Powered by Deep Web Technologies
Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Andre Anders  

NLE Websites -- All DOE Office Websites (Extended Search)

Andre Anders Andre Anders Andre Anders 1 Cyclotron Road MS 53R004 Berkeley CA 94720 Office Location: 53B-0101 (510) 486-6745 AAnders@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Zhu, Yuan Kun, Rueben J. Mendelsberg, Jiaqi Zhu, Jiecai Han, and André Anders. "Dopant-induced band filling and bandgap renormalization in CdO: In films." Journal of Physics D: Applied Physics 46, no. 19 (2013). Download: PDF (1.22 MB) 2012 Anders, André. "Self-organization and self-limitation in high power impulse magnetron sputtering." Applied Physics Letters 100, no. 224104 (2012). Download: PDF (1.2 MB) 2011 Anders, André, Delia J. Milliron, Rueben J. Mendelsberg, Sunnie H. N. Lim, Yuan Kun Zhu, and Joe Wallig. "Achieving high mobility ZnO:Al at very high

2

Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Principle of the Hollow-Anode Plasma Source Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Abstract The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 - 10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through

3

Robert Andre | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

4

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington September Anders Vice Chair Montana Henry Lorenzen Oregon W. Bill Booth Idaho James A. Yost Idaho Pat Smith Montana

5

Cathodic Arc Plasma Deposition  

Office of Scientific and Technical Information (OSTI)

Cathodic Arc Plasma Deposition Cathodic Arc Plasma Deposition André Anders Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 53, Berkeley, California 94720 aanders@lbl.gov Abstract Cathodic arc plasma deposition is one of oldest coatings technologies. Over the last two decades it has become the technology of choice for hard, wear resistant coatings on cutting and forming tools, corrosion resistant and decorative coatings on door knobs, shower heads, jewelry, and many other substrates. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions are reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. The

6

Working Principle of the Hollow-Anode Plasma Source Hollow-Anode Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

36240 36240 Plasma Sources Science and Technology 4 (1995) 571-575. Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 -10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through the anode hole and forms a bright plasma jet streaming with supersonic velocity (Mach number 1.2). The plasma stream can be used, for instance, in plasma-assisted deposition of thin films

7

THE FEDERAL ENERGY ADMINISTRATION By Roger Anders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL ENERGY FEDERAL ENERGY ADMINISTRATION By Roger Anders November 1980 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction For the three-year period between 1974 and 1977, the Federal Energy Administration implemented federal oil allocation and pricing regulations. An independent agency, the Federal Energy Administration was the successor of the Federal Energy Office, a short-term organization created to coordinate the government's response to the Arab oil embargo. By October 1977, when it became a part of the newly established Department of Energy, the Federal Energy

8

Christina Behr-Andres named science advisor to governor  

NLE Websites -- All DOE Office Websites (Extended Search)

Science advisor to governor Science advisor to governor Christina Behr-Andres named science advisor to governor Behr-Andres will aid indevelopment and promotion of science and technology policies for economic and educational opportunities. June 9, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James Rickman

9

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http:en.openei.orgwindex.php?titleMagnetote...

10

Andre H. Sayles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Andre H. Sayles Andre H. Sayles About Us Andre H. Sayles, Ph.D. - Principal Deputy Director of the Office of Economic Impact and Diversity and Acting Deputy Director of the Office of Minority Business and Economic Development Andre H. Sayles Career Highlights Dr. Sayles was the Director of Diversity Strategy and Implementation for the U.S. Army, where he was responsible for developing and leading implementation of strategic plans for sustaining the Army as a national leader in diversity through inclusive policies and practices, and supporting the Army's 1.3 million Soldiers and Army Civilians who serve our country. Dr. Sayles began his career with the Army in 1973 as a second lieutenant in the Army Corps of Engineers after graduating from West Point with a Bachelor of Science in Electrical Engineering.

11

Characterization of a low-energy constricted-plasma source  

NLE Websites -- All DOE Office Websites (Extended Search)

40374 (text only) 40374 (text only) Review. Sci. Instruments 69 (1998) 1340-1343. Characterization of a low-energy constricted-plasma source André Anders 1 and Michael Kühn 2 1 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 2 Institute of Physics, Technical University of Chemnitz, 09107 Chemnitz, Germany ABSTRACT The construction and principle of operation of the Constricted-Plasma Source are described. A supersonic plasma stream is produced by a special form of a dc-glow discharge, the constricted glow discharge. The discharge current and gas flow pass through an orifice of small diameter (constriction) which causes a space charge double layer but also serves as a nozzle to gasdynamically accelerate the plasma flow. Plasma parameters have been measured using Langmuir probes, optical emission spectroscopy, and a plasma monitor for mass-resolved energy measurements. Experiments have been done with nitrogen as the discharge gas. It was found that the energy distribution of both atomic and molecular ions have two peaks at about 5 eV and 15 eV, and the energy of almost all ions is less than 20 eV. The ionization efficiency decreases with increasing gas flow. The downstream plasma density is relatively low but activated species such as excited molecules and radicals contribute to film growth when the source is used for reactive film deposition

12

Nielsen, Mads Pagh; Kr, Sren Knudsen; Korsgaard, Anders Published in  

E-Print Network (OSTI)

one year. Three scenarios are analyzed ranging from heat following only (grid compensation combined heat and power fuel cell system. International Journal of Hydrogen Energy, 33(7), 1921: Control of a novel HTPEM-based micro combined heat and power fuel cell system Anders R. Korsgaard?, Mads P

Nielsen, Mads Pagh

13

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Andre Anders, Plasma Applications Group, 2006 Andre Anders, Plasma Applications Group, 2006 AVS 53rd International Symposium & Exhibition, November 12 - 17, 2006 Moscone West Convention Center, San Francisco, CA Invited Talk for Session Invited Talk for Session " " Surface Engineering 5 Surface Engineering 5 " " Pulsed Plasmas in Surface Engineering Pulsed Plasmas in Surface Engineering Pulsed Metal Plasmas Pulsed Metal Plasmas Andr Andr é é Anders Anders Lawrence Berkeley National Laboratory Berkeley, California USA aanders@lbl.gov This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. © Andre Anders, Plasma Applications Group, 2006 Motivation Motivation

14

Ground Gravity Survey At U.S. West Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details...

15

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

16

Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy  

Open Energy Info (EERE)

Aiken & Ander, 1981) Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details Location U.S. West Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Arizona, New Mexico, and southern Colorado References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_U.S._West_Region_(Aiken_%26_Ander,_1981)&oldid=389969" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

17

Plasma biasing to control the growth conditions of diamond-like carbon  

E-Print Network (OSTI)

M. M. Bilek and A. Anders, Plasma Sources Sci. Technol. 8 (important for carbon films. The plasma bias principle isnot limited to carbon plasmas may also be applied to other

Anders, Andre; Pasaja, Nitisak; Lim, Sunnie H.N.; Petersen, Tim C.; Keast, Vicki J.

2006-01-01T23:59:59.000Z

18

Basic mechanism for abrupt monsoon transitions Anders Levermanna,b,1  

E-Print Network (OSTI)

Basic mechanism for abrupt monsoon transitions Anders Levermanna,b,1 , Jacob Schewea,b , Vladimir 18, 2009 (received for review February 11, 2009) Monsoon systems influence the livelihood of hundreds strong and abrupt changes. Though details of monsoon circulations are complicated, obser- vations reveal

Levermann, Anders

19

lede andre : en studie av jobben som bas i byggebransjen.  

E-Print Network (OSTI)

??Sammendrag av hovedoppgave Lars Martin Torget Tittel: lede andre en studie av jobben som bas i byggebransjen Denne oppgaven handler om basen i (more)

Torget, Lars Martin

2004-01-01T23:59:59.000Z

20

Anders ngstrm and His Early Papers on Probability Forecasting and the Use/Value of Weather Forecasts  

Science Conference Proceedings (OSTI)

Anders K. ngstrm was known primarily for his contributions to the field of atmospheric radiation. However, his scientific interests encompassed many diverse topics. This paper describes the contents of two early, remarkable, and, until recently,...

Erik Liljas; Allan H. Murphy

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ris National Laboratory Optics and Plasma Reserch Department  

E-Print Network (OSTI)

, Anders Bjarklev, Peter E. Andersen Risø National Laboratory, Optics and Plasma Research Department, DK amplifier Frederik D. Nielsen and Lars Thrane Risø National Laboratory, Optics and Plasma Research. Lyngby, Denmark Peter E. Andersen (corresponding author) Risø National Laboratory, Optics and Plasma

22

Andre Striegel  

Science Conference Proceedings (OSTI)

... 2005; ACS-DAC Award for Young Investigators in Separation Science, 2004; Solutia Technical Achievement Award, 2003. ...

2012-11-15T23:59:59.000Z

23

ANDR_2012  

Science Conference Proceedings (OSTI)

... Hussey. In Situ Neutron Techniques for Studying Lithium Ion Batteries, chapter 6, pages 91-106. [ bib | DOI | arXiv | http ]. ...

24

Low temperature deposition of transparent conducting oxide films: Comparison of different pulsed sputtering and arc plasma methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows André Anders, Jonathan L. Slack, and Thomas J. Richardson Lawrence Berkeley National Laboratory Berkeley, California Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer

25

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington October 29, 2013 MEMORANDUM TO: Council Members FROM: Jeff Allen, Idaho Council Office Director and Policy Analyst SUBJECT: Update on the Redfish Lake Sockeye Hatchery in Springfield, ID. Idaho Department of Fish and Game

26

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington July 30 Northwestern Link Rick PacifiCorp Kinney Scott Avista Stokes Mark Idaho Power Publicly Owned Utilities Huhta Utilities O'Meara Kevin PPC Prescott John PNGC Commissions Sterling Rick Idaho Johnson Steve Washington

27

Available Technologies: Super High Rate Sputter Deposition  

Andre Anders of Berkeley Lab has developed a very high deposition rate magnetron sputtering wherein the surface of a target and the race track zone area of the ...

28

Sequence stratigraphy of the upper San Andres and Grayburg formations, Waddell Field, Crane County, Texas: implications for hydrocarbon reservoir distribution  

E-Print Network (OSTI)

The upper San Andres and Grayburg formations (Guadalupian) were deposited on carbonate platforms around the Permian Basin region and are extensive hydrocarbon reservoirs in the region. The Waddell Field (East Waddell Ranch) on the eastern margin of the Central Basin Platform has been producing hydrocarbons since 1935 and current engineering activity includes infill drilling and varying enhanced recovery strategies. This study establishes a sequence stratigraphic framework for the upper San Andres and Grayburg formations-nations in the Waddell Field using cores, well logs, and outcrop analogs. The sequence stratigraphic interpretation was correlated to equivalent. strata on the Northwest Shelf and compared to known reservoir horizons in the Waddell Field. On the western margin of the field, production is dominant in deep to shallow subtidal lithofacies in two high-frequency sequences. These two high-frequency sequences correspond to Guadalupian 12 and 13 high-frequency sequences described on the Northwest Shelf. The San Andres and Grayburg formations are separated by a Type I sequence boundary during which subaerial exposure of the platform and siliciclastic progradation occurred. Production from the Grayburg Formation is also dominated by subtidal peloidal facies and migrates towards the eastern margin of the field, higher in the stratigraphy. The Grayburg sequence model divides the formation into two highfrequency cycles which correspond to Guadalupian 14 and 15 high-frequency cycles on the Northwest Shelf based on sequence geometry, platform position and high-frequency cycle type. Reservoirs in the Waddell Field (East Waddell Ranch) produce almost exclusively from the deep to shallow subtidal facies in the transgressive systems tracts of each high-frequency sequence and only down-dip from the inter-and supratidal facies. Up-dip shallow and peritidal facies within the transgressive systems tracts and in the overlying high-stand systems tracts provide up-dip and overlying seals.

Pinsonnault, Scott Michael

1996-01-01T23:59:59.000Z

29

APPLICATION OF WATER-JET HORIZONTAL DRILLING TECHNOLOGY TO DRILL AND ACIDIZE HORIZONTAL DRAIN HOLES, TEDBIT (SAN ANDRES) FIELD, GAINES COUNTY, TEXAS  

SciTech Connect

The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.

Michael W. Rose

2005-09-22T23:59:59.000Z

30

2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interoperability of Demand Response Interoperability of Demand Response Resources in NY Andre Wellington Con Edison June 8, 2012 December 2008 Interoperability of Demand Resource Resources in NY Objective Life-cycle Funding ($M) FY08 - FY13 $6.8 million Technical Scope (Insert graphic here) Develop and demonstrate technology required to integrate customer owned resources into the electrical distribution system * Evaluate interconnection designs * Design and install thermal storage plant with enhanced capabilities * Develop AutoDR application for targeted distributed resources 2 December 2008 Needs and Project Targets Develop the technology required to integrate customer owned distributed resources into the distribution system to enable the of deferment capital investments. * Remote dispatch of customer resources

31

An Integrated Study of the Grayburg/San Andres Reservoir, Foster and South Cowden Fields, Ector County Texas  

SciTech Connect

For a part of the Foster and South Cowden (Grayburg-San Andres) oil fields, improvement in oil production has been accomplished, in part, by using ?pipeline fracturing? technology in the most recent completion to improve fluid flow rates, and filtration of waterflood injection water to preserve reservoir permeability. The 3D seismic survey acquired in conjunction with this DOE project has been used to calculate a 3D seismic inversion model, which has been analyzed to provide detailed maps of porosity within the productive upper 250 feet of the Grayburg Formation. Geologic data, particularly from logs and cores, have been combined with the geophysical interpretation and production history information to develop a model of the reservoir that defines estimations of remaining producible oil. The integrated result is greater than the sum of its parts, since no single data form adequately describes the reservoir. Each discipline relies upon computer software that runs on PC-type computers, allowing virtually any size company to affordably access the technology required to achieve similar results.

