small angle neutron scattering spectrum is several minutes. Obser- vation on rapidly

Boyer, Edmond

236

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

237

Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.  

SciTech Connect (OSTI)

Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

1999-07-21T23:59:59.000Z

238

E-Print Network 3.0 - accreting x-ray binaries Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-ray eclipse... ; it is likely that we observe photons scattered in an accretion disk wind. The X-ray spectrum of V603 Aql... accretion rate, non-magnetic CVs seen at high...

239

X-ray spectra transmitted through Compton-thick absorbers  

E-Print Network [OSTI]

X-ray spectra transmitted through matter which is optically thick to Compton scattering are computed by means of Monte Carlo simulations. Applications to the BeppoSAX data of the Seyfert 2 galaxy in Circinus, and to the spectral modeling of the Cosmic X-ray Background, are discussed.

Giorgio Matt; Fulvio Pompilio; Fabio La Franca

1999-04-24T23:59:59.000Z

240

Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering  

SciTech Connect (OSTI)

The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?Å-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

Watkins, E. B.; Majewski, J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kashinath, A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Computational Modeling Technology, Aramco Research Center—Boston, Cambridge, Massachusetts 02139 (United States); Wang, P. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Intel Corporation, Hillsboro, Oregon, 97006 (United States); Baldwin, J. K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Demkowicz, M. J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Theoretical standards in x-ray spectroscopies  

SciTech Connect (OSTI)

We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

Not Available

1992-01-01T23:59:59.000Z

242

E-Print Network 3.0 - angle scattering revision Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and scattering, effective index, surface autocovariance, and correlation... . The phenomenology is complex, including specular and diffuse reflection, high-angle forward...

243

X-ray Pinhole Camera Measurements  

SciTech Connect (OSTI)

The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

2013-07-01T23:59:59.000Z

244

X-ray lithography using holographic images  

DOE Patents [OSTI]

Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1997-01-01T23:59:59.000Z

245

Polarization Entangled Photons at X-Ray Energies  

E-Print Network [OSTI]

We show that polarization entangled photons at x-ray energies can be generated via spontaneous parametric down conversion. Each of the four Bell states can be generated by choosing the angle of incidence and polarization of the pumping beam.

S. Shwartz; S. E. Harris

2010-12-16T23:59:59.000Z

246

Epoxy replication for Wolter x-ray microscope fabrication  

SciTech Connect (OSTI)

An epoxy replica of a test piece designed to simulate a Wolter x-ray microscope geometry showed no loss of x-ray reflectivity or resolution, compared to the original. The test piece was a diamond-turned cone with 1.5/sup 0/ half angle. A flat was fly-cut on one side, then super- and conventionally polished. The replica was separated at the 1.5/sup 0/-draft angle, simulating a shallow angle Wolter microscope geometry. A test with 8.34 A x rays at 0.9/sup 0/ grazing angle showed a reflectivity of 67% for the replica flat surface, and 70% for the original. No spread of the reflected beam was observed with a 20-arc second wide test beam. This test verifies the epoxy replication technique for production of Wolter x-ray microscopes.

Priedhorsky, W.

1981-01-01T23:59:59.000Z

247

Direct detection of x-rays for protein crystallography employing a thick, large area CCD  

DOE Patents [OSTI]

An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

Atac, Muzaffer (Wheaton, IL); McKay, Timothy (Ann Arbor, MI)

1999-01-01T23:59:59.000Z

248

Time-Resolved Small-Angle Neutron Scattering Study of Polyethylene Crystallization from Solution  

E-Print Network [OSTI]

Time-Resolved Small-Angle Neutron Scattering Study of Polyethylene Crystallization from Solution-resolved small-angle neutron scattering (TR-SANS), the crystal- lization kinetics of polyethylene from deuterated of polyethylene crystallization from xylene solutions. One unique feature of this experimentation is that both

Wang, Howard "Hao"

249

Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthr  

E-Print Network [OSTI]

663 Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthür Institut with the times obtained from quasi- elastic neutron and light scattering, which yield information about neutrons aux petits angles (DNPA) pour l'étude des systèmes hors d'équi- libre thermodynamique est

Boyer, Edmond

250

Salt-Dependent Compaction of Di-and Trinucleosomes Studied by Small-Angle Neutron Scattering  

E-Print Network [OSTI]

Salt-Dependent Compaction of Di- and Trinucleosomes Studied by Small-Angle Neutron Scattering, Germany, and Institut Laue-Langevin Grenoble, F-38042 Grenoble, France ABSTRACT Using small-angle neutron scattering (SANS), we have measured the salt-dependent static structure factor of di- and trinucleosomes from

Langowski, Jörg

251

Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated  

E-Print Network [OSTI]

Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated online: Abstract We report small angle neutron scattering (SANS) from dilute suspensions of purified University, Houghton, MI 49931, USA e NIST Center for Neutron Research, National Institute of Standards

Wang, Howard "Hao"

252

X-ray lithography source  

DOE Patents [OSTI]

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

253

X-ray lithography source  

DOE Patents [OSTI]

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

254

Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction  

SciTech Connect (OSTI)

The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

Buergi, J.; Molleja, J. Garcia; Feugeas, J. [Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Neuenschwander, R. [Laboratorio Nacional Luz Sincrotron (LNLS), Caixa Postal 6192, CEP13083-970 Campinas (Brazil); Kellermann, G. [Departamento de Fisica (Universidade Federal do Parana), Caixa Postal 19044, CEP81531-990 Curitiba (Brazil); Craievich, A. F. [Instituto de Fisica (Universidade de Sao Paulo), Rua do Matao Travessa R 187, CEP05508-090 Sao Paulo (Brazil)

2013-01-15T23:59:59.000Z

255

X-Ray Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore than 20X-Ray Diagnostics

256

X-Ray Source Based on the Parametric X-Rays  

E-Print Network [OSTI]

Prospects of parametric x-rays (PXR) application for the development of a tuneable quasi-monochromatic x-ray source for medical imaging are discussed. Analysis of basic requirements for electron accelerator shows that it must be relatively low-energy and high-current linac. In comparison with known ultra-relativistic cases, at low energies PXR properties will be modified to a great extent by multiple scattering of the electrons. PXR intensity dependence on target thickness and beam energy are calculated taking multiple scattering into account. It is concluded that PXR source based on real medical accelerators is feasible and can provide x-ray flux needful for obtaining high quality medical images.

Alexander Lobko; Olga Lugovskaya

2005-09-02T23:59:59.000Z

257

Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser  

SciTech Connect (OSTI)

Investigation of angle-resolved scattering from solid explosives residues on a car door for non-contact sensing geometries. Illumination with a mid-infrared external cavity quantum cascade laser tuning between 7 and 8 microns was detected both with a sensitive single point detector and a hyperspectral imaging camera. Spectral scattering phenomena were discussed and possibilities for hyperspectral imaging at large scattering angles were outlined.

Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

2012-04-01T23:59:59.000Z

258

X-ray and neutron scattering studies of the Rb?MnF? and Cu?â??õxMgx̳GeO? in an external magnetic field  

E-Print Network [OSTI]

This thesis presents results of two scattering studies of low dimensional magnetic materials. The first is a neutron scattering study of Rb2MnF4, a nearly ideal two-dimensional square lattice Heisenberg antiferromagnet ...

Christianson, Rebecca J. (Rebecca Jean), 1973-

2001-01-01T23:59:59.000Z

259

Directional fine structure in absorption of white x rays: A tomographic interpretation P. Korecki,1,  

E-Print Network [OSTI]

structure in absorption of white x rays can be interpreted as real-space projections of atomic structure from neigh- boring atoms.1 A straightforward analysis of the extended x-ray absorption fine structure of the absorbing atoms. Thus, the absorption cross section is effectively modulated by the x-ray scattering

Korecki, Pawe³

260

Miniature x-ray source  

DOE Patents [OSTI]

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Multiple wavelength X-ray monochromators  

DOE Patents [OSTI]

An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

Steinmeyer, P.A.

1992-11-17T23:59:59.000Z

262

X-ray fluorescence mapping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

263

Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution  

E-Print Network [OSTI]

Static Light Scattering and Small-Angle Neutron Scattering Study on Aggregated Recombinant Gelatin in Aqueous Solution A. Ramzi 1, M. Sutter 2, W.E. Hennink 1, W. Jiskoot 1,2 1 Department of Pharmaceutics, UIPS, Utrecht University, The Netherlands...-angle neutron scattering (SANS) for detecting aggregation of recombinant gelatin in aqueous solution and to obtain structural information about the aggregates. Recombinant Gelatin: RG-15-His 5.6Ser 25.2Pro 1.9Lys 3.7His 34.2Gly 15.5Gln 5.2Glu 11.8Asn 1.2Ala...

Sutter, Marc

2006-10-25T23:59:59.000Z

264

Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute poly((2edimethylamino)ethyl methacrylate) solutions  

E-Print Network [OSTI]

Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute 2010 Keywords: Poly((2edimethylamino)ethyl methacrylate) Micelle Small angle neutron scattering a b angle neutron scattering. We found three transitions of the poly ((2edimethylamino)ethyl methacrylate

Kofinas, Peter

265

Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, for the second week of the Neutron X-ray Scattering School.  

E-Print Network [OSTI]

Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, Neutron Scattering Science User Office Oak Ridge National Laboratory ORNL Neutron Scattering School June 20-25, 2010 Oak Ridge National Laboratory Oak Ridge, Tennessee #12;

Pennycook, Steve

266

Automated high pressure cell for pressure jump x-ray diffraction  

SciTech Connect (OSTI)

A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

2010-06-15T23:59:59.000Z

267

Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors  

E-Print Network [OSTI]

Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic design of SANS facilities has not changed since the technique’s inception ...

Liu, Dazhi

268

Investigation of microstructure of disordered colloidal systems by small-angle scattering  

E-Print Network [OSTI]

Small-angle scattering (SAS) has been widely applied to study the microstructure of colloidal systems. Although colloids cover a wide range of materials, in general they can simply be viewed as basic building particles ...

Chiang, Wei-Shan

2014-01-01T23:59:59.000Z

269

X-ray shearing interferometer  

DOE Patents [OSTI]

An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

Koch, Jeffrey A. (Livermore, CA)

2003-07-08T23:59:59.000Z

270

X-ray radiography for container inspection  

DOE Patents [OSTI]

Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

2011-06-07T23:59:59.000Z

271

The X-ray background and the evolution of AGN  

E-Print Network [OSTI]

We discuss the constraints on the AGN evolution from the cosmic X-ray background and source counts. A synthesis model to fit the X-ray background is presented. In the model, the spectrum of type 2 AGN has been modeled including Compton down--scattering within the absorbing material. Besides, we introduced a dependence on redshift of the relative number of obscured sources and found a decrease of the fraction of type 2 AGN at redshifts larger than 2.

Fulvio Pompilio; Fabio La Franca; Giorgio Matt

1999-09-23T23:59:59.000Z

272

Sapphire analyzers for high-resolution x-ray spectroscopy.  

SciTech Connect (OSTI)

We present a sapphire (Al{sub 2}O{sub 3}) analyzer for high-resolution X-ray spectroscopy with 31-meV energy resolution. The analyzer is designed for resonant inelastic X-ray scattering (RIXS) measurements at the CuK{sub a} absorption edge near 8990 eV. The performance of the analyzer is demonstrated by measuring phonon excitations in beryllium because of its known dynamical structure and high counting rates.

Yavas, H.; Alp, E.; Sinn, H.; Alatas, A.; Said, A.; Shvydko, Y.; Toellner, T.; Khachatryan, R.; Billinge, S.; Hasan, Z.; Sturhahn, W.; Michigan State Univ.; Princeton Univ.; DESY

2007-11-11T23:59:59.000Z

273

Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar solution  

E-Print Network [OSTI]

L-455 Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar the size of reversed micelles of the ternary system Aerosol OT-n-heptane-water by small angle neutron, highly soluble in hydro- carbon substances, which may give reversed micelles in the presence of water

Paris-Sud XI, Université de

274

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

275

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking  

E-Print Network [OSTI]

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking Tom Aldcroft SAO/CXC #12;X-ray Stacking 2008 analysis for a sample Stacking ­ mean properties of sample Chandra X-ray data (faint point sources) are photon-limited with low background => stacking in X-rays is very effective #12;X-ray Stacking 2008-Apr-22

Wolfe, Patrick J.

276

Refinement of the crystal structure of the high-temperature phase G0 in (NH4)2WO2F4 (powder, x-ray, and neutron scattering)  

SciTech Connect (OSTI)

The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and static orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.

Novak, D. M. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, Lev S [Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia; Kolesnikov, Alexander I [ORNL; Voronin, Vladimir [Institute of Metal Physics, Russia; Berger, I. F. [Institute of Metal Physics, Russia; Laptash, N. M. [Institute of Chemistry, Vladivostok, Russia; Vasil'ev, N. M. [Kirensky Institute of Physics, Krasnoyarsk, Russia; Flerov, I. N. [Kirensky Institute of Physics, Krasnoyarsk, Russia

2013-01-01T23:59:59.000Z

277

X-ray microscope assemblies. Final report and metrology report  

SciTech Connect (OSTI)

This is the Final Report and Metrology Report prepared under Lawrence Livermore Laboratory Subcontract 9936205, X-ray Microscope Assemblies. The purpose of this program was to design, fabricate, and perform detailed metrology on an axisymmetric grazing-incidence x-ray microscope (XRMS) to be used as a diagnostic instrument in the Lawrence Livermore Laser Fusion Program. The optical configuration chosen for this device consists of two internally polished surfaces of revolution: an hyperboloid facing the object; and a confocal, co-axial elliposid facing the image. This arrangement is known as the Wolter Type-I configuration. The grazing angle of reflection for both surfaces is approximately 1/sup 0/. The general optical performance goals under this program were to achieve a spatial resolution in the object plane in the soft x-ray region of approximately 1 micron, and to achieve an effective solid collecting angle which is an appreciable fraction of the geometric solid collecting angle.

Zehnpfennig, T.F.

1981-04-13T23:59:59.000Z

278

Miniature x-ray source  

DOE Patents [OSTI]

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

279

Soft-x-ray spectroscopy study of nanoscale materials  

SciTech Connect (OSTI)

The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

Guo, J.-H.

2005-07-30T23:59:59.000Z

280

SMB, X-ray Absorption Spectroscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Small Angle X-Ray

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SMB, X-ray Emission Spectroscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Small Angle X-RayEmission

282

Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron scattering (SANS)  

E-Print Network [OSTI]

of small angle neutron scattering from fluids in a constant shear gradient. Typical systems which can angle neutron scattering experiments with liquids have given information about structural pro- perties759 Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron

Boyer, Edmond

283

A high pressure cell for supercritical CO{sub 2} on-line chemical reactions studied with x-ray techniques  

SciTech Connect (OSTI)

A versatile high pressure X-ray sample cell has been developed for conducting in situ time-resolved X-ray scattering experiments in the pressure and temperature regime required (pressures up to 210 bars and temperatures up to 120 °C) for chemical reactions in supercritical fluids. The large exit opening angle of the cell allows simultaneous performance of SAXS-WAXS experiments. Diamond windows are used in order to benefit from the combination of maximum strength, minimal X-ray absorption and chemical inertia. The sample cell can also be utilised for X-ray spectroscopy experiments over a wide range of photon energies. Results of the online synthesis of a block copolymer, poly(methyl methacrylate-block-poly(benzyl methacrylate), by Reversible Addition-Fragmentation Chain Transfer (RAFT) in a supercritical CO{sub 2} dispersion polymerisation will be discussed. The contribution of the density fluctuations, as function of temperature, to the X-ray scattering signal has been quantified in order to allow appropriate background subtractions.

Hermida-Merino, Daniel; Portale, Giuseppe; Bras, Wim, E-mail: Wim.Bras@esrf.eu, E-mail: Steve.Howdle@nottingham.ac.uk [DUBBLE@ESRF, Netherlands Organisation for Scientific Research (N.W.O.), CS40220, 38043, Grenoble, Cedex 9 (France); Fields, Peter; Wilson, Richard; Bassett, Simon P.; Jennings, James; Dellar, Martin; Howdle, Steven M., E-mail: Wim.Bras@esrf.eu, E-mail: Steve.Howdle@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Gommes, Cedric [Department of Chemical Engineering, University of Liège B6A, allée du 6 Août 3, B-4000 Liège (Belgium); Vrolijk, Benno C. M. [Element Six BV, P.O. Box 119, 5430 AC Cuijk (Netherlands)

2014-09-15T23:59:59.000Z

284

Salt-Dependent DNA Superhelix Diameter Studied by Small Angle Neutron Scattering Measurements and Monte Carlo Simulations  

E-Print Network [OSTI]

Salt-Dependent DNA Superhelix Diameter Studied by Small Angle Neutron Scattering Measurements-38042 Grenoble Cedex 9, France ABSTRACT Using small angle neutron scattering we have measured the static the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve

Langowski, Jörg

285

X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review  

E-Print Network [OSTI]

Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupiter. X-rays have been detected from Saturn's disk, but no convincing evidence for X-ray aurora on Saturn has been observed. The non-auroral disk X-ray emissions from Jupiter, Saturn, and Earth, are mostly produced due to scattering of solar X-rays. X-ray aurora on Earth is mainly generated via bremsstrahlung from precipitating electrons and on Jupiter via charge exchange of highlyionized energetic heavy ions precipitating into the polar atmosphere. Recent unpublished work suggests that at higher (>2 keV) energies electron bremsstrahlung also plays a role in Jupiter's X-ray aurora. This paper summarizes the recent results of X-ray observations on Jupiter, Saturn, and Earth mainly in the soft energy (~0.1-2.0 keV) band and provides a comparative overview.

Anil Bhardwaj

2006-05-11T23:59:59.000Z

286

From Nuclei to Micro-structure: investigating intermediate length scales by small angle laser light scattering  

E-Print Network [OSTI]

Hard spheres are a well recognized model system of statistical physics and soft condensed matter. Their crystallization behaviour has been intensively studied at the structural length scale by Bragg light scattering and/or high resolution microscopy. We here present an improved light scattering apparatus capable to perform simultaneous measurements in the Bragg scattering regime and in the small angle regime. We give an account of its construction and demonstrate its performance for several examples of hard sphere and attractive hard sphere suspensions. Comparison of small angle to Bragg data allows a calibration of the sequence of events in time. We show how important complementary information can be gained from the small angle studies e.g. on the immediate environment of the growing crystals or the global scale crystallite distribution. We further demonstrate that processes occurring on larger length scales have a significant influence on the crystallization kinetics and the final micro-structure.

Richard Beyer; Markus Franke; Hans Joachim Schöpe; Eckhard Bartsch; Thomas Palberg

2014-12-02T23:59:59.000Z

287

Analyzing Power Measurement for Forward Angle N-P Scattering at 790 Mev  

E-Print Network [OSTI]

nature of one of the experiments. The present measure- M=a+c(o', n+o2 n)+m(tr& n)(oz n), in which e& and o2 are the neutron and proton spin operators, respectively, and n is the unit vector normal to the scattering plane. The analyzing power A (or... (Received 20 November 1989) A measurement of the analyzing power for n-p scattering has been made at center-of-mass angles, 8.8, 15.0', and 20.7' with a nearly monoenergetic polarized neutron beam peaked at 790 MeV. These angles represent an acceptance...

Glass, G.; Bhatia, T. S.; Hiebert, John C.; Kenefick, R. A.; Nath, S.; Northcliffe, L. C.; Johnson, K. F.; Spinka, H.; Stanek, R.; Rawool, M. W.; Faucett, J. A.; Jeppersen, R. H.; Tripard, G. E.; Newsom, C. R.

1990-01-01T23:59:59.000Z

288

X-ray Emission from Massive Stars  

E-Print Network [OSTI]

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

Cohen, David

289

X-ray Emission from Massive Stars  

E-Print Network [OSTI]

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X-ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing

Cohen, David

290

Linear accelerator x-ray sources with high duty cycle  

SciTech Connect (OSTI)

X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

Condron, Cathie; Brown, Craig; Gozani, Tsahi; Langeveld, Willem G. J. [Rapiscan Laboratories, Inc., 520 Almanor Ave. Sunnyvale, CA 94085 (United States); Hernandez, Michael [XScell corp., 2134 Old Middlefield Way, Mountain View, CA 94043 (United States)

2013-04-19T23:59:59.000Z

291

The new very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin  

E-Print Network [OSTI]

The design and characteristics of the new very small angle neutron scattering spectrometer under construction at the Laboratoire Leon Brillouin is described. Its goal is to extend the range of scattering vectors magnitudes towards 2x10{-4} /A. The unique feature of this new spectrometer is a high resolution two dimensional image plate detector sensitive to neutrons. The wavelength selection is achieved by a double reflection supermirror monochromator and the collimator uses a novel multibeam design.

Sylvain Desert; Vincent Thevenot; Julian Oberdisse; Annie Brulet

2007-06-12T23:59:59.000Z

292

Effect of the concentration of inhomogeneities on the multiple small-angle neutron scattering  

SciTech Connect (OSTI)

The interference effects manifested during multiple small-angle neutron scattering (MSANS) on a chaotically arranged close-packed ensemble of scatterers have been studied. MSANS measurements have been performed for mixtures of Al and Ti-Zr alloy powders. It is shown that the results can be satisfactorily described based on a theory that takes into account spatial correlations in the arrangement of powder grains.

Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V., E-mail: lvov@itep.ru; Tyulyusov, A. N. [Institute for Theoretical and Experimental Physics (Russian Federation)] [Institute for Theoretical and Experimental Physics (Russian Federation)

2013-03-15T23:59:59.000Z

293

Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection  

SciTech Connect (OSTI)

Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

1994-10-01T23:59:59.000Z

294

X-ray absorption in distant type II QSOs  

E-Print Network [OSTI]

We present the results of the X-ray spectral analysis of an XMM-Newton-selected type II QSO sample with z>0.5 and 0.5-10 keV flux of 0.3-33 x 10^{-14} erg/s/cm^2. The distribution of absorbing column densities in type II QSOs is investigated and the dependence of absorption on X-ray luminosity and redshift is studied. We inspected 51 spectroscopically classified type II QSO candidates from the XMM-Newton Marano field survey, the XMM-Newton-2dF wide angle survey (XWAS), and the AXIS survey to set-up a well-defined sample with secure optical type II identifications. Fourteen type II QSOs were classified and an X-ray spectral analysis performed. Since most of our sources have only ~40 X-ray counts (PN-detector), we carefully studied the fit results of the simulated X-ray spectra as a function of fit statistic and binning method. We determined that fitting the spectra with the Cash-statistic and a binning of minimum one count per bin recovers the input values of the simulated X-ray spectra best. Above 100 PN coun...

Krumpe, M; Corral, A; Schwope, A D; Carrera, F J; Barcons, X; Page, M; Mateos, S; Tedds, J A; Watson, M G

2008-01-01T23:59:59.000Z

295

Compact x-ray source and panel  

DOE Patents [OSTI]

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

296

Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis  

SciTech Connect (OSTI)

This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

Meyer, Matthew W. [Ames Laboratory

2013-03-14T23:59:59.000Z

297

Theory of angular dispersive imaging hard x-ray spectrographs  

E-Print Network [OSTI]

A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations, and images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry are used as the dispersing elements. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS (RIXS).

Shvyd'ko, Yuri

2015-01-01T23:59:59.000Z

298

Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)  

E-Print Network [OSTI]

: ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

Guo, Ting

299

Light propagation in tissues with forward-peaked and large-angle scattering  

E-Print Network [OSTI]

-angle scattering makes it difficult to solve the radiative transport equation, we present a method to construct to inhomogene- ities. The radiative transport equation is a partial differential-integral equation. Analytical of the sev- eral independent variables in the radiative transport equation. Biological tissues tend

Kim, Arnold D.