Richard Weinbrandt; Robert C. Trentham; William Robinson

1997-10-23T23:59:59.000Z

32

Depositional sequences and integrated recovery efficiency forecast models for San Andres and Clearfork Units in the Central Basin Platform and the Northern Shelf, west Texas  

E-Print Network (OSTI)

This paper develops depositional sequences of the carbonate ramp and the carbonate shelf models for an idealized cycle and multiple cycles of depositions. Based on the developed depositional sequences, the integrated recovery efficiency forecast models of primary, initial waterflood and infill drilling are developed for the San Andres and Clearfork reservoirs in Central Basin Platform and the Northern Shelf, west Texas. The geological parameters and well spacing are considered major factors for controlling recovery efficiencies. The depositional environment and diagenesis are controlling geological factors affecting oil recovery efficiencies. The depositional sequences characterize the vertical and lateral variations of depositional-energy environments in development of the carbonate ramp and the carbonate shelf The depositional-energy environment controls the depositional rock's facies. The well-sorted and large-size grainstones are related to the higher depositional-energy environment. The poorly-sorted and small-size rocks are related to the lower depositional-energy environment. The depositions of the San Andres and Clearfork formation in the Central Basin Platform, separately, follow the prograding-ramp sequences of one major cycle with multiple subcycles. The lumping depositional energy increases from the inner platform to the platform boundary. Similarly, the depositions of San Andres and Clearfork formation in the Northern Shelf also follow one major prograding cycle with multiple subcycles, separately. However, the lumping depositional energy, decreases from the inner platform to the platform boundary. A normalized depositional energy index is defined based on the depositional sequences of the ramp and shelf models. Normalization is also used to define a porosity index and a well spacing index. Linear and exponential regressions on a database are conducted to develop recovery efficiency forecast models which include depositional energy, porosity and well spacing indices. Section 17, Dollarhide Clearfork Unit is used as an example to show the applications of the recovery efficiency forecast models.

Shao, Hongbin

1994-01-01T23:59:59.000Z

33

Development and results of the Hale/Mable leases cooperative polymer EOR injection project, Vacuum (Grayburg-San Andres) field, Lea County, New Mexico  

SciTech Connect

This paper presents a case history of the design, implementation, and results of a tertiary polymer EOR injection project conducted by Phillips Petroleum Co. in their Hale and Mable leases located in the Vacuum (Grayburg-San Andres) field, Lea County, NM. Polymer is being injected at a relatively low concentration, and the paper concludes that, given the reservoir rock and fluid properties prevalent in the Hale and Mable leases, a low-concentration polymer flood is just as effective as a higher-concentration flood as long as the total pounds of polymer injected is the same.

Hovendick, M.D. (Phillips Petroleum Co. (US))

1989-08-01T23:59:59.000Z

34

Laboratory Directed Research and Development Program FY 2010  

E-Print Network (OSTI)

Trans. Plasma Sci. , under review. Invention Disclosures A.Anders, invention disclosure IB-2803: "Method and Apparatus2009. A. Anders, invention disclosure IB-2830: "Plasma lens

Hansen, Todd

2011-01-01T23:59:59.000Z

35

Browse by Discipline -- E-print Network Subject Pathways: Engineering...  

Office of Scientific and Technical Information (OSTI)

Jaun, Andr (Andr Jaun) - Division of Plasma Physics, Alfvn Laboratory, Royal Institute of Technology (KTH) Ji, Hantao (Hantao Ji) - Princeton Plasma Physics Laboratory Juric,...

36

ANDR_2012.bib  

Science Conference Proceedings (OSTI)

... Downing and Joseph A. Dura and Daniel S. Hussey}, title = {In Situ Neutron Techniques for Studying Lithium Ion Batteries}, booktitle = {Polymers ...

37

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

40 results: 40 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is André Anders [Clear All Filters] 2013 Zhu, Yuan Kun, Rueben J. Mendelsberg, Jiaqi Zhu, Jiecai Han, and André Anders. "Dopant-induced band filling and bandgap renormalization in CdO: In films." Journal of Physics D: Applied Physics 46, no. 19 (2013). 2012 Anders, André. "Self-organization and self-limitation in high power impulse magnetron sputtering." Applied Physics Letters 100, no. 224104 (2012). 2011 Anders, André, Delia J. Milliron, Rueben J. Mendelsberg, Sunnie H. N. Lim, Yuan Kun Zhu, and Joe Wallig. "Achieving high mobility ZnO:Al at very high growth rates by dc filtered cathodic arc deposition." Journal of Physics D: Applied Physics 44, no. 2011 (2011).

38

windows Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPUTY GROUP LEADER Charlie Curcija 495-2602 90-3111 dccurcija@lbl.gov WINDOWS AND DAYLIGHTING STAFF Andre Anders 486-6745 53-004 aanders@lbl.gov Dennis...

39

Microsoft Word - PBII Plenary Paper.doc  

Office of Scientific and Technical Information (OSTI)

From Plasma Immersion Ion Implantation to Deposition: From Plasma Immersion Ion Implantation to Deposition: A Historical Perspective on Principles and Trends André Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA Abstract Plasma immersion techniques of surface modification are known under a myriad of names. The family of techniques reaches from pure plasma ion implantation, to ion implantation and deposition hybrid modes, to modes that are essentially plasma film deposition with substrate bias. In the most general sense, all plasma immersion techniques have in common that the surface of a substrate (target) is exposed to plasma and that relatively high substrate bias is applied. The bias is usually pulsed. In this review, the roots of immersion techniques are explored, some going back

40

PLASMA GENERATOR  

DOE Patents (OSTI)

This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

Foster, J.S. Jr.

1958-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Deposition Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

42

An integrated study of the Grayburg/San Andres Reservoir, Foster and South Cowden Fields, Ector County, Texas. Annual report, August 1, 1996--July 31, 1997  

SciTech Connect

The objective of this two-phase study is to demonstrate an integrated methodology for reservoir characterization of shallow shelf carbonate reservoir that is feasible, and cost effective for the independent operator. Furthermore, it will provide one of the first public demonstrations of the enhancement of reservoir characterization using high-resolution three dimensional (3D) seismic data. This particular project is evaluating the Grayburg and San Andres reservoirs in the Foster and South Cowden Fields, Ector County, Texas. This 68 year old field was approaching its economic limit and the leases evaluated would have been abandoned in 10 years. A multidisciplinary approach to waterflood design and implementation, along with the addition of reserves by selective infill drilling and deepening, is being applied to this field. This approach in reservoir development will be applicable to a wide range of shallow shelf carbonate reservoirs throughout the US. The first phase of the project included the design, acquisition, and interpretation of the 3D seismic survey, the collection and evaluation of geologic (core and log) data, and engineering (historical production, well test, injection) data from a variety of sources. From this work, a geologically based production history model was simulated. Based on the recommendations made at the end of Phase One, three new wells were drilled, one existing well was deepened, two wells were worked over, one TA`d well was re-entered, and one well was converted to injection. In addition, the quality of the injection water was greatly improved, a step necessary prior to increasing injection in the project area. The realignment of the waterflood and all additional well work await the completion of the seismic based history match and engineering simulation.

Trentham, R.C.; Weinbrandt, R.; Robinson, W.

1997-12-01T23:59:59.000Z

43

LBNL-40374 UC-426  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-40374 LBNL-40374 UC-426 presented at the 7th International Conference on Ion Sources Taormina, Italy, September 7-13, 1997 and accepted for publication "as is" on Sept. 12, 1997 Review of Scientific Instruments Characterization of a low-energy constricted-plasma source André Anders 1 and Michael Kühn 2 1 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 2 Institute of Physics, Technical University of Chemnitz, 09107 Chemnitz, Germany August 1997 Abstract The construction and principle of operation of the Constricted-Plasma Source are described. A supersonic plasma stream is produced by a special form of a dc-glow discharge, the constricted glow discharge. The discharge current and gas flow pass through an orifice of

44

Plasma valve  

DOE Patents (OSTI)

A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.

Hershcovitch, Ady (Mount Sinai, NY); Sharma, Sushil (Hinsdale, IL); Noonan, John (Naperville, IL); Rotela, Elbio (Clarendon Hills, IL); Khounsary, Ali (Hinsdale, IL)

2003-01-01T23:59:59.000Z

45

PLASMA ENERGIZATION  

DOE Patents (OSTI)

BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

Furth, H.P.; Chambers, E.S.

1962-03-01T23:59:59.000Z

46

PLASMA DEVICE  

DOE Patents (OSTI)

A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

Baker, W.R.

1961-08-22T23:59:59.000Z

47

Andres Jaramillo-Botero (bio) Dr. ANDRES JARAMILLO-BOTERO  

E-Print Network (OSTI)

, Binghamton, New York, USA. 1989. Fulbright scholar. § Bachelor of Science in Electrical Engineering, Boston Technology Association (JITA) in research/training on advanced robotic technologies. § Author Denki's (Factory Automation division) automatic printed circuit board (PCB) checkers. § Co

Goddard III, William A.

48

Andr Laperrire Laboratoire des technologies  

E-Print Network (OSTI)

customer confidence, leading ultimately to market transformation » (Electric Power Research Institute EPRI PERIOD no 1 : Integrating sphere Luminaire LED Luminaire T5HO Luminaire MH Power (Watts) 373 326 460 no 2 : Goniophotometer and dimming effect 100% of LED power 75% of LED power 50 % of LED power 25

California at Davis, University of

49

Plasma Nitrocarburizing  

Science Conference Proceedings (OSTI)

...heat pollution Reduced processing times Reduced energy consumption Reduced treatment gas consumption Industrial plasma nitrocarburizing processing modules contain: Vacuum furnace Vacuum system Gas supply with gas mixing and pressure control system Electric power supply unit Microprocessor control unit...

50

PLASMA DEVICE  

DOE Patents (OSTI)

A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

Baker, W.R.; Brathenahl, A.; Furth, H.P.

1962-04-10T23:59:59.000Z

51

Studies of plasma transport  

SciTech Connect

This report discusses the charge-coupled device camera and other plasma diagnostic equipment used to measure plasma density and other plasma properties. (LSP)

Malmberg, J.H.; O' Neil, T.M.; Driscoll, C.F.

1991-07-22T23:59:59.000Z

52

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

53

April 2013 Most Viewed Documents for Physics | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Physics April 2013 Most Viewed Documents for Physics Lithium literature review: lithium's properties and interactions Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E. (1978) 123 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 85 Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors Cai, Yuankun (2010) 83 White LED with High Package Extraction Efficiency Yi Zheng; Matthew Stough (2008) 79 Analysis of Lithium-Ion Battery Degradation During Thermal Aging JUNGST,RUDOLPH G.; NAGASUBRAMANIAN,GANESAN; CRAFTS,CHRIS C.; INGERSOLL,DAVID; DOUGHTY,DANIEL H. (2000) 74 Cathodic arc plasma deposition Anders, Andre (2002) 73 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams]

54

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

55

Plasma sweeper. [Patents  

DOE Patents (OSTI)

A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, R.W.; Glanz, J.

1982-10-25T23:59:59.000Z

56

The Absence of Plasma in "Spark Plasma Sintering"  

E-Print Network (OSTI)

investigations on the spark plasma sintering/synthesisinvestigations on the spark plasma sintering/synthesisLichtenberg, Principles of Plasma Discharges and Materials

Hulbert, Dustin M.

2008-01-01T23:59:59.000Z

57

Plasma diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

of superheated and electrically charged gases known as plasmas. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

58

Plasma processes in non-ideal plasmas  

Science Conference Proceedings (OSTI)

Non-ideal plasma equation of state, radiative cross-sections and energy exchange coefficients are described in a tutorial overview.

More, R.M.

1986-03-01T23:59:59.000Z

59

Plasma Astrophysics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

which gives rise to astrophysical events that include auroras, solar flares and geomagnetic storms. The process occurs when the magnetic field lines in plasmas break and...

60

Interdisciplinary plasma theory workshop | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary plasma theory workshop April 15, 2013 Tweet Widget Facebook Like Google Plus One (Photo by Elle Starkman PPPL Office of Communications) PPPL postdoctoral fellow...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Basic and Kinetic Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

62

Plasma-Thermal Synthesis  

INLs Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

63

Model of detached plasmas  

SciTech Connect

Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model.

Yoshikawa, S.; Chance, M.

1986-07-01T23:59:59.000Z

64

Mirror plasma apparatus  

DOE Patents (OSTI)

A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

Moir, Ralph W. (Livermore, CA)

1981-01-01T23:59:59.000Z

65

Hertz' Principles of Mechanics Johanna Pejlare och Anders berg  

E-Print Network (OSTI)

of the necessary consequents in nature of the things pictured. In order that this reuirement may be satisfied

?berg, Anders

66

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

67

INTERARTICULATOR PROGRAMMING IN OBSTRUENT PRODUCTION* Anders LBfqvist+ and Hirohide Yoshioka++  

E-Print Network (OSTI)

- ent languages using the combined techniques of electromyography, transillumination and fiberoptic #12;Voiceless obstruent production requires control and coordination of several articulatory systems, and the distance between the vocal processes measured as an index of glottal opening. The light passing through

68

Advanced Neutron Diffractometer / Reflectometer (AND/R)  

Science Conference Proceedings (OSTI)

... Mathieu Doucet. Doris Kendig. Dan Keyser. Lynn Shuman. Thuan Thai. Jeff Ziegler. Mechanical Technicians: George Baltic. Dave Clem. Michael Gue ...

69

Curriculum Vitae Andrs Guerra, Ph.D.  

E-Print Network (OSTI)

in a MINLP with Complementarity Constraints." INFORMS Annual Conference, November 2010, Austin, TX. o "Design between Energy Efficiency and Structural Efficiency." I aim to incorporate the

70

Advanced Neutron Diffractometer / Reflectometer (AND/R)  

Science Conference Proceedings (OSTI)

... included are three federal agencies, the National Institute of Standards and Technology (NIST), Los Alamos National Laboratory (LANL), and the ...

71

MAGIK and AND/R Publications  

Science Conference Proceedings (OSTI)

... In Situ Neutron Techniques for Studying Lithium Ion Batteries, chapter 6, pages ... For Investigation of Thin Films and Multilayers for the Life Sciences,. ...

72

What is a plasma?  

SciTech Connect

This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

73

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas  

E-Print Network (OSTI)

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas Robert Rosner The University of Chicago Dec. 12, 2000 Austin, TX (http://flash.uchicago.edu) #12;Burning Plasma Science Workshop Austin ¥ Plasma conditions ¥ Overview of plasma physics issues for astrophysics ¥ Specific examples #12;Burning

74

Plasma Processing Of Hydrocarbon  

SciTech Connect

The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

2007-05-01T23:59:59.000Z

75

PlasmaMethane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

76

Plasma-Quench  

INL has developed a thermal plasma quench to cool the heat generated from rapid chemical reactions, preventing adverse reactions or decompositions to ...

77

Physics of Complex Plasmas.  

E-Print Network (OSTI)

??Physics of complex plasmas is a wide and varied field. In the context of this PhD thesis I present the major results from my research (more)

Stterlin, Robert

2010-01-01T23:59:59.000Z

78

Spark Plasma Sintering  

Science Conference Proceedings (OSTI)

Oct 21, 2010 ... Coupled Electro-Thermo-Mechanical Analysis of Conventional (SPS) and Free Pressureless (FPSPS) Spark-Plasma Sintering: Eugene...