300

Focused X-ray source  

DOE Patents [OSTI]

Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

1990-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Studies of structure and dynamics of biological macro-molecular assemblies by low angle neutron diffraction and inelastic X-ray scattering  

E-Print Network [OSTI]

This thesis is organized into two parts which focus on the studies of the dynamic structure factor and static inter-particle structure factor respectively. In the first part, we have measured and analyzed the dynamic ...

Liu, Yun, 1973-

2005-01-01T23:59:59.000Z

302

Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation  

E-Print Network [OSTI]

The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be ...

Firer-Sherwood, Mackenzie A.

303

Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch  

SciTech Connect (OSTI)

A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

2014-11-15T23:59:59.000Z

304

RYLLA. [X-ray transport code  

SciTech Connect (OSTI)

This paper describes a computer code, RYLLA, which models the deposition of x-rays into thin metal slabs, and transports the resulting photoelectrons, finding the distribution of electrons leaving the slab from both the front and back surfaces. The slab must be homogeneous, but can contain a mixture of up to 5 different elements. Due to the short electron mean free path at low electron energies, RYLLA should be used only for studying thin slabs, roughly < 100 mg/cm/sup 2/ for low Z metals, and < 10 mg/cm/sup 2/ for high Z metals. X-ray energies should be in the range of 1 to 150 keV, as they are deposited only via photoionization and Compton scattering processes. Following photoionization, a hole exists in the electron cloud of the absorbing atom. This fills either by Auger or fluoresence, resulting in lower energy holes which are also filled. Fluoresence photons are transported and absorbed in the same manner as the primary photons, except that they are isotropically produced. Once all photons have been transported and absorbed, and all holes have been filled, a space- and energy-dependent electron source spectrum has been obtained. This is used in a discrete ordinate expansion solution of the 1-D transport equation, which gives the output electron spectra at the two slab surfaces. This paper discusses both the physics and coding of RYLLA. Examples of user input are given, as are some comparisons with other codes.

Hyde, R.A.

1983-06-08T23:59:59.000Z

305

X-ray absorption in distant type II QSOs  

E-Print Network [OSTI]

We present the results of the X-ray spectral analysis of an XMM-Newton-selected type II QSO sample with z>0.5 and 0.5-10 keV flux of 0.3-33 x 10^{-14} erg/s/cm^2. The distribution of absorbing column densities in type II QSOs is investigated and the dependence of absorption on X-ray luminosity and redshift is studied. We inspected 51 spectroscopically classified type II QSO candidates from the XMM-Newton Marano field survey, the XMM-Newton-2dF wide angle survey (XWAS), and the AXIS survey to set-up a well-defined sample with secure optical type II identifications. Fourteen type II QSOs were classified and an X-ray spectral analysis performed. Since most of our sources have only ~40 X-ray counts (PN-detector), we carefully studied the fit results of the simulated X-ray spectra as a function of fit statistic and binning method. We determined that fitting the spectra with the Cash-statistic and a binning of minimum one count per bin recovers the input values of the simulated X-ray spectra best. Above 100 PN counts, the free fits of the spectrum's slope and absorbing hydrogen column density are reliable. We find only moderate absorption (N_H=(2-10) x 10^22 cm^-2) and no obvious trends with redshift and intrinsic X-ray luminosity. In a few cases a Compton-thick absorber cannot be excluded. Two type II objects with no X-ray absorption were discovered. We find no evidence for an intrinsic separation between type II AGN and high X-ray luminosity type II QSO in terms of absorption. The stacked X-ray spectrum of our 14 type II QSOs shows no iron K-alpha line. In contrast, the stack of the 8 type II AGN reveals a very prominent iron K-alpha line at an energy of ~ 6.6 keV and an EW ~ 2 keV.

M. Krumpe; G. Lamer; A. Corral; A. D. Schwope; F. J. Carrera; X. Barcons; M. Page; S. Mateos; J. A. Tedds; M. G. Watson

2008-03-10T23:59:59.000Z

306

The impact of accretion disk winds on the X-ray spectrum of AGN: Part 2 - XSCORT + Hydrodynamic Simulations  

E-Print Network [OSTI]

abridged: We use XSCORT, together with the hydrodynamic accretion disc wind simulation from Proga & Kallman (2004), to calculate the impact that the accretion disk wind has on the X-ray spectrum from a 1E8 solar mass black hole Active Galactic Nuclei (AGN) accreting at 0.5 L/L_Edd. The properties of the resulting spectra depend on viewing angle and clearly reflect the distinct regions apparent in the original hydrodynamic simulation. Very equatorial lines-of-sight (l.o.s) are dominated by Compton scattering and nearly-neutral absorption. Polar l.o.s result in largely featureless spectra. Finally, l.o.s that intersect the transition region between these extremes have a wide range of absorption features imprinted on the spectrum. Both polar and transition region l.o.s produce spectra that show highly-ionized, blue-shifted, Fe absorption features that are qualitatively similar to features observed in the X-ray spectra of a growing number of AGN. The spectra presented here clearly demonstrate that current simulations of line driven AGN accretion disk winds cannot reproduce the smooth soft X-ray excess. Furthermore, they predict that high accretion rate (L/L_Edd) AGN are likely to be strongly affected by obscuration, in sharp contrast to the clean picture that is generally assumed, based on the observed relation between the opening angle of the molecular torus and AGN luminosity.

N. J. Schurch; C. Done; D. Proga

2008-10-06T23:59:59.000Z

307

Portable X-Ray, K-Edge Heavy Metal Detector  

SciTech Connect (OSTI)

The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

Fricke, V.

1999-10-25T23:59:59.000Z

308

Microgap x-ray detector  

DOE Patents [OSTI]

An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

Wuest, C.R.; Bionta, R.M.; Ables, E.

1994-05-03T23:59:59.000Z

309

Microgap x-ray detector  

DOE Patents [OSTI]

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

310

Spectral analysis of X-ray binaries  

E-Print Network [OSTI]

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

311

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

312

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities...

313

Producing X-rays at the APS  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

None

2013-04-19T23:59:59.000Z

314

Large-angle elastic and inelastic scattering of Pi(+) and Pi(-) from (28)Si and (40)Ca. Master's thesis  

SciTech Connect (OSTI)

Differential cross sections were measured for Pi(+) and Pi(-) elastic scattering of Calcium 40 and Silicon 28 at incident pion energies ranging from 100 to 260 MeV at a scattering angle of 175 degs. Differential cross sections were also measured for Pi(+) and Pi(-) inelastic scattering to the 2(+), 1.78 MeV, 4(+), 4.62 MeV, and 3(-) 6.88 MeV states of 28Si at incident pion energies of 130, 180, and 226 MeV and scattering angles between 115 and 175{degrees} in 6{degrees} increments. The data are compared to previously obtained forward angle data through 120{degrees} and agree quite well. The data show a generally flat angular dependence for angles greater than 100{degrees}. Several theoretical codes are reviewed for their ability to predict large angle scattering. Coordinate-space and momentum-space models generally thought to be sufficient for predicting forward angle scattering have proved to be inappropriate for use at large angles. A new phenomenological delta-hole model, currently under modification, shows a greatly enhanced ability to predict scattering at back angles.

Snell, M.P.

1989-05-01T23:59:59.000Z

315

Phase-sensitive X-ray imager  

DOE Patents [OSTI]

X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

Baker, Kevin Louis

2013-01-08T23:59:59.000Z

316

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

317

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network [OSTI]

2/9/07 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 9, 07] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

318

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

319

Cryotomography x-ray microscopy state  

DOE Patents [OSTI]

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

320

X-ray Spectroscopy of Cool Stars  

E-Print Network [OSTI]

High-resolution X-ray spectroscopy has addressed not only various topics in coronal physics of stars, but has also uncovered important features relevant for our understanding of stellar evolution and the stellar environment. I summarize recent progress in coronal X-ray spectroscopy and in particular also discuss new results from studies of X-rays from pre-main sequence stars.

M. Guedel

2006-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

X-Ray Physics Evan Berkowitz  

E-Print Network [OSTI]

X-Ray Physics Evan Berkowitz Junior, MIT Department of Physics (Dated: October 25, 2006) We measure a variety of phenomena related to X-Ray absorption and production. We present data which conforms within, as are 22 Na electron-positron annhilation lines. The importance of understanding x-rays is demonstrated

322

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

323

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network [OSTI]

9/6/09 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 6, 09] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

324

Chandra X-ray Observatory Center  

E-Print Network [OSTI]

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

325

Fabrication and performance of blazed transmission gratings for x-ray astronomy  

E-Print Network [OSTI]

We have developed a new type of soft x-ray diffraction grating. This critical-angle transmission (CAT) grating combines the advantages of traditional transmission gratings (low mass, extremely relaxed alignment and flatness ...

Schattenburg, Mark Lee

326

Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance  

SciTech Connect (OSTI)

Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 {mu}m pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

Seo, D.; Tomizato, F.; Toda, H.; Kobayashi, M. [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Uesugi, K.; Takeuchi, A.; Suzuki, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki, Sayo, Hyogo 679-5198 (Japan)

2012-12-24T23:59:59.000Z

327

X-ray spectroscopy of low-mass X-ray binaries  

E-Print Network [OSTI]

I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first ...

Juett, Adrienne Marie, 1976-

2004-01-01T23:59:59.000Z

328

Extending The Methodology Of X-ray Crystallography To Allow X-ray  

E-Print Network [OSTI]

, the radiation damage. While the radiation damage problem can be mitigated somewhat by using cryogenic techniques resolution without serious radiation damage to the specimens. Although X-ray crystallography becomesExtending The Methodology Of X-ray Crystallography To Allow X-ray Microscopy Without X-ray Optics

Miao, Jianwei "John"

329

X-ray Pulsations in the Supersoft X-ray Binary CAL 83  

E-Print Network [OSTI]

X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.

P. C. Schmidtke; A. P. Cowley

2005-09-28T23:59:59.000Z

330

X-ray Spectroscopy of Cooling Clusters  

E-Print Network [OSTI]

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

J. R. Peterson; A. C. Fabian

2005-12-21T23:59:59.000Z

331

X-ray transmissive debris shield  

DOE Patents [OSTI]

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

332

Small-angle scattering instruments on a 1 MW long pulse spallation source  

SciTech Connect (OSTI)

Two small-angle neutron scattering instruments have been designed and optimized for installation at a 1 MW long pulse spallation source. The first of these instruments allows access to length scales in materials from 10 to 400 {angstrom}, and the second instrument from 40 to 1200 {angstrom}. Design characteristics were determined and optimization was done using the MCLIB Monte Carlo instrument simulation package. The code has been {open_quote}benchmarked{close_quote} by simulating the {open_quote}as-built{close_quote} D11 spectrometer at ILL and a performance comparison of the three instruments was made. Comparisons were made by evaluating the scattered intensity for {delta} scatterers at different Q values for various instrument configurations needed to span a Q-range of 0.0007 - 0.44 {angstrom}{sup {minus}1}.

Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

1995-12-01T23:59:59.000Z

333

Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility  

E-Print Network [OSTI]

Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

2002-01-01T23:59:59.000Z

334

Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements  

SciTech Connect (OSTI)

X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zhang, Bangmin [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Chen, Jing-Sheng; Chow, G. M. [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore)] [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); Venkatesan, T. [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore) [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Department of Physics, National University of Singapore, 117542 Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore (Singapore)

2014-04-15T23:59:59.000Z

335

X-ray lithography using holographic images  

DOE Patents [OSTI]

A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1995-01-01T23:59:59.000Z

336

X-ray Imaging Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-ray Computed TomographyImaging

337

X-ray fluorescence mapping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-rayNew Materialsray

338

X-Ray Science Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray Imagingfeed

339

Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles  

E-Print Network [OSTI]

We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)? exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at ...