79

Plasma-Borohydride  

INLs Plasma-Borohydride process produces borohydride from sodium borate which is capable of forming a chemical hydride for a storage medium of hydrogen.

80

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

Transport in tokamak plasma . . . . . . . . . . . . . . .of tokamak plasma . . . . . . . . . 1.4 Dissertationtransport model for edge plasma . . . . . . 6.1 Anomalous

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plasma technology directory  

SciTech Connect

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

82

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, Clifford W. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

83

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, C.W.

1986-07-14T23:59:59.000Z

84

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

85

Plasma opening switch  

DOE Patents (OSTI)

A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

Savage, Mark E. (Albuquerque, NM); Mendel, Jr., Clifford W. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

86

Plasma-based accelerator structures  

E-Print Network (OSTI)

Particle Beam Dynamics in. a Hollow Plasma Channel 3.1Structure of the Hollow Plasma Channel . . . . 2.2.1 ChannelLimit . . 5.2.6 Laser-Plasma Instabilities . . . 5.3

Schroeder, C.B.

2011-01-01T23:59:59.000Z

87

Plasma sheath criterion in thermal electronegative plasmas  

Science Conference Proceedings (OSTI)

The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Khoramabadi, Mansour; Ghorannevis, Mahmod [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Shukla, Padma Kant [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2010-09-15T23:59:59.000Z

88

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

C. Andes, and E. Hudson, Plasma Processes and Polymers 6,J. P. Booth, and G. Cunge, Plasma Sources Sci. Technol. 5,and B. M. Alexandrovich, Plasma Sources Sci. Technol. 1,

Titus, Monica Joy

2010-01-01T23:59:59.000Z

89

Plasma control and utilization  

SciTech Connect

A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma.

Ensley, Donald L. (Danville, CA)

1976-12-28T23:59:59.000Z

90

Kinetic Theory of Plasma Waves - Part III: Inhomogeneous Plasma  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

P. U. Lamalle

91

Fizeau plasma interferometer  

SciTech Connect

This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful. (MOW)

Frank, A.M.

1980-01-01T23:59:59.000Z

92

Plasma Screen Floating Mount  

Engineers at the Savannah River National Laboratory (SRNL) have invented a new mounting system for flat panel video technology. The plasma screen floating mount is a mounting system proven to eliminate vibration and dampen shock for mobile uses of ...

93

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, D.E.

1982-07-02T23:59:59.000Z

94

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, Donald E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

95

Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma  

SciTech Connect

The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

A. Dunaevsky; N.J. Fisch

2003-10-02T23:59:59.000Z

96

Electrostatics of moving plasma  

SciTech Connect

The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

Ignatov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-07-15T23:59:59.000Z

97

Oscillations in quasineutral plasmas  

Science Conference Proceedings (OSTI)

The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called {open_quotes}quasineutral regime{close_quotes} of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs.

Grenier, E. [Ecole Normale Superieure, Paris (France)

1996-12-31T23:59:59.000Z

98

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

99

Plasma Formation, Measurement and Control  

E-Print Network (OSTI)

The beauty found in looking at plasmas in the world inspires future generations of engineers and scientists While factory walls hide them from sight industrial plasmas are no less ubiquitous Cover-photo: Another day filled with plasma, 26 December 1996. Multiexposure photograph of the midnight sun in Antarctica. Courtesy of Dr. Darryn A. Schneider, PhD in plasma physics. 1

Albert R. Ellingboe; Miles M. Turner

2002-01-01T23:59:59.000Z

100

Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications.

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

102

Plasma cleaning for waste minimization  

Science Conference Proceedings (OSTI)

Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

Ward, P.P.

1993-07-01T23:59:59.000Z

103

Plasma Colloquium Travel Grant Program  

SciTech Connect

OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

Hazeltine, R.D.

1998-09-14T23:59:59.000Z

104

Furth Plasma Physics Libary  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Hours Online Access Directions Contacts Hours Online Access Directions QuickFind Main Catalog Databases PPPL Publications & Reports/PPLcat Plasma Physics E-Journals clear Click arrows to scroll for more clear Plasma Physics Colloquia The Global Carbon Cycle and Earth's Climate - January 15, 2014 Addressing Big Data Challenges in Simulation-based Science - January 22, 2014 "The Usefulness of Useless Knowledge?: The History of the Institute for Advanced Study - January 29, 2014 PM-S-1 PDF PM-S-2 PDF PM-S-3 PDF PM-S-4 PDF PM-S-5 PDF PM-S-6 PDF See All Library History Intro 950 1960-1970 1980 1990 2000 Quick Order Article Express Borrow Direct Interlibrary Loan PPL Book Request More Resources and Services Search & Find Articles & Databases - Plasma Physics, Physics, Engineering & Technology,

105

Perturbations in a plasma  

E-Print Network (OSTI)

The perturbations of a homogeneous non-relativistic two-component plasma are studied in the Coulomb gauge. Starting from the solution found [2] of the equations of electromagnetic self consistency in a plasma [1], we add small perturbations to all quantities involved, and we enter the perturbed quantities in the equations, keeping only the first order terms in the perturbations. Because the unperturbed quantities are solutions of the equations, they cancel each other, and we are left with a set of 12 linear equations for the 12 perturbations (unknown quantities). Then we solve this set of linearized equations, in the approximation of small ratio of the masses of electrons over those of ions, and under the assumption that the plasma remains homogeneous.

Evangelos Chaliasos

2005-10-20T23:59:59.000Z

106

Plasma Simulation Program  

SciTech Connect

Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

Greenwald, Martin

2011-10-04T23:59:59.000Z

107

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...

108

A Plasma Lens for Magnetron Sputtering  

E-Print Network (OSTI)

for Sputtering with a Plasma Lens", December 7, 2009 (V. M. Khoroshikh, "Motion of plasma streams from a vacuumarc in a long, straight plasma optics system," Sov. J.

Anders, Andre

2011-01-01T23:59:59.000Z

109

Quark-Gluon Plasma Thermalization and Plasma Instabilities  

E-Print Network (OSTI)

In this talk, I review the important role played by plasma instabilities in the thermalization of quark-gluon plasmas at very high energy. [Conference talk presented at Strong and Electroweak Mattter 2004, Helsinki, Finland, June 16--19.

Peter Arnold

2004-08-31T23:59:59.000Z

110

A plasma source for system for microwave plasma experiments (SYMPLE)  

Science Conference Proceedings (OSTI)

A system "SYMPLE" is being developed at our laboratory to investigate the interaction of high power microwave and plasma. A brief account on the development of a plasma source that satisfies the prerequisites required for SYMPLE is discussed.

V. P. Anitha; Renu Bahl; Priyavandna J. Rathod; Jayesh Raval; Y. C. Saxena

2011-02-01T23:59:59.000Z

111

Thermal plasma processing of materials  

SciTech Connect

Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

Pfender, E.; Heberlein, J.

1992-02-01T23:59:59.000Z

112

Chapter 18. Plasma Electrodynamics and Applications Plasma Electrodynamics and Applications  

E-Print Network (OSTI)

with the electrodynamics of waves in plasmas, with phenomena relevant to controlled fusion energy generation in high transformation of a cold-plasma extraordinary (X) wave to a kinetic electron-Bernstein wave (EBW and current drive in magnetically confined fusion plasmas. Section 3, in particular, describes the analysis

113

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

114

Hollow Plasma in a Solenoid  

E-Print Network (OSTI)

kA, 140 s long, with B = 3 T. Fig. 3. Photograph of plasmaindicating plasma rotation near the axis (cathode ring 2 cmcoupling efficiency," Phys. Plasmas, vol. 15, pp. 072701-7,

Anders, Andre

2011-01-01T23:59:59.000Z

115

Burning Plasma Support Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M. Wolfe Alcator C-Mod Five Year Proposal Review MIT Plasma Science & Fusion Center Cambridge, MA May...

116

Kinetic Theory of Plasma Waves  

Science Conference Proceedings (OSTI)

Kinetic Wave Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

D. Van Eester; E. Lerche

117

Magnetoacoustic solitons in quantum plasma  

SciTech Connect

Nonlinear magnetoacoustic waves in collisionless homogenous, magnetized quantum plasma is studied. Two fluid quantum magneto-hydrodynamic model (QMHD) is employed and reductive perturbation method is used to derive Korteweg de Vries (KdV) equation for magnetoacoustic waves. The effects of plasma density and magnetic field intensity are investigated on magnetoacoustic solitary structures in quantum plasma. The numerical results are also presented, which are applicable to explain some aspects of the propagation of nonlinear magnetoacosutic wave in dense astrophysical plasma situations.

Hussain, S.; Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore, Islamabad (Pakistan); Department of Physics and Applied Mathematics (DPAM), PIEAS, P.O. Nilore, Islamabad (Pakistan)

2011-08-15T23:59:59.000Z

118

Experiments on Cryogenic Complex Plasma  

SciTech Connect

Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M. [Faculty of Engineering, Yokohama National University Yokohama, 240-8501 (Japan)

2009-11-10T23:59:59.000Z

119

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

120

Burning Plasma Developments Presented to  

E-Print Network (OSTI)

Burning Plasma Developments Dale Meade Presented to VLT Program Advisory Committee UCLA December 4 and Burning Plasma Issues · NSO PAC Activities First Meeting July 20-21, 2001 at GA Action Items and Status Second Meeting January 17-18, 2001 at MIT Agenda items · FuSAC Recommendation on a burning plasma

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Controlled zone microwave plasma system  

DOE Patents (OSTI)

An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

2009-10-20T23:59:59.000Z

122

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

123

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

124

High beta plasma operation in a toroidal plasma producing device  

DOE Patents (OSTI)

A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

Clarke, John F. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

125

Instabilities and pattern formation in lowtemperature plasmas  

E-Print Network (OSTI)

of the plasma region is approximately 20cm. (Produced by the Plasma Research Laboratory, Dublin City University

126

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

127

Experimental Plasma Research project summaries  

SciTech Connect

This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1980-09-01T23:59:59.000Z

128

Experimental plasma research project summaries  

SciTech Connect

This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1978-08-01T23:59:59.000Z

129

Closed inductively coupled plasma cell  

DOE Patents (OSTI)

A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

Manning, T.J.; Palmer, B.A.; Hof, D.E.

1990-11-06T23:59:59.000Z

130

Princeton Plasma Physics Laboratory:  

SciTech Connect

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

131

2XIIB plasma confinement experiments  

SciTech Connect

This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10/sup 13/ cm/sup -3/, anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10/sup 10/ cm/sup -3/.s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10/sup 14/ cm/sup -3/. In the latter case, the energy confinement parameter reaches ntau/sub E/ = 7 x 10/sup 10/ cm/sup -3/.s, and the particle confinement parameter reaches ntau/sub p/ = 1 x 10/sup 11/ cm/sup -3/.s.

Coensgen, F.H.; Clauser, J.F.; Correll, D.L.

1976-08-06T23:59:59.000Z

132

Gravitational lensing in plasma: Relativistic images at homogeneous plasma  

E-Print Network (OSTI)

We investigate the influence of plasma presence on relativistic images formed by Schwarzschild black hole lensing. When a gravitating body is surrounded by a plasma, the lensing angle depends on a frequency of the electromagnetic wave due to refraction properties, and the dispersion properties of the light propagation in gravitational field in plasma. The last effect leads to difference, even in uniform plasma, of gravitational deflection angle in plasma from vacuum case. This angle depends on the photon frequency, what resembles the properties of the refractive prism spectrometer. Here we consider the case of a strong deflection angle for the light, traveling near the Schwarzschild black hole, surrounded by a uniform plasma. Asymptotic formulae are obtained for the case of a very large deflection angle, exceeding $2\\pi$. We apply these formulae for calculation of position and magnification of relativistic images in a homogeneous plasma, which are formed by the photons performing one or several revolutions around the central object. We conclude that the presence of the uniform plasma increases the angular size of relativistic rings or the angular separation of point images from the gravitating center. The presence of the uniform plasma increases also a magnification of relativistic images. The angular separation and the magnification become significantly larger than in the vacuum case, when the photon frequency goes to a plasma frequency.

Oleg Yu. Tsupko; Gennady S. Bisnovatyi-Kogan

2013-05-30T23:59:59.000Z

133

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

1991-07-16T23:59:59.000Z

134

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

Tsai, Chin-Chi (Oak Ridge, TN); Gorbatkin, Steven M. (Oak Ridge, TN); Berry, Lee A. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

135

Plasma immersion surface modification with metal ion plasma  

SciTech Connect

We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs.

Brown, I.G.; Yu, K.M. (Lawrence Berkeley Lab., CA (USA)); Godechot, X. (Lawrence Berkeley Lab., CA (USA) Societe Anonyme d'Etudes et Realisations Nucleaires (SODERN), 94 - Limeil-Brevannes (France))

1991-04-01T23:59:59.000Z

136

MHD description of plasma: handbook of plasma physics  

SciTech Connect

The basic sets of MHD equations for the description of a plasma in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional plasma, the two fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless plasma and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center theory and double adiabatic theory.

Kulsrud, R.M.

1980-10-01T23:59:59.000Z

137

Surface plasma wave excitation via laser irradiated overdense plasma foil  

SciTech Connect

A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

Kumar, Pawan; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)

2012-04-09T23:59:59.000Z

138

Furth Plasma Physics Library | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

139

COLLOQUIUM: Excitement at the Plasma Boundary" | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

140

Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Possible fusion reactor. [Movable plasmas  

SciTech Connect

A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor.

Yoshikawa, S.

1976-05-01T23:59:59.000Z

142

Bumper wall for plasma device  

DOE Patents (OSTI)

Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

Coultas, Thomas A. (Hinsdale, IL)

1977-01-01T23:59:59.000Z

143

Method for generating surface plasma  

SciTech Connect

A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

Miller, Paul A. (Albuquerque, NM); Aragon, Ben P. (Albuquerque, NM)

2003-05-27T23:59:59.000Z

144

News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

image and select "Save Image" or "Save Image As..." From left, Energy Secretary Ernest Moniz and Rich Hawryluk. Princeton University Princeton Plasma Physics Laboratory P.O. Box...

145

Institute for Plasma Research - TMS  

Science Conference Proceedings (OSTI)

VISIT THE JOM COVER GALLERY. BACK TO RESULTS. SEARCH AGAIN. Institute for Plasma Research. Division - FCIPT, B-15-17/P, GIDC, Electronics zone,...

146

Tours | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

147

CRADA | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

148

Directory | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

149

News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

150

WFO | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

151

Education | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

152

Engineering | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

153

Communications | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

154

STEM | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

155

Weather | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

156

History | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

157

ITER | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

158

About | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

159

Newsletters | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

160

Tokamaks | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Purpose | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

162

How Spherical Plasma Crystals Form  

Science Conference Proceedings (OSTI)

The correlation buildup and the formation dynamics of the shell structure in a spherically confined one-component plasma are studied. Using Langevin dynamics simulations the relaxation processes and characteristic time scales and their dependence on the pair interaction and dissipation in the plasma are investigated. While in systems with Coulomb interaction (e.g., trapped ions) in a harmonic confinement shell formation starts at the plasma edge and proceeds inward, this trend is significantly weakened for dusty plasmas with Yukawa interaction. With a suitable change of the confinement conditions the crystallization scenario can be externally controlled.

Kaehlert, H.; Bonitz, M. [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel (Germany)

2010-01-08T23:59:59.000Z

163

Lithium | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

164

Stellarators | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

165

Princeton Plasma Physics Lab - Tokamaks  

NLE Websites -- All DOE Office Websites (Extended Search)

tokamaks A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container. en Multinational achievement: PPPL collaborates...

166

Purification of tantalum by plasma arc melting  

DOE Green Energy (OSTI)

Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

167

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.particle accelerators, plasmas can sustain acceleratingthat use laser-driven plasma waves. These plasma- based

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

168

Plasma wave propagation with a plasma density gradient  

Science Conference Proceedings (OSTI)

Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup [Department of Electrophysics, Kwangwoon University, 447-1 Nowon Wallgye, Seoul 139-701 (Korea, Republic of)

2011-03-15T23:59:59.000Z

169

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

inert atomic gas plasma 20,33 ), and thermal conduction andplasma Ratio of displacement to conductionplasmas focusing on heating contribution from thermal heat conduction

Titus, Monica Joy

2010-01-01T23:59:59.000Z

170

Hollow Plasma in a Solenoid  

SciTech Connect

A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

2010-11-30T23:59:59.000Z

171

Plasma digital density determining device  

DOE Patents (OSTI)

The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

Sprott, Julien C. (Madison, WI); Lovell, Thomas W. (Madison, WI); Holly, Donald J. (Madison, WI)

1976-01-01T23:59:59.000Z

172

Experimental Plasma Research. Project summaries  

SciTech Connect

This is the fifth in a series of Project Summary books going back to 1976. They are issued approximately every two years and provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy (OFE).

1984-12-01T23:59:59.000Z

173

Filters for cathodic arc plasmas  

DOE Patents (OSTI)

Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

2002-01-01T23:59:59.000Z

174

Current Drive in Recombining Plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

P.F. Schmit and N.J. Fisch

2012-05-15T23:59:59.000Z

175

Current drive in recombining plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the influence of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero ''residual'' current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

Schmit, P. F.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2011-10-15T23:59:59.000Z

176

Plasma treatment advantages for textiles  

E-Print Network (OSTI)

The textile industry is searching for innovative production techniques to improve the product quality, as well as society requires new finishing techniques working in environmental respect. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Such systems are now existing and the use of plasma physics in industrial problems is rapidly increasing. On textile surfaces, three main effects can be obtained depending on the treatment conditions: the cleaning effect, the increase of microroughness (anti-pilling finishing of wool) and the production of radicals to obtain hydrophilic surfaces. Plasma polymerisation, that is the deposition of solid polymeric materials with desired properties on textile substrates, is under development. The advantage of such plasma treatments is that the modification turns out to ...

Sparavigna, Amelia

2008-01-01T23:59:59.000Z

177

Plasma Wakefield Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

178

Steady state compact toroidal plasma production  

DOE Patents (OSTI)

This invention relates to the confinement of field reversed plasma rings and, more particularly, to the steady state maintainance of field reversed plasma rings produced by coaxial plasma guns.

Turner, W.C.

1983-05-17T23:59:59.000Z

179

Resonant-cavity antenna for plasma heating  

DOE Patents (OSTI)

This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

1984-01-10T23:59:59.000Z

180

Presheath profiles in simulated tokamak edge plasmas  

SciTech Connect

The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines.

LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Hydrogen Analysis Repository: Westinghouse Plasma Gasification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Projects by Principal Investigator Projects by Date U.S. Department of Energy Westinghouse Plasma Gasification Computer Model Project Summary Full Title: Plasma...

182

Science Education Lab | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Science Education Laboratory Overview Gallery: (Photo by Remote Control Glow Discharge) (Photo by DC Glow Discharges for Undergraduate Laboratories) (Photo by Atmospheric Plasma Laboratory) (Photo by 3D Printing Laboratory) (Photo by Remote Control Glow Discharge) (Photo by Plasma Speaker with 200 Hz input) (Photo by Dusty Plasma Laboratory) The Science Education Laboratory is a fusion (pun intended) of research between education and plasma science. This unique facility includes a teaching laboratory/classroom, two research labs, and student offices/storage/prep room. The research performed in the Science Education Laboratory is currently centered upon dusty plasmas, plasma speakers, remote control of plasmas for educational purposes, atmospheric plasmas and

183

Thermal Plasma Torches for Metallurgical Applications  

Science Conference Proceedings (OSTI)

Different types of plasma torches including a high power steam plasma torch and .... Recovery of Palladium and Rhodium from Spent Automobile Catalysts by...

184

Introduction to Plasma Physics Greg Hammett  

E-Print Network (OSTI)

displays Radiation Processing: Water purification, Plant growth Switches: Electric Power, Pulsed power propulsion: plasma thrusters, fusion powered propulsion Flat-Panel Displays: Field-emitter arrays, Plasma

Hammett, Greg

185

Computational and Experimental Investigations into Aerospace Plasmas.  

E-Print Network (OSTI)

??Investigations into two different fields of plasma research are presented here. These include the study of ion engine performance and the use of plasma discharges (more)

Bennett, William Thomas

2008-01-01T23:59:59.000Z

186

Interferometric measurements of plasma density in high-. beta. plasmas  

SciTech Connect

The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma.

Quinn, W.E.

1977-01-01T23:59:59.000Z

187

Surface plasma source with saddle antenna radio frequency plasma generator  

Science Conference Proceedings (OSTI)

A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

Dudnikov, V.; Johnson, R. P. [Muons, Inc., Batavia, Illinios 60510 (United States); Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, Tennessee 37831 (United States)

2012-02-15T23:59:59.000Z

188

Lee Honored for Work in Plasma Simulations | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Plasma Simulations By Patti Wieser September 13, 2011 Tweet Widget Facebook Like Google Plus One Wei-li Lee (Photo by Elle Starkman PPPL Office of Communications) Wei-li Lee...

189

Resonant Excitation of Plasma Wakefields  

SciTech Connect

We describe characteristics of the bunch train and plasma source used in a resonant plasma wakefield experiment at the Brookhaven National Laboratory Accelerator Test Facility. The bunch train has the proper correlated spread to unambiguously observe the expected energy gain by the witness bunch at resonance. The plasma density in the capillary discharge is sufficiently high to reach the resonance with the typical bunch train spacing of this experiment. It is also uniform over more than 3/4 of the 2 cm-long capillary.

Muggli, P.; Allen, B. [University of Southern California, Los Angeles, CA 90089 (United States); Yakimenko, V.; Fedurin, M.; Kusche, K.; Babzien, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-11-04T23:59:59.000Z

190

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

191

Dynamic modeling of plasma-vapor interactions during plasma disruptions  

SciTech Connect

Intense deposition of energy in short times on fusion reactor components during a plasma disruption may cause severe surface erosion due to ablation of these components. The exact amount of the eroded material is very important to the reactor design and its lifetime. During the plasma deposition, the vaporized wall material will interact with the incoming plasma particles and may shield the rest of the wall from damage. The vapor shielding may then prolong the lifetime of these components and increase the reactor duty cycle. To correctly evaluate the impact of vapor shielding effect a comprehensive model is developed. In this model the dynamic slowing down of the plasma particles, both ions and electrons, with the eroded wall material is established. Different interaction processes between the plasma particles and the ablated material is included. The generated photons radiation source and the transport of this radiation through the vapor to the wall is modeled. Recent experimental data on disruptions is analyzed and compared with model predictions. Vapor shielding may be effective in reducing the overall erosion rate for certain plasma disruption parameters and conditions.

Hassanein, A.; Ehst, D.A.

1992-05-01T23:59:59.000Z

192

Fusion/Plasma Physics materials  

NLE Websites -- All DOE Office Websites (Extended Search)

FusionPlasma Physics materials 71958-00 Large Chart 107 150 cm 17. 71958-01 Package of 30 Three-hole-punched Notebook Charts, chart size 43 28 cm, folded size 22 28 cm...

193

Mobile inductively coupled plasma system  

DOE Patents (OSTI)

A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

D`Silva, A.P.; Jaselskis, E.J.

1999-03-30T23:59:59.000Z

194

Quark-gluon plasma paradox  

E-Print Network (OSTI)

Based on simple physics arguments it is shown that the concept of quark-gluon plasma, a state of matter consisting of uncorrelated quarks, antiquarks, and gluons, has a fundamental problem.

Dariusz Miskowiec

2007-07-06T23:59:59.000Z

195

Tandem mirror plasma confinement apparatus  

DOE Patents (OSTI)

Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

Fowler, T. Kenneth (Walnut Creek, CA)

1978-11-14T23:59:59.000Z

196

Princeton Plasma Physics Lab - STEM  

NLE Websites -- All DOE Office Websites (Extended Search)

used throughout the week, including a plasma globe and a half-coated fluorescent light bulb, and they have the rare opportunity to apply for a 2,000 grant for additional lab...

197

Layered plasma polymer composite membranes  

DOE Patents (OSTI)

Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

Babcock, W.C.

1994-10-11T23:59:59.000Z

198

Princeton Plasma Physics Lab - Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

class"field-item even">

The U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) is a key contributor to ITER, a huge international fusion facility...

199

Flavors in an expanding plasma  

E-Print Network (OSTI)

We consider the effect of an expanding plasma on probe matter by determining time-dependent D7 embeddings in the holographic dual of an expanding viscous plasma. We calculate the chiral condensate and meson spectra including contributions of viscosity. The chiral condensate essentially confirms the expectation from the static black hole. For the meson spectra we propose a scheme that is in agreement with the adiabatic approximation. New contributions arise for the vector mesons at the order of the viscosity terms.

Johannes Groe; Romuald A. Janik; Piotr Surwka

2007-09-25T23:59:59.000Z

200

Visualization and Diagnostics of Thermal Plasma Flows  

Science Conference Proceedings (OSTI)

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques ... Keywords: d.c. plasma jet, enthalpy probe techniques, induction plasma, laser strobe, photographic techniques, schlieren, thermal plasma flows

M. I. Boulos

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Neoclassical Transport Properties of Tokamak Plasmas  

Science Conference Proceedings (OSTI)

Transport Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

202

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

1.2 Transport in tokamakAnomalous radial transport model for edge plasma . . . . . .Anomalous transport . . . . . . . . . . . . . . . . . . . .

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

203

Plasma Control Requirements and Concepts For ITER  

Science Conference Proceedings (OSTI)

Technical Paper / Special Section: Plasma Control Issues for Tokamaks / Instrumentation Control and Data Handling

J. Wesley,* H.-W. Bartels; D. Boucher; A. Costley; L. De Kock; Yu. Gribov; M. Huguet; G. Janeschitz; P.-L. Mondino; V. Mukhovatov; A. Portone; M. Sugihara; I. Yonekawa

204

MFE Burning Plasmas Innovative Confinement Concepts (ICCs)  

E-Print Network (OSTI)

MFE Burning Plasmas and Innovative Confinement Concepts (ICCs) Bick Hooper LLNL Presentation power requires: · A burning plasma experiment · An advancing portfolio of ICCs · Plasma physics unified Improved Configurations Magnetic Configurations Knowledge Base Burning Plasma Phys. & Tech. Knowledge Base

205

Plasma chemistry in wire chambers  

SciTech Connect

The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

Wise, J.

1990-05-01T23:59:59.000Z

206

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

207

Radiation Transport in Takamak Edge Plasmas  

DOE Green Energy (OSTI)

Plasmas in edge regions of tokamaks can be very optically thick to hydrogen lines. Strong line radiation introduces a non-local coupling between different regions of the plasma and can significantly affect the ionization and energy balance. These effects can be very important, but they are not included in current edge plasma simulations. We report here on progress in self-consistently including the effects of a magnetic field, line radiation and plasma transport in modeling tokamak edge plasmas.

Scott, H; Adams, M

2002-09-30T23:59:59.000Z

208

Stopping power of weakly unstable plasmas  

SciTech Connect

An expression for the additional contribution to the stopping power of a weakly unstable plasma due to the modification of the beam--plasma collision operator by the presence of the unstable modes is derived and evaluated for a plasma with a flowing hot-electron tail, i.e., a bump-on-tail instability. It is found that the unstable plasma oscillations do not substantially alter the screening of the beam--plasma interaction.

Perez, J.D.; Payne, G.L.

1984-02-01T23:59:59.000Z

209

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics, without any new assumptions. The calculations are only more exact than those usually found in the literature. When photons penetrate a cold and dense electron plasma, they lose energy through ionization and excitation, through Compton scattering on the individual electrons, and through Raman scattering on the plasma frequency. But when the plasma is very hot and has low density, such as in the solar corona, the photons lose energy also in plasma redshift, which is an interaction with the electron plasma. The energy loss of a photon per electron in the plasma redshift is about equal to the product of the photons energy and one half of the Compton cross-section per electron. This energy loss (plasma redshift of the photons) consists of very small quanta, which are absorbed by the plasma and cause a significant heating. In quiescent solar corona, this heating starts in the transition zone to the solar corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains

Ari Brynjolfsson

2005-01-01T23:59:59.000Z

210

Parametric instabilities and plasma heating in an inhomogeneous plasma  

SciTech Connect

Experimental studies of plasma heating due to microwave irradiation of the magnetically confined plasma column in the Princeton L-3 device is presented. X-band (10.4 GHz) microwave power, both in the ordinary and the extraordinary modes of propagation, is used in these experiments. Plasma heating is observed to occur simultaneously with the occurrence of parametric decay instabilities. The mode structure of the pump wave and the decay ion wave dispersion has been measured with high frequency probes. Detailed measurements of electron heating rates are presented and compared with collisional heating rates. In addition, production of suprathermal electrons and ions is also observed and measured. A comparison is made with recent laser-pellet interaction experiments. (auth)

Porkolab, M.; Arunasalam, V.; Luhmann, N.C. Jr.; Schmitt, J.P.M.