Zhou, Z. -L.

340

Controlling X-rays With Light  

SciTech Connect (OSTI)

Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

2010-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

X-ray Observations of Mrk 231  

E-Print Network [OSTI]

This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

T. J. Turner

1998-08-10T23:59:59.000Z

342

Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility  

E-Print Network [OSTI]

synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

2003-01-01T23:59:59.000Z

343

On the variation of solar flare coronal x-ray source sizes with energy  

E-Print Network [OSTI]

Observations with {\\em RHESSI} have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold-target model, and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch-angle distribution of the accelerated electrons, and the effects of collisional pitch-angle scattering. The finite temperature results in the thermal diffusion of electrons, that leads to the observationally-inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch-angle and scattering with...

Jeffrey, Natasha L S; Bian, Nicolas H; Emslie, A Gordon

2014-01-01T23:59:59.000Z

344

Measurement of the analysing power in proton-proton elastic scattering at small angles  

E-Print Network [OSTI]

The proton analysing power in $\\vec{p}p$ elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.

Z. Bagdasarian; D. Chiladze; S. Dymov; A. Kacharava; G. Macharashvili; S. Barsov; R. Gebel; B. Gou; M. Hartmann; I. Keshelashvili; A. Khoukaz; P. Kulessa; A. Kulikov; A. Lehrach; N. Lomidze; B. Lorentz; R. Maier; D. Mchedlishvili; S. Merzliakov; S. Mikirtychyants; M. Nioradze; H. Ohm; M. Papenbrock; D. Prasuhn; F. Rathmann; V. Serdyuk; V. Shmakova; R. Stassen; H. Stockhorst; I. I. Strakovsky; H. Ströher; M. Tabidze; A. Täschner; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Wilkin; R. L. Workman

2014-10-28T23:59:59.000Z

345

Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere  

E-Print Network [OSTI]

Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

O'Flannagain, A; Gallagher, P T

2014-01-01T23:59:59.000Z

346

Hard x-ray imaging from explorer  

SciTech Connect (OSTI)

Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

Grindlay, J.E.; Murray, S.S.

1981-11-01T23:59:59.000Z

347

Patchy worm-like micelles: solution structure studied by small-angle neutron scattering  

E-Print Network [OSTI]

Triblock terpolymers exhibit a rich self-organization behavior including the formation of fascinating cylindrical core-shell structures with a phase separated corona. After crystallization-induced self-assembly of polystryrene-(block)-polyethylene-(block)-poly(methyl methacrylate) triblock terpolymers (abbreviated as SEMs = Styrene-Ethylene-Methacrylates) from solution, worm-like core-shell micelles with a patchy corona of polystryrene and poly(methyl methacrylate) were observed by transmission electron microscopy. However, the solution structure is still a matter of debate. Here, we present a method to distinguish in-situ between a Janus-type (two faced) and a patchy (multiple compartments) configuration of the corona. To discriminate between both models the scattering intensity must be determined mainly by one corona compartment. Contrast variation in small-angle neutron scattering enables us to focus on one compartment of the SEMs. The results validate the existence of the patchy structure also in solution.

S. Rosenfeldt; F. Luedel; C. Schulreich; T. Hellweg; A. Radulescu; J. Schmelz; H. Schmalz; L. Harnau

2012-09-20T23:59:59.000Z

348

Running of the QED coupling in small-angle Bhabha scattering at LEP  

E-Print Network [OSTI]

Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer, 2 \\leq -t \\leq 6 GeV^2, from the angular distribution of small-angle Bhabha scattering. This is currently the most significant direct observation of the running of the QED coupling in a single experiment and the first clear evidence of the hadronic contribution to the running in the space-like region. Our result is in good agreement with standard evaluations of alpha(t), based on data in the time-like region.

G. Abbiendi

2005-05-18T23:59:59.000Z

349

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma  

E-Print Network [OSTI]

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma P. L plasmas in which efficient x-ray laser frequency near-doubling is expected for a number of available x-ray of coherent x rays and tunable optical radiation may result in tunable coherent x-ray radiation powerful

Kaplan, Alexander

350

High speed x-ray beam chopper  

DOE Patents [OSTI]

A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

2002-01-01T23:59:59.000Z

351

X-ray populations in galaxies  

E-Print Network [OSTI]

Today's sensistive, high resolution Chandra X-ray observations allow the study of many populations of X-ray sources. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, and provide the means for classifying the X-ray sources and probing their evolution. While overall stellar mass drives the amount of X-ray binaries in old stellar population, the amount of sources in star-forming galaxies is related to the star formation rate. Shart-lived, luminous, high mass binaries (HNXBs) dominate these young populations.

G. Fabbiano

2005-11-09T23:59:59.000Z

352

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE  

E-Print Network [OSTI]

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE USER'S HANDBOOK Version 1.0 (June 1994) prepared by John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter Two: XRMB History

353

X-ray laser microscope apparatus  

DOE Patents [OSTI]

A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

354

Compound refractive X-ray lens  

DOE Patents [OSTI]

An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

2000-01-01T23:59:59.000Z

355

X-Ray Science Division (XSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

356

X-ray photon correlation spectroscopy under flow  

E-Print Network [OSTI]

X-ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X-ray techniques with microfluidics is an experimental strategy that reduces the risk of x-ray induced beam damage and also allows time-resolved studies of processes taking place in flowcells. The experimental results and theoretical predictions presented here, show that in the low shear limit, for a ``transverse flow'' scattering geometry (scattering wave vector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and in particular, for a ``longitudinal flow'' (q || flow) scattering geometry, the relaxation times are strongly affected by the flow-induced motion of the particles. Our results show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.

Andrei Fluerasu; Abdellatif Moussaid; Henri Gleyzolle; Peter Falus; Anders Madsen

2008-03-10T23:59:59.000Z

357

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network [OSTI]

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

358

Ultraluminous X-ray Sources: The most extreme X-ray binaries  

E-Print Network [OSTI]

1 Ultraluminous X-ray Sources: The most extreme X-ray binaries Luca Zampieri INAF ULXs ­ Lubiana ­ May 11, 2012- LZ #12;6 · X-ray observations of nearby galaxies show a population of pointlike, off-nuclear sources with L >> Ledd for 1 Msun (L>1.0e39 erg/s) UltraLuminous X-ray Sources (e

Â?umer, Slobodan

359

X-ray source populations in galaxies  

E-Print Network [OSTI]

Today's sensitive, high-resolution X-ray observations allow the study of populations of X-ray sources, in the luminosity range of Galactic X-ray binaries, in galaxies as distant as 20-30 Mpc. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, providing a direct probe of the evolved binary component of different stellar populations. The study of the X-ray populations of E and S0 galaxies has revamped the debate on the formation and evolution of low-mass X-ray binaries (LMXBs) and on the role of globular clusters in these processes. While overall stellar mass drives the amount of X-ray binaries in old stellar populations, the amount of sources in star forming galaxies is related to the star formation rate. Short-lived, luminous, high-mass binaries (HMXBs) dominate these young populations. The most luminous sources in these systems are the debated ULXs, which have been suggested to be ~100-1000 Msol black holes, but could alternatively include a number of binaries with stellar mass black holes. Very soft sources have also been discovered in many galaxies and their nature is currently being debated. Observations of the deep X-ray sky, and comparison with deep optical surveys, are providing the first evidence of the X-ray evolution of galaxies.

G. Fabbiano

2005-11-16T23:59:59.000Z

360

Aneta Siemiginowska Chandra X-ray Center  

E-Print Network [OSTI]

-ray and gamma-ray · High Energy Sky · Chandra X-ray Observatory · examples of typical X-ray data, · an example of a data analysis process · statistical challenges · what do we learn from the data? #12;What is Astronomy and phenomena do we study and how? Solar System: Sun and sollar wind, planets, moons, asteroids, comets Our

Wolfe, Patrick J.

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Phased Contrast X-Ray Imaging  

ScienceCinema (OSTI)

The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

Erin Miller

2012-12-31T23:59:59.000Z

362

Nuclear surface studies with antiprotonic atom X-rays  

E-Print Network [OSTI]

The recent and older level shifts and widths in pbar atoms are analyzed. The results are fitted by an antiproton-nucleus optical potential with two basic complex strength parameters. These parameters are related to average S and P wave scattering parameters in the subthreshold energy region. A fair consistency of the X-ray data for all Z values, stopping pbar data and the Nbar-N scattering data has been achieved. The determination of neutron density profiles at the nuclear surface is undertaken, and the determination of the neutron R_{rms} radii is attempted. Uncertainties due to the input data and the procedure are discussed.

Wycech, S; Jastrzebski, J J; Klos, B; Trzcinska, A; Von Egidy, T

2007-01-01T23:59:59.000Z

363

Anti-contamination device for cryogenic soft X-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

2011-05-01T23:59:59.000Z

364

Quantitative Measurements of X-ray Intensity  

SciTech Connect (OSTI)

This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

Haugh, M. J., Schneider, M.

2011-09-01T23:59:59.000Z

365

X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide B. Gilbert,1,  

E-Print Network [OSTI]

X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide B. Gilbert,1 Received 18 June 2002; published 26 December 2002 We investigate the sensitivity of x-ray absorption. Experimental spectra and multiple-scattering calculations are reported at the major absorption edges

Haskel, Daniel

366

Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.  

SciTech Connect (OSTI)

Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.

McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

2010-11-01T23:59:59.000Z

367

X-ray Practicals Series 1 Advanced Data Reduction  

E-Print Network [OSTI]

X-ray Practicals Series 1 Advanced Data Reduction Instructor J. Reibenspies, Ph. D. Nattamai Bhuvanesh, Ph.D. Version 1.0.0 #12;X-ray Practicals Series 2 #12;X-ray Practicals Series 3 #12;X-ray is good. The y direction is shifting the most, but the shift is ok #12;X-ray Practicals Series 5 Other

Meagher, Mary

368

Fiber fed x-ray/gamma ray imaging apparatus  

DOE Patents [OSTI]

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

Hailey, C.J.; Ziock, K.P.

1992-06-02T23:59:59.000Z

369

Fiber fed x-ray/gamma ray imaging apparatus  

DOE Patents [OSTI]

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

370

Small angle neutron scattering analysis of novel carbons for lithium secondary batteries.  

SciTech Connect (OSTI)

Small angle neutron scattering analyses of carbonaceous materials used as anodes in lithium ion cells have been performed. The carbons have been synthesized using pillared clays (PILCs) as inorganic templates. Pillared clays are layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props. The calcined PILC was loaded with five different organic precursors and heated at 700 C under nitrogen. When the inorganic pillars were removed by acid treatment, carbon sheets are produced with holes. The fitting of the data in the high q region suggested that the carbon sheets have voids with radii ranging from 4 to 8 {angstrom}. Similar radii were obtained for the PILC and PILC/organic precursor, which suggests that the carbon was well distributed in the clay prior to pyrolysis.

Sandi, G.; Thiyagarajan, P.; Winans, R.; Carrado, K.

1998-01-14T23:59:59.000Z

371

Waveguide detection of right-angle-scattered light in flow cytometry  

DOE Patents [OSTI]

A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

Mariella, Jr., Raymond P. (Danville, CA)

2000-01-01T23:59:59.000Z

372

Bending elasticity of a curved amphiphilic film decorated anchored copolymers: a small angle neutron scattering study  

E-Print Network [OSTI]

Microemulsion droplets (oil in water stabilized by a surfactant film) are progressively decorated with increasing amounts of poly ethylene- oxide (PEO) chains anchored in the film by the short aliphatic chain grafted at one end of the PEO chain . The evolution of the bending elasticity of the surfactant film with increasing decoration is deduced from the evolution in size and polydispersity of the droplets as reflected by small angle neutron scattering. The optimum curvature radius decreases while the bending rigidity modulus remains practically constant. The experimental results compare well with the predictions of a model developed for the bending properties of a curved film decorated by non-adsorbing polymer chains, which takes into account, the finite curvature of the film and the free diffusion of the chains on the film.