1975-10-01T23:59:59.000Z

211

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

E-Print Network (OSTI)

Esarey and M. Pillo?, Phys. Plasmas 2, 1432 (1995). 13 B. A.and E. Esarey, Phys. Plasmas 14 T. Katsouleas, Phys. Rev. APegoraro, and I. V. Pogorelsky, Plasma Phys. Rep. 23, 259 16

Rittershofer, W.

2010-01-01T23:59:59.000Z

212

Plasma-catalyzed fuel reformer  

DOE Patents (OSTI)

A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

2013-06-11T23:59:59.000Z

213

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

214

Plasma Panel Based Radiation Detectors  

Science Conference Proceedings (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Varner Jr, Robert L [ORNL; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Bentefour, E [Ion Beam Applications; Levin, Daniel S. [University of Michigan; Moshe, M. [Tel Aviv University; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan

2013-01-01T23:59:59.000Z

215

SciTech Connect: plasma  

Office of Scientific and Technical Information (OSTI)

plasma Find plasma Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

216

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

217

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

218

Spectroscopic characterization of laser-induced tin plasma  

E-Print Network (OSTI)

H. R. Griem, Principles of Plasma Spectroscopy ?Cambridge,Beke?, Principles of Laser Plasmas ?Wiley-Interscience, NewIn the early stage of plasma evolution, the electron

Harilal, S S; O'Shay, B; Tillack, M S; Mathew, M V

2005-01-01T23:59:59.000Z

219

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

Tsai, Chin-Chi (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

220

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

SciTech Connect

Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

2010-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

Tsai, C.C.; Haselton, H.H.

1994-03-08T23:59:59.000Z

222

Michigan Institute for Plasma Sci-  

E-Print Network (OSTI)

associated with flux ropes. Magnetic field lines (red, green tubes), plasma current (arrows) and the QSL experiment two magnetic flux ropes are generated from adjacent pulsed current channels in a background-separatrix layer (QSL), a narrow region between the flux ropes. Field lines on either side of the QSL have closely

Shyy, Wei

223

Neutral transport in a plasma  

DOE Green Energy (OSTI)

A solution procedure for the neutral transport equation in plasma slab geometry is developed. Half-angle scalar fluxes, currents and averaged cross sections are introduced to provide a convenient and simple method of calculating the neutral energy distribution as an adjunct to the neutral density calculation. A forward-backward sweep numerical solution procedure, which avoids matrix inversion, is outlined.

Stacey, W.M. Jr.

1977-12-01T23:59:59.000Z

224

Gatan Solarus Advanced Plasma System  

Science Conference Proceedings (OSTI)

The Solarus Advanced Plasma System expands this process to a new level. ... electronics and software; which when integrated allows more control and .... Ar, Ni, or Ar/O2 at 60psi (4.1bar) required for operation of pneumatic valve. Power.

225

Hydrodynamics of the cascading plasma  

E-Print Network (OSTI)

The cascading gauge theory of Klebanov et.al realizes a soluble example of gauge/string correspondence in a non-conformal setting. Such a gauge theory has a strong coupling scale Lambda, below which it confines with a chiral symmetry breaking. A holographic description of a strongly coupled cascading gauge theory plasma is represented by a black brane solution of type IIB supergravity on a conifold with fluxes. A characteristic parameter controlling the high temperature expansion of such plasma is 1/ln(T/Lambda). In this paper we study the speed of sound and the bulk viscosity of the cascading gauge theory plasma to order 1/ln(T/Lambda)^4. We find that the bulk viscosity satisfies the bound conjectured in arXiv:0708.3459. We comment on difficulties of computing the transport coefficients to all orders in T/Lambda. Previously, it was shown that a cascading gauge theory plasma undergoes a first-order deconfinement transition with unbroken chiral symmetry at T_c=0.6141111(3) Lambda. We show here that a deconfined chirally symmetric phase becomes perturbatively unstable at T_u=0.8749(0) T_c. Near the unstable point the specific heat diverges as c_V ~ |1-T_u/T|^(-1/2).

Alex Buchel

2009-03-20T23:59:59.000Z

226

Microwave-generated plasma thruster  

DOE Green Energy (OSTI)

A concept for high power density and efficiency plasma thruster based on electron cyclotron resonance heating (ECRH) is described. Initial estimates are made of the parameters, leading to a conceptual design. An effort for detail physics design and proof-of-principal tests is also proposed. 20 refs., 2 figs., 1 tab.

Hooper, E.B.

1991-05-11T23:59:59.000Z

227

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

Ballou, Nathan E. (West Richland, WA)

1992-01-01T23:59:59.000Z

228

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.

Ballou, N.E.

1992-04-14T23:59:59.000Z

229

A Plasma Lens for Magnetron Sputtering  

SciTech Connect

A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

Anders, Andre; Brown, Jeff

2010-11-30T23:59:59.000Z

230

Magnetron cathodes in plasma electrode pockels cells  

DOE Patents (OSTI)

Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

Rhodes, Mark A. (Pleasanton, CA)

1995-01-01T23:59:59.000Z

231

Rotation generation and transport in tokamak plasmas  

E-Print Network (OSTI)

Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

Podpaly, Yuri Anatoly

2012-01-01T23:59:59.000Z

232

Reviews of plasma physics. Vol. 10  

SciTech Connect

This book presents information on the following topics: nonlinear dynamics of rarefied plasmas and ionospheric aerodynamics; cyclotron instability of the earth radiation belts; dynamic nonlinear electromagnetic phenomena in plasmas; and dynamics of the Z pinch.

Leontovich, M.A.

1986-01-01T23:59:59.000Z

233

Plasma heating by an rf electric field  

SciTech Connect

In an analysis of the excitation of plasma waves by an electromagnetic wave at a frequency near the plasma frequency, the decay instabilities of first and second orders are taken into account. (AIP)

Musher, S.L.; Rubenchik, A.M.

1975-12-01T23:59:59.000Z

234

Plasma physics aspects of ETF/INTOR  

SciTech Connect

In order to achieve their principle technical objectives, the Engineering Test Facility (ETF) and the International Tokomak Reactor (INTOR) will require an ignited (or near ignited) plasma, sustained for pulse lengths of at least 100 secs at a high enough plasma pressure to provide a neutron wall loading of at least 1.3 MW/m/sup 2/. The ignited plasma will have to be substantially free of impurities. Our current understanding of major plasma physics characters is summarized.

Peng, Y.K.M.; Rutherford, P.R.; Schmidt, J.A.; Cohn, D.R.; Miller, R.L.

1980-01-01T23:59:59.000Z

235

Vortex formation during rf heating of plasma  

SciTech Connect

Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

Motley, R.W.

1980-05-01T23:59:59.000Z

236

Building Assessment and Energy Coordinator | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Jobs Building Assessment and Energy Coordinator Department:...

237

Methane Conversion by Plasma Assisted Methods  

E-Print Network (OSTI)

and Helge Egsgaard2 1Optics and Plasma Research Department 2Biosystems Department Risø National Laboratory

238

The Coupling of Electromagnetic Power to Plasmas  

Science Conference Proceedings (OSTI)

Heating and Current Drive / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

R. Koch

239

Active molecular plasma in a magnetic field  

SciTech Connect

The propagation of electromagnetic oscillations in an active molecules plasma in a constant external magnetic field is investigated. (AIP)

Kovtun, V.P.

1981-05-01T23:59:59.000Z

240

Princeton Plasma Physics Laboratory Technology Marketing ...  

... Energy Innovation Portal on Google; Bookmark Princeton Plasma Physics Laboratory Technology Marketing Summaries - Energy Innovation Portal on ...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tribological Behavior of Carbon Nanotube Reinforced Plasma ...  

Science Conference Proceedings (OSTI)

Symposium, Ceramic Matrix Composites ... Abstract Scope, Plasma sprayed Yittria Stabilized Zirconia (YSZ) coating is most commonly used in cylindrical liners,...

242

Miniaturized cathodic arc plasma source  

DOE Patents (OSTI)

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

243

Energy Measurement in a Plasma Wakefield Accelerator  

SciTech Connect

In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

Ischebeck, R

2007-07-06T23:59:59.000Z

244

Plasma confinement. [Physics for magnetic geometries  

SciTech Connect

The physics of plasma confinement by a magnetic field is developed from the basic properties of plasmas through the theory of equilibrium, stability, and transport in toroidal and open-ended configurations. The close relationship between the theory of plasma confinement and Hamiltonian mechanics is emphasized, and the modern view of macroscopic instabilities as three-dimensional equilibria is given.

Boozer, A.H.

1985-03-01T23:59:59.000Z

245

Master Thesis: Fusion Plasma Thermal Transport  

E-Print Network (OSTI)

Master Thesis: Fusion Plasma Thermal Transport Radial and Poloidal Profile Modeling Martin Olesen-axis localised ion cyclotron resonance heating source. 2. Cold pulse shock induction at the plasma edge via laser wave propagation from heat modulation and the fast propagation of a cold pulse, at the same plasma

246

Planar controlled zone microwave plasma system  

DOE Patents (OSTI)

An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxvlle, TN)

2011-10-04T23:59:59.000Z

247

Plasma sweeper to control the coupling of RF power to a magnetically confined plasma  

DOE Patents (OSTI)

A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, Robert W. (Princeton, NJ); Glanz, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

248

Production of field-reversed mirror plasma with a coaxial plasma gun  

SciTech Connect

The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

Hartman, Charles W. (Alamo, CA); Shearer, James W. (Livermore, CA)

1982-01-01T23:59:59.000Z

249

Plasma position dynamics of ISX tokamak  

SciTech Connect

Perturbation equations of a tokamak plasma equilibrium position have been developed. Neglecting second and higher order effects, oscillatory high frequency solution is obtained, and an approximated low frequency plasma motion dynamics transfer function is derived. This function allows a manageable study of a tokamak plasma equilibrium position stability and practical syntheses of the associated plasma position feedback control systems. One of the major parameters governing plasma equilibrium position stability of a tokamak is shown to be the vacuum vessel eddy current delay time constant.

Burenko, O.

1977-01-01T23:59:59.000Z

250

MPD streaming plasma source for MFTF  

SciTech Connect

The applicability of Magneto-plasma-dynamic (MPD) arcs as a source of warm, streaming plasma for start-up and for the suppression of instabilities is discussed. The plasma source emits a high particle flux (1000-5000 amp) of well directed ions having kinetic energy in the 10-100 eV range. The construction details of an MPD plasma source are given and a sequence of proposed tests are presented. The tests are designed to demonstrate the large flux and good gas utilization of the source as well as investigate the behavior of the streaming plasma in a high magnetic field environment.

Poulsen, P.

1977-07-01T23:59:59.000Z

251

Low voltage operation of plasma focus  

SciTech Connect

Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A. [Energetics and Electromagnetics Division, Facility for Electromagnetic Systems, Bhabha Atomic Research Center, Visakhapatanam, A.P. 530012 (India)

2010-08-15T23:59:59.000Z

252

Plasma Lens for Muon and Neutrino Beams  

SciTech Connect

The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented.

Kahn,S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

2008-06-23T23:59:59.000Z

253

DYNAMIC SCREENING IN SOLAR PLASMA  

Science Conference Proceedings (OSTI)

In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions has been revisited. In particular, the issue of dynamic effects has been raised by Shaviv and Shaviv who apply the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean field assumption inherent in Salpeter's approximation. In this paper, we reproduce their numerical analysis of the screening energy in the plasma of the solar core and conclude that the effects of dynamic screening are relevant and should be included when stellar nuclear reaction rates are computed.

Mao, Dan; Daeppen, Werner [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 (United States); Mussack, Katie [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom)], E-mail: mussack@ast.cam.ac.uk

2009-08-20T23:59:59.000Z

254

Galleries | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Research Education Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Organization Contact Us Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Galleries Subscribe to RSS - Galleries 2013 Young Women's Conference 2013 Young Women's Conference63 images 2013 Plasma Camp 2013 Plasma Camp7 images 2013 Science on Saturday Lecture Series 2013 Science on Saturday Lecture Series7 images 2013 Summer's End Poster Session 2013 Summer's End Poster Session19 images 2013 Science Bowl 2013 Science Bowl12 images 2013 Pathways to Science Summit 2013 Pathways to Science Summit17 images 2012-2013 PathSci Kick-Off Event

255

Princeton Plasma Physics Lab - ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

iter ITER is a large international iter ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion - the power source of the sun and the stars.To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma. en New imaging technique provides improved insight into controlling the plasma in fusion experiments

256

Perspectives on Geospace Plasma Coupling  

Science Conference Proceedings (OSTI)

There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.

Baker, Daniel N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303-7814 (United States)

2011-01-04T23:59:59.000Z

257

Dynamic screening in solar plasma  

E-Print Network (OSTI)

In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions has been revisited. In particular the issue of dynamic effects has been raised by Shaviv and Shaviv who apply the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In this paper we reproduce their numerical analysis of the screening energy in the plasma of the solar core and conclude that the effects of dynamic screening are relevant and should be included when stellar nuclear reaction rates are computed.

Mao, Dan; Dppen, Werner

2009-01-01T23:59:59.000Z

258

Atmospheric Pressure Plasma Process And Applications  

SciTech Connect

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

Peter C. Kong; Myrtle

2006-09-01T23:59:59.000Z

259

Robert Kaita | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Kaita Kaita Principal Research Physicist, P.I., LTX Robert (Bob) Kaita is the head of plasma diagnostic operations and acting head of boundary physics operations for the National Spherical Torus Experiment (NSTX). Kaita is also a co-principal investigator of the Lithium Tokamak Experiment (LTX). He is a Fellow of the American Physical Society and a recipient of the Kaul Foundation Prize for Excellence in Plasma Physics Research. He has supervised the research of many students in the PPPL Program in Plasma Physics in the Department of Astrophysical Sciences at Princeton University. Interests Neutral beam and radiofrequency plasma heating Plasma diagnostics Plasma-surface interactions Solid and liquid plasma-facing components Contact Information Phone: 609-243-3275

260

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Steady state compact toroidal plasma production  

DOE Patents (OSTI)

Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

Turner, William C. (Livermore, CA)

1986-01-01T23:59:59.000Z

262

Plasma Propagation Through Porous Dielectric Sheets  

E-Print Network (OSTI)

AbstractThe propagation of plasmas through porous materials is one extreme example of a packed-bed reactor. Mechanisms for atmospheric-pressure plasmas flowing through porous dielectric films are computationally investigated. Images of this plasma flow are discussed. Index TermsPhotoionization, plasma functionalization. ATMOSPHERIC-PRESSURE plasmas (APPs) in dielectric barrier discharge (DBD) configurations are widely used for remediation of toxic gases. One such configuration is a packed-bed reactor where the plasma flows along the surface of high-dielectric-constant (?) beads where electric fields are intensified by the gradient in ? [1]. Typical DBD plasmas operate in air at atmospheric pressure at a few to tens of kilohertz, having electrode separations of a few millimeters to a centimeter. One extreme example of a packed-bed DBD reactor

Mingmei Wang; John E. Foster; Mark J. Kushner

2011-01-01T23:59:59.000Z

263

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Hassanain, Babiker

2011-01-01T23:59:59.000Z

264

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

265

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

Ari Brynjolfsson

2004-01-21T23:59:59.000Z

266

A Deformable Model for Bringing Particles in Anders Lindbjerg Dahl1  

E-Print Network (OSTI)

in for example a fermentation process, oil droplets in water, coal particles in a power plant, and spray the particle size. This can be handled by only including the particles in focus, but most of the depicted all particles in focus. Therefore we need to handle the out-of-focus blur, but this also provide

Dahl, Anders Lindbjerg

267

HYDROTHERMAL TREATMENT OF WHEAT STRAW ON PILOT PLANT SCALE Anders Thygesena  

E-Print Network (OSTI)

solid material is one of the most important factors for production of bioethanol. Conversion for production of sugars for bio ethanol and an alkali free solid material for combustion in an incineration). After combined hydrothermal treatment and enzymatic hydrolysis the maximum sugar, yields were 30 g

268

LARYNGEAL ACTIVITY IN ICELANDIC OBSTRUENT PRODUCTION* Anders L6fqvist+ and Hirohide Yoshioka++  

E-Print Network (OSTI)

of glottal opening. The light from the fiberscope was used as a transillumination system, whereby the amount in Icelandic was investigated by the combined techniques of transillumination and fiberoptic filming of the organization of the speech motor system. Finally, we will address the general problem of interarticulator

269

DTU Aqua-rapport nr. 220-2010 Af Anders Koed, Niels Jepsen,  

E-Print Network (OSTI)

-11 42 * Skjern Sdr. Green - Skarrild 4-11 74 * Skjern Skarrild ­ Sdr. Felding 5-11 45 * Skjern Lysholm

Mosegaard, Klaus

270

Plasma arc torch with coaxial wire feed  

SciTech Connect

A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

Hooper, Frederick M (Albuquerque, NM)

2002-01-01T23:59:59.000Z

271

Boundary Plasma Turbulence Simulations for Tokamaks  

SciTech Connect

The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

Xu, X; Umansky, M; Dudson, B; Snyder, P

2008-05-15T23:59:59.000Z

272

Plasma vitrification of waste materials  

DOE Patents (OSTI)

This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

1997-06-10T23:59:59.000Z

273

Plasma vitrification of waste materials  

DOE Patents (OSTI)

This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

McLaughlin, David F. (Oakmont, PA); Dighe, Shyam V. (North Huntingdon, PA); Gass, William R. (Plum Boro, PA)

1997-01-01T23:59:59.000Z

274

Transport Coefficients of Gluon Plasma  

E-Print Network (OSTI)

Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge model by lattice QCD simulations on $16^3 \\times 8$ and $24^3 \\times 8$ lattices. Simulations are carried out at a slightly above the deconfinement transition temperature $T_c$, where a new state of matter is currently being pursued in RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region, $1.4 \\leq T/T_c \\leq 1.8 $.

Atsushi Nakamura; Sunao Sakai

2004-06-08T23:59:59.000Z

275

Holographic plasma and anyonic fluids  

E-Print Network (OSTI)

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-09T23:59:59.000Z

276

Resonant-cavity antenna for plasma heating  

SciTech Connect

Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

1987-01-01T23:59:59.000Z

277

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

278

Nonabelian plasma instabilities in Bjorken expansion  

E-Print Network (OSTI)

Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.

Anton Rebhan

2008-10-15T23:59:59.000Z

279

Plasma heat pump and heat engine  

Science Conference Proceedings (OSTI)

A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

2010-08-15T23:59:59.000Z

280

Quantum Electrodynamical Effects in Dusty Plasmas  

E-Print Network (OSTI)

A new nonlinear electromagnetic wave mode in a magnetized dusty plasma is predicted. Its existence depends on the interaction of an intense circularly polarized electromagnetic wave with a dusty plasma, where quantum electrodynamical photon-photon scattering is taken into account. Specifically, we consider a dusty electron-positron-ion plasma, and show that the propagation of the new mode is admitted. It could be of significance for the physics of supernova remnants and in neutron star formation.

M. Marklund; L. Stenflo; P. K. Shukla; G. Brodin

2005-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Plasma torch with liquid metal electrodes  

Science Conference Proceedings (OSTI)

In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

Predtechenskii, M.R.; Tukhto, O.M. [Russian Academy of Science, Novosibirsk (Russian Federation)

2006-03-15T23:59:59.000Z

282

On the geometry of plasma reactor  

E-Print Network (OSTI)

It is presented the concept of controled nuclear synthesis in top of cone formed by rotational dynamic flow of low-temperature plasma.

I. V. Bayak

2000-05-22T23:59:59.000Z

283

Design of a cusped field plasma thruster.  

E-Print Network (OSTI)

??A plasma space propulsion thruster has been designed. It is classified as a Cusped Field Thruster (CFT), which refers to the geometry of the magnetic (more)

Conte, Joseph Richard, III

2012-01-01T23:59:59.000Z

284

Princeton Plasma Physics Laboratory Technologies Available for ...  

The DOE Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, ...

285

Princeton Plasma Physics Laboratory Honors Three Researchers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kenneth Hill received the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. (Photo by Elle Starkman, PPPL Office of Communications) Kenneth...

286

Plasma planar filament instability and Alfven waves  

E-Print Network (OSTI)

Inhomogeneous plasmas filaments instabilities are investigated by using the techniques of classical differential geometry of curves where Frenet torsion and curvature describe completely the motion of curves. In our case the Frenet frame changes in time and also depends upon the other coordinates taking into account the inhomogeneity of the plasma. The exponential perturbation method so commonly used to describe cosmological perturbatons is applied to magnetohydrodynamic (MHD) plasma equations to find longitudinal modes describing Alfven waves propagation modes describing plasma waves in the medium. Stability is investigated in the imaginary axis of the spectra of complex frequencies ${\\omega}$ or $Im(\\omega)\

Garcia de Andrade

2007-03-05T23:59:59.000Z

287

Plasma Response to Complex External Magnetic Perturbations  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 55, 131 (2010)52nd American Physical Society Annual Meeting of Division of Plasma Physics Chicago Illinois, US, 2010999618210

Chu, M.S.

2010-07-10T23:59:59.000Z

288

Stuart R Hudson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

approach for optimizing currents in H-1NF stellarator in operation in the Plasma Research Laboratory at the ANU to control vacuum magnetic islands was introduced. After...

289

Betatron radiation from density tailored plasmas  

E-Print Network (OSTI)

Betatron radiation from density tailored plasmas K. Tathe resulting betatron radiation spectrum can therefore bepro?le, the betatron radiation emitted by theses electrons

Ta Phuoc, Kim

2010-01-01T23:59:59.000Z

290

Russell Kulsrud | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

291

Virtual Tour | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

292

Stephen Jardin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

293

Nathaniel J Fisch | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

294

Peter Porazik | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

295

Marina Gorelenkova | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

296

Seung Hoe Ku | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

297

Weixing Wang | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

298

Peter Damiano | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

299

Administrative Assistant | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

300

Graduate Programs | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wenjun Deng | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

302

Nikolai Gorelenkov | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

303

Hong Qin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

304

Allan Reiman | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

305

Contract Documents | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

306

Ilya Dodin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

307

Organization Chart | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

308

Super Separator | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

309

Experimental Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

310

PPPL Open House | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

311

Robert Goldston | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

312

Current Job Openings | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

313

EEB Hub | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

314

Gregory Hammett | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

315

Michael Williams | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

316

Michael Zarnstorff | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

317

Fact Sheets | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

318

Contact Information | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

319

Systems Engineer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

320

Theory & Computational Department | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electronics Engineer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

322

Electronics Technician | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

323

Ronald C Davidson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

324

Careers/ Human Resources | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

325

Bruce E Koel | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

326

Technical Reports - Disclaimer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

327

Science Education | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

328

Building Assessment Coordinator | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

329

Harry Mynick | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

330

National Ignition Facility | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

331

News Archive | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

332

News Room | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

333

Working With PPPL | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

334

John Krommes | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

335

Laser diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

336

PPPL Experts | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

337

Target Positioning Fixture | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

338

White Papers | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

339

PPPL News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

340

COLLOQUIUM: "Laboratory Dynamos" | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Press Releases | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

342

Jianying Lang | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

343

Stewart Prager | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

344

PPPL FACTS | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

345

Procurement Division | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

346

Sustainable PPPL | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

347

Thermalization of a two-stream plasma  

SciTech Connect

Improvements on the theory of two oppositely directed plasma streams are obtained by improving the calculation of the friction force between the two streams. (AIP)

Alipchenkov, V.M.; Konkashbaev, I.K.; Ryl' tseva, T.V.; Ulinich, F.P.

1978-09-01T23:59:59.000Z

348

Speakers Bureau | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

349

About Science Education | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

350

Lab Leadership | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

351

Andrew Zwicker | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

352

Hutch Neilson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

353

Theoretical Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

354

Robert Sheneman | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

355

Chemical Engineer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

356

Privacy Policy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

357

Jin Chen | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

358

Hantao Ji | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

359

Stefan Gerhardt | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

360

Ernest Valeo | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kelsey Tresemer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

362

General Atomics (GA) | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

363

PPPL AWARDS | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

364

Outreach Efforts | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

365

Press Releases Archive | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

366

Visiting PPPL | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

367

Liquid Metal Circulator | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

368

Jay Johnson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

369

Ninaad Desai | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

370

Fusion Power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

371

Technology Transfer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

372

Edward Startsev | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

373

AC power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

374

Science Education Blog | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

375

Igor Kaganovich | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

376

Inertial confinement fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

377

William Tang | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

378

PPPL Overview | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

379

Masayuki Ono | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

380

Power system design | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

General Maintenance Technician | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

382

Help Desk Administrator | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

383

PPPL Technical Reports | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

384

Ammar Hakim | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

385

Daren Stotler | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

386

Open House | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

387

Columbia University | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

388

Amitava Bhattacharjee | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

389

Ahmed Diallo | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

390

Leonid Zakharov | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

391

NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

392

Powder Dropper | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

393

PPPL Publications | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

394

Charles Neumeyer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

395

Newsletters: April 2013 | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

396

Emergency Service Officer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

397

Massachusetts Institute of Technology (MIT) | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

398

HEP/ Particle Astrophysics Special Seminar | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

399

Associate Research Physicist - Computational | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

400

National Spherical Torus Experiment (NSTX) | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Newsletters: November 2012 | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

402

Science Education Upcoming Events | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

403

Newsletters Monthly Archive | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

404

MASSACHUSETTS INSTITUTUE OF TECHNOLOGY | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

405

Associate Research Physicist - MRX | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

406

Comparison of the plasma beat wave accelerator and the plasma wake field accelerator  

SciTech Connect

In this paper we compare the Plasma Beat Wave Accelerator and Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. 7 refs., 2 tabs.

Chen, P.; Ruth, R.D.

1985-03-01T23:59:59.000Z

407

Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma  

SciTech Connect

Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

2004-04-15T23:59:59.000Z

408

Device for plasma confinement and heating by high currents and nonclassical plasma transport properties  

DOE Patents (OSTI)

A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

Coppi, B.; Montgomery, D.B.

1973-12-11T23:59:59.000Z

409

Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators  

SciTech Connect

The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

Schroeder, C. B.; Esarey, E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

410

DEVELOPMENT OF ONE METER-LONG LITHIUM PLASMA SOURCE AND EXCIMER MODE REDUCTION FOR PLASMA WAKEFIELD  

E-Print Network (OSTI)

DEVELOPMENT OF ONE METER-LONG LITHIUM PLASMA SOURCE AND EXCIMER MODE REDUCTION FOR PLASMA WAKEFIELD 94720 K. Marsh, P. Muggli, S. Wang, and C. Joshi, UCLA, Los Angeles, CA 90024 Abstract A one meter long reduction. 1 INTRODUCTION A one-meter long plasma source has been constructed which will permit

411

The effect of radio frequency plasma processing reactor circuitry on plasma characteristics  

E-Print Network (OSTI)

, developed an equivalent circuit model of the plasma reactor using this data, and later devel- oped a sheath was supported by the National Institute of Standards and Technology, Air Force Office of Scientific ResearchThe effect of radio frequency plasma processing reactor circuitry on plasma characteristics Shahid

Kushner, Mark

412

A Next Step Burning Plasma Experiment Dale M. Meade  

E-Print Network (OSTI)

A Next Step Burning Plasma Experiment Dale M. Meade Princeton Plasma Physics Laboratory Fusion). ARIES Group #12;Advanced Toroidal Physics Fusion Plasma Conditions Burning Plasma Physics 1.0 0.5 Alpha Energy #12;Magnetic Fusion Science Issues - Strongly Coupled in a Fusion (Burning) Plasma Improved

413

Ion-beam Plasma Neutralization Interaction Images  

SciTech Connect

Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

2002-04-09T23:59:59.000Z

414

Atomic Data Needs for Modeling Photoionized Plasmas  

E-Print Network (OSTI)

Many of the fundamental questions in astrophysics can be addressed using spectroscopic observations of photoionized cosmic plasmas. However, the reliability of the inferred astrophysics depends on the accuracy of the underlying atomic data used to interpret the collected spectra. In this paper, we review some of the most glaring atomic data needs for better understanding photoionized plasmas.

Daniel Wolf Savin

2001-08-03T23:59:59.000Z

415

Quark-gluon plasma (Selected Topics)  

SciTech Connect

Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

Zakharov, V. I., E-mail: vzakharov@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-09-15T23:59:59.000Z

416

PLASMA PROCESSING UPDATE A newsletter from the  

E-Print Network (OSTI)

to understand the interaction of space plasma with solar array, experimental and theoretical/numerical modelling interaction of the space plasma [1] with solar array is of primary importance for a solar array designer, while designing high power high voltage solar arrays. The major concern with the high power designs

417

Magnetic multipole redirector of moving plasmas  

DOE Patents (OSTI)

A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.