Jacqueline Appell; Christian Ligoure; Gregoire Porte

2004-06-30T23:59:59.000Z

373

Towards weighing individual atoms by high-angle scattering of electrons  

E-Print Network [OSTI]

We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number.

Argentero, G; Kotakoski, J; Eder, F R; Meyer, J C

2015-01-01T23:59:59.000Z

374

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art  

E-Print Network [OSTI]

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

Birmingham, University of

375

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source  

E-Print Network [OSTI]

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

Danon, Yaron

376

The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using Møller Scattering  

E-Print Network [OSTI]

The physics case and an experimental overview of the MOLLER (Measurement Of a Lepton Lepton Electroweak Reaction) experiment at the 12 GeV upgraded Jefferson Lab are presented. A highlight of the Fundamental Symmetries subfield of the 2007 NSAC Long Range Plan was the SLAC E158 measurement of the parity-violating asymmetry $A_{PV}$ in polarized electron-electron (M{\\o}ller) scattering. The proposed MOLLER experiment will improve on this result by a factor of five, yielding the most precise measurement of the weak mixing angle at low or high energy anticipated over the next decade. This new result would be sensitive to the interference of the electromagnetic amplitude with new neutral current amplitudes as weak as $\\sim 10^{-3}\\cdot G_F$ from as yet undiscovered dynamics beyond the Standard Model. The resulting discovery reach is unmatched by any proposed experiment measuring a flavor- and CP-conserving process over the next decade, and yields a unique window to new physics at MeV and multi-TeV scales, complementary to direct searches at high energy colliders such as the Large Hadron Collider (LHC). The experiment takes advantage of the unique opportunity provided by the upgraded electron beam energy, luminosity, and stability at Jefferson Laboratory and the extensive experience accumulated in the community after a round of recent successfully completed parity-violating electron scattering experiments

MOLLER Collaboration; J. Benesch; P. Brindza; R. D. Carlini; J-P. Chen; E. Chudakov; S. Covrig; M. M. Dalton; A. Deur; D. Gaskell; A. Gavalya; J. Gomez; D. W. Higinbotham; C. Keppel; D. Meekins; R. Michaels; B. Moffit; Y. Roblin; R. Suleiman; R. Wines; B. Wojtsekhowski; G. Cates; D. Crabb; D. Day; K. Gnanvo; D. Keller; N. Liyanage; V. V. Nelyubin; H. Nguyen; B. Norum; K. Paschke; V. Sulkosky; J. Zhang; X. Zheng; J. Birchall; P. Blunden; M. T. W. Gericke; W. R. Falk; L. Lee; J. Mammei; S. A. Page; W. T. H. van Oers; K. Dehmelt; A. Deshpande; N. Feege; T. K. Hemmick; K. S. Kumar; T. Kutz; R. Miskimen; M. J. Ramsey-Musolf; S. Riordan; N. Hirlinger Saylor; J. Bessuille; E. Ihloff; J. Kelsey; S. Kowalski; R. Silwal; G. De Cataldo; R. De Leo; D. Di Bari; L. Lagamba; E. NappiV. Bellini; F. Mammoliti; F. Noto; M. L. Sperduto; C. M. Sutera; P. Cole; T. A. Forest; M. Khandekar; D. McNulty; K. Aulenbacher; S. Baunack; F. Maas; V. Tioukine; R. Gilman; K. Myers; R. Ransome; A. Tadepalli; R. Beniniwattha; R. Holmes; P. Souder; D. S. Armstrong; T. D. Averett; W. Deconinck; W. Duvall; A. Lee; M. L. Pitt; J. A. Dunne; D. Dutta; L. El Fassi; F. De Persio; F. Meddi; G. M. Urciuoli; E. Cisbani; C. Fanelli; F. Garibaldi; K. Johnston; N. Simicevic; S. Wells; P. M. King; J. Roche; J. Arrington; P. E. Reimer; G. Franklin; B. Quinn; A. Ahmidouch; S. Danagoulian; O. Glamazdin; R. Pomatsalyuk; R. Mammei; J. W. Martin; T. Holmstrom; J. Erler; Yu. G. Kolomensky; J. Napolitano; K. A. Aniol; W. D. Ramsay; E. Korkmaz; D. T. Spayde; F. Benmokhtar; A. Del Dotto; R. Perrino; S. Barkanova; A. Aleksejevs; J. Singh

2014-12-03T23:59:59.000Z

377

X-Ray Physics in Confinement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of Energy WorldwideX-RayX-RayX-Ray

378

Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering  

E-Print Network [OSTI]

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory.

The G0 Collaboration; D. Androi?; D. S. Armstrong; J. Arvieux; S. L. Bailey; D. H. Beck; E. J. Beise; J. Benesch; F. Benmokhtar; L. Bimbot; J. Birchall; P. Bosted; H. Breuer; C. L. Capuano; Y. -C. Chao; A. Coppens; C. A. Davis; C. Ellis; G. Flores; G. Franklin; C. Furget; D. Gaskell; M. T. W. Gericke; J. Grames; G. Guillard; J. Hansknecht; T. Horn; M. K. Jones; P. M. King; W. Korsch; S. Kox; L. Lee; J. Liu; A. Lung; J. Mammei; J. W. Martin; R. D. McKeown; A. Micherdzinska; M. Mihovilovic; H. Mkrtchyan; M. Muether; S. A. Page; V. Papavassiliou; S. F. Pate; 10 S. K. Phillips; P. Pillot; M. L. Pitt; M. Poelker; B. Quinn; W. D. Ramsay; J. -S. Real; J. Roche; P. Roos; J. Schaub; T. Seva; N. Simicevic; G. R. Smith; D. T. Spayde; M. Stutzman; R. Suleiman; V. Tadevosyan; W. T. H. van Oers; M. Versteegen; E. Voutier; W. Vulcan; S. P. Wells; S. E. Williamson; S. A. Wood; B. Pasquini; M. Vanderhaeghen

2011-06-16T23:59:59.000Z

379

X-ray Absorption Spectroscopy of Biologically Relevant Systems  

E-Print Network [OSTI]

308, Messer, B. M. X-ray Absorption Spectroscopy of AqueousSarcosine via X-ray Absorption Spectroscopy 5.1 Introductionwith Carboxylate by X-Ray Absorption Spectroscopy of Liquid

Uejio, Janel Sunayo

2010-01-01T23:59:59.000Z

380

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length  

E-Print Network [OSTI]

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)- Grafted Polystyrene Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, ORNL 2Center

382

X-ray source for mammography  

DOE Patents [OSTI]

An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

Logan, Clinton M. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

383

X-ray induced optical reflectivity  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

Durbin, Stephen M.

2012-01-01T23:59:59.000Z

384

Columbia University X-Ray Measurements  

E-Print Network [OSTI]

Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner MIT Plasma Science and Fusion Center D.T. Garnier, A.K. Hansen, M.E. Mauel Columbia University

385

X-Ray Nanoimaging: Instruments and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

386

X-ray source for mammography  

DOE Patents [OSTI]

An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

Logan, C.M.

1994-12-20T23:59:59.000Z

387

Principles of X-ray Navigation  

SciTech Connect (OSTI)

X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

Hanson, John Eric; /SLAC

2006-03-17T23:59:59.000Z

388

X-ray Synchrotron Radiation in a Plasma Wiggler  

SciTech Connect (OSTI)

A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

Wang, Shuoquin; /UCLA /SLAC, SSRL

2005-09-27T23:59:59.000Z

389

Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell...

390

Using X-Ray Computed Tomography in Pore Structure Characterization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

391

Indus-2 X-ray lithography beamline for X-ray optics and material science applications  

SciTech Connect (OSTI)

X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ?100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

2014-04-24T23:59:59.000Z

392

X-ray views of neutron star low-mass X-ray binaries  

E-Print Network [OSTI]

A neutron star low-mass X-ray binary is a binary stellar system with a neutron star and a low-mass companion star rotating around each other. In this system the neutron star accretes mass from the companion, and as this matter falls into the deep potential well of the neutron star, the gravitational potential energy is released primarily in the X-ray wavelengths. Such a source was first discovered in X-rays in 1962, and this discovery formally gave birth to the "X-ray astronomy". In the subsequent decades, our knowledge of these sources has increased enormously by the observations with several X-ray space missions. Here we give a brief overview of our current understanding of the X-ray observational aspects of these systems.

Sudip Bhattacharyya

2010-02-24T23:59:59.000Z

393

X-Ray Observations of Radio Galaxies  

E-Print Network [OSTI]

We review some of the ways that X-ray observations provide unique information on radio galaxies. Thermal bremsstrahlung X-ray emission provides detailed data on ambient densities and temperatures. These parameters in turn can be used for pressure balance calculations and can demonstrate how the ambient gas affects radio source structure. Additionally, many signatures of the interaction of radio jets and lobes with the hot gas are found in high resolution X-ray maps. Non-thermal X-ray emission from knots and hotspots of radio jets can give us constraints on the relativistic electron population for energies greater that that normally sampled in the radio (in the case of synchrotron emission) or can give us an independent estimate of the average magnetic field strength (if inverse Compton emission is the origin of the X-rays). From recent ROSAT HRI observations of 3C 390.3 and 3C 120, we show evidence that X-ray emission from knots and hotspots appears to be associated with regions of large gradients in the radio surface brightness; i.e. at the location of powerful shocks.

D. E. Harris

1998-04-20T23:59:59.000Z

394

Time-domain sampling of x-ray pulses using an ultrafast sample response  

SciTech Connect (OSTI)

We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

Gaal, P.; Shayduk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W. [Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Vrejoiu, I. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Khakhulin, D.; Wulff, M. [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); Bargheer, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

2012-12-10T23:59:59.000Z

395

Borman effect in resonant diffraction of X-rays  

SciTech Connect (OSTI)

A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

Oreshko, A. P., E-mail: ap.oreshko@physics.msu.ru [Moscow State University (Russian Federation)

2013-08-15T23:59:59.000Z

396

Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers  

SciTech Connect (OSTI)

Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

Niemann, Christoph

2012-05-05T23:59:59.000Z

397

Small angle neutron scattering characterization of the porous structure of carbons prepared using inorganic templates  

SciTech Connect (OSTI)

Small angle neutron scattering (SANS) was used for the characterization of the microstructure of carbons derived from organic-loaded inorganic template materials that are used as anodes in lithium ion cells. Pillared clays (PILC), layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props, were used as a template to load the organic precursors. Five organic precursors, namely pyrene, styrene, pyrene/trioxane copolymer, ethylene, and propylene, were used to load the PILC. Pyrolysis was carried out at 700 C under nitrogen atmosphere. From SANS, information has been derived about the pore radius, mass fractal dimension, and the cutoff length (above which the fractal property breaks down) on each carbon. In general, the pore radius ranges from 4 to 11 {angstrom}, and the mass fractal dimension varies in the range from 2.5 to 2.9. Contrast-match SANS studies of carbons wetted in 84% deuterated toluene indicate that a significant amount of pores in carbon from pyrene are not accessible to the solvent, while most of the porous network of carbon from propylene is accessible.

Sandi, G.; Thiyagarajan, P.; Carrado, K.A.; Winans, R.E. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1999-02-01T23:59:59.000Z

398

Soluble Hydrogen-bonding Interpolymer Complexes in Water: A Small-Angle Neutron Scattering Study  

E-Print Network [OSTI]

The hydrogen-bonding interpolymer complexation between poly(acrylic acid) (PAA) and the poly(N,N-dimethylacrylamide) (PDMAM) side chains of the negatively charged graft copolymer poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM), containing 48 wt % of PDMAM, and shortly designated as G48, has been studied by small-angle neutron scattering in aqueous solution. Complexation occurs at low pH (pH < 3.75), resulting in the formation of negatively charged colloidal particles, consisting of PAA/PDMAM hydrogen-bonding interpolymer complexes, whose radius is estimated to be around 165 A. As these particles involve more than five graft copolymer chains, they act as stickers between the anionic chains of the graft copolymer backbone. This can explain the characteristic thickening observed in past rheological measurements with these mixtures in the semidilute solution, with decreasing pH. We have also examined the influence of pH and PAA molecular weight on the formation of these nanoparticles.

Maria Sotiropoulou; Julian Oberdisse; Georgios Staikos

2006-04-03T23:59:59.000Z

399

A theoretical analysis of reflection of X-rays from water at energies relevant for diagnostics  

SciTech Connect (OSTI)

The reflection of X-rays from a semi-infinite water target, for energies used in X-ray diagnostics, is treated by the analog Monte Carlo simulation. In the developed procedure it was possible to calculate separately contributions of photons scattered, before reflection, fixed number of times with target electrons. It turned out that multiple collision type of reflection dominates at all energies investigated, whenever the absorption is small. The same process was also treated analytically as the classical albedo problem for isotropic scattering without energy loss. Very good agreement of results of the two approaches is obtained.

Arsenovic, Dusan [Institute of Physics, Pregrevica 118, P.O. Box 57, Belgrade (Serbia and Montenegro); Davidovic, Dragomir M.; Vukanic, Jovan [Vinca Institute of Nuclear Sciences, P.O Box 522, Belgrade (Serbia and Montenegro)

2003-01-24T23:59:59.000Z

400

Oscillations During Thermonuclear X-ray Bursts  

E-Print Network [OSTI]

High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass- radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

Tod E. Strohmayer

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ultrafast X-Ray Coherent Control  

SciTech Connect (OSTI)

This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

Reis, David

2009-05-01T23:59:59.000Z

402

Oscillations During Thermonuclear X-ray Bursts  

E-Print Network [OSTI]

High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

Tod E. Strohmayer

2001-01-12T23:59:59.000Z

403

Differential phase contrast X-ray imaging system and components  

DOE Patents [OSTI]

A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

Stutman, Daniel; Finkenthal, Michael

2014-07-01T23:59:59.000Z

404

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342  

E-Print Network [OSTI]

, Chicago, IL 60637, USA 3 Cornell High Energy Synchrotron Source and School of Applied and EngineeringX-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www to establish a breakthrough in high-resolution, simultaneous area mapping of multiple trace elements

Limburg, Karin E.

405

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries  

E-Print Network [OSTI]

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

Cui, Yi

406

Predicted X-ray backgrounds for the International X-ray Observatory  

E-Print Network [OSTI]

The background that will be observed by IXO's X-ray detectors naturally separates into two components: (1) a Cosmic X-ray Background (CXB), primarily due to unresolved point sources at high energies (E>2 keV), along with ...

Bautz, Marshall W.

407

X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions  

SciTech Connect (OSTI)

Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

2006-01-01T23:59:59.000Z

408

X-ray reflectivity and surface roughness  

SciTech Connect (OSTI)

Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

Ocko, B.M.

1988-01-01T23:59:59.000Z

409

X-ray variability in M87  

E-Print Network [OSTI]

We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

D. E. Harris; J. A. Biretta; W. Junor

1996-12-05T23:59:59.000Z

410

Combined microstructure x-ray optics  

SciTech Connect (OSTI)

Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

Barbee, T.W. Jr.

1989-02-01T23:59:59.000Z

411

The X-ray/submillimetre link  

E-Print Network [OSTI]

It is widely believed that most of the cosmic X-ray background (XRB) is produced by a vast, hitherto undetected population of obscured AGN. Deep X-ray surveys with Chandra and XMM will soon test this hypothesis. Similarly, recent sub-mm surveys with SCUBA have revealed an analogous population of exceptionally luminous, dust-enshrouded {\\em star-forming} galaxies at high redshift. There is now growing evidence for an intimate link between these obscured populations. There are currently large uncertainties in the models, but several independent arguments lead to the conclusion that a significant fraction of the SCUBA sources ($10-30% $) will contain quasars. Recent observational studies of SCUBA survey sources appear to confirm these predictions, although the relative roles of AGN and star-forming activity in heating the dust are unclear. Forthcoming surveys combining X-ray and sub-mm observations will provide a very powerful tool for disentangling these processes.

O. Almaini

2000-01-07T23:59:59.000Z

412

X-ray atlas of rheumatic diseases  

SciTech Connect (OSTI)

This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

Dihlmann, W.

1986-01-01T23:59:59.000Z

413

X-ray focal spot locating apparatus and method  

DOE Patents [OSTI]

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, Hubert W. (Cedar Crest, NM)

1985-07-30T23:59:59.000Z

414

Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone  

SciTech Connect (OSTI)

Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

2011-08-19T23:59:59.000Z

415

Neutron Small Angle Scattering on Liquid Helium in the temperature Range 1.5-4.2 K  

E-Print Network [OSTI]

The small angle neutron scattering from liquid helium at saturated vapour pressure in the temperature range from 1.5 to 4.2 K was measured with the instrument D22 of the ILL Grenoble at a wavelength of 4.6 angstrom. The zero angle cross section is monotonically decreasing with decreasing temperature and does not show any singularity at the lambda-point. On the other handd, we observe a change of the slope of the temperature dependence of thw second momentum of the pair correlation function at the lambda-point that reflects the transition of liquid to the superfluid state.

Yu. M. Tsipenyuk; R. P. May

2002-07-11T23:59:59.000Z

416

Energy resolved X-ray grating interferometry  

SciTech Connect (OSTI)

Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland) [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States)] [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)] [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

2013-05-13T23:59:59.000Z

417

Radiobiological studies using gamma and x rays.  

SciTech Connect (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

418

Time-resolved x-ray diagnostics  

SciTech Connect (OSTI)

Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout.

Lyons, P.B.

1981-01-01T23:59:59.000Z

419

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C H NLensless X-RayLensless X-Ray

420

X-Ray Nanoimaging: Instruments and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray Imaging ofX-Ray

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

X-ray Computed Tomography | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMore thanX-Ray ImagingfeedX-ray

422

High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time  

SciTech Connect (OSTI)

High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

Almer, Jonathan (ANL) [ANL

2011-05-11T23:59:59.000Z

423

What can we learn about extragalactic radio jets from X-ray data?  

E-Print Network [OSTI]

We review the current status of resolved X-ray emission associated with extragalactic radio jets and hotspots. The primary question for any particular jet is to decide if the X-rays come from the synchrotron process or from inverse Compton scattering. There is considerable evidence supporting synchrotron emission for knots in the jets of FRI galaxies. For FRII terminal hotspots detected in the X-ray band, synchrotron self-Compton emission continues to provide viable models with one possible exception (so far). Inverse Compton scattering on photons of the cosmic microwave background is indicated for a few powerful jets, and is expected to be an important contributor if not the dominating mechanism for higher redshift objects. The application of a model generally yields physical parameters and in many cases, these include the Doppler boosting factor.

D. E. Harris

2003-02-05T23:59:59.000Z

424

Nanostructure in block copolymer solutions: Rheology and small-angle neutron scattering  

SciTech Connect (OSTI)

Triblock copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) present an amphiphilic character in aqueous solutions. Since PPO is less hydrophilic than PEO and since their solubilities decrease when the temperature increases, the copolymers self-assemble spontaneously, forming micelles at moderate temperatures. For higher temperatures or concentrations, the copolymers or the micelles are ordered because of repulsive interactions and form lyotropic liquid crystalline phases. These are phases of very great viscosity with the aspect of gels, and transitions between different crystalline phases can occur at fixed concentration during an increase of temperature. We studied solutions of three different copolymers. The first two have a star structure. They are both composed of four branches (EO){sub x}(PO){sub y} fixed on an ethylene diamine, but differ by the values of x and y. Their commercial name is Tetronic 908 (x=114, y=21) and Tetronic 704 (x=16, y=18). The third copolymer (EO){sub 37}(PO){sub 56}(EO){sub 37} is linear and is known under the name of Pluronic P105. The measurements of the shear complex elastic modulus according to the temperature is used to determine the temperatures of the different transitions. Then, small-angle neutron scattering on samples under flow and true crystallographic arguments make it possible to identify the nature of the crystalline phases. For the systems studied, we show that the branched copolymers form only one type of liquid crystalline phase, which is bcc for the T908 and lamellar for the T704. For the linear copolymer, it is possible to identify three transitions: micellar solution to hexagonal phase, hexagonal phase to body-centered cubic phase, and finally body-centered cubic phase to lamellar phase.

Habas, Jean-Pierre; Pavie, Emmanuel; Perreur, Christelle; Lapp, Alain; Peyrelasse, Jean [Laboratoire de Physico-Chimie des Polymeres UMR 5067, Universite de Pau et des Pays de l'Adour, Avenue de l'Universite, 64000 Pau (France); Laboratoire Leon Brillouin CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Laboratoire de Physico-Chimie des Polymeres UMR 5067, Universite de Pau et des Pays de l'Adour, Avenue de l'Universite, 64000 Pau (France)

2004-12-01T23:59:59.000Z

425

Concept for a Time-of-Flight Small Angle Neutron Scattering Instrument at the European Spallation Source  

E-Print Network [OSTI]

A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards um and tens of um, respectively. Two 1m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

S. Jaksch; D. Martin-Rodriguez; A. Ostermann; J. Jestin; S. Duarte Pinto; W. G. Bouwman; J. Uher; R. Engels; G. Kemmerling; R. Hanslik; H. Frielinghaus

2014-03-11T23:59:59.000Z

426

SLAC All Access: X-ray Microscope  

ScienceCinema (OSTI)

SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

Nelson, Johanna; Liu, Yijin

2014-06-13T23:59:59.000Z

427

X-ray spectroscopy of manganese clusters  

SciTech Connect (OSTI)

Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science; [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-06-01T23:59:59.000Z

428

Catalog of supersoft X-ray sources  

E-Print Network [OSTI]

This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

J. Greiner

2000-05-11T23:59:59.000Z

429

Do X-ray Binary Spectral State Transition Luminosities Vary?  

E-Print Network [OSTI]

We tabulate the luminosities of the soft-to-hard state transitions of all X-ray binaries for which there exist good X-ray flux measurements at the time of the transition, good distance estimates, and good mass estimates for the compact star. We show that the state transition luminosities are at about 1-4% of the Eddington rate, markedly smaller than those typically quoted in the literature, with a mean value of 2%. Only the black hole candidate GRO J~1655-40 and the neutron star systems Aql X-1 and 4U 1728-34 have measured state transition luminosities inconsistent with this value at the 1$\\sigma$ level. GRO J~1655-40, in particular, shows a state transition luminosity below the mean value for the other sources at the $4\\sigma$ level. This result, combined with the known inner disk inclination angle (the disk is nearly parallel to the line of sight) from GRO J~1655-40's relativistic jets suggest that the hard X-ray emitting region in GRO J~1655-40 can have a velocity of no more than about $\\beta=0.68$, with a most likely value of about $\\beta=0.52$, and a minimum speed of $\\beta=0.45$, assuming that the variations in state transition luminosities are solely due to relativistic beaming effects. The variance in the state transition luminosities suggests an emission region with a velocity of $\\sim0.2c$. The results are discussed in terms of different emission models for the low/hard state. We also discuss the implications for measuring the dimensionless viscosity parameter $\\alpha$. We also find that if its state transitions occur at typical luminosities, then GX 339-4 is likely to be at a distance of at least 7.6 kpc, much further than typically quoted estimates.

Thomas J. Maccarone

2003-08-02T23:59:59.000Z

430

Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets  

SciTech Connect (OSTI)

The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements in the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.