Crow, James T. (Albuquerque, NM); Mowrer, Gary R. (Cedar Crest, NM)

1999-01-01T23:59:59.000Z

418

Quarkonia in a deconfined gluonic plasma  

E-Print Network (OSTI)

We discuss lattice results on the properties of finite momentum charmonium states in a gluonic plasma. We also present preliminary results for bottomonium correlators and spectral functions in the plasma. Significant modifications of chi_b states are seen at temperatures of 1.5 Tc.

S. Datta; A. Jakovac; F. Karsch; P. Petreczky

2006-03-01T23:59:59.000Z

419

Gravimagnetic shock waves in the anisotropic plasma  

E-Print Network (OSTI)

The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.

Yu. G. Ignatyev; D. N. Gorokhov

2011-01-01T23:59:59.000Z

420

Magnetic instabilities in accelerating plasma surfaces  

SciTech Connect

The existence of an interchange instability strictly associated with electron inertia is demonstrated. This is characterized by a growth rate significantly larger than the usual ion-inertial Rayleigh-Taylor rate and by self-generated magnetic fields localized around the accelerating plasma surface. This novel instability may be partially responsible for the observed magnetic fields in ablatively accelerated laser plasmas.

Amendt, P.; Rahman, H.U.; Strauss, M.

1984-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Elena Belova | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Elena Belova Elena Belova Principal Research Physicist, Plasma Physics Laboratory. Elena V. Belova is a Principal Research Physicist at the Princeton University Plasma Physics Laboratory. Her research interests include: kinetic effects on the MHD stability; interaction of energetic particles with MHD waves; global stability of the Field-Reversed Configurations; numerical simulations, and fluid/kinetic(gyro-kinetic) hybrid models of plasmas. She received a M.S. in physics from Moscow Institute of Physics and Technology (Russia), and worked at the Space Research Institute in Moscow, Russia till 1992. She received a Ph. D. in plasma physics from Dartmouth College, Hanover NH in 1997. Following a three year post doctoral position with Princeton Plasma Physics Laboratory, she joined PPPL staff in

422

NSTX Plasma Response to Lithium Coated Divertor  

SciTech Connect

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

2011-01-21T23:59:59.000Z

423

NSTX Plasma Response to Lithium Coated Divertor  

Science Conference Proceedings (OSTI)

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, Lithium Divertor (LLD) recently installed.

H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

2011-01-21T23:59:59.000Z

424

Magnetoacoustic shock waves in dissipative degenerate plasmas  

SciTech Connect

Quantum magnetoacoustic shock waves are studied in homogenous, magnetized, dissipative dense electron-ion plasma by using two fluid quantum magneto-hydrodynamic (QMHD) model. The weak dissipation effects in the system are taken into account through kinematic viscosity of the ions. The reductive perturbation method is employed to derive Korteweg-de Vries Burgers (KdVB) equation for magnetoacoustic wave propagating in the perpendicular direction to the external magnetic field in dense plasmas. The strength of magnetoacoustic shock is investigated with the variations in plasma density, magnetic field intensity, and ion kinematic viscosity of dense plasma system. The necessary condition for the existence of monotonic and oscillatory shock waves is also discussed. The numerical results are presented for illustration by using the data of astrophysical dense plasma situations such as neutron stars exist in the literature.

Hussain, S.; Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore Islamabad 44000 (Pakistan) and Department of Physics and Applied Mathematics (DPAM) PIEAS, P.O. Nilore Islamabad 44000 (Pakistan)

2011-11-15T23:59:59.000Z

425

Turbulent Spectra in the Solar Wind Plasma  

E-Print Network (OSTI)

Observations of interstellar scintillations at radio wavelengths reveal a Kolmogorov-like scaling of the electron density spectrum with a spectral slope of -5/3 over six decades in wavenumber space. A similar turbulent density spectrum in the solar wind plasma has been reported. The energy transfer process in the magnetized solar wind plasma over such extended length-scales remains an unresolved paradox of modern turbulence theories raising the especially intriguing question of how a compressible magnetized solar wind exhibits a turbulent spectrum that is a characteristic of an incompressible hydrodynamic fluid. To address these questions, we have undertaken three-dimensional time dependent numerical simulations of a compressible magnetohydrodynamic fluid describing super-Alfv\\'enic, supersonic and strongly magnetized plasma. It is shown that the observed Kolmogorov-like (-5/3) spectrum can develop in the solar wind plasma by supersonic plasma motions that dissipate into highly subsonic motion that passively ...

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

426

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2010-11-02T23:59:59.000Z

427

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2008-05-13T23:59:59.000Z

428

Plasma Mass Filters For Nuclear Waste Reprocessing  

SciTech Connect

Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-05-26T23:59:59.000Z

429

Timeline | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting PPPL Visiting PPPL History Timeline Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours News Events Research Education Organization Contact Us Overview Learn More Visiting PPPL History Timeline Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours Timeline 1951 In March, Lyman Spitzer, Jr. proposes to the Atomic Energy Commission (AEC) the construction of a magnetic plasma device to study controlled fusion. On July 1, the AEC approves funding. The research effort becomes part of Project Matterhorn, a classified project studying the hydrogen bomb. Spitzer heads the controlled thermonuclear research section. A former rabbit hutch becomes the initial home for the Project. 1953 Princeton's first research device is the Model A stellarator. Experiments

430

Princeton Plasma Physics Lab - Education  

NLE Websites -- All DOE Office Websites (Extended Search)

education The PPPL function that education The PPPL function that reaches out to students, teachers and the general public through programs ranging from student internships to weekly talks on scientific topics from January through April. en Science on Saturday starts Jan. 11 http://www.pppl.gov/news/2014/01/science-saturday-starts-jan-11

Science fans of all ages can explore a rich variety of science and technology topics at the popular Science on Saturday lecture series hosted by the U.S. Department of Energy's Princeton Plasma Physics Laboratory. The series marks its 30-year anniversary when it begins on Saturday, Jan.

431

Princeton Plasma Physics Lab - Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium Nearly everybody knows about lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of producing useful energy from fusion. en COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) http://www.pppl.gov/events/colloquium-lithium-tokamak-experiment-ltx

432

Fractal dust grains in plasma  

Science Conference Proceedings (OSTI)

Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

Huang, F. [College of Science, China Agricultural University, Beijing 100083 (China); Peng, R. D. [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Liu, Y. H. [Institute of Complexity Science, Qingdao University, Qingdao 266071 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Ye, M. F.; Wang, L. [Institute of Physics, Chinese Academy of Science, Beijing 100190 (China)

2012-09-15T23:59:59.000Z

433

CORRELATIONS IN CONFINED QUANTUM PLASMAS  

Science Conference Proceedings (OSTI)

This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

DUFTY J W

2012-01-11T23:59:59.000Z

434

Plasma and Ion Sources in Large Area Coatings: A Review  

E-Print Network (OSTI)

A. Popov, High Density Plasma Sources, Park Ridge, N.J. :et al. , IEEE Trans. Plasma Sci. 26 (1998) J. Pelletier, R. Winter, and J. Engemann, Plasma Sources Sci. Technol. I.

Anders, Andre

2005-01-01T23:59:59.000Z

435

Plasma Channel Diagnostic Based on Laser Centroid Oscillations  

E-Print Network (OSTI)

and S. M. Hooker, Phys. Plasmas 14, 056708 (2007). W. P.C. Vaccarezza, IEEE Trans. Plasma Sci. 36, 1782 (2008). W.and Z. Najmudin, Phys. Plasmas 14, 056702 (2007). J.

Gonsalves, A.J.

2010-01-01T23:59:59.000Z

436

Plasma potential mapping of high power impulse magnetron sputtering discharges  

E-Print Network (OSTI)

Birch, and U. Helmersson, Plasma Sources Sci. Technol. 14,J. Alami, and N. Brenning, Plasma Sources Sci. Technol. 13,S. Rohde, and N. Brenning, Plasma Sources Sci. Technol. 17,

Rauch, Albert

2013-01-01T23:59:59.000Z

437

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

7] B. A. Shadwick, et al. , Phys. Plasmas (2009). [8] B. A.Shadwick et al. , IEEE Trans. Plasma Sci. 30 (2002) 38. [9]K. Nakamura, et al. , Phys. Plasmas 14 (2007) 056708. [5] C.

Schroeder, C. B.

2010-01-01T23:59:59.000Z

438

Integrated models for plasma/material interaction during loss of plasma confinement.  

SciTech Connect

A comprehensive computer package, High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the energy deposited. The package includes new models to study turbulent plasma behavior in the SOL and predicts the plasma parameters and conditions at the divertor plate. Full two-dimensional comprehensive radiation magnetohydrodynamic models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. A brief description of the HEIGHTS package and its capabilities are given in this work with emphasis on turbulent plasma behavior in the SOL during disruptions.

Hassanein, A.

1998-07-29T23:59:59.000Z

439

Fuel gas production by microwave plasma in liquid  

Science Conference Proceedings (OSTI)

We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

2006-06-05T23:59:59.000Z

440

How to Patch Active Plasma and Collisionless Sheath: Practical Guide  

SciTech Connect

Most plasmas have a very thin sheath compared with the plasma dimension. This necessitates separate calculations of the plasma and sheath. The Bohm criterion provides the boundary condition for calculation of plasma profiles. To calculate sheath properties, a value of electric field at the plasma-sheath interface has to be specified in addition to the Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy are reported.

Kaganovich, Igor D.

2002-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Measuring Plasma Modes near the Cyclotron Frequency in a Finite Non-Neutral Plasma: A Search for  

E-Print Network (OSTI)

goes without saying that fusion energy has been the driving force behind plasma research for the last the plasma charge-neutral on the whole. A smaller, yet significant area of plasma research lies in the study

Hart, Gus

442

Plasma sweeper to control lower hybrid wave coupling  

SciTech Connect

Experimental tests of an anti E x anti B plasma sweeper, designed to control the plasma density near the mouth of a phased waveguide array, are described.

Motley, R.W.; Glanz, J.

1981-11-01T23:59:59.000Z

443

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

444

Ion emission and expansion in laser-produced tin plasma  

E-Print Network (OSTI)

and heat conduction within the plasma. In addition to theand heat conduction within the plasma. Second, experimentsplasma, transport towards the ablation front in the conduction

Burdt, Russell Allen

2011-01-01T23:59:59.000Z

445

Staging laser plasma accelerators for increased beam energy  

E-Print Network (OSTI)

Staging Laser Plasma Accelerators for Increased Beam Energy94720, USA Abstract. Staging laser plasma accelerators is anefficient way of mitigating laser pump depletion in laser

Panasenko, Dmitriy

2010-01-01T23:59:59.000Z

446

Nonlinear laser energy depletion in laser-plasma accelerators  

E-Print Network (OSTI)

Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

Shadwick, B.A.

2009-01-01T23:59:59.000Z

447

Surface plasma-arc cutting of stainless steel  

Science Conference Proceedings (OSTI)

This danger does not exist when plasma-arc cutting is used. Plasma-arc cutting also increases productivity and produces better quality gouged surfaces [2].

448

Nano Pulse Second DC Pulsed Discharge for Plasma CVD Method  

Science Conference Proceedings (OSTI)

Plasma irradiated by metal-organic complexes, we can synthesize a thin film of metal or ceramic. However, the plasma CVD in the general law, sometimes high ...

449

Fluctuations of Chromodynamic Fields in Quark-Gluon Plasma  

E-Print Network (OSTI)

Chromodynamic fluctuations in the collisionless quark-gluon plasma are found as a solution of the initial value linearized problem. The stable and unstable plasmas are discussed.

Mrowczynski, Stanislaw

2008-01-01T23:59:59.000Z

450

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas...

451

Stimulated Mandelstam-Brillouin scattering (SMBS) in an inhomogeneous plasma  

SciTech Connect

Absolute SMBS instability has been observed in a plasma and, in contrast to convective instability, contributes to anomalous heating of the plasma. (AIP)

Silin, V.P.; Starodub, A.N.

1976-06-05T23:59:59.000Z

452

Decay processes in an inhomogeneous time-varying plasma  

SciTech Connect

The decay of a homogeneous pump field in an inhomogeneous time-varying plasma into a plasma wave and an ion-acoustic wave is considered theoretically.

Andreev, A.A.; Fedorov, V.I.

1977-12-01T23:59:59.000Z

453

MIT Plasma Science & Fusion Center: research>alcator>introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

toroidal current in the plasma. Most tokamaks, including CMOD, depend on an ohmic transformer as the primary means of driving toroidal current in the plasma. A transformer works...

454

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion...

455

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

456

Physics of Laser-driven plasma-based acceleration  

SciTech Connect

The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

Esarey, Eric; Schroeder, Carl B.

2003-06-30T23:59:59.000Z

457

GYRAC?D?O: Relativistic plasma accumulator and ion accelerator  

Science Conference Proceedings (OSTI)

Plasma heating and relativistic plasma accumulation are realized in the GYRAC?D?O installation. Relativistic plasma accumulation is a result of plasma heating under synchrotron gyromagnetic autoresonance (SGA) and subsequent throwing of the SGA plasma into the central region of the magnetic mirror trap in the regime of the SGA?pulse packet. The optimum of the initial plasma pulsed injection is found. The obtained plasma is e?vortex filled with ions. Major parameters of the plasma are as follows: n ? 8 109 cm?3: average energy of electrons W?200 keV; lifetime ??40 ms. The problem of the plasma ejection out of the trap after the accumulation cycle completion is discussed. It is shown that effective plasma ejection and ion acceleration are possible in case of a relatively dense plasma which is feasible only in the accumulation regime.