Jain, Dr Nirmesh [University of Sydney, Australia] [University of Sydney, Australia; Liu, Dr C K [Institute of Materials research and Engineering, A-STAR, Singapore] [Institute of Materials research and Engineering, A-STAR, Singapore; Hawkett, Dr B. S. [University of Sydney, Australia] [University of Sydney, Australia; Warr, G. G. [University of Sydney, Australia] [University of Sydney, Australia; Hamilton, William A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

431

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents [OSTI]

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

432

Rise time measurement for ultrafast X-ray pulses  

DOE Patents [OSTI]

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

433

A grazing incidence x-ray streak camera for ultrafast, single-shot measurements  

SciTech Connect (OSTI)

An ultrafast x-ray streak camera has been realized using a grazing incidence reflection photocathode. X-rays are incident on a gold photocathode at a grazing angle of 20 degree and photoemitted electrons are focused by a large aperture magnetic solenoid lens. The streak camera has high quantum efficiency, 600fs temporal resolution, and 6mm imaging length in the spectral direction. Its single shot capability eliminates temporal smearing due to sweep jitter, and allows recording of the ultrafast dynamics of samples that undergo non-reversible changes.

Feng, Jun; Engelhorn, K.; Cho, B.I.; Lee, H.J.; Greaves, M.; Weber, C.P.; Falcone, R.W.; Padmore, H. A.; Heimann, P.A.

2010-02-18T23:59:59.000Z

434

The hard X-ray spectrum of Compton-thick Seyfert 2 galaxies and the synthesis of the XRB  

E-Print Network [OSTI]

A synthesis model for the cosmic X-ray Background (XRB) is presented, which includes a proper treatment of Compton scattering in the absorbing matter for type 2 AGN. Evidence for a decrease of the relative importance of type 2 AGN at high redshift is found, which may be due either to a decrease of the relative number of obscured sources, or (more plausibly) to an increase of the fraction of Compton-thick absorbed sources. The XRB spectrum, soft X-rays and hard X-rays source counts can be simultaneously fitted only if the XRB normalization as derived from BeppoSAX/MECS measurements is adopted.

Giorgio Matt; Fulvio Pompilio; Fabio La Franca

1999-12-16T23:59:59.000Z

435

Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory  

SciTech Connect (OSTI)

We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

2012-11-21T23:59:59.000Z

436

X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION  

SciTech Connect (OSTI)

Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

2013-03-20T23:59:59.000Z

437

E-Print Network 3.0 - angle elastic scattering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Physics and Astronomy, Texas A&M University - Commerce Collection: Physics 17 Subcritical scattering from buried elastic shells Irena Lucifredi and Henrik Schmidt Summary:...

438

Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction  

SciTech Connect (OSTI)

Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

Rubio-Zuazo, Juan; Castro, German R. [SpLine, Spanish CRG beamline at the European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France) and ICMM-CSIC Cantoblanco, E-28049 Madrid (Spain)

2013-05-15T23:59:59.000Z

439

Theoretical standards in x-ray spectroscopies. Annual progress report, 1991--1992  

SciTech Connect (OSTI)

We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

Not Available

1992-09-01T23:59:59.000Z

440

High resolution x-ray microscope  

SciTech Connect (OSTI)

The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

2007-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

442

The X-ray Microcalorimeter Spectrometer onboard of IXO  

E-Print Network [OSTI]

One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, ...

Figueroa-Feliciano, Enectali

443

Local structure of Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot}2H{sub 2}O by the modeling of X-ray diffuse scattering - from average-structure to microdomain model  

SciTech Connect (OSTI)

Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomains can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.

Komornicka, Dorota [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland); Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland); Pietraszko, Adam [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland)

2012-08-15T23:59:59.000Z

444

Anomalous X-ray Diffraction Studies for Photovoltaic Applications  

SciTech Connect (OSTI)

Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their efficiency and low risk of environmental pollution. These materials are important to solar cells as a result of their remarkable combination of optical and electrical properties, including high electrical conductivity and high optical transparency in the spectrum of visible light. TCs provide a transparent window, which allows sunlight to pass through while also allowing electricity to conduct out of the cell. Spinel materials have the chemical form AB{sub 2}O{sub 4}, and are made of a face-centered cubic (FCC) lattice of oxygen anions and cations in specific interstitial sites. A normal spinel has all A cations on tetrahedral sites and B cations on octahedral sites. In contrast; an inverse spinel has the A and half of the B cations on octahedral sites and the other half of the B cations on tetrahedral sites; a mixed spinel lies between. In the spinel structure, 8 of 64 possible tetrahedral sites and 16 of 32 possible octahedral sites are filled. Normal spinels have particularly high conduction as the linear octahedral chains of B cations likely serve as conduction paths. In this paper we present how the data obtained with AXRD is used to analyze TCs properties as they apply to photovoltaic applications. One of the materials used for this analysis is zinc oxide. It has been loaded with 5% and 10% of Ga, which has an absorption edge of 10367 eV. The peak (100) was measured for the zinc oxide loaded with 10% Ga. In the case of 5% Ga, we measured peaks (100) and (101). With the information provided by the AXRD we can identify if Ga is being incorporated in the ZnO crystal structure. The analysis of 311 plane in the ZnCo{sub 2}O{sub 4} spinel shows if Co is in tetrahedral or octahedral site.

Not Available

2011-06-22T23:59:59.000Z

445

Sample holder for X-ray diffractometry  

DOE Patents [OSTI]

A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, Victor L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

446

Columbia University X-Ray Measurements  

E-Print Network [OSTI]

V-720 keV · NaI 2x2x2" detector views an energy range of 1 keV-3 MeV Store signal in the tree. computer configuration. Plasmas were created using multi-frequency ECRH, and we find that most of the plasma energy is stored in the fast electrons. The energy spectrum of the x-ray emission below 740 keV is measured

447

X-rays from Supernova Remnants  

E-Print Network [OSTI]

A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

B. Aschenbach

2002-08-28T23:59:59.000Z

448

Neutron and X-Ray Studies of Advanced Materials V: CENTENNIAL  

SciTech Connect (OSTI)

In 2012 the diffraction community will celebrate 100 years since the prediction of X-ray diffraction by M. Laue, and following his suggestion the first beautiful diffraction experiment by W. Friedrich and P. Knipping. The significance of techniques based on the analysis of the diffraction of X-rays, neutrons, electrons and Mossbauer photons discovered later, has continued to increase in the past 100 years. The aim of this symposium is to provide a forum for discussion of using state-of-the-art neutron and X-ray scattering techniques for probing advanced materials. These techniques have been widely used to characterize materials structures across all length scales, from atomic to nano, meso, and macroscopic scales. With the development of sample environments, in-situ experiments, e.g., at temperatures and applied mechanical load, are becoming routine. The development of ultra-brilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultra-sensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation and strain. X-ray microdiffraction is non-destructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Advances in neutron sources and instrumentation also bring new opportunities in neutron scattering research. In addition to characterizing the structures, neutrons are also a great tool for elucidating the dynamics of materials. Because neutrons are highly penetrating, neutrons have been used to map stress in engineering systems. Neutrons have also played a vital role in our understanding of the magnetism and magnetic properties. Specialized instruments have been built to gain physical insights of the fundamental mechanisms governing phase transformation and mechanical behaviors of materials. The application of those techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future that will contribute to the development of materials technology and industrial innovation.

Spanos, George

2012-05-01T23:59:59.000Z

449

ASCA Discovery of Diffuse 6.4 keV Emission Near the Sgr C Complex: A New X-ray Reflection Nebula  

E-Print Network [OSTI]

We present an ASCA discovery of diffuse hard X-ray emission from the Sgr C complex with its peak in the vicinity of the molecular cloud core. The X-ray spectrum is characterized by a strong 6.4-keV line and large absorption. These properties suggest that Sgr C is a new X-ray reflection nebula which emits fluorescent and scattered X-rays via irradiation from an external X-ray source. We found no adequately bright source in the immediate Sgr C vicinity to fully account for the fluorescence. The irradiating source may be the Galactic nucleus Sgr A*, which was brighter in the past than it is now as is suggested from observations of the first X-ray reflection nebula Sgr B2.

H. Murakami; K. Koyama; M. Tsujimoto; Y. Maeda; M. Sakano

2000-12-14T23:59:59.000Z

450

Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles  

SciTech Connect (OSTI)

We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e'p)? exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2, and for the Q2-dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2-dependence is smooth. The measured ratio of H(e,e'p)? to H(e,e'p)?0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2-independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.

Laveissiere, Geraud; Degrande, Natalie; Jaminion, Stephanie; Jutier, Christophe; Todor, Luminita; Di Salvo, Rachele; Van Hoorebeke, L.; Alexa, L.C.; Anderson, Brian; Aniol, Konrad; Arundell, Kathleen; Audit, Gerard; Auerbach, Leonard; Baker, F.; Baylac, Maud; Berthot, J.; Bertin, Pierre; Bertozzi, William; Bimbot, Louis; Boeglin, Werner; Brash, Edward; Breton, Vincent; Breuer, Herbert; Burtin, Etienne; Calarco, John; Cardman, Lawrence; Cavata, Christian; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chen, Jian-Ping; Chudakov, Eugene; Cisbani, Evaristo; Dale, Daniel; De Jager, Cornelis; De Leo, Raffaele; Deur, Alexandre; D'Hose, Nicole; Dodge, Gail; Domingo, John; Elouadrhiri, Latifa; Epstein, Martin; Ewell, Lars; Finn, John; Fissum, Kevin; Fonvieille, Helene; Fournier, Guy; Frois, Bernard; Frullani, Salvatore; Furget, Christophe; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Gomez, Javier; Gorbenko, Viktor; Grenier, Philippe; Guichon, Pierre; Hansen, Jens-Ole; Holmes, Richard; Holtrop, Maurik; Howell, Calvin; Huber, Garth; Hyde, Charles; Incerti, Sebastien; Iodice, Mauro; Jardillier, Johann; Jones, Mark; Kahl, William; Kamalov, Sabit; Kato, Seigo; Katramatou, A.T.; Kelly, James; Kerhoas, Sophie; Ketikyan, Armen; Khayat, Mohammad; Kino, Kouichi; Kox, Serge; Kramer, Laird; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Leone, Antonio; LeRose, John; Liang, Meihua; Lindgren, Richard; Liyanage, Nilanga; Lolos, George; Lourie, Robert; Madey, Richard; Maeda, Kazushige; Malov, Sergey; Manley, D.; Marchand, Claude; Marchand, Dominique; Margaziotis, Demetrius; Markowitz, Pete; Marroncle, Jacques; Martino, Jacques; McCormick, Kathy; McIntyre, Justin; Mehrabyan, Surik; Merchez, Fernand; Meziani, Zein-Eddine; Michaels, Robert; Miller, Gerald; Mougey, Jean; Nanda, Sirish; Neyret, Damien; Offermann, Edmond; Papandreou, Zisis; Perdrisat, Charles; Perrino, R.; Petratos, Gerassimos; Platchkov, Stephane; Pomatsalyuk, Roman; Prout, David; Punjabi, Vina; Pussieux, Thierry; Quemener, Gilles; Ransome, Ronald; Ravel, Oliver; Real, Jean-Sebastien; Renard, F.; Roblin, Yves; Rowntree, David; Rutledge, Gary; Rutt, Paul; Saha, Arunava; Saito, Teijiro; Sarty, Adam; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, Pavel; Souder, Paul; Suleiman, Riad; Templon, Jeffrey; Terasawa, Tatsuo; Tiator, Lothar; Tieulent, Raphael; Tomasi-Gustaffson, E.; Tsubota, Hiroaki; Ueno, Hiroaki; Ulmer, Paul; Urciuoli, Guido; Van De Vyver, R.; van der Meer, Rob; Vernin, Pascal; Vlahovic, B.; Voskanyan, Hakob; Voutier, Eric; Watson, J.W.; Weinstein, Lawrence; Wijesooriya, Krishni; Wilson, R.; Wojtsekhowski, Bogdan; Zainea, Dan; Zhang, Wei-Ming; Zhao, Jie; Zhou, Z.-L.

2009-01-01T23:59:59.000Z

451

X-ray Free-electron Lasers  

SciTech Connect (OSTI)

In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

2007-02-23T23:59:59.000Z

452

The X-ray Telescope of CAST  

E-Print Network [OSTI]

The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

M. Kuster; H. Bräuninger; S. Cébrian; M. Davenport; C. Elefteriadis; J. Englhauser; H. Fischer; J. Franz; P. Friedrich; R. Hartmann; F. H. Heinsius; D. H. H. Hoffmann; G. Hoffmeister; J. N. Joux; D. Kang; K. Königsmann; R. Kotthaus; T. Papaevangelou; C. Lasseur; A. Lippitsch; G. Lutz; J. Morales; A. Rodríguez; L. Strüder; J. Vogel; K. Zioutas

2007-05-10T23:59:59.000Z

453

X-Ray Searches for Solar Axions  

E-Print Network [OSTI]

Axions generated thermally in the solar core can convert nearly directly to X-rays as they pass through the solar atmosphere via interaction with the magnetic field. The result of this conversion process would be a diffuse centrally-concentrated source of few-keV X-rays at disk center; it would have a known dimension, of order 10% of the solar diameter, and a spectral distribution resembling the blackbody spectrum of the solar core. Its spatial structure in detail would depend on the distribution of mass and field in the solar atmosphere. The brightness of the source depends upon these factors as well as the unknown coupling constant and the unknown mass of the axion; this particle is hypothetical and no firm evidence for its existence has been found yet. We describe the solar magnetic environment as an axion/photon converter and discuss the upper limits obtained by existing and dedicated observations from three solar X-ray observatories: Yohkoh, RHESSI, and Hinode

Hugh S. Hudson; L. W. Acton; E. DeLuca; I. G. Hannah; K. Reardon; K. Van Bibber

2012-01-22T23:59:59.000Z

454

Applications of holography to x-ray imaging  

SciTech Connect (OSTI)

In this paper we consider various applications of holographic techniques to the problem of soft x-ray imaging. We give special attention to imaging biological material using x-rays in the wavelength range 24 to 45A. We describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-03-01T23:59:59.000Z

455

Applications of holography to X-ray imaging  

SciTech Connect (OSTI)

In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-01-01T23:59:59.000Z

456

X-ray MicroCT Training Presentation  

E-Print Network [OSTI]

X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

457

X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications  

SciTech Connect (OSTI)

A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 ?m validated by knife-edge measurements. Results are presented from imaging the tungsten L?1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 ?m. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

Lu, J., E-mail: jlu@pppl.gov [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Caughey, T. A.; Brunner, J. [Inrad Optics, 181 Legrand Avenue, Northvale, New Jersey 07647 (United States)

2014-11-15T23:59:59.000Z

458

Backscatter x-ray development for space vehicle thermal protection systems  

SciTech Connect (OSTI)

The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony [USA NDE, United Space Alliance, Cape Canaveral, FL 32920 (United States)

2011-06-23T23:59:59.000Z

459

Global SAXS Data Analysis for Multilamellar Vesicles: Evolution of the Scattering Density Profile (SDP) Model  

SciTech Connect (OSTI)

The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid.

Heftberger, Peter [University of Graz, Institute of Molecular Biosciences, Austria] [University of Graz, Institute of Molecular Biosciences, Austria; Kollmitzer, Benjamin [University of Graz, Institute of Molecular Biosciences, Austria] [University of Graz, Institute of Molecular Biosciences, Austria; Heberle, Frederick A [ORNL] [ORNL; Pan, Jianjun [ORNL] [ORNL; Rappolt, Michael [University of Leeds, UK] [University of Leeds, UK; Amenitsch, Heinz [Graz University of Technology] [Graz University of Technology; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,] [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Katsaras, John [ORNL] [ORNL; Pabst, georg [University of Graz, Institute of Molecular Biosciences, Austria] [University of Graz, Institute of Molecular Biosciences, Austria

2014-01-01T23:59:59.000Z

460

X-ray fluorescence spectroscopy from ions at charged vapor/water interfaces  

E-Print Network [OSTI]

X-ray fluorescence spectra from monovalent ions (Cs+) that accumulate from dilute solutions to form an ion-rich layer near a charged Langmuir monolayer are presented. For the salt solution without the monolayer, the fluorescence signals below the critical angle are significantly lower than the detection sensitivity and only above the critical angle signals from the bulk are observed. In the presence of a monolayer that provides surface charges, strong fluorescence signals below the critical angle are observed. Ion density accumulated at the interface are determined from the fluorescence. The fluorescent spectra collected as a function of incident x-ray energy near the LIII edge yield the extended absorption spectra from the ions, and are compared to recent independent results. The fluorescence data from divalent Ba2+ with and without monolayer are also presented.

Wei Bu; David Vaknin

2009-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Femtosecond laser-electron x-ray source  

DOE Patents [OSTI]

A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

2004-04-20T23:59:59.000Z

462

X-ray Diffraction Laboratory Department of Chemistry  

E-Print Network [OSTI]

X-ray Diffraction Laboratory Department of Chemistry Texas A & M University College Station, Texas Phone : 979-845-9125 www.chem.tamu.edu/xray xray@tamu.edu X-rayDiffractionLaboratory DepartmentofChemistry 3255TAMU CollegeStation,TX77843-3255 Mission The purpose of our laboratory is to provide X-ray

Meagher, Mary

463

X-ray Diffraction Practicals 1 Graphics Programs  

E-Print Network [OSTI]

X-ray Diffraction Practicals 1 Graphics Programs that will read SHELX or CIF files J. Reibenspies, N. Bhuvanesh ver 1.0.0 #12;X-ray Diffraction Practicals 2 Free software. Gretep : Reads SHELX files shelx files or output thermal ellipsoid plots. http://www.umass.edu/microbio/rasmol/ #12;X-ray

Meagher, Mary

464

X-ray Emission from Massive Stars David Cohen  

E-Print Network [OSTI]

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore University, Oct. 13, 2005 astro.swarthmore.edu/~cohen/ #12;Outline 1. What you need to know: a. X-rays from the Sun - magnetic activity, x-ray spectra b. Hot stars c. Radiation-driven winds and the Doppler shift d

Cohen, David

465

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard  

E-Print Network [OSTI]

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard 1 #12;EMSL XPS Instrumentation 2 Physical Electronics Quantera XPS High Energy Resolution Focused X-ray Beam Capability Catalysis reaction and processing chamber with inert atmosphere glove box connected to a PHI Quantera Scanning X-ray Microprobe

466

Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter  

SciTech Connect (OSTI)

We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

2014-03-15T23:59:59.000Z

467

E-Print Network 3.0 - angle quasi-elastic scattering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Force Academy, University of New South Wales Collection: Physics ; Materials Science 2 Neutron scattering study of the quasi-elastic spectral width in CeMg, CeMg3 and NdMg3...

468

Quantitative x-ray imager (abstract)  

SciTech Connect (OSTI)

We report on development of a quantitative x-ray imager (QXI) for the national Inertial Confinement Fusion Program. Included in this development is a study of photocathode response as a function of photon energy, 2--17.5 keV, which is related to diagnostic development on the National Ignition Facility (NIF). The QXI is defined as being a quantative imager due to the repeated characterization. This instrument is systematically checked out, electronically as well as its photocathode x-ray response, both on a direct current and pulsed x-ray sources, before and after its use on a shot campaign. The QXI is a gated x-ray imager1 used for a variety of experiments conducted in the Inertial Confinement Fusion and Radiation Physics Program. The camera was assembled in Los Alamos and has been under development since 1997 and has now become the workhorse framing camera by the program. The electronics were built by Grant Applied Physics of San Fransisco, CA.2 The QXI has been used at the LANL Trident, LLNL Nova, and University of Rochester Laboratory OMEGA laser facilities. The camera consists of a grated microchannel plate (MCP), a phosphor coated fiberoptic faceplate coupled to film for data readout, along with high speed electronic pulsers to drive the x-ray detector. The QXI has both a two-strip and a four-strip detection head and has the ability to individually bias the gain of each of the strips. The timing of the QXI was done at the Trident short pulse laboratory, using 211 nm light. Single strip jitter was looked at as well and determined to be <25 ps. Flatfielding of the photocathode across the MCP was done with the Trident main laser with 150 J on a gold disk with a 1 ns. Spatial resolution was determined to be <5 {mu}m by using the same laser conditions as before and a backlit 1000 lp/in. grid. The QXI has been used on cylindrical implosion work at the Nova Laser Facility, and on direct-drive cylinder mix and indirect-drive high convergence implosion experiments at OMEGA. Its two-strip module has provided the capability to look at point backlighters, as part of technique development for experiments on the NIF. Its next use will be in March 2000 with its off axis viewer nose at Omega, providing a perpendicular view of Rayleigh--Taylor spike dissipation.

Evans, Scott C.; Archuleta, Tom N.; Oertel, John A.; Walsh, Peter J.

2001-01-01T23:59:59.000Z

469

ASCA Observations of the Sgr B2 Cloud: An X-Ray Reflection Nebula  

E-Print Network [OSTI]

We present the ASCA results of imaging spectroscopy of the giant molecular cloud Sgr B2. The X-ray spectrum is found to be very peculiar; it exhibits a strong emission line at 6.4 keV, a low energy cutoff below about 4 keV and a pronounced edge-structure at 7.1 keV. The X-ray image is extended and its peak position is shifted from the core of the molecular cloud toward the Galactic center by about 1--2 arcminute. The X-ray spectrum and the morphology are well reproduced by a scenario that X-rays from an external source located in the Galactic center direction are scattered by the molecular cloud Sgr B2, and come into our line of sight. Thus Sgr B2 may be called an X-ray reflection nebula. Possible implications of the Galactic center activity related to this unique source are presented.

H. Murakami; K. Koyama; M. Sakano; M. Tsujimoto; Y. Maeda

1999-08-20T23:59:59.000Z

470

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

471

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

472

Small-Angle Neutron Scattering study of solubilization of tributyl phosphate in aqueous solutions of L64 Pluronic triblock copolymers  

E-Print Network [OSTI]

We have studied the solubilization behaviour of tributylphosphate (TBP) in aqueous solutions of L64-Pluronics, using light and small angle neutron scattering (SANS). Varying the temperature and the oil-content, the system presents a non trivial phase behaviour. In particular, at 308K, a first solubilization followed by an emulsification failure and a resolubilization is found. We have measured the microstructure by SANS and characterized the microemulsion droplet core-size, corona-thickness, polydispersity, and interactions. It is shown that at low oil content, the system is made of small swollen micelles. After the phase separation, the resolubilization is carried by larger oil droplets decorated by copolymer. From specific surface measurements at large angles, a surprising change in surfactant conformation is found to accompany this morphological evolution which is also supported by previous results obtained from 1H NMR experiments. In independent measurements, our structural modelling is confirmed using contrast-variation SANS.

Jeremy Causse; Julian Oberdisse; Jacques Jestin; Serge Lagerge

2010-12-04T23:59:59.000Z

473

Single molecule imaging with longer x-ray laser pulses  

E-Print Network [OSTI]

In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

Martin, Andrew V; Caleman, Carl; Quiney, Harry M

2015-01-01T23:59:59.000Z

474

An effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering  

E-Print Network [OSTI]

Small angle neutron scattering intensity distributions taken from cytochrome C and lysozyme protein solutions show a rising intensity at very small wave vector, Q, which can be interpreted in terms of the presence of a weak long-range attraction between protein molecules. This interaction has a range several times that of the diameter of the protein molecule, much greater than the range of the screened electrostatic repulsion. We show evidence that this long-range attraction is closely related to the type of anion present and ion concentration in the solution.

Yun Liu; Emiliano Fratini; Piero Baglioni; Wei-Ren Chen; Sow-Hsin Chen

2005-08-05T23:59:59.000Z