V. V. Andreev; A. A. Apraksin; A. M. Umnov

1992-01-01T23:59:59.000Z

458

Expert Topics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

AC power Education Emergency planning Engineering Fusion energy Fusion reactor design Fusion roadmapping ITER Inertial confinement fusion International collaborations Laser diagnostics Lithium Magnetic reconnection Nuclear energy Nuclear safety Particle beam dynamics Plasma astrophysics Plasma diagnostics Plasma physics Power system design Power systems Quality assurance STEM Science literacy Stellarators Surface science Sustainability Tokamaks Visiting PPPL History Fusion Basics DOE and Fusion Links Contract Documents Speakers Bureau Tours News Events Research Education Organization Contact Us Overview Learn More AC power Education Emergency planning Engineering Fusion energy Fusion reactor design Fusion roadmapping ITER Inertial confinement fusion International collaborations Laser diagnostics

459

David W Johnson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

W Johnson W Johnson Principal Research Physicist, Head, ITER Fabrication David Johnson is a principal research physicist with broad experience in techniques and instrumentation for measuring the characteristics of magnetic fusion plasmas. He has specific expertise in laser Thomson scattering systems, and has installed and operated such systems on many fusion devices around the world. He managed a division of plasma diagnostic experts for the Tokamak Fusion Test Reactor (TFTR) and National Spherical Torus Experiment (NSTX) projects, more recently becoming the Work Breakdown Structure Team Leader for US ITER Diagnostics. He has served on numerous national and international committees related to diagnostic development. Interests Plasma diagnostics techniques and instrumentation

460

APPARATUS FOR PRODUCING AND MANIPULATING PLASMAS  

DOE Patents (OSTI)

An electrical pinch discharge apparatus is described for producing and manipulating high-temperature plasmas. The apparatus may be of either the linear or toroidal pinch discharge type. Arrangements are provided whereby stabilizing fields may be trapped in the plasma external to the main pinch discharge path and the boundary condition of the stabilizing field programed so as to stabilize the discharge or to promote instabilities in the discharge as desired. The produced plasmas may be employed for various purposes, and fusion neutrons have been produced with the apparatus.

Colgate, S.A.; Ferguson, J.P.; Furth, H.P.; Wright, R.E.

1960-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fundamental limits on NOx reduction by plasma  

Science Conference Proceedings (OSTI)

This paper discusses the gas-phase reaction mechanisms for removal of NO{sub x} in a plasma. The effect of oxygen content on the competition between the reduction and oxidation processes is discussed. The effect of the electron kinetic energy distribution on the radical production and subsequent chemistry is then discussed in order to predict the best performance that can be achieved for NO{sub x} reduction using the plasma alone. The fundamental limit on the minimum electrical energy consumption that will be required to implement NO{sub x} reduction in any type of plasma reactor is established.

Penetrante, B. M., LLNL

1997-04-07T23:59:59.000Z

462

Landau Diamagnetism of Degenerate Collisional Plasma  

E-Print Network (OSTI)

For the first time the kinetic description of Landau diamagnetism for degenerate collisional plasma is given. The correct expression for transverse electric conductivity of the quantum plasma, found by authors (see arXiv:1002.1017 [math-ph] 4 Feb 2010) is used. In work S. Dattagupta, A.M. Jayannavar and N. Kumar [Current science, V. 80, No. 7, 10 April, 2001] was discussed the important problem of dissipation (collisions) influence on Landau diamagnetism. The analysis of this problem is given with the use of exact expression for transverse conductivity of quantum plasma.

A. V. Latyshev; A. A. Yushkanov

2010-07-05T23:59:59.000Z

463

Hall Magnetohydrodynamics of weakly-ionized plasma  

E-Print Network (OSTI)

We show that the Hall scale in a weakly ionized plasma depends on the fractional ionization of the medium and, Hall MHD description becomes important whenever the ion-neutral collision frequency is comparable to the ion-gyration frequency, or, the ion-neutral collisional mean free path is smaller than the ion gyro-radius. Wave properties of a weakly-ionized plasma also depends on the fractional ionization and plasma Hall parameters, and whistler mode is the most dominant mode in such a medium. Thus Hall MHD description will be important in astrophysical disks, dark molecular clouds, neutron star crusts, and, solar and planetary atmosphere.

B. P. Pandey; Mark Wardle

2006-08-01T23:59:59.000Z

464

Quantum plasma effects in the classical regime  

E-Print Network (OSTI)

For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv\\'{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

G. Brodin; M. Marklund; G. Manfredi

2008-02-01T23:59:59.000Z

465

Status of 2XIIB plasma confinement experiments  

SciTech Connect

This report describes the status of 2XIIB neutral beam injection experiments with stabilizing plasma. The stream suppresses ion-cyclotron fluctuations and permits density to 5 x 10$sup 13$ cm$sup -3$. The ion energy is 13 keV, and electron temperature reaches 140 eV. Plasma confinement increases with ion energy and n tau reaches 7 x 10$sup 10$ cm$sup -3$.s at 13 keV. The n tau energy scaling is consistent with electron drag and ion-ion scattering losses. Buildup on a streaming plasma in a steady-state magnetic field is described. (auth)

Coensgen, F. J.; Clauser, J. F.; Correll, D. L.

1976-02-11T23:59:59.000Z

466

Starter for inductively coupled plasma tube  

DOE Patents (OSTI)

A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

Hull, D.E.; Bieniewski, T.M.

1988-08-23T23:59:59.000Z

467

Starter for inductively coupled plasma tube  

DOE Patents (OSTI)

A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

Hull, Donald E. (969 Nambe Loop, Los Alamos, NM 87544); Bieniewski, Thomas M. (285 Donna Ave., Los Alamos, NM 87544)

1988-01-01T23:59:59.000Z

468

Plasma formed ion beam projection lithography system  

DOE Patents (OSTI)

A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

2002-01-01T23:59:59.000Z

469

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts  

SciTech Connect

Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

Shuets, G.

2004-05-21T23:59:59.000Z

470

Design of a cusped field plasma thruster  

E-Print Network (OSTI)

A plasma space propulsion thruster has been designed. It is classified as a Cusped Field Thruster (CFT), which refers to the geometry of the magnetic field that influences the flow of electrons and ions. The thruster was ...

Conte, Joseph Richard, III

2012-01-01T23:59:59.000Z

471

Robert J Goldston | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

and an international leader in the fields of plasma physics and magnetic fusion energy. He is the author of 220 papers in journals and conference proceedings, and in 1995...

472

Particle beam dynamics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

473

Weekly Highlights | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Highlights Weekly Highlights 2014 Theory Department Weekly Highlights Dec 20 & Jan 3~ THEORY This week's theory seminar of this year was presented by Professor Eliezer Hameiri from New York University, entitled "Multi-fluid and MHD plasmas with flow, a variational approach". The abstract of the talk is "Based on an extension to plasmas of Ertel's classical vorticity theorem in fluid dynamics, it is shown that for each species in a multi-fluid plasma there can be constructed a set of nested surfaces that have this species' fluid particles confined within them. Variational formulations for the plasma evolution and its equilibrium states are developed, based on the new surfaces and all of the dynamical conservation laws associated with them. A limit of the variational integral yields the two-fluid

474

Plasma panel-based radiation detectors  

E-Print Network (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.

Peter Friedman; Robert Ball; James Beene; Yan Benhammou; Meny Ben-Moshe; Hassan Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Daniel Levin; Yiftah Silver; Robert Varner; Curtis Weaverdyck; Bing Zhou

2013-05-10T23:59:59.000Z

475

Heavy hadrons in quark-gluon plasma  

SciTech Connect

We use the nonperturbative quark-antiquark potential derived within the Field Correlator Method and the screened Coulomb potential to calculate binding energies and melting temperatures of heavy mesons and baryons in the deconfined phase of quark-gluon plasma.

Narodetskii, I. M., E-mail: naro@itep.ru; Simonov, Yu. A.; Veselov, A. I. [Institute of Theoretical and Experimental Physics (Russian Federation)

2011-03-15T23:59:59.000Z

476

A History Keeping Debugging System for PLASMA  

E-Print Network (OSTI)

PLASMA (for PLAnner-like System Modeled on Actors) is a message-passing computer language based on actor semantics. Since every event in the system is the receipt of a message actor by a target actor, a complete history ...

Morrison, Jerry Howard

477

Exploiting Laboratory and Heliophysics Plasma Synergies  

E-Print Network (OSTI)

Recent advances in space-based heliospheric observations, laboratory experimentation, and plasma simulation codes are creating an exciting new cross-disciplinary opportunity for understanding fast energy release and transport ...

Dahlburg, Jill

478

Elmo bumpy square plasma confinement device  

DOE Patents (OSTI)

The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

Owen, L.W.

1985-01-01T23:59:59.000Z

479

Introduction to Plasma Dynamo, Reconnection and Shocks  

SciTech Connect

In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

480

Investigation of asymmetric plasma blob dynamics  

E-Print Network (OSTI)

The dynamics of asymmetric blobs is investigated in the Versatile Toroidal Facility (VTF) at MIT. Blobs are local regions of enhanced plasma density. Blobs are relevant to several areas of physics research, including fusion ...

Soane, Alexander (Alexander Visotsky)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "andre anders plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Contact OSUR Program | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

contact the Program Director to discuss possible OSUR support for your existing plasma research project and to discuss how the program can play a role in the creation of a new...

482

Enhanced laser beam coupling to a plasma  

DOE Patents (OSTI)

Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

Steiger, Arno D. (Pleasanton, CA); Woods, Cornelius H. (Livermore, CA)

1976-01-01T23:59:59.000Z

483

CHIANTI: An Atomic Database for Astrophysical Plasmas  

Science Conference Proceedings (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

E. Landi; K. P. Dere; P. R. Young; G. Del Zanna; H. E. Mason

484

System for the production of plasma  

DOE Patents (OSTI)

The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.

Bakken, George S. (Ann Arbor, MI)

1978-01-01T23:59:59.000Z

485

Hunting the Quark Gluon Plasma ASSESSMENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Hunting the Quark Gluon Plasma Hunting the Quark Gluon Plasma ASSESSMENTS BY THE EXPERIMENTAL COLLABORATIONS Relativistic Heavy Ion Collider (RHIC) * Brookhaven National Laboratory, Upton, NY 11974-5000 RESULTS FROM THE FIRST 3 YEARS AT RHIC managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle April 18, 2005 BNL -73847-2005 Formal Report

486

Plasma Damage in p-GaN  

SciTech Connect

The effect of Inductively Coupled Plasma H{sub 2} or Ar discharges on the breakdown voltage of p-GaN diodes was measured over a range of ion energies and fluxes. The main effect of plasma exposure is a decrease in net acceptor concentration to depths of 400-550{angstrom}. At high ion fluxes or energies there can be type conversion of the initially p-GaN surface. Post etch annealing at 900 C restores the initial conductivity.

Cao, X.A.; Dang, G.T.; Hickman, R.A.; Pearton, S.J.; Ren, F.; Shul, R.J.; Van Hove, J.M.; Zhang, A.P.; Zhang, L.

1999-06-30T23:59:59.000Z

487

Plasma flow switch experiment on Procyon  

SciTech Connect

This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

Benage, J.F. Jr.; Bowers, R.; Peterson, D. [and others

1995-09-01T23:59:59.000Z

488

Transverse electric conductivity of quantum collisional plasmas  

E-Print Network (OSTI)

Formulas for calculation of transverse dielectric function and transverse electric conductivity in quantum collisional plasmas under arbitrary degree of degeneracy of the electron gas are received. The Wigner - Vlasov - Boltzmann kinetic equation with collision integral in BGK (Bhatnagar, Gross and Krook) form in coordinate space is used. Various special cases are investigated. The case of fully degenerate quantum plasma was considered separately. Comparison with Lindhard's formula has been realized.

Latyshev, A V

2010-01-01T23:59:59.000Z

489

Transverse electric conductivity of quantum collisional plasmas  

E-Print Network (OSTI)

Formulas for calculation of transverse dielectric function and transverse electric conductivity in quantum collisional plasmas under arbitrary degree of degeneracy of the electron gas are received. The Wigner - Vlasov - Boltzmann kinetic equation with collision integral in BGK (Bhatnagar, Gross and Krook) form in coordinate space is used. Various special cases are investigated. The case of fully degenerate quantum plasma was considered separately. Comparison with Lindhard's formula has been realized.

A. V. Latyshev; A. A. Yushkanov

2010-02-04T23:59:59.000Z

490

Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities.  

SciTech Connect

Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed.

Hassanein, A.

1998-08-26T23:59:59.000Z

491

Modeling of Damage and Lifetime Analysis of Plasma Facing Components During Plasma Instabilities in Tokamaks  

Science Conference Proceedings (OSTI)

Materials Development & Plasma-Material Interactions / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

F. Genco; A. Hassanein

492

New Plasma Discharge Development Tools for the DIII-D Plasma Control System  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 56, 299 (2011)53rd American Physical Society Annual Meeting of Division of Plasma Physics Salt Lake City Utah, US, 2011999619032

Welander, A.S.

2011-08-03T23:59:59.000Z

493

Kinetic Theory of Plasma Waves - Part I: Introduction  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

P. U. Lamalle

494

Plasma ion sources and ion beam technology in microfabrications  

E-Print Network (OSTI)

conduction purposes. Copper tubes, with water passing through, are attached to the surface of the plasma

Ji, Lili

2007-01-01T23:59:59.000Z

495

Simulation of a Burning Plasma C. Kessel, PPPL  

E-Print Network (OSTI)

Simulation of a Burning Plasma Experiment C. Kessel, PPPL UFA Workshop on Burning Plasma Science, December 11-13, 2000 #12;FIRE Burning Plasma Discharge Simulation with TSC ELMy H-mode, N, R=2.0 m, Ip=6.5 MA #12;Burning Plasma Experiment Simultaneously Needs · L-H mode transition · Non

496

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS  

E-Print Network (OSTI)

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS Gerald A. Navratil Columbia University/FESAC Burning Plasma Strategy Dec 2002 NRC/NAS Interim Report on Burning Plasmas Jan 30, 2003 DOE of the physics of burning plasma, advance fusion technology, and contribute to the development of fusion energy

497

Questions and Answers - What is plasma?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why do protons and neutronshave the same mass? Why do protons and neutrons<br>have the same mass? Previous Question (Why do protons and neutrons have the same mass?) Questions and Answers Main Index Next Question (How do you know plasma is real if you can't see it?) How do you know plasmais real if you can't see it? What is plasma? Plasma is the fourth state of matter. Many places teach that there are three states of matter; solid, liquid and gas, but there are actually four. The fourth is plasma. To put it very simply, a plasma is an ionized gas, a gas into which sufficient energy is provided to free electrons from atoms or molecules and to allow both species, ions and electrons, to coexist. The funny thing about that is, that as far as we know, plasmas are the most common state of matter in the universe. They are even common here on earth.

498

Stellarator Coil Design and Plasma Sensitivity  

SciTech Connect

The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

Long-Poe Ku and Allen H. Boozer

2010-11-03T23:59:59.000Z

499

Plasma wake field XUV radiation source  

DOE Patents (OSTI)

A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

Prono, Daniel S. (Los Alamos, NM); Jones, Michael E. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

500

Characterization of electron cyclotron resonance hydrogen plasmas  

DOE Green Energy (OSTI)

Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

Outten, C.A. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